实用文档之初中数学基础100题
(word完整版)初中数学基础100题
1、请用“<”、“>”或“=”填空:231,3251-⎪⎭⎫ ⎝⎛----2、在实数9-,325,16,π,0.1010010001,3,0+1,7,0.303003……中,无理数有________个.3、12-的倒数为_______,绝对值为________,相反数为_______.4、如果()034432=+-+-+-c b a b a ;则()cab =5、分解因式:①249ay ax -= ;②y xy y x 2882+- 。
6、9的平方根为_______ ,271-的立方根为_______. 7、当x 时,式子632--x x 有意义。
8、计算:()21211814.31--⎪⎭⎫⎝⎛-++--π9、已知121+=x 求11122-•⎪⎭⎫ ⎝⎛-a aa 的值10、若单项式2a m+2n b n-2m+2与43b a 是同类项,则n m 的值= . 12.下列运算正确的是( )A .2x 5-3x 3=-x 2B .C .(-x )5·(-x 2)=-x 10 D.(3a 6x 3-9a x 5)÷(-3ax 3)=3x 2-a 514、计算:262393m m m m -÷+--的结果为 。
16、计算321a a a+=_________.计算8-2(2+2)=_________. 18、计算:23312(31)433+-+++.19、已知方程组2,4ax by ax by +=⎧⎨-=⎩的解为2,1.x y =⎧⎨=⎩,则2a-3b 的值= 。
20、已知x=1是一元二次方程x 2-2mx+1=0的一个解,则m 的值是 ,它的另一个解为25、如图,已知函数y=ax+b 和y=kx 的图象交于点P ,•则根据图像可得,关于,y ax b y kx=+⎧⎨=⎩的二元一次方程组的解是 。
26、下列方程中肯定是一元二次方程的是( ) A .-ax 2+bx+c=0 B .3x 2-2x+1=mx 2C .x+1x=1 D .(a 2+1)x 2-2x-3=027、两圆的半径分别是方程x 2-3x+2=0的两根.且圆心距d=1,则两圆的位置关系是( )A .外切B .内切C .外离D .相交 28、方程(x-2)(x-3)=6的解为___ ___. 29、分别用配方法和求根公式法解方程:3x 2+8x-3=0 30、(1)某印刷厂1•月份印刷了书籍60•万册,•第一季度共印刷了200万册,问2、3月份平均每月的增长率是多少?(2)市政府为了解决市民看病难的问题,决定下调药品的价格.•某种药品经过连续两次降价后,由每盒200元下调至128元,求这种药品平均每次降价的百分率是多少?31、•已知一元二次方程有一个根是2,•那么这个方程可以是_____ __(填上你认为正确的一个方程即可).32、若一个等腰三角形三边长均满足方程x 2-6x+8=0,则此三角形的周长为___ __.33、指出下列方程中,分式方程有( )①21123x x -=5 ②223x x -=5 x 2-5x=0 5x x -+3=0 A .1个 B .2个 C .3个 D .4个34、若关于x 的方程111m xx x ----=0有增根,则m 的值是 。
实用文档之初中求一次函数的解析式专项练习30题(有答案)
实用文档之" 求一次函数解析式专项练习"1.已知A(2,﹣1),B(3,﹣2),C(a,a)三点在同一条直线上.(1)求a的值;(2)求直线AB与坐标轴围成的三角形的面积.2.如图,直线l与x轴交于点A(﹣1.5,0),与y轴交于点B(0,3)(1)求直线l的解析式;(2)过点B作直线BP与x轴交于点P,且使OP=2OA,求△ABP的面积.3.已知一次函数的图象经过(1,2)和(﹣2,﹣1),求这个一次函数解析式及该函数图象与x轴交点的坐标.4.如图所示,直线l是一次函数y=kx+b的图象.(1)求k、b的值;(2)当x=2时,求y的值;(3)当y=4时,求x的值.5.已知一次函数y=kx+b的图象与x轴交于点A(﹣6,0),与y轴交于点B.若△AOB的面积为12,求一次函数的表达式.6.已知一次函数y=kx+b,当x=﹣4时,y的值为9;当x=6时,y的值为3,求该一次函数的关系式.7.