初中数学知识点精讲精析 角
初中数学知识点精讲精析 角的大小比较
6.6 角的大小比较学习目标1. 理解角的大小比较意义;掌握直角、锐角、钝角的概念。
2. 会估计一个角的大小;会用叠合法和度量法进行角的大小比较;会区别直角、锐角和钝角。
知识详解1. 角的大小比较(1)度量法:先用量角器测量出各角的度数,再按照角的度数比较大小,从而确定两个角的大小关系。
(2)叠合法:两个角比较大小时,把两个角的顶点和一条边分别重合,另一条边放在重合边的同侧,根据另一条边的位置确定角的大小。
如比较∠ABC和∠DEF的大小,可把∠DEF移到∠ABC上,使它的顶点E和∠ABC的顶点B 重合,一边ED和BA重合,另一边EF和BC落在BA的同一侧。
①如果EF和BC重合(如图1),那么∠DEF等于∠ABC,记作∠DEF=∠ABC;②如果EF落在∠ABC的外部(如图2),那么∠DEF大于∠ABC,记作∠DEF>∠ABC;③如果EF落在∠ABC的内部(如图3),那么∠DEF小于∠ABC,记作∠DEF<∠ABC2.角的分类等于90°的角是直角;小于直角的角是锐角;大于直角而小于平角的角是钝角。
【典型例题】例1:如图,求解下列问题:(1)比较∠COD和∠COE的大小;(2)借助三角尺,比较∠EOD和∠COD的大小;(3)用量角器度量,比较∠BOC和∠COD的大小.【答案】(1)由图可以看出,∠COD<∠COE.(2)用三角尺中30°的角分别和这两个角比较,可以发现∠EOD<30°,∠COD>30°,所以∠EOD<∠COD.(3)通过度量可知:∠BOC=46°,∠COD=44°,所以,∠BOC>∠COD.【解析】(1)可用叠合法比较.∠COD和∠COE有一条公共边OC,而OD在∠COE的内部,故∠COD小;(2)我们要选择三角尺的一个角来估算这两个角的度数,就可以达到比较的目的;(3)通过度量容易得出结论。
例2:已知∠AOB=30°,∠BOC=20°,则∠AOC的角度是__________.【答案】10°或50°【解析】如图,①∠AOC=∠AOB+∠BOC=30°+20°=50°;②∠AOC=∠AOB-∠BOC=30°-20°=10°.例3:如图,解答下列问题:(1)比较图中∠AOB,∠AOC,∠AOD的大小;(2)找出图中的直角、锐角和钝角.【答案】(1)∠AOD>∠AOC>∠AOB;(2)直角有∠AOC,锐角有∠AOB,∠BOC,∠COD,钝角有∠AOD,∠BOD.【解析】(1)角的大小可以观察得出;(2)根据各类角的特征观察得出.【误区警示】易错点1:角的分类1.如图,∠AOB是平角,则图中小于平角的角共有()A.4个B.7个C.9个D.10个【答案】C【解析】小于平角的角为:∠AOC、∠AOD、∠AOE、∠COD、∠COE、∠COB、∠DOE、∠DOB、∠EOB共9个,故选C.易错点2:锐角2.下列4个角的度数中,属于锐角的是()A.70°B.90°C.110°D.180°【答案】A【解析】A、∵0<70°<90°,∴70°的角是锐角,故本选项正确;B、90°的角是直角,不是锐角,故本选项错误;C、90°<110°<180°,是钝角,不是直角,故本选项错误;D、180°的角是平角,不是锐角,故本选项错误.【综合提升】针对训练1.如果一个角是10°,用10倍放大镜观察这个角是度.2.如图,要将角钢(图①)弯成145°(图②)的钢架,在角钢上截去的缺口(图①中的虚线)应为度.3.写出图中所有小于平角的角,它们是1.【答案】10【解析】因为放大镜没有改变顶点的位置和两条射线的方向,所以用10倍放大镜观察这个角还是10度.2.【答案】35【解析】在角钢上截去的缺口(图①中的虚线)应为35度.3.【答案】∠A,∠B,∠ACB,∠ACD【解析】小于平角的角是∠A,∠B,∠ACB,∠ACD.【中考链接】(2014年佛山)若一个60°的角绕顶点旋转15°,则重叠部分的角的大小是()A.15°B.30°C.45°D.75°【答案】C【解析】∵∠AOB=60°,∠BOD=15°,∴∠AOD=∠AOB﹣∠BOD=60°﹣15°=45°课外拓展几何之父欧几里得曾定义角为在平面中两条不平行的直线的相对斜度。
八年级数学角的平分线的性质及其逆定理通用版知识精讲
初二数学角的平分线的性质及其逆定理通用版【本讲主要内容】角的平分线的性质及其逆定理【知识掌握】 【知识点精析】1. 角的平分线上的点到角的两边的距离相等;2. 到角的两边的距离相等的点在角的平分线上。
以上两个定理互为逆定理,要正确加以区分,性质1是指如果一个点在一个角的平分线上,可以得出它到角的两边的距离相等; 而性质2却与它恰好相反,如果一个点到角的两边距离相等,那么它的位置一定在这个角的平分线上。
通俗地说,性质1是先知点的位置,得到它的性质;性质2先由点满足某个性质,再确定它的位置。
【解题方法指导】例1. 已知:如图所示,E 是AD 上一点,∠=∠⊥⊥BAD CAD EB AB EC AC ,,。
求证:∠=∠DBE DCE分析:欲证∠=∠DBE DCE ,只要证DBE ∆≌DCE ∆即可。
由于DE 是它们的公共边,只要证出BE=CE ,∠=∠BED CED 即可,或证出BD=CD 。
已知AE 是∠BAC 的平分线,EB AB EC AC ⊥⊥,,可得出EB EC =,由∠=∠AEB AEC ,可得∠=∠BED CED 。
至此思路已通。
证明:∵AC EC AB EB CAD BAD ⊥⊥∠=∠,,∴=EB EC (角的平分线上的点到角的两边的距离相等)∵ABE BAE BED ∠+∠=∠,∠=∠+∠CED CAE ACE (三角形的外角等于不相邻的两个内角的和)DEDE CED BED =∠=∠∴又BDE ∆∴≌)(SAS CDE ∆ DCE DBE ∠=∠∴评析:如果由两次三角形全等来解决此题,实际上是把角平分线的性质又重新证了一遍,走了一个弯路,因此可直接由角平分线的性质,得出EB=EC 。
例2. 已知:如图所示,△ABC 中,D 是BC 的中点,F AC DF E AB DE 于,于⊥⊥,BE=CF 。
求证:AD 平分∠BAC 。
B D C分析:欲证AD 平分∠BAC ,由于DE ⊥AB ,DF ⊥AC ,因此只要证明DE=DF 即可,可通过△BDE ≌△CDF 加以解决。
初中数学知识点精讲精析 台球桌面上的角
2·1 台球桌面上的角1.互为余角定义:互为余角.即:如果两个角的和是直角,那么称这两个角互为余角(complementary angle),也就是说其中一个角是另一个角的余角.注意:(强调)(1)互为余角是对两个角而言的.(2)互为余角仅仅表明了两个角的数量关系,而没有限制角的位置关系.2.互为补角定义互为补角.即:如果两个角的和是平角,那么称这两个角互为补角(supplementary angle).同角或等角的余角相等,同角或等角的补角相等.3.对顶角定义像这样,直线AB与直线CD相交于点O,∠1与∠2有公共顶点,它们的两边互为反向延长线,这样的两个角叫对顶角.对顶角:如果两个角有公共顶点,它们的两边互为反向延长线,那么这样的两个角叫做对顶角.对顶角相等.对顶角的本质特征是:两个角有公共顶点,两个角的两边互为反向延长线.要在图形中准确地找出对顶角,需两看:(1)看是不是两条直线相交所得的角;(2)看是不是有公共顶点而没有公共边(或不相邻)的两个角.另外,从对顶角的定义还可知:对顶角总是成对出现的,它们是互为对顶角;一个角的对顶角只有一个.两条直线相交于一点,有2对对顶角,三条直线相交于一点,有6对对顶角,n 条直线相交于一点,共有n (n -1)对对顶角.1. 如果∠α的余角是∠β,那么∠β的补角是( )A. 180°-∠αB. 90°-∠αC. 90°+∠αD. ∠α-180°【解析】∵∠α的余角是∠β∴∠β的补角为:∴选择C2. 已知,如图,直线AB 、CD 相交于点O ,OB 平分∠DOE ,若∠DOE =60°,则∠AOC 的度数是__________【解析】3. 如图,点O 是直线AB 上一点,∠AOE =∠FOD =90°,OB 平分∠COD(1)找出图中与∠DOE 互余的角;(2)找出图中与∠DOE 互补的角. ∴∠β=-∠α90 1801809090 -∠β=--∠α=+∠α() C EA BD O∠=∠DOE OB DOE 60,平分∴∠=∠=⨯=BOD DOE 12126030 又对顶角相等 ∠=∠AOC DOB()∴∠=AOC 30【解析】(1)∵∠AOE =∠FOD =90°∴∠EOF 与∠BOD 都是∠DOE 的余角又∵OB 平分∠COD∴∠BOC =∠BOD∴与∠DOE 互余的角有:∠EOF ,∠BOD ,∠BOC(2)∵∠AOE =∠FOD =90°∴∠AOF =∠EOD (同角的余角相等)又∵∠AOF +∠FOB =180°∴∠FOB 是∠AOF 的一个补角又∵∠FOB =∠EOF +∠EOB =∠BOC +∠EOB =∠EOC∴∠DOE 的补角有:∠FOB ,∠EOC4.下图中有对顶角吗?若有,请指出,若没有,请说明理由.【解析】图(1)、(2)、(3)中没有对顶角,因为这三个图形中的∠1、∠2不是两条直线相交所形成的.图(4)中有对顶角,分别是∠1与∠3;∠2与∠4 EFDA BOC ∴∠+∠=∠+∠=DOE EOF DOE BOD 9090 ,∴∠+∠=∠+∠=FOE AOF FOE EOD 9090 ,5. 如图:(1)若∠3=∠4,则________//________,理由是_________(2)若∠1=100°,∠2=80°,则______//_________,理由是_________(3)若∠3=∠5,则_______//________,理由是______________【解析】(1)若∠3=∠4,则AB//CD ,理由是同位角相等两直线平行;(2)若∠1=100°,∠2=80°,则AB//CD ,理由是同旁内角互补,两直线平行;(3)若∠3=∠5,则AB//CD ,理由是内错角相等,两直线平行.E GA 4 B15C DF H 3 2。
初中数学知识点精讲精析 直角三角形全等的判定 (2)
2.8 直角三角形全等的判定学习目标1.探索两个直角三角形全等的条件。
2.掌握两个直角三角形全等的条件(HL )。
知识详解1.直角三角形全等的判定定理(Ⅰ)文字语言:斜边和一条直角边对应相等的两个直角三角形全等。
(角写为“HL ”) (Ⅱ)数学语言:在Rt △ABC 和Rt △A'B'C'''''AB AC AB C A ⎧=⎪⎨=⎪⎩∴Rt △ABC ≌Rt △A'B'C'(HL )说明:证明两个直角三角形全等时,一定要分清用判定定理“HL ”,还是用一般三角形全等的判定定理。
书写证明的格式也要注意区分,不要混淆。
2.定理的运用:“HL ”是直角三角形独有的判定定理,对于一般三角形不成立,“HL ”定理是直角三角形全等判定的补充。