已知y与x+2成正比例,且x=0时,y=2,求:(1)y与x的函数关系式;(2)其图象与坐标轴的交点坐标.8.如果y+3与x+2成正比例,且x=3时,y=7.(1)写出y与x之间的函数关系式;(2)画出该函数图象;并观察当x取什么值时,y<0?9.直线y=kx+b是由直线y=﹣x平移得到的,此直线经过点A(﹣2,6),且与x轴交于点B.(1)求这条直线的解析式;(2)直线y=mx+n经过点B,且y随x的增大而减小.求关于x的不等式mx+n <0的解集.10.已知y与x+2成正比例,且x=1时,y=﹣6.(1)求y与x之间的函数关系式,并建立平面直角坐标系,画出函数图象;(2)结合图象求,当﹣1<y≤0时x的取值范围.11.已知y﹣2与2x+1成正比例,且当x=﹣2时,y=﹣7,求y与x的函数解析式.12.已知y与x﹣1成正比例,且当x=﹣5时,y=2,求y与之间的函数关系式.13.已知一次函数的图象经过点A(,m)和B(,﹣1),其中常量m≠﹣1,求一次函数的解析式,并指出图象特征.14.已知一次函数y=(k﹣1)x+5的图象经过点(1,3).(1)求出k的值;(2)求当y=1时,x的值.15.一次函数y=k1x﹣4与正比例函数y=k2x的图象经过点(2,﹣1).(1)分别求出这两个函数的表达式;(2)求这两个函数的图象与x轴围成的三角形的面积.16.已知y﹣3与4x﹣2成正比例,且x=1时,y=﹣1.(1)求y与x的函数关系式.(2)如果y的取值范围为3≤y≤5时,求x的取值范围.17.若一次函数y=3x+b的图象与两坐标轴围成的三角形面积为24,试求这个一次函数的解析式.18.如果一次函数y=kx+b的变量x的取值范围是﹣2≤x≤6,相应函数值是﹣11≤y≤9,求此函数解析式.19.某一次函数图象的自变量的取值范围是﹣3≤x≤6,相应的函数值的变化范围是﹣5≤y≤﹣2,求这个函数的解析式.20.已知,直线AB经过A(﹣3,1),B(0,﹣2),将该直线沿y轴向下平移3个单位得到直线MN.(1)求直线AB和直线MN的函数解析式;(2)求直线MN与两坐标轴围成的三角形面积.21.一次函数的图象经过点A(0,﹣2),且与两条坐标轴截得的直角三角形的面积为3,求这个一次函数的解析式.22.如果y+2与x+1成正比例,当x=1时,y=﹣5.(1)求出y与x的函数关系式.(2)自变量x取何值时,函数值为4?23.已知y﹣3与4x﹣2成正比例,且当x=1时,y=5,(1)求y与x的函数关系式;(2)求当x=﹣2时的函数值:(3)如果y的取值范围是0≤y≤5,求x的取值范围;(4)若函数图象与x轴交于A点,与y轴交于B点,求S△AOB.24.已知y﹣3与x成正比例,且x=2时,y=7.(1)求y与x的函数关系式;(2)当时,求y的值;(3)将所得函数图象平移,使它过点(2,﹣1).求平移后直线的解析式.25.已知:一次函数y=kx+b的图象与y轴的交点到原点的距离为3,且过A(2,1)点,求它的解析式.26.已知一次函数y=(3﹣k)x+2k+1.(1)如果图象经过(﹣1,2),求k;(2)若图象经过一、二、四象限,求k的取值范围.27.正比例函数与一次函数y=﹣x+b的图象交于点(2,a),求一次函数的解析式.28.已知y+5与3x+4成正比例,且当x=1时,y=2.(1)求出y与x的函数关系式;(2)设点P(a,﹣2)在这条直线上,求P点的坐标.29.已知一次函数y=kx+b(k≠0)在x=1时,y=5,且它的图象与x轴交点的横坐标是6,求这个一次函数的解析式.30.已知:关于x的一次函数y=(2m﹣1)x+m﹣2若这个函数的图象与y轴负半轴相交,且不经过第二象限,且m为正整数.(1)求这个函数的解析式.(2)求直线y=﹣x和(1)中函数的图象与x轴围成的三角形面积.一次函数的解析式30题参考答案:1.(1)设直线AB解析式为y=kx+b,依题意,得,解得∴直线AB解析式为y=﹣x+1∵点C(a,a)在直线AB上,∴a=﹣a+1,解得a=;(2)直线AB与x轴、y轴的交点分别为(1,0),(0,1)∴直线AB 与坐标轴围成的三角形的面积为2.