3.角平分线的性质定理(Ⅰ)文字语言:角平分线上的点到这个角的两边的距离相等。
(Ⅱ)数学语言:∵OP 是∠AOB 的平分线PE ⊥OA 于E ,PD ⊥OB 于D∴PD =PE (角平分线性质)(Ⅲ)定理的作用:证明线段相等4.角平分线的判定定理(性质定理的逆命题)(Ⅰ)文字语言:在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上。
(Ⅱ)数学语言:∵点P 在∠AOB 的内部PD ⊥OA 于DPE ⊥OB 于E∴点P 在∠AOB 的平分线上(角平分线的判定定理)(Ⅲ)定理的作用:证明角相等【典型例题】例1:1.已知:如图,A 、E 、F 、B 四点在一条直线上,AC ⊥CE ,BD ⊥DF ,AE =BF ,AC =BD 求证:CF =DE 。
【答案】证明:因为AC ⊥CE ,BD ⊥DF所以∠ACE =∠BDF =90°在Rt △ACE 和Rt △BDF 中AE =BF (已知)AC =BD (已知)∴Rt △ACE ≌Rt △BDF (HL )∴∠A =∠B∵AE =BF∴AE+EF =BF+EF即AF =BE在△ACF 和△BDE 中AF BE A B AC BD =∠=∠=⎧⎨⎪⎩⎪()()()已证已证已知∴△ACF ≌△BDE (SAS )∴CF =DE【解析】证线段相等,通常利用三角形全等的性质证明,但往往证一次全等不能解决问题,本题利用两次全等实现了最终目的,第一次全等为第二次全等创造条件。
七年级数学线段、角综合复习冀教版知识精讲
七年级数学线段、角综合复习冀教版【本讲教育信息】一. 教学内容:1. 认识直线、射线、线段的概念和它们的联系与区别,掌握它们的表示方法;掌握关于直线和线段的基本性质;理解两点之间距离的意义;会比较线段的大小,理解线段的和、差及线段的中点概念,会画一条线段等于已知线段.2. 认识角,理解角的两种描述方法,掌握角的表示方法;会比较角的大小,认识度、分、秒,并会进行简单的换算,会计算角度的和与差;了解角平分线的概念,了解余角和补角的概念,知道“等角的补角相等”“等角的余角相等”的性质.二. 知识要点:1. 两个基本性质(1)经过两点有一条直线,并且只有一条直线.可简说成:两点确定一条直线.(2)两点之间的所有连线中,线段最短.可简说成:两点之间,线段最短.2. 两点的距离:连结两点间的线段的长度,叫做这两点的距离.注意:距离是一个长度,而不是这条线段本身,要把连结两点的线段与两点的距离区分开来.3.4. 角(1)角的概念①静态定义:由两条有公共端点的射线所组成的图形.②动态定义:看成是由一条射线绕着它的端点旋转而成的图形.(2)角的表示①用三个大写字母表示,如∠AOB,但中间的字母必须是角的顶点O,也可写成∠BOA.②当以某点为顶点的角只有一个时,那么可用该顶点的字母表示,如∠O.③用数字表示,如∠1,但需要在图形中作标注.④用希腊字母表示,如∠α,需要在图形中作标注.(3)角的度量单位是度、分、秒,它们是60进制.1周角=2平角=4直角=360°,1°=60′,1′=60″.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的角叫做方向角.若方向线与东、南、西、北相同,则依次称为正东、正南、正西、正北;若方向线刚好是相邻两个方向所成角的平分线,只要把这两个方向排在一起就可以了,如图所示.若方向线在其他位置时,则先说北或南,再说偏东或西多少度.西西(5)互余和互补同角或等角的余角相等,同角或等角的补角相等.5. 线段的比较方法和角的比较方法都可以采用:一、叠合法,二、数值法.6.三. 重点难点:重点:一是对直线、射线、线段、角等这些基本概念的理解;二是两个基本性质:“两点确定一条直线”和“两点之间,线段最短”.三是线段和角的度量.难点:一是如何区分一些相近的概念;二是对图形的表示和画图、作图,对几何语言的学习、运用等.四. 考点分析:从近几年中考试题来看,对线段、角的考查命题难度不大,多以填空题、选择题的形式出现,有时也会融合在证明题或是实践操作题中出现,有时也会加入到有理数的计算中,综合来看本章内容在全卷中占3%左右的分值.【典型例题】例1. 选择题:(1)下列语句正确的是( )A .画直线AB =10厘米B .画直线l 的平分线C .画射线OB =3厘米D .延长线段AB 到点C ,使得BC =AB(2)如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°-∠β;②∠α-90°;③12(∠α+∠β);④12(∠α-∠β).其中正确的有( )A .4个B .3个C .2个D .1个(3)下列说法正确的是( ) A .画出A 、B 两点之间的距离B .连结两点之间的直线长度,叫做这两点之间的距离C .线段的大小关系,与它们的长度关系是一致的D .若AC =BC ,则点C 必是线段AC 的中点分析:(1)直线没有长度,当然也不能把它平分,所以选项A 和B 都是错误的;射线也没有长度,所以选项C 也错.(2)如果∠α与∠β互补,那么∠α+∠β=180°,∠β=180°-∠α,所以∠β的余角是90°-∠β=90°-(180°-∠α)=∠α-90°=∠α-12(∠α+∠β)=12∠α-12∠β=12(∠α-∠β).共有三个式子正确,故选B .(3)A 错在将两点之间的距离看成是线段本身,距离是指线段的长度而不是线段本身,所以是画不出来的;B 应为连结两点之间线段的长度;D 错在忽略线段中点必须首先在线段上这一条件.解:(1)D (2)B (3)C例2. 如图所示,O 是直线AB 上的一点,OD 是∠AOC 的平分线,OE 是∠COB 的平分线,则∠DOE =__________.ABOCDE分析:由题意知∠AOB 是平角,等于180°,OD 平分∠AOC ,OE 平分∠COB ,所以∠DOC =12∠AOC ,∠COE =12∠COB ,由此得∠DOE =∠DOC +∠COE =12(∠AOC +∠COB )=12×180°=90°.解:90°评析:本题主要考查角的平分线的理解与应用,解题关键是找出∠DOE =∠DOC +∠COE 这一关系式.例3. 如图所示,已知线段AB =80cm ,M 为AB 的中点,P 在MB 上,N 为PB 的中点,且NB =14cm ,求PA 的长.ABMPN分析:从图形可以看出,线段AP 等于线段AM 与MP 的和,也等于线段AB 与PB 的差,所以,要求线段PA 的长,只要能求出线段AM 与MP 或求出线段PB 即可.解:解法一:因为N 是PB 的中点 所以PB =2NB ,而NB =14cm 所以PB =2×14=28cm又因为M 是AB 的中点,所以AM =MB =12AB所以AM =MB =40cm又因为MP =MB -PB =40-28=12(cm ) 所以AP =AM +MP =40+12=52(cm ) 解法二:因为N 是PB 的中点,所以PB =2NB 所以PB =2×14=28(cm ) 又因为AP =AB -PB ,AB =80cm ∴AP =80-28=52(cm )评析:在几何计算中,要结合图形中已知线段和所求线段的位置关系求解,要步步有根据.另一方面要培养一题多解的思维能力,注意体会比较简捷的解题方法.求某条线段的长,通常是用转化思想将其转化为已知线段的和或差.例4. 已知∠1和∠2互余,∠2与∠3互补,若∠1=63°,则∠3=__________. 分析:∠2=90°-∠1=27°,∠3=180°-27°=153°. 解:153°评析:一定要理解透互余、互补的概念,并正确地进行角的计算.例5. 已知线段AB =8cm ,在直线AB 上有一点C ,且BC =4cm ,M 是线段AC 的中点,求线段AM 的长.分析:题中只是说明A 、B 、C 三点在一直线上,无法判断点C 在线段AB 上,因为也可能在线段AB 的延长线上,所以分两种情况来求AM 的长.解:(1)当C 在线段AB 上时,如图(1)所示, 因为AC =AB -BC ,AB =8cm ,BC =4cm , 所以AC =4cm .又因为M 是AC 的中点,所以AM =12AC .所以AM =12×4cm =2cm .ABCM (2)ABC M(1)(2)当C 在线段AB 的延长线上时,如图(2)所示,因为M 是AC 的中点,所以AM =12AC .又因为AC =AB +BC ,且AB =8cm ,BC =4cm ,所以AM =12AC =12(AB +BC )=12(8+4)cm =6cm .所以AM 的长度为2cm 或6cm .评析:(1)本题注意分两种情况.因为题中没有明确点C 的位置,所以要对所有可能的情况进行考虑.(2)在解无图的几何题目的过程中,我们必须具备根据条件作图的能力,要注意图形的完整性和各种可能性.例6. 如图所示,上北下南,左西右东,指出射线OA 、OB 、OC 、OD 的方位.A分析:说一个点所在的方位角时可以先看这个点在起始点的南北方向,再说它的东西方向.解:(1)OA 在北偏东60°;(2)OB 在北偏西27°;(3)OC 在南偏西35°;(4)OD 在东南方向.评析:方位角的表示通常是以南、北方向为起始方向,常说成“北偏东多少度、北偏西多少度、南偏东、南偏西”等,北偏东45°、北偏西45°、南偏东45°、南偏西45°分别称为东北方向、西北方向、东南方向、西南方向.【方法总结】1. 点和线都是最基本的几何图形,常用点来表示物体的位置,射线和直线可以看做是由线段向一方或两方无限延伸得到的;另一方面,射线和线段也可以看做直线的一部分.2. 估测、度量和叠合,都是比较线段长短和角的大小的重要方法,应根据情况和需要来选用.3. 角的运算包括两种情况:一种是对两个(或几个)角的度数进行加、减运算,注意其度量制是以60为进率的;另一种是位置关系,即从位置上将某一个角表示为另外两个角的和或差.两角互余、两角互补是两角之间的特殊数量关系.【模拟试题】(答题时间:60分钟)一. 选择题1. 要把一根木条固定在墙上,至少要钉( )个钉子. A .1B .2C .3D .42. 下列说法中错误的有( ) (1)线段有两个端点,直线有一个端点 (2)角的大小与我们画出的角的两边的长短无关 (3)线段上有无数个点 (4)同角或等角的补角相等 (5)两个锐角的和一定大于直角 A .1个B .2个C .3个D .4个3. 图中共有的角的个数是( ) A .5B .6C .7D .84. 如图所示,O 在直线m 上,∠1与∠2互余,∠α=134°,则∠β的度数是( ) A .134°B .136°C .154°D .156°12mO αβ5. 如图中,下列表示不正确的是( ) A .AB +BC =ACB .∠C =45°C .∠B +∠B =180°D .∠1+∠2=∠ADCABCD 1245°6. 