(1)设直线l的解析式为y=kx+b,∵直线l与x轴交于点A(﹣1.5,0),与y轴交于点B (0,3),∴代入得:,解得:k=2,b=3,∴直线l的解析式为y=2x+3;(2)解:分为两种情况:①当P在x轴的负半轴上时,∵A(﹣1.5,0),B(0,3),∴OP=2OA=3,0B=3,∴AP=3﹣1.5=1.5,∴△ABP 的面积是×AP×OB=×1.5×3=2.25;②当P在x轴的正半轴上时,∵A(﹣1.5,0),B(0,3),∴OP=2OA=3,0B=3,∴AP=3+1.5=4.5,∴△ABP 的面积是×AP×OB=×4.5×3=6.25.3.设一次函数的解析式为y=kx+b(k≠0),由已知得:,解得:,∴一次函数的解析式为y=x+1,当y=0时,x+1=0,∴x=﹣1,∴该函数图象与x轴交点的坐标是(﹣1,0)4.(1)由图象可知,直线l过点(1,0)和(则,解得:,即k=,b=;(2)由(1)知,直线l的解析式为y=x 当x=2时,有y=×2+=;(3)当y=4时,代入y=x+得:4=解得x=﹣5.5.∵图象经过点A(﹣6,0),∴0=﹣6k+b,即b=6k ①,∵图象与y轴的交点是B(0,b),∴•OB=12,即:,∴|b|=4,∴b1=4,b2=﹣4,代入①式,得,,一次函数的表达式是或6.根据题意,得,解得.故该一次函数的关系式是y=﹣x+.7.(1)根据题意,得y=k(x+2)(k≠0);由x=0时,y=2得2=k(0+2),解得k=1,所以y与x的函数关系式是y=x+2;(2)由,得;由,得,所以图象与x轴的交点坐标是:(﹣2,0);与y轴的交点坐标为:(0,2).8.(1)∵y+3与x+2成正比例,∴设y+3=k(x+2)(k≠0),∵当x=3时,y=7,∴7+3=k(3+2),解得,k=2.则y+3=2(x+2),即y=2x+1;(2)由(1)知,y=2x+1.令x=0,则y=1,.令y=0,则x=﹣,所以,该直线经过点(0,1)和(﹣,0),其图象如图所示:由图示知,当x <﹣时,y<09.(1)一次函数y=kx+b的图象经过点(﹣2,6),且与y=﹣x的图象平行,则y=kx+b中k=﹣1,当x=﹣2时,y=6,将其代入y=﹣x+b,解得:b=4.则直线的解析式为:y=﹣x+4;(2)如图所示:∵直线的解析式与x轴交于点B,∴y=0,0=﹣x+4,∴x=4,∴B点坐标为:(4,0),∵直线y=mx+n经过点B,且y随x的增大而∴m<0,此图象与y=﹣x+4增减性相同,∴关于x的不等式mx+n<0的解集为:x>4 10.(1)设y=k(x+2),∵x=1时,y=﹣6.∴﹣6=k(1+2)k=﹣2.∴y=﹣2(x+2)=﹣2x﹣4.图象过(0,﹣4)和(﹣2,0)点(2)从图上可以知道,当﹣1<y≤0时x的取值范<﹣.11.∵y﹣2与2x+1成正比例,∴设y﹣2=k(2x+1)(k≠0),∵当x=﹣2时,y=﹣7,∴﹣7﹣2=k(﹣4+1),∴k=3,∴y=6x+5.12.设y=k(x﹣1),把x=﹣5,y=2代入,得2=(﹣5﹣1)k,解得.所以y与x 之间的函数关系式是13.设过点A,B的一次函数的解析式为y=kx+b,则m=k+b,﹣1=k+b,两式相减,得m+1=k+k,即m+1=(m+1),∵m≠﹣1,则k=2,∴b=m﹣1,则函数的解析式为y=2x+m﹣1(m≠﹣1),其图象是平面内平行于直线y=2x(但不包括直线y=2x﹣2)的一切直线14.(1)∵一次函数y=(k﹣1)x+5的图象经过点(1,3),∴3=(k﹣1)×1+5.∴k=﹣1.(2)∵y=﹣2x+5中,当y=1时,1=﹣2x+5∴x=2.15.(1)把点(2,﹣1)代入y=k1x﹣4得:2k1﹣4=﹣1,解得:k1=,所以解析式为:y=x﹣4;把点(2,﹣1)代入y=k2x得:2k2=﹣1,解得:k2=﹣,所以解析式为:y=﹣x;(2)因为函数y=x﹣4与x 轴的交点是(,0),且两图象都经过点(2,﹣1),所以这两个函数的图象与x轴围成的三角形的面积是:S=××1=.16.(1)设y﹣3=k(4x﹣2),(2分)当x=1时,y=﹣1,∴﹣1﹣3=k(4×1﹣2),∴k=﹣2(4分),∴y﹣3=﹣2(4x﹣2),∴函数解析式为y=﹣8x+7.(5分)(2)当y=3时,﹣8x+7=3,解得:x=,当y=5时,﹣8x+7=5,解得:x=,∴x 的取值范围是≤x ≤.17.