如图所示,M是AB上一点,AM=8cm,BM=2cm,N是AB的中点,则MN的长为()A.1cm B.2cm C.3cm D.4cmA BNM二. 填空题1. 如图所示,射线AD上有三个点B、C、D,则共有__________条射线,图中共有__________条线段.A2. 按照图形填空:∠AOD=__________+__________+__________;∠BOC=__________-∠COD=∠AOC-__________;∠AOB=__________-∠BOC;∠AOC+∠BOD-∠BOC=__________.A BCOD3. 计算:(1)78°32′-51°47°=_______.(2)23°45′+24°20′=_______.*4. 已知线段AB,在BA的延长线上取一点C,使CA=3AB,则CB=_______AB,CA =_______CB.5. 已知∠A与∠B互余,若∠A=70°,则∠B的度数为__________.*6. 时针指示6点45分,它的时针和分针所成的锐角的度数是_______.7. 已知:∠AOB=40°,OC是∠AOB的平分线,则∠AOC的余角度数是_______.8. 已知∠A=50°,则∠A的补角是__________度.9. 如果∠1=140°,∠2=89°,∠3=91°6′,则它们的大小关系是__________.(用“<”连接)10. 如图所示,射线OA表示的方向是_______,射线OB表示的方向是_______.三. 解答题1. 如图,直线m 表示一条河,在河两侧有两个村庄A 、B ,要在河边建一个供水站,使供水站到两个村庄的距离之和最小,请找出C 点位置,并说明理由.ABm2. 将下列各题化成度、分、秒的形式: °°°.*3. 已知线段AB 上两点C 、D ,其中AB =acm ,CD =bcm ,E 、F 分别是AC 、DB 的中点.(1)求AC +DB 的长度;(2)E 、F 两点间的距离.*4. 如图,O 是直线AB 上的点,OD 是∠AOC 的平分线,OE 是∠COB 的平分线. (1)求∠DOE 的度数;(2)若∠DOE =90°,OD 平分∠AOC ,问OE 是否平分∠BOC ?ABCDEO**5. 如图所示,任意画一个四边形ABCD ,四边形的四边中点分别为E 、F 、G 、H ,连接EF 、FG 、GH 、HE ,并量出它们的长,你发现了什么?量出图中∠1、∠2、∠3、∠4的度数,你又发现了什么?多画几个四边形试试,你能得到什么猜想?试题答案一. 选择题1.B2.B3.D4.B5.C6.C二. 填空题1. 4,62. ∠AOB ,∠BOC ,∠COD ;∠BOD ,∠AOB ;∠AOC ;∠AOD3. 26°45′ 48°5′4. 4 345. 20°°7. 20° 8. 130 9. ∠2<∠3<∠1 10. 北偏东50°,南偏西75°三. 解答题1. 连结AB 交直线m 于点C ,点C 就是所求.根据是两点之间线段最短2. (1)45°36′;(2)78°25′48″;(3)≈35°33′50″3. (1)a -b (2)a +b 24. (1)∠DOE =90° (2)OE 平分∠BOC5. (1)EF =HG ,EH =FG ;(2)∠1+∠2+∠3+∠4=360°,∠1=∠3,∠2=∠4.猜想:顺次连接四边形各边的中点所得到的四边形一定是平行四边形.。
初中数学知识点精讲精析 圆周角和圆心角的关系
3·3圆周角和圆心角的关系1.圆周角定义:圆周角(angle in a circular segment):顶点在圆上,并且角的两边和圆相交的角.两个特征:(1)角的顶点在圆上;(2)两边在圆内的部分是圆的两条弦.2.圆周角定理:同弧所对的圆周角相等,所对的圆周角都等于它所对的圆心角的一半.注意:(1)定理的条件是同一条弧所对的圆周角和圆心角,结论是圆周角等于圆心角的一半.(2)不能丢掉“一条弧所对的”而简单说成“圆周角等于圆心角的一半”.在同圆或等圆中,同弧或等弧所对的圆周角相等.注意:(1)“同弧”指“同一个圆”.(2)“等弧”指“在同圆或等圆中”.(3)“同弧或等弧”不能改为“同弦或等弦”.3.直径所对的圆周角是直角,90°的圆周角所对的弦是直径.注意:这一推论应用非常广泛,一般地,如果题目的已知条件中有直径时,往往作出直径上的圆周角——直角:如果需要直角或证明垂直时,往往作出直径即可解决问题.4.反证法:注意:用反证法证明命题的一般步骤:(1)假设命题的结论不成立;(2)从这个假设出发,经过推理论证,得出矛盾.(3)山矛盾判定假设不正确,从而肯定命题的结论正确.5.圆内角与圆外角:我们把顶点在圆内(两边自然和圆相交)的角叫圆内角(如图1.顶点在圆外并且两边都和圆相交的角叫圆外角(如图2).定理:圆内角的度数,等于它所对弧的度数与它的对顶角所对弧的度数之和的一半.圆外角的度数,等于它的两边所夹两条弧的度数的差的一半.1.已知:⊙O 中,所对的圆周角是∠ABC ,圆心角是∠AOC .求证:∠ABC =12AOC . 【解析】证明:∠AOC 是△ABO 的外角,∴∠AOC =∠ABO +∠BAO .∵OA =OB ,∴∠ABO =∠BAO . ∴∠AOC =2∠ABO .即∠ABC =12∠AOC .如果∠ABC 的两边都不经过圆心(如下图),那么结果怎样?特殊情况会给我们什么启发吗?你能将下图中的两种情况分别转化成上图中的情况去解决吗?如图(1),点O 在∠ABC 内部时,只要作出直径BD ,将这个角转化为上述情况的两个角的和即可证出.由刚才的结论可知:∠ABD =12∠AOD ,∠CBD =12∠COD , ∴∠ABD +∠CBD =12(∠AOD +∠COD),即∠ABC =12∠AOC .在图(2)中,当点O 在∠ABC 外部时,仍然是作出直径BD ,将这个角转化成上述情形的两个角的差即可.由前面的结果,有 ∠ABD =12∠AOD ,∠CBD =12∠COD .∴∠ABD -∠CBD =12(∠AOD -∠COD),即∠ABC=12∠AOC.2.如图示,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?[分析]由于AB是⊙O的直径,故连接AD.由推论直径所对的圆周角是直角,便可得AD⊥BC,又因为△ABC中,AC=AB,所以由等腰三角形的二线合一,可证得BD=CD.【解析】BD=CD.理由是:连结AD.∵AB是⊙O的直径,∴∠ADB=90°.即AD⊥BC.又∵AC=AB,∴BD=CD.3.为什么有些电影院的坐位排列(横排)呈圆弧形?说一说这种设计的合理性.【解析】有些电影院的坐位排列呈圆弧形,这样设计的理由是尽量保证同排的观众视角相等.4.如下图,哪个角与∠BAC相等?【解析】∠BDC=∠BAC.5. 如下图,⊙O的直径AB=10 cm,C为⊙O上的一点,∠ABC=30°,求AC的长.【解析】∵AB为⊙O的直径.∴ACB=90°.又∵∠ABC=30°, ∴AC=21AB=21×10=5(cm). 6.小明想用直角尺检查某些工件是否恰好为半圆形,根据下图,你能判断哪个是半圆形?为什么?【解析】图(2)是半圆形、理由是:90°的圆周角所对的弦是直径.7.船在航行过程中,船长常常通过测定角度来确定是否会遇到暗礁,如下图,A 、B 表示灯塔,暗礁分布在经过A 、B 两点的一个圆形区域内,C 表示一个危险临界点,∠ACB 就是“危险角”.当船与两个灯塔的夹角大于“危险角”时,就有可能触礁;当船与两个灯塔的夹角小于“危险角”时,就能避免触礁.(1)当船与两个灯塔的夹角∠α大于“危险角”时,船位于哪个区域?为什么? (2)当船与两个灯塔的夹角∠α小于“危险角”时,船位于哪个区域?为什么? 分析:这是一个有实际背景的问题,由题意可知:“危险角” ∠ACB 实际上就是圆周角,船P 与两个灯塔的夹角为∠α,P 有可能在⊙O 外,P 有可能在⊙O 内,当∠α>∠C 时,船位于暗礁区域内;当∠α<∠C 时,船位于暗礁区域外,我们可采用反证法进行论证. 【解析】(1)当船与两个灯塔的夹角∠α大于“危险角” ∠C 时,船位于暗礁区域内(即⊙O 内),理由是:连结BE ,假设船在(⊙O 上,则有∠α=∠C ,这与∠α>∠C 矛盾,所以船不可能在⊙O 上;假设船在⊙O 外,则有∠α<∠AEB ,即∠α<∠C ,这与∠α>∠C 矛盾,所以船不可能在⊙O 外.因此.船只能位于⊙O 内.(2)当船与两个灯塔的夹角∠α小于“危险角”∠C时,船位于暗礁区域外(即⊙O 外).理由是:假设船在⊙O上,则有∠α=∠C,这与∠α<∠C矛盾,所以船不可能在⊙O上;假设船在⊙O内,则有∠α>∠AEB,即∠α>∠C.这与∠α<∠C矛盾,所以船不可能在⊙O内,因此,船只能位于⊙O外.8.如图,已知在⊙O中,直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于D.求BC、AD和BD的长.分析:由AB为直径,知∠ACB=90°,又AC、AB已知,可由勾股定理求BC.又∠ADB=90°,AD=DB,由勾股定理可求AD、BD.【解析】∵AB为直径,∴∠ACB=∠ADB=90°,又∵AB=10cm,AC=6cm,又∵CD是∠ACB的平分线,∠ACD=∠DCB,∴AD=DB.在 Rt∠ADB中,9.已知AB是⊙O的直径,AE是弦,C是的中点,CD⊥AB于D,交AE于F,CB交AE于G.求证:CF=FG.分析:如图7—107,要证CF=FG,只需证∠FCG=∠FGC.由已知,∠FCG与∠B互余.如果连结AC,∠ACB=90°.∠FGC与∠CAG互余.【解析】证明:连结AC,∵AB为直径,∴∠ACB=90°,∠FGC=90°-∠CAE.又∵CD⊥AB于D,∠FCG=90°-∠B,∴∠FGC=∠FCG.因此,CF=FG.10.如图,AB 是⊙O 的直径.(1)若OD ∥AC ,的大小有什么关系?为什么?(2)把(1)中的条件和结论交换一下,还能成立吗?说明理由. 【解析】(1)=延长DO 交⊙O 于E . ∵AC∥OD , ∴=. ∵∠1=∠2, ∴=. ∴=.(2)仍成立,延长DO 交⊙O 于点E ,连结AD . ∵=,=, ∴=. ∴∠3=∠D . ∴AC ∥OD .11.如图,⊙O 上三点A 、B 、C ,AB =AC ,∠ABC 的平分线交⊙O 于点E ,∠ACB 的平分线交⊙O 于点F ,BE 和CF 相交于点D ,四边形AFDE 是菱形吗?验证你的结论.【解析】四边形AFDE 是菱形.证明:∵∠ABC=∠ACB, ∠ABE=∠EBC=∠ACF=∠FCB. 又∠FAB ,∠FCB 是同弧上的圆周角, ∴∠FAB=∠FCB ,同理∠EAC=∠EBC. 有∠FAB=∠ABE=∠EAC=∠ACF.∴AF ∥ED ,AE ∥FD 且AF=AE. ∴四边形AFDE 是菱形.12.如图是一大型圆形工件被埋在土里而露出地表的部分.为推测它的半径,小亮同学谈了他的做法:先量取弦AB 的长,再量中点到AB 的距离CD 的长,就能求出这个圆形工件的半径.你认为他的做法合理吗?如不合理,说明理由;如合理,请你给出具体的数值,.BDCABD【解析】小亮的做法合理.取AB=8 m ,CD=2 m, 设圆形工件半径为r, ∴r 2=(r -2)2+42. 得r=5(m).13.如图,现需测量一井盖(圆形)的直径,但只有一把角尺(尺的两边互相垂直,一边有刻度,且两边长度都长于井盖的半径),请配合图形,用文字说明测量方案,写出测量的步骤.(要求写出两种测量方案)【解析】方案1:使角尺顶点在圆上,角尺两边与圆两交点连接就是圆的直径,用刻度尺量出直径.方案2:任画圆的一条弦,用尺量出弦的中点,利用角尺过弦中点做弦的垂线,垂线与圆的两交点间的线段为圆的直径.14.如图,在⊙O 中,AB 是直径,CD 是弦,AB ⊥CD . (1)P 是上一点(不与C 、D 重合),求证:∠CPD =∠COB .(2)点P ′在劣弧CD 上(不与C 、D 重合)时,∠CP′D 与∠COB 有什么数量关系?请证明你的结论.【解析】(1)证明:连结OD, ∵AB 是直径,AB ⊥CD, ∴=.∴∠COB=∠DOB=21∠COD. 又∵∠CPD=21∠COD, ∴∠CPD=∠COB. (2)∠CP ′D 与∠COB 的数量关系是:∠CP ′D+∠COB=180°.证明:∵∠CPD+∠CP ′D=180°,∠COB=∠CPD, ∴∠CP ′D+∠COB=180°15.(9分)已知,如图20,AB 是⊙O 的直径,C 是⊙O 上一点,连接AC,过点C 作直线CD ⊥AB 于D(AD<DB),点E 是DB 上任意一点(点D 、B 除外),直线CE 交⊙O 于点F,连接AF 与直线CD 交于点G.(1)求证:AC 2=AG ·AF ;(2)若点E 是AD (点A 除外)上任意一点,上述结论是否仍然成立?若成立,请画出图形并给予证明;若不成立,请说明理由.B【解析】(1)证明:连接CB ,∵AB 是直径,CD ⊥AB , ∴∠ACB =∠ADC =90°. ∴Rt △CAD ∽Rt △BAC . ∴得∠ACD =∠ABC . ∵∠ABC =∠AFC , ∴∠ACD =∠AFC . ∴△ACG ∽△ACF . ∴ACAF AG AC . ∴AC 2=AG ·AF . (2)当点E 是AD (点A 除外)上任意一点,上述结论仍成立 ①当点E 与点D 重合时,F 与G 重合, 有AG =AF ,∵CD ⊥AB ,∴=, AC =AF . ∴AC 2=AG ·AF .②当点E 与点D 不重合时(不含点A )时,证明类似①.。
初中数学知识点精讲精析 相似三角形的性质和判定
第3节 相似三角形的性质和判定 要点精讲(一)相似三角形的性质1. 相似三角形对应角相等、对应边成比例。
2. 相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比。
3. 相似三角形周长的比等于相似比。
4. 相似三角形面积的比等于相似比的平方。
(二)三角形相似的判定方法1. 定义法:对应角相等、对应边成比例的两个三角形相似。
2. 平行法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
3. 判断定理1:两角对应相等的两个三角形相似。
4. 判定定理2:两边对应成比例且夹角相等的两个三角形相似。
5. 判定定理3:三边对应成比例的两个三角形相似。
6. 判定直角三角形相似的方法:……典型例题【例1】如图,在△ABC 中,AC >AB ,点D 在AC 边上(点D 不与A 、C 重合),若再增加一个条件就能使△ABD ∽△ACB ,则这个条件可以是 . 【答案】∠1=∠C ,或∠2=∠ABC ,或AD AB AB AC = 【解析】根据相似三角形的识别方法,注意到△ABD 和△ACB 中, 有一个公共角∠A ,因此只要再增加一个条件----------角相等,或夹∠A 的两边对应成比例即可,故可填∠1=∠C ,或∠2=∠ABC ,或AD AB AB AC=【例2】如图,正方形ABCD 的边长为2,AE =EB ,MN =1,线段MN 的两端在BC 、CD 上滑动,当CM = 时,△AED 与以M 、N 、C 为顶点的三角形相似【答案】5CM =或5CM = 【解析】由于△AED 和△MCN 都是直角三角形,△AED 的三边,AD =2,AE =1,斜边DE=MCN 的斜边MN =1,而 当两个直角三角形斜边与直角边对应成比例时,这两个直角三角形相似, 根据CM MN AE DE =或CM MN AD DE =,即1CM =2CM =, 1 ACD 2 B D N得5CM =或5CM =,故当5CM =或5CM =时,△AED 与以M 、N 、C 为顶点的三角形相似.。
初中数学知识点精讲精析 全等三角形知识讲解
.11·1 全等三角形要点精讲1. 全等形和全等三角形能够完全重合的两个图形叫做全等形;能够完全重合的两个三角形叫做全等三角形;两个三角形重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角.“全等”用符号“”来表示,读作“全等于”.注:(1)全等三角形①形状、大小相同;②能够完全重合.(2)记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上.2. 全等三角形的性质:(1)全等三角形的对应边相等;(2)全等三角形的对应角相等.注:寻找对应边、对应角的方法、规律(1)有公共边的,公共边一定是对应边;(2)有公共角的,公共角一定是对应角;(3)有对顶角的,对顶角一定是对应角;(4)两个全等三角形中一对最长的边(或最大的角)是对应边(角),一对最短的边(或最小的角)是对应边(或角),等.3.全等变形只改变图形的位置,而不改变其形状大小的图形变换叫做全等变换.全等变换包括以下三种:(1)平移变换: 把图形沿某条直线平行移动;(2)对称变换:将图形沿某直线翻折;(3)旋转变换:将图形绕某点旋转一定的角度到另一个位置.注:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有变化,即平移、翻折、旋转前后的图形全等. 在全等三角形中,我们把互相重合的边或角,叫做对应边或对应角. 重合的顶点叫做对应点. 全等用符号“≌”表示,“∽”表示形状相同,“=”表示大小相等,合起来就是全等.典型例题例1. 如图所示,已知△ABE ≌△ACD ,∠1=∠2,∠B =∠C ,指出其他的对应边和对应角.180分析:先将△ABE 和△ACD 从复杂的图形中分离出来,找对应边(角)只能从这两个三角形中找,因为∠B =∠C ,∠1=∠2,所以另外一个角是对应角,它们所夹的边是对应边,对应角对的边是对应边.解析:对应角有:∠BAE 和∠CAD ;对应边有:AB 和AC ,AE 和AD ,BE 和CD. 评析:做题时,按对应顶点的顺序写出“△ABE ≌△ACD ”,按字母的对应位置写出对应边:AB 与AC ,AE 与AD ,BE 与CD ;类似的,可写出它们的对应角,能有效地防止出错.例2.如图所示,已知AB =CD ,BE =DF ,△ABE ≌△CDF ,求证:AB ∥CD ,AE ∥CF.分析:要证明两直线平行,常用方法是用平行线的判定定理,要使AB ∥CD ,只要∠ABE =∠CDF ,而这两个角是△ABE 和△CDF 的一对对应角,至于AE 与CF 的平行,只需∠AED =∠CFB ,这两个角不在△ABE 和△CDF 中,但却是∠AEB 与∠CFD 的邻补角. 证明:△ABE ≌△CDF ,AB =CD ,BE =DF∴∠ABE =∠CDF∠AEB =∠CFD (全等三角形的对应角相等)∴AB ∥CD (内错角相等,两直线平行)而∠AED =180°-∠AEB∠CFB =180°-∠CFD∴∠AED =∠CFB (等角的补角相等)则AE ∥CF评析:全等三角形对应边相等,可应用于边的相互转化. 对应角相等可以用于角度转化.AB CD E 12。
初中数学知识点精讲精析-圆周角和圆心角的关系
3·3圆周角和圆心角的关系要点精讲1.圆周角定义:圆周角(angle in a circular segment):顶点在圆上,并且角的两边和圆相交的角.两个特征:(1)角的顶点在圆上;(2)两边在圆内的部分是圆的两条弦.2.圆周角定理:同弧所对的圆周角相等,所对的圆周角都等于它所对的圆心角的一半.注意:(1)定理的条件是同一条弧所对的圆周角和圆心角,结论是圆周角等于圆心角的一半.(2)不能丢掉“一条弧所对的”而简单说成“圆周角等于圆心角的一半”.在同圆或等圆中,同弧或等弧所对的圆周角相等.注意:(1)“同弧”指“同一个圆”.(2)“等弧”指“在同圆或等圆中”.(3)“同弧或等弧”不能改为“同弦或等弦”.3.直径所对的圆周角是直角,90°的圆周角所对的弦是直径.注意:这一推论应用非常广泛,一般地,如果题目的已知条件中有直径时,往往作出直径上的圆周角——直角:如果需要直角或证明垂直时,往往作出直径即可解决问题.4.反证法:注意:用反证法证明命题的一般步骤:(1)假设命题的结论不成立;(2)从这个假设出发,经过推理论证,得出矛盾.(3)山矛盾判定假设不正确,从而肯定命题的结论正确.5.圆内角与圆外角:我们把顶点在圆内(两边自然和圆相交)的角叫圆内角(如图1.顶点在圆外并且两边都和圆相交的角叫圆外角(如图2).定理:圆内角的度数,等于它所对弧的度数与它的对顶角所对弧的度数之和的一半.圆外角的度数,等于它的两边所夹两条弧的度数的差的一半.典型例题1.已知:⊙O中,所对的圆周角是∠ABC,圆心角是∠AOC.求证:∠ABC=12 AOC.【解析】证明:∠AOC是△ABO的外角,∴∠AOC=∠ABO+∠BAO.∵OA=OB,∴∠ABO=∠BAO.∴∠AOC=2∠ABO.即∠ABC=12∠AOC.如果∠ABC的两边都不经过圆心(如下图),那么结果怎样?特殊情况会给我们什么启发吗?你能将下图中的两种情况分别转化成上图中的情况去解决吗?如图(1),点O在∠ABC内部时,只要作出直径BD,将这个角转化为上述情况的两个角的和即可证出.由刚才的结论可知:∠ABD=12∠AOD,∠CBD=12∠COD,∴∠ABD+∠CBD=12(∠AOD+∠COD),即∠ABC=12∠AOC.在图(2)中,当点O在∠ABC外部时,仍然是作出直径BD,将这个角转化成上述情形的两个角的差即可.由前面的结果,有∠ABD=12∠AOD,∠CBD=12∠COD.∴∠ABD-∠CBD=12(∠AOD-∠COD),即∠ABC=12∠AOC.2.如图示,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?[分析]由于AB是⊙O的直径,故连接AD.