当x=0时,y=b,当y=0时,x=﹣,∴一次函数与两坐标轴的交点为(0,b)(﹣∴三角形面积为:×|b|×|﹣|=24,即b2=144,解得b=±12,∴这个一次函数的解析式为y=3x+12或y=3x﹣18.根据题意,①当k>0时,y随x增大而∴当x=﹣2时,y=﹣11,x=6时,y=9∴解得,∴函数解析式为y=x﹣6;②当k<0时,函数值随x增大而减小,∴当x=﹣2时,y=9,x=6时,y=﹣11,∴解得,∴函数解析式为y=﹣x+4.因此,函数解析式为y=x﹣6或y=﹣x+419.设一次函数解析式为y=kx+b,根据题意①当k>0时,x=﹣3时,y=﹣5,x=6时,y=﹣2,∴解得,∴函数的解析式为:y=x﹣4;②当k<0时,x=﹣3时,y=﹣2,x=6时,y=﹣5,∴解得,∴函数解析式为y=﹣x﹣3;因此这个函数的解析式为y=x﹣4或y=﹣x﹣3.20.设直线AB的解析式为y=kx+b,∵A(﹣3,1),B(0,﹣2),∴,∴k=﹣1,∴直线AB的解析式为:y=﹣x﹣2,∵将该直线沿y轴向下平移3个单位得到直线MN,∴直线MN的函数解析式为:y=﹣x﹣5;(2)∵直线MN与x轴的交点为(﹣5,0),与y轴的交点坐标为(0,﹣5),∴直线MN 与两坐标轴围成的三角形面积为×|﹣5|×||﹣5=12.5.21.设与x轴的交点为B,则与两坐标轴围成的直角三角形的面积=AO•BO,∵AO=2,∴BO=3,∴点B纵坐标的绝对值是3,∴点B横坐标是±3;设一次函数的解析式为:y=kx+b,当点B纵坐标是3时,B(3,0),把A(0,﹣2),B(3,0)代入y=kx+b,得:k=,b=﹣2,所以:y=x﹣2,当点B纵坐标=﹣3时,B(﹣3,0),把A(0,﹣2),B(﹣3,0)代入y=kx+b,得k=﹣,b=﹣2,所以:y=﹣x﹣2.22.(1)依题意,设y+2=k(x+1),将x=1,y=﹣5代入,得k(1+1)=﹣5+2,解得k=﹣1.5,∴y+2=﹣1.5(x+1),即y=﹣1.5x﹣3.5;(2)把y=4代入y=﹣1.5x﹣3.5中,得﹣1.5x﹣3.5=4,解得x=﹣5,即当x=﹣5时,函数值为423.(1)设y﹣3=k(4x﹣2),∵x=1时,y=5,∴5﹣3=k(4﹣2),解得k=1,∴y与x的函数关系式y=4x+1;(2)将x=﹣2代入y=4x+1,得y=﹣7;(3)∵y的取值范围是0≤y≤5,∴0≤4x+1≤5,解得﹣≤x≤1;(4)令x=0,则y=1;令y=0,则x=﹣,∴A(0,1),B (﹣,0),∴S△AOB =××1=.24.(1)∵y﹣3与x成正比例,∴y﹣3=kx(k≠0)成正比例,把x=2时,y=7代入,得7﹣3=2k,k=2;∴y与x的函数关系式为:y=2x+3,(2)把x=﹣代入得:y=2×(﹣)+3=2;(3)设平移后直线的解析式为y=2x+3+b,把点(2,﹣1)代入得:﹣1=2×2+3+b,解得:b=﹣8,故平移后直线的解析式为:y=2x﹣525.根据题意得:当b=3时,y=kx+3,过A(2,1).1=2k+3k=﹣1.∴解析式为:y=﹣x+3.当b=﹣3时,y=kx﹣3,过A(2,1),1=2k﹣3,k=2.故解析式为:y=2x﹣3.26.(1)∵一次函数y=(3﹣k)x+2k+1的图象经过(﹣1,2),∴2=(3﹣k)×(﹣1)+2k+1,即2=3k﹣2,解得k=;(2))∵一次函数y=(3﹣k)x+2k+1的图象经过一、二、四象限,∴,解得,k>3.故k的取值范围是k>3.27.根据题意,得,解得,,所以一次函数的解析式是y=﹣x+3.28.(1)∵y+5与3x+4成正比例,∴设y+5=k(3x+4),即y=3kx+4k﹣5(k是常数∵当x=1时,y=2,∴2+5=(3×1)k,解得,k=1,故y与x的函数关系式是:y=3x﹣1;(2)∵点P(a,﹣2)在这条直线上,∴﹣2=3a﹣1,解得,a=﹣,∴P 点的坐标是(﹣,﹣2)29.把(1,5)、(6,0)代入y=kx+b 中,得,解得,∴一次函数的解析式是y=﹣x+6.30.(1)由题意得:,解得:<m<2,又∵m为正整数,∴m=1,函数解析式为:y=x﹣1.(2)由(1)得,函数图象与x轴交点为(1轴交点为(0,﹣1),∴所围三角形的面积为:×1×1=求一次函数解析式--- 11。
初中数学必背公式填空100题