由推论直径所对的圆周角是直角,便可得AD⊥BC,又因为△ABC中,AC=AB,所以由等腰三角形的二线合一,可证得BD=CD.【解析】BD=CD.理由是:连结AD.∵AB是⊙O的直径,∴∠ADB=90°.即AD⊥BC.又∵AC=AB,∴BD=CD.3.为什么有些电影院的坐位排列(横排)呈圆弧形?说一说这种设计的合理性.【解析】有些电影院的坐位排列呈圆弧形,这样设计的理由是尽量保证同排的观众视角相等.4.如下图,哪个角与∠BAC相等?【解析】∠BDC=∠BAC.5. 如下图,⊙O的直径AB=10 cm,C为⊙O上的一点,∠ABC=30°,求AC的长.【解析】∵AB为⊙O的直径.∴ACB=90°.又∵∠ABC=30°, ∴AC=21AB=21×10=5(cm). 6.小明想用直角尺检查某些工件是否恰好为半圆形,根据下图,你能判断哪个是半圆形?为什么?【解析】图(2)是半圆形、理由是:90°的圆周角所对的弦是直径.7.船在航行过程中,船长常常通过测定角度来确定是否会遇到暗礁,如下图,A 、B 表示灯塔,暗礁分布在经过A 、B 两点的一个圆形区域内,C 表示一个危险临界点,∠ACB 就是“危险角”.当船与两个灯塔的夹角大于“危险角”时,就有可能触礁;当船与两个灯塔的夹角小于“危险角”时,就能避免触礁.(1)当船与两个灯塔的夹角∠α大于“危险角”时,船位于哪个区域?为什么? (2)当船与两个灯塔的夹角∠α小于“危险角”时,船位于哪个区域?为什么? 分析:这是一个有实际背景的问题,由题意可知:“危险角” ∠ACB 实际上就是圆周角,船P 与两个灯塔的夹角为∠α,P 有可能在⊙O 外,P 有可能在⊙O 内,当∠α>∠C 时,船位于暗礁区域内;当∠α<∠C 时,船位于暗礁区域外,我们可采用反证法进行论证. 【解析】(1)当船与两个灯塔的夹角∠α大于“危险角” ∠C 时,船位于暗礁区域内(即⊙O 内),理由是:连结BE ,假设船在(⊙O 上,则有∠α=∠C ,这与∠α>∠C 矛盾,所以船不可能在⊙O 上;假设船在⊙O 外,则有∠α<∠AEB ,即∠α<∠C ,这与∠α>∠C 矛盾,所以船不可能在⊙O 外.因此.船只能位于⊙O 内.(2)当船与两个灯塔的夹角∠α小于“危险角”∠C时,船位于暗礁区域外(即⊙O 外).理由是:假设船在⊙O上,则有∠α=∠C,这与∠α<∠C矛盾,所以船不可能在⊙O上;假设船在⊙O内,则有∠α>∠AEB,即∠α>∠C.这与∠α<∠C矛盾,所以船不可能在⊙O内,因此,船只能位于⊙O外.8.如图,已知在⊙O中,直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于D.求BC、AD和BD的长.分析:由AB为直径,知∠ACB=90°,又AC、AB已知,可由勾股定理求BC.又∠ADB=90°,AD=DB,由勾股定理可求AD、BD.【解析】∵AB为直径,∴∠ACB=∠ADB=90°,又∵AB=10cm,AC=6cm,又∵CD是∠ACB的平分线,∠ACD=∠DCB,∴AD=DB.在 Rt∠ADB中,9.已知AB是⊙O的直径,AE是弦,C是的中点,CD⊥AB于D,交AE于F,CB交AE于G.求证:CF=FG.分析:如图7—107,要证CF=FG,只需证∠FCG=∠FGC.由已知,∠FCG与∠B互余.如果连结AC,∠ACB=90°.∠FGC与∠CAG互余.【解析】证明:连结AC,∵AB为直径,∴∠ACB=90°,∠FGC=90°-∠CAE.又∵CD⊥AB于D,∠FCG=90°-∠B,∴∠FGC=∠FCG.因此,CF=FG.10.如图,AB 是⊙O 的直径. ABCDO(1)若OD ∥AC ,与 的大小有什么关系?为什么?(2)把(1)中的条件和结论交换一下,还能成立吗?说明理由. 【解析】(1)=延长DO 交⊙O 于E . ∵AC ∥OD , ∴=. ∵∠1=∠2, ∴=. ∴=.(2)仍成立,延长DO 交⊙O 于点E ,连结AD . ∵=,=, ∴=. ∴∠3=∠D . ∴AC ∥OD .11.如图,⊙O 上三点A 、B 、C ,AB =AC ,∠ABC 的平分线交⊙O 于点E ,∠ACB 的平分线交⊙O 于点F ,BE 和CF 相交于点D ,四边形AFDE 是菱形吗?验证你的结论. AB CDEFO【解析】四边形AFDE 是菱形.证明:∵∠ABC=∠ACB, ∠ABE=∠EBC=∠ACF=∠FCB. 又∠FAB ,∠FCB 是同弧上的圆周角, ∴∠FAB=∠FCB ,同理∠EAC=∠EBC. 有∠FAB=∠ABE=∠EAC=∠ACF.∴AF ∥ED ,AE ∥FD 且AF=AE. ∴四边形AFDE 是菱形.12.如图是一大型圆形工件被埋在土里而露出地表的部分.为推测它的半径,小亮同学谈了他的做法:先量取弦AB 的长,再量中点到AB 的距离CD 的长,就能求出这个圆形工件的半径.你认为他的做法合理吗?如不合理,说明理由;如合理,请你给出具体的数值,求出半径,与同伴交流.BDCDEO1 23CABD【解析】小亮的做法合理.取AB=8 m ,CD=2 m, 设圆形工件半径为r, ∴r 2=(r -2)2+42. 得r=5(m).13.如图,现需测量一井盖(圆形)的直径,但只有一把角尺(尺的两边互相垂直,一边有刻度,且两边长度都长于井盖的半径),请配合图形,用文字说明测量方案,写出测量的步骤.(要求写出两种测量方案)【解析】方案1:使角尺顶点在圆上,角尺两边与圆两交点连接就是圆的直径,用刻度尺量出直径.方案2:任画圆的一条弦,用尺量出弦的中点,利用角尺过弦中点做弦的垂线,垂线与圆的两交点间的线段为圆的直径.14.如图,在⊙O 中,AB 是直径,CD 是弦,AB ⊥CD . (1)P 是上一点(不与C 、D 重合),求证:∠CPD =∠COB .(2)点P ′在劣弧CD 上(不与C 、D 重合)时,∠CP ′D 与∠COB 有什么数量关系?请证明你的结论.BA CDOP【解析】(1)证明:连结OD, ∵AB 是直径,AB ⊥CD, ∴=.∴∠COB=∠DOB=21∠COD. 又∵∠CPD=21∠COD, ∴∠CPD=∠COB. (2)∠CP ′D 与∠COB 的数量关系是:∠CP ′D+∠COB=180°.证明:∵∠CPD+∠CP ′D=180°,∠COB=∠CPD, ∴∠CP ′D+∠COB=180°15.(9分)已知,如图20,AB 是⊙O 的直径,C 是⊙O 上一点,连接AC,过点C 作直线CD ⊥AB 于D(AD<DB),点E 是DB 上任意一点(点D 、B 除外),直线CE 交⊙O 于点F,连接AF 与直线CD 交于点G.(1)求证:AC 2=AG ·AF ;(2)若点E 是AD (点A 除外)上任意一点,上述结论是否仍然成立?若成立,请画出图形并给予证明;若不成立,请说明理由.AB CD OEGF【解析】(1)证明:连接CB ,∵AB 是直径,CD ⊥AB , ∴∠ACB =∠ADC =90°. ∴Rt △CAD ∽Rt △BAC . ∴得∠ACD =∠ABC . ∵∠ABC =∠AFC , ∴∠ACD =∠AFC . ∴△ACG ∽△ACF . ∴ACAF AG AC. ∴AC 2=AG ·AF . (2)当点E 是AD (点A 除外)上任意一点,上述结论仍成立 ①当点E 与点D 重合时,F 与G 重合, 有AG =AF ,∵CD ⊥AB ,∴=, AC =AF . ∴AC 2=AG ·AF .②当点E 与点D 不重合时(不含点A )时,证明类似①.。
初中数学知识点精讲精析 角的和差
6.7 角的和差学习目标1. 掌握角之间的和差关系。
2.利用和差关系能进行简单的计算。
知识详解1.角的和差关系一般地,如果一个角的度数是另两个角的度数的和,那么这个角就叫做另两个角的和;如果一个角的度数是另两个角的度数的差,那么这个角就叫做另两个角的差。
2.角的平分线从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
【典型例题】例1:如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于()A.35°B.70°C.110°D.145°【答案】C【解析】首先根据角平分线定义可得∠BOD=2∠BOC=70°,再根据邻补角的性质可得∠AOD 的度数.例2:如图,直线AB、CD相交于点O,OE平分∠AOD,若∠BOC=80°,则∠AOE的度数是()A.40°B.50°C.80°D.100°【答案】A【解析】∵∠BOC=80°,∴∠AOD=∠BOC=80度.∵OE平分∠AOD例3:如图,OB是∠AOC的角平分线,OD是∠COE的角平分线,∠AOE=140°,∠COD=30°,则∠AOB=()A.35°B.40°C.45°D.50°【答案】B【解析】根据角平分线的定义求得∠COB+∠DOC=70°;然后由已知条件和图示求得∠AOB=∠BOC=40°.【误区警示】易错点1:角平分线1.如图,OB表示秋千静止时的位置,当秋千从OC荡到OA时,OB平分∠AOC,∠BOC=60°,则秋千从OC到OA转动的角度∠AOC的度数是()A.30°B.60°C.90°D.120°【答案】D【解析】因为OB平分∠AOC,∠BOC=60°,所以∠AOB=60°,从而可求出∠AOC的度数.易错点2:角的计算2.已知直线AB上有一点O,射线OC和射线OD在直线AB的同侧,∠BOC=46°,∠COD=110°,则∠BOC和∠AOD的平分线的夹角的度数是()A.145°B.135°C.35°D.160°【答案】A【解析】首先根据题意画出图形,求出∠AOD的度数,再利用角平分线性质求出∠BOE,∠AOF的度数,即可得∠BOC和∠AOD的平分线的夹角的度数.【综合提升】针对训练1.如图,射线OB、OC在∠AOD的内部,如果∠COD=50°,∠BOD=64°,且OB平分∠AOC,那么∠AOC的度数是()A.28°B.56°C.7°D.32°2.如图,两块三角板的直角顶点O重合在一起,且OB平分∠COD,则∠AOD的度数()A.45°B.120°C.135°D.150°3.已知∠ABC=30°,BD是∠ABC的平分线,则∠ABD= 度.1.【答案】A【解析】由图示可知∠BOC=∠BOD-∠COD=14°;然后根据角平分线的定义可以求得∠AOC=2∠BOC.2.【答案】C【解析】根据角平分线的定义求出∠BOD,再根据∠AOD=∠AOB+∠BOD代入数据计算即可得解.3.【答案】15【解析】∠ABC=30°,BD是∠ABC的平分线,∠ABD的度数是30×12=15【中考链接】(2013年大连)如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD 等于()A.35°B.70°C.110°D.145°【答案】C【解析】∵射线OC平分∠DOB.∴∠BOD=2∠BOC,∵∠COB=35°,∴∠DOB=70°,∴∠AOD=180°-70°=110°课外拓展在二维的笛卡儿坐标系中,角一般是以x轴的正向为基准,若往y轴的正向旋转,则其角为正角,若往y轴的负向旋转,则其角为负角。
初中数学知识点精讲精析 认识三角形
1 认识三角形学习目标1. 认识三角形的概念及其基本要素。
2. 掌握三角形三条边之间的关系。
3. 认识等腰三角形和等边三角形。
知识详解1. 由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形。
三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角;相邻两边的公共端点是三角形的顶点,三角形ABC用符号表示为△ABC,三角形ABC的边AB可用边AB所对的角C的小写字母c 表示,AC可用b表示,BC可用a表示。
注意:(1)三条线段要不在同一直线上,且首尾顺次相接;(2)三角形是一个封闭的图形;(3)△ABC是三角形ABC的符号标记,单独的△没有意义。
2. 三角形的角与角之间的关系:(1)三角形三个内角的和等于180°;(三角形的内角和定理)。
(2)直角三角形的两个锐角互余。
3.三角形的分类4.通常,我们用符号“Rt△ABC”表示直角三角形ABC。
把直角所对的边称为直角三角形的斜边,夹直角的两条边称为直角边。
5.有两边相等的三角形叫做等腰三角形。
三边都相等的三角形叫做等边三角形,也叫做正三角形。
两条直角边相等的直角三角形叫做等腰直角三角形。
三角形的三边关系:三角形的任意两边之和大于第三边;任意两边之差小于第三边。
注意:(1)三边关系的依据是:两点之间线段是短;(2)围成三角形的条件是任意两边之和大于第三边。
6.三角形的主要线段(1)连结三角形一个顶点和它对边中点的线段,叫做三角形这个边上的中线。
简称三角形的中线。
三角形的三条中线交于一点,这个点叫做三角形的重心。
(2)三角形一个角的角平分线和这个角的对边相交,这个角的顶点和对边交点之间的线段叫做三角形中这个角的角平分线。
简称三角形的角平分线。
一个三角形共有三条角平分线,它们都在三角形内部,而且相交于一点。
(3)三角形的高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高。
初中数学知识点精讲精析 全等三角形的判定定理
第4节全等三角形的判定定理要点精讲1.三组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了三角形具有稳定性的原因。
2.有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。
3.有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。
4.有两角及其一角的对边对应相等的两个三角形全等(AAS或“角角边”)5.直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”)所以,SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。
典型例题【例1】已知:如图所示,△ABC是等边三角形,过AB边上的点D作DG∥BC,交AC于点G,在GD的延长线上取点E,使DE=DB,连接AE.CD.(1)求证:△AGE≌△DAC;(2)过点E作EF∥DC,交BC于点F,请你连接AF,并判断△AEF是怎样的三角形,试证明你的结论.【答案】△AEF是等边三角形【解析】(1)∵△ABC是等边三角形∴AB=AC,∠BAC=∠ABC=∠ACB=60°∵EG∥BG,∴∠ADG=∠ABC=60°∠AGD=∠ACB=60°∴△ADG是等边三角形,∴AD=DG=AG∵DE=DB,∴EG=AB,∴GE=AC在△AGE和△DAC中∵EG=AB=CA∠AGE=∠DAC=60° AG=DA∴△AGE≌△DAC(2)如图,连结AF,则△AEF是等边三角形.∵EG∥BC,EF∥DC∴四边形EFCD是平行四边形∴EF=DC,∠DEF=∠DCF∵△AGE≌△DAC ∴AE=CD∠AED=∠ACD∵EF=CD=AE ,∠AED+∠DEF=∠ACD=∠DCB=60°∴△AEF 是等边三角形【例2】已知如图,AE =AC,AB =AD,∠EAB =∠CAD,试说明:∠B =∠D【答案】∵∠EAB =∠CAD (已知)∴∠EAB +∠BAD =∠CAD +∠BAD即∠EAD =∠BAC在△ABC 和△ADE 中∴△ABC ≌△ADE (SAS )∴∠B =∠D (全等三角形的对应角相等)【解析】先证三角形全等,然后利用全等三角形的对应角相等A B A D E A D B A C A C A E ⎧⎪∠∠⎨⎪⎩===(已知)(已证)(已知)。
初中数学知识点精讲精析 余角和补角
6.8 余角和补角学习目标1. 了解补角和余角的概念。
2. 理解等角的余角相等,等角的补角相等。
知识详解1.余角和补角如果两个锐角的和是一个直角,我们就说这两个角互为余角,简称互余,也可以说其中一个角是另一个角的余角。
如果两个角的和是一个平角,我们就说这两个角互为补角,简称互补,也可以说其中一个角是另一个角的补角注意:(1)互余与互补是指两个角之间的关系,说单独的一个角是余角或补角没有意义,但可以说成一个角是某一个角的余角或补角。
(2)两个角是否互余或互补只跟这两个角的大小有关,与它们的位置无关,不要误认为互余或互补的角必须相邻。
(3)强调两个角互余或互补的数量关系:互余:∠α+∠β=90°;互补:∠α+∠β=180°。
因此互余或互补的两个角中,已知一个角的度数,就可以求出另一个角的度数。
2.余角和补角的性质同角或等角的余角相等。
同角或等角的补角相等。
【典型例题】例1:已知∠a=32°,则∠a的补角为()A. 58°B. 68°C. 148°D. 168°【答案】C【解析】∵∠a=32°,∴∠a的补角为180°﹣32°=148°例2:已知∠α=35°,则∠α的余角是()A. 35°B. 55°C. 65°D. 145°【答案】B【解析】根据定义∠α的余角度数是90°﹣35°=55°例3:一个角的补角是它的余角的3倍,那么这个角为()A. 60°B. 45°C. 30°D. 15°【答案】B【解析】根据题意:设这个角为x,则有180﹣x=3(90﹣x),解可得x=45°【误区警示】易错点1:余角和补角关系1. 两个角大小的比为7:3,它们的差是72°,则这两个角的数量关系是()A. 相等B. 互补C. 互余D. 无法确定【答案】B【解析】设这两个角分别是7x,3x,根据题意,得7x﹣3x=72°,∴x=18°,∴7x+3x=126°+54°=180°,∴这两个角的数量关系是互补.易错点2:余角和补角的性质2.如图,CO⊥AB于点O,OD⊥OE,则图中相等的角有()A. 3对B. 4对C. 5对D. 6对【答案】C【解析】∵CO⊥AB于点O,OD⊥OE,∴∠AOC=∠BOC=∠DOE=90°,∴∠AOC=∠BOC,∠AOC=∠DOE,∠BOC=∠DOE,共3对,∵∠BOD+∠BOE=90°,∠BOD+∠COD=90°,∴∠BOE=∠COD,又∵∠AOD=∠COD+90°,∠COE=∠BOE+90°,∴∠AOD=∠COE,综上所述,共有3+1+1=5对.【综合提升】针对训练1. 茗茗总结的下列结论中,不正确的是()A. 等角的补角相等B. 等角的余角相等C. 过两点有且只有两条直线D. 两点之间线段最短2. 如图,点O在直线AB上,∠AOD=22°30′,∠BOC=45°,OE平分∠BOC,则∠EOC 的补角是()A. ∠AOCB. ∠AOE或∠DOBC. ∠AOE或∠DOB或∠AOC+∠DOED. 以上都不对3. 如图,AOB是直线,OE⊥AB于O,OC⊥OD于O,则与∠EOD互为补角的是()A. ∠AOCB. ∠BOEC. ∠AODD. 非上述答案1.【答案】C【解析】A、当∠A和∠B都是∠C的补角时,∠A=∠B=180°﹣∠C,正确,故本选项错误;B、当∠A和∠B都是∠C的余角时,∠A=∠B=90°﹣∠C,正确,故本选项错误;C、过两点有且只有一条直线,错误,故本选项正确,D、线段的性质之一是两点之间线段最短,正确,故本选项错误。
七年级数学三角形的内角和江苏科技版知识精讲
数学三角形的内角和某某科技版【本讲教育信息】一. 教学内容:三角形的内角和二. 教学目标:1. 掌握三角形内角和定理及外角有关性质。
2. 掌握多边形内角和的计算公式及其应用。
3. 三角形外角和的规律及其简单应用。
三. 重、难点:1. 三角形内角和与三角形外角的有关性质的应用。
2. 多边形内角和的计算公式及其应用。
3. 三角形外角和的特点及其应用。
四. 知识要点1. 三角形的内角:(1)三角形的三个内角的和等于180°。
(2)推论:直角三角形的两个锐角互余。
2. 三角形的外角:(1)三角形的一边与另一边的延长线所组成的角,叫做三角形的外角。
图中的∠CBD称为△ABC的一个外角注意:“外角”是三角形的外角,不是它相邻内角的外角。
对三角形的外角,称某个角是某个三角形的外角,而不称三角形某个角的外角(2)三角形的一个外角等于与它不相邻的两个内角的和。
三角形的外角和等于360°。
3. 多边形的外角:(1)多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,它们的和叫做这个多边形的外角和。
(2)任意多边形的外角和等于360°。
4. 多边形的内角:n 边形的内角和等于(n -2)·180°【典型例题】例1. (1)已知四边形4个内角的度数比是1︰2︰3︰4,那么这个四边形中最大角的度数是。
(2)一个五边形的三个内角是直角,另两个内角都是n °,则n =。
(3)六角螺母的面是六边形,它的内角都相等,则这个六边形的每个内角是多少?(4)在四边形ABCD 中,∠A 与∠C 互补,那么∠B 与∠D 有什么关系呢?为什么? 分析:本题考察的是多边形内角和为(n -2)·180°解:(1)四边形的内角和为360°,所以四边形中最大角为︒=+++⨯︒14443214360 (2)五边形的内角和为540°,所以︒=︒⨯+︒⨯5402903n ,解得:︒=︒135n ,即135=n(3)六边形的内角和为720°,所以其每个内角都=︒=︒1206720 (4)四边形的内角和为360°,因为∠A 与∠C 互补,所以∠A +∠C =180°, 所以∠B +∠D =360°-180°=180°,即∠B 与∠D 互补。
初中数学知识点精讲精析 直角三角形的性质
24.2 直角三角形的性质学习目标1.掌握直角三角形的特殊性质:勾股定理。
2. 运用勾股定理进行简单的计算。
知识详解1.勾股定理(1)直角三角形的两个锐角互余。
(2)直角三角形两直角边的平方和等于斜边的平方。
(勾股定理)2.直角三角形的性质直角三角形斜边上的中线等于斜边的一半。
【典型例题】例1:下列说法中,不正确的是()A.三个角的度数之比为1:3:4的三角形是直角三角形B.三个角的度数之比为3:4:5的三角形是直角三角形C.三边长度之比为3:4:5的三角形是直角三角形D.三边长度之比为5:12:13的三角形是直角三角形【答案】B【解析】A、根据三角形的内角和公式求得,各角分别为22.5°,67.5°,90°,所以是直角三角形;B、根据三角形的内角和公式求得,各角分别为45°,60°,75°,所以不是直角三角形;C、两边的平方和等于第三边的平方,符合勾股定理的逆定理,所以能构成直角三角形;D、两边的平方和等于第三边的平,符合勾股定理的逆定理,所以能构成直角三角形.例2:如图中字母A所代表的正方形的面积为()A.4B.8C.16D.64【答案】D【解析】根据勾股定理以及正方形的面积公式知:以直角三角形的两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积,所以A=289﹣225=64.故选D.例3:将直角三角形的三条边长同时扩大同一倍数,得到的三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等腰三角形【答案】C【解析】将直角三角形的三条边长同时扩大同一倍数,得到的三角形与原三角形相似,因而得到的三角形是直角三角形。
【误区警示】易错点1:勾股定理1. 已知一个直角三角形的面积为96,并且两直角边的比为3:4,则这个三角形的斜边为()A.10B.20C.5D.15【答案】Ba=16,则这个三【解析】设两直角边的长度分别为3a、4a,则3a•4a÷2=96,解得2易错点2:直角三角形的性质2. 如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.下列结论中,不一定成立的是()A.∠A与∠1互余B.∠B与∠2互余C.∠A=∠2D.∠1=∠2【答案】D【解析】A、在Rt△ACD中,∠ADC=90°,所以∠A与∠1互余,正确;B、在Rt△BCD中,∠BDC=90°,所以∠B与∠2互余,正确;C、∵∠A+∠1=90°,∠1+∠2=90°,∴∠A=∠2,正确;D、当∠A=∠B时,AC=AB,所以CD既是∠C的角平分线,也是斜边上的高与中线,所以∠1=∠2,正确;当∠A≠∠B时,∠1≠∠2,错误【综合提升】针对训练1. 如图,等腰△ABC的底边BC为16,底边上的高AD为6,则腰长AB的长为2. 在△ABC 中,∠C=90°,若AB=5,则222AC BC AB ++= 3. 一个三角形的三边的比为5:4:3,它的周长为60cm ,则它的面积是2cm 1.【答案】10【解析】∵等腰△ABC 的底边BC 为16,底边上的高AD 为6,∴BD=8,2.【答案】50【解析】根据勾股定理可知:222AC BC AB =+,∵AB=5∴222AC BC AB ++=50 3.【答案】150【解析】∵三角形的三边长的比是5:4:3,它的周长是60cm ,∴设此三角形的边长分别是5x ,4x ,3x ,则5x+4x+3x=60,解得x=5cm , ∴此三角形的边长分别是25cm ,20cm ,15cm ,222625152025+==∴此三角形是直角三角形, ∴这个三角形的面积=12×15×20=1502cm 【中考链接】(2014年泉州)如图,Rt △ABC 中,∠ACB=90°,D 为斜边AB 的中点,AB=10cm ,则CD 的长为 cm .【答案】5【解析】∵∠ACB=90°,D 为斜边AB 的中点, ∴CD=12AB=12×10=5cm 课外拓展勾股定理是初等几何学中的一个基本定理,又称毕达哥拉斯定理或毕氏定理。
初中数学知识点精讲精析 三角形
第1节三角形要点精讲1.认识三角形三角形是由三条不在同一条直线上的线段首尾顺次连接组成的平面图形。
这三条线段就是三角形的边。
所有内角都是锐角——锐角三角形有一个内角是直角——直角三角形有一个内角是钝角——钝角三角形2.三角形的外角和(1)三角形的内角和等于180°(2)一个外角和它相邻内角和为180°(3)外角性质三角形的一个外角等于与它不相邻的两个内角的和三角形的一个外角大于任何一个与它不相邻的内角(4)三角形的外角和等于360°3.三角形的三边关系三角形的任何两边的和大于第三边典型例题【例1】已知各组线段的长度如下,判断以哪组线段为边能组成三角形:(1)3cm,4cm,8cm;(2) 4cm,5cm,9cm;(3)3cm,4cm,5cm.【答案】只有第(3)组能组成三角形【解析】由三角形三边关系:“任意两边之和必须大于第三边”得,只有第(3)组能组成三角形。
【例2】已知:如图所示,P为△ABC内任意一点.求证:(1) AB+AC>PB+PC(2) 12(BC+CA+AB)<PA+PB+PC<BC+CA+AB【答案】(1),延长BP交AC于点D.应用三角形三边关系定理得AB+AD>PB+PD,①PD+DC>PC. ②把①,②两式左右各相加,并消去PD,便得 AB+AC>PB+PC.(2)由于PB+PC>BC,PC+PA>CA,PA+PB>AB,三式左右各相加,得 2(PA+PB+PC)>BC+CA+AB,即12(BC+CA+AB)<PA+PB+PC又由(1)得PA+PB<BC+CA,PB+PC<AB+CA,PC+PA<AB+BC,三式左右各相加,得 PA+PB+PC<BC+CA+AB.【解析】根据两边之和大于第三边,两边之差小于第三边。
初中数学知识点精讲精析 相似三角形知识讲解
27·2 相似三角形27.2.1 相似三角形的判定1、相似形、成比例线段、黄金分割相似形:形状相同、大小不一定相同的图形。
特例:全等形。
相似形的识别:对应边成比例,对应角相等。
成比例线段(简称比例线段):对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即dc b a =(或a :b=c :d ),那么,这四条线段叫做成比例线段,简称比例线段。
黄金分割:将一条线段分割成大小两条线段,若小段与大段的长度之比等于大段与全长之比,则可得出这一比值等于0·618…。
这种分割称为黄金分割,点P 叫做线段AB 的黄金分割点,较长线段叫做较短线段与全线段的比例中项。
2. 在相似多边形中,最简单的就是相似三角形.在△ABC 与△A ′B ′C ′中,如果∠A=∠A ′, ∠B=∠B ′, ∠C=∠C ′, 且k AC CA C B BC B A AB =''=''=''. 我们就说△ABC 与△A ′B ′C ′相似,记作△ABC ∽△A ′B ′C ′,k 就是它们的相似比.反之如果△ABC ∽△A ′B ′C ′,则有∠A=∠A ′, ∠B=∠B ′, ∠C=∠C ′, 且AC CA C B BC B A AB ''=''=''. 3. 三角形相似的判定方法三角形相似的判定方法1 如果两个三角形的三组对应边的比相等, 那么这两个三角形相似.三角形相似的判定方法2 两个三角形的两组对应边的比相等,且它们的夹角相等,那么这两个三角形相似. 典型例题例1、如图△ABC ∽△DCA ,AD ∥BC ,∠B=∠DCA .(1)写出对应边的比例式;(2)写出所有相等的角;(3)若AB=10,BC=12,CA=6.求AD 、DC 的长.分析:可类比全等三角形对应边、对应角的关系来寻找相似三角形中的对应元素.对于(3)可由相似三角形对应边的比相等求出AD 与DC 的长.解:略(AD=3,DC=5)例2.如图,在△ABC 中,DE ∥BC ,AD=EC ,DB=1cm ,AE=4cm ,BC=5cm ,求DE 的长.分析:由DE ∥BC ,可得△ADE ∽△ABC ,再由相似三角形的性质,有AC AE AB AD =,又由AD=EC 可求出AD 的长,再根据ABAD BC DE =求出DE 的长. 解:略(310DE =). 例3.已知:如图,在四边形ABCD 中,∠B=∠ACD ,AB=6,BC=4,AC=5,CD=217,求AD 的长. 分析:由已知一对对应角相等及四条边长,猜想应用“两组对应边的比相等且它们的夹角相等”来证明.计算得出ACCD CD AB =,结合∠B=∠ACD ,证明△ABC ∽△DCA ,再利用相似三角形的定义得出关于AD 的比例式ADAC AC CD =,从而求出AD 的长. 解:略(AD=425).例4.已知:如图,矩形ABCD 中,E 为BC 上一点,DF ⊥AE 于F ,若AB=4,AD=5,AE=6,求DF 的长.分析:要求的是线段DF 的长,观察图形,我们发现AB 、AD 、AE 和DF 这四条线段分别在△ABE 和△AFD 中,因此只要证明这两个三角形相似,再由相似三角形的性质可以得到这四条线段对应成比例,从而求得DF 的长.由于这两个三角形都是直角三角形,故有一对直角相等,再找出另一对角对应相等,即可用“两角对应相等,两个三角形相似”的判定方法来证明这两个三角形相似.解:略(DF=310).27.2.2 相似三角形的应用举例相似三角形的应用主要有如下两个方面:(1)测高(不能直接使用皮尺或刻度尺量的);(2)测距(不能直接测量的两点间的距离) .在实际测量物体的高度、宽度时,关键是要构造和实物所在三角形相似的三角形,而且要能测量已知三角形的各条线段的长,运用相似三角形的性质列出比例式求解.几个概念.(1)视点:观察者眼睛的位置称为视点;(2)视线:由视点出发的线称为视线;(3)仰角:在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;(4)盲区:人眼看不到的地方称为盲区.27.2.3 相似三角形的周长与面积相似三角形的性质:性质1 相似三角形周长的比等于相似比.即:如果 △ABC ∽△A ′B ′C ′,且相似比为k ,那么 k A C C B B A CA BC AB =''+''+''++. 性质2 相似三角形面积的比等于相似比的平方.即:如果 △ABC ∽△A ′B ′C ′,且相似比为k ,那么 22)(k B A AB S S C B A ABC =''='''∆∆. 相似多边形的性质1.相似多边形周长的比等于相似比.相似多边形的性质2.相似多边形面积的比等于相似比的平方.典型例题例 1.已知:如图:△ABC ∽△A ′B ′C ′,它们的周长分别是 60 cm 和72 cm ,且AB =15 cm ,B ′C ′=24 cm ,求BC 、AB 、A ′B ′、A ′C ′的长.分析:根据相似三角形周长的比等于相似比可以求出BC 等边的长. 解:略(此题学生可以让自己完成).例2.如图,已知梯形ABCD 中,AD ∥BC ,BC=3AD ,E 是腰AB •上的一点,•若△BCE •和四边形AECD 的面积分别为S 1和S 2,且2S 1=3S 2,求BE AE的值.分析 由AD ∥BC ,就想到构造相似三角形.解 分别延长BA 、CD 相交于H .因为AD ∥BC ,BC=3AD .2S 1=3S 2所以S △ADH :S △BCH =AD 2:BC 2=1:9,•即S △ADH :(S △ADH +S 1+S 2)=1:9. S △ADH =18(S 1+S 2)=516S 2, 所以S △CEH =2116S 2,S △CEH :S △BCE =EH :BE=(AH+AE ):BE=7:8, AH :BH=•1:3,AH :AB=1:2,(12AB+AE ):BE=7:8, 所以BE=4AE . 即BE AE =4.。
初中数学知识点精讲精析 锐角三角函数
1 锐角三角函数学习目标1.经历探索直角三角形中边角关系的过程,理解正弦和余弦的意义。
2.能够运用sinA 、cosA 表示直角三角形两边的比。
3.能根据直角三角形中的边角关系,进行简单的计算。
4.理解锐角三角函数的意义。
5.经历探索直角三角形中边角关系的过程,理解正切的意义和与现实生活的联系。
6.能够用tanA 表示直角三角形中两边的比,表示生活中物体的倾斜程度、坡度等,外能够用正切进行简单的计算。
知识详解1. 如图1,在Rt △ABC 中,∠C 为直角,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,c 为斜边,则:对于∠A 来说,∠A 的正弦,记作sinA= =A a c∠的对边斜边; ∠A 的余弦,记作cosA= =A b c∠的邻边斜边; ∠A 的正切,记作tanA= =A a A b∠∠的对边的邻边; ∠A 的余切,记作cotA==A b A a ∠∠的邻边的对边。
锐角A 的正弦、余弦、正切、余切叫做∠A 的锐角三角函数。
注意:(1) 锐角三角函数只有大小,没有单位;(2)锐角三角函数的值的大小仅与角的大小有关,而与他们所在的三角形的边的长度无关。
2. 同角的三角函数间的关系:(1)平方关系:221sin cos αα+=;(2)倒数关系:tan α.Cot α=1;或11tan ,cot cot tan αααα== (3)商关系:tan α=sin cos αα;cot α=cos sin αα。
(4)互余两角的三角函数的关系:sin α=cos 0()90α-,cos α=sin 0()90α-,tan α=cot 0()90α-,cot α=tan 0()90α-。
【典型例题】例1:在Rt △ABC 中,∠C=90°,则BC AB 表示( ) A .sinAB .cosAC .sinBD .以上都不对【答案】A【解析】∵Rt △ABC 中,∠C=90°,则BC AB表示sinA 。
七年级数学上册知识讲义-6.3认识余角、补角、对顶角-苏科版
初中数学认识余角、补角、对顶角精讲精练【考点精讲】1. 互为余角与互为补角(1)概念:若,则称、互为余角;若则称、互为补角。
(2)记法的余角记作;的补角记作。
2. 余角(补角)的性质同角或等角的余(补)角相等。
3. 对顶角:如下图中,我们把叫做对顶角,也是对顶角。
OADBC4. 对顶角的性质:对顶角相等。
【典例精析】例题1 如图所示,O是直线AB上的一点,,平分,平分,则图中互为补角的对数有()A. 6对B. 7对C. 8对D. 9对思路导航:是直线AB上的一点,,又,,平分,,,,。
答案:互补的角有:,,,,,共8对。
答案选C。
点评:本题涉及互补的角较多,根据题意计算有关角的度数,再根据互为补角的定义,按照一定的顺序来写,做到既不重复又不遗漏。
例题2 一个角的补角与它的余角的2倍的差是平角的,请你求出这个角的度数。
思路导航:可以直接设元(题中问什么就设什么,直接求出结果),也可以间接设元(先求出这个角,再求出它的余角),然后列方程求解。
答案:设这个角的度数为,则它的补角、余角分别为,(),根据题意得,解得,所以这个角的度数为60度。
点评:有关余角和补角的计算题目,常设未知数,根据题意列方程求解。
所设的未知数不同,所得到的方程也不同。
例题3 如图,直线AB、CD交于O点,且∠BOC=80°,OE平分∠BOC,OF为OE的反向延长线。
D(1)求∠2和∠3的度数;(2)OF平分∠AOD吗?为什么?思路导航:(1)根据邻补角的定义,即可求得∠2的度数,根据角平分线的定义和平角的定义即可求得∠3的度数;(2)根据OF分得∠AOD的两部分角的度数即可说明。
答案:(1)∵∠BOC+∠2=180°,∠BOC=80°,∴∠2=180°-80°=100°;∵OE是∠BOC的角平分线,∴∠1=40°。
∵∠1+∠2+∠3=180°,∴∠3=180°-∠1-∠2=180°-40°-100°=40°。
初中数学知识点精讲精析 三角形的尺规作图
4 三角形的尺规作图学习目标1. 经历尺规作图实践操作过程,训练和提高学生的尺规作图的技能,能根据条件作出三角形。
2. 能依据规范作图语言,作出相应的图形,在实践操作过程中,逐步规范作图语言。
知识详解1. 已知:线段a,c,∠α.求作:△ABC,使BC=a,AB=c,∠ABC=∠α.从图中可知,是两边夹角,所以可先作一条线段等于已知线段中的任一条,然后以所作的线段为角的一边,它的一端点为角的顶点作角.使这个角等于已知角,再在角的另一边截取已知线段的另一条,最后连结,组成三角形。
2. 学习作图要注意以下几点:(1)要学会正确使用作图工具(这里主要是指直尺、圆规),作出合乎要求的几何图形;(2)要学会用几何作图语言来准确表达作图问题;(3)要勤动手画,多动口说3. 在几何作图中,通常先画出所要求作的图形的草图,然后根据草图把已知事项具体化。
【典型例题】例1:如图,锐角三角形ABC中,BC>AB>AC,小靖依下列方法作图:(1)作∠A的角平分线交BC于D点.(2)作AD的中垂线交AC于E点.(3)连接DE.根据他画的图形,判断下列关系何者正确?()A、DE⊥ACB、DE∥ABC、CD=DED、CD=BD【答案】B【解析】解:依据题意画出右图可得知∠1=∠2,AE=DE,∴∠2=∠3,∴∠1=∠3,即DE ∥AB.例2:用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC的依据是()A.SSSB.ASAC.AASD.角平分线上的点到角两边距离相等【答案】A【解析】连接NC,MC,根据SSS证△ONC≌△OMC,即可推出答案:在△ONC和△OMC中,ON=OM,NC=MC,OC=OC,∴△ONC≌△OMC(SSS)。
∴∠AOC=∠BOC。
故选A。
例3:如图,在△ABC中,∠C=900,∠CAB=500,按以下步骤作图:①以点A为圆心,小于AC的长为半径,画弧,分别交AB,AC于点E、F;②分别以点E,F为圆心,大于12EF的长为半径画弧,两弧相交于点G;③作射线AG,交BC边与点D,则∠ADC的度数为【答案】65°【解析】根据已知条件中的作图步骤知,AG是∠CAB的平分线,根据角平分线的性质有∠GAB=25°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 角
学习目标
1. 在现实情境中,认识角是一种基本的几何图形,理解角的概念,学会角的表示方法。
2. 认识角的度量单位度、分、秒,会进行简单的换算。
知识详解
1. 角的定义
由两条具有公共端点的射线组成的几何图形叫做角,两条射线的公共端点叫做顶点。
2. 平角、周角
(1)平角:一条射线绕它的端点旋转,当终边和始边成一条直线时,所成的角叫做平角,平角是180°,如图1.
(2)周角:如图2,一条射线绕它的端点旋转一周,当终边与始边重合时,所成的角叫做周角,周角等于360°.
4. 度、分、秒的换算
(1)角的单位及意义
角的单位是度、分、秒。
意义:①把一个平角180等分,每一份就是一度的角,记作1°;②把一度的角60等分,每一份就是一分的角,记作1′;③把一分的角60等分,每一份就是一秒的角,记作1″。
(2)度、分、秒的进率及换算方法
度、分、秒的进率是60.即1°=60′,1′=60″,1°=60′=3 600″。
(3)度、分、秒有关的计算
度、分、秒的进率是六十进制,不同于十进制.在运算中满60才向高位进1,而借1则表示低位的60。
【典型例题】
例1:如图,在图中有条线段,有个角.
【答案】6、7
【解析】图中有线段:AB、AD、AC、BD、DC、BC共6条;有∠B、∠C、∠BAD、∠DAC、∠
BAC、∠ADB、∠ADC,共7个.
例2:比萨斜塔建成于12世纪,从建成之日起就一直倾斜.目前,它与地面所成的较小的角是85度,它与地面所成的较大的角是度.
【答案】95
【解析】它与地面所成的较小的角是85度,它与地面所成的较大的角与较小的角互补,因而与地面所成的较大的角是95度.
例3:如果一个角是10°,用10倍放大镜观察这个角是度.
【答案】10
【解析】因为放大镜没有改变顶点的位置和两条射线的方向,所以用10倍放大镜观察这个角还是10度.
【误区警示】
易错点1:锐角
1. 在锐角∠AOB内部,画1条射线,可得3个锐角;画2条不同射线,可得6个锐角;画3条不同射线,可得10个锐角;…照此规律,画10条不同射线,可得锐角个.
【答案】66
【解析】分别找出各图形中锐角的个数,找出规律解题.
易错点2:平角
2. 将一个平角n等分,每份是15°,那么n等于
【答案】12
【解析】1平角=180,将一个平角n等分,每份是15°,即可求出n.
【综合提升】
针对训练
1. 如图所示4个图,正确表达角和书写角的个数为()
A.4个
B.3个
C.2个
D.1个
2. 如图,∠AOB是平角,则图中小于平角的角共有()
A.4个
B.7个
C.9个
D.10个
3. 下列四个图形中,能用∠1、∠AOB、∠O三种方法表示同一个角的图形是()
A.
B.
C.
D.
1. 【答案】C
【解析】角是由两条有公共端点的射线组成的几何对象.这两条射线叫做角的边,它们的公共端点叫做角的顶点.依据角的定义和表示法即可作出判断。
2. 【答案】C
【解析】小于平角的角为:∠AOC、∠AOD、∠AOE、∠COD、∠COE、∠COB、∠DOE、∠DOB、∠EOB共9个,故选C.
3. 【答案】B
【解析】根据角的表示方法和图形逐个判断即可.
【中考链接】
(2014年湖州)计算:50°﹣15°30′= .
【答案】34°30′
【解析】原式=49°60′﹣15°30′=34°30′,故答案为:34°30′.
课外拓展
由于平角的两条边与顶点都在同一条直线上,从“形”上看“特直线”,因此为了研究问题的方便,我们有时要把平角看成直线。
在直线取一点,这个点就把直线分成了具有一个公共端点的两条射线,这时我们就可把直线看成一个平角。