初中数学必背公式填空100题第一部分:四则运算1. $a + b = $ { }2. $a - b = $ { }3. $a \times b = $ { }4. $a \div b = $ { }第二部分:平方与开方5. $a^2 = $ { }6. $\sqrt{a} = $ { }第三部分:百分数7. $a\% = $ { }8. $\frac{a}{100} = $ { }第四部分:三角函数9. $\sin a = $ { }10. $\cos a = $ { }11. $\tan a = $ { }12. $\cot a = $ { }第五部分:平行四边形13. 周长 = { }14. 面积 = { }第六部分:长方形15. 周长 = { }16. 面积 = { }第七部分:正方形17. 周长 = { }18. 面积 = { }19. 对角线长度 = { } 第八部分:圆20. 周长 = { }21. 面积 = { }第九部分:立方体22. 体积 = { }23. 表面积 = { }第十部分:锥体24. 体积 = { }25. 表面积 = { }第十一部分:球体26. 体积 = { }27. 表面积 = { }第十二部分:速度28. 速度 = { }29. 时间 = { }30. 距离 = { }第十三部分:利率31. 本金 = { }32. 利率 = { }33. 利息 = { }第十四部分:代数运算34. $(a + b)^2 = $ { }35. $(a - b)^2 = $ { }36. $(a + b) \times (c + d) = $ { }37. $(a - b) \times (c - d) = $ { }第十五部分:图形反演38. $180^{\circ} - a^{\circ} = $ { }39. $360^{\circ} - a^{\circ} = $ { } 第十六部分:比例40. $\frac{a}{b} = \frac{c}{d} = $ { } 第十七部分:线段等分41. 分点坐标 = { }第十八部分:直角三角形42. 斜边长 = { }43. 两边长 = { }第十九部分:平行线与比例44. 长度比 = { }45. 角度比 = { }第二十部分:三角形46. 周长 = { }47. 面积 = { }48. 内角和 = { }第二十一部分:圆锥49. 侧面积 = { }50. 体积 = { }第二十二部分:充满均质圆柱体51. 体积 = { }52. 表面积 = { }第二十三部分:复数53. 复数加法 = { }54. 复数减法 = { }55. 复数乘法 = { }56. 复数除法 = { }第二十四部分:黄金分割57. 黄金分割比例 = { }58. 黄金分割线段 = { }第二十五部分:距离59. 两点间距离 = { }第二十六部分:正弦定理与余弦定理60. 正弦定理 = { }61. 余弦定理 = { }第二十七部分:平行线与角度62. 内角和公式 = { }第二十八部分:多边形63. 内角和公式 = { }64. 圆心角公式 = { }65. 边长公式 = { }第二十九部分:等差数列与等比数列66. 等差数列前n项和 = { }67. 等差数列通项 = { }68. 等比数列前n项和 = { }69. 等比数列通项 = { }第三十部分:二次函数70. 顶点坐标 = { }71. 对称轴 = { }72. 开口方向 = { }第三十一部分:概率73. 事件发生概率 = { }第三十二部分:直线与平面74. 直线与平面关系 = { }第三十三部分:向量75. 向量加法 = { }76. 向量数量积 = { }77. 向量模长 = { }第三十四部分:导数78. 导数定义 = { }79. 反函数导数 = { }80. 乘法求导法则 = { }81. 除法求导法则 = { }82. 链式法则 = { }83. 参数方程求导 = { }第三十五部分:积分84. 积分定义 = { }85. 线性积分法则 = { }86. 置换求导法则 = { }87. 微分中值定理 = { }88. 积分中值定理 = { }第三十六部分:三视图89. 平面图形种类 = { }第三十七部分:空间几何90. 空间中距离公式 = { }第三十八部分:矩阵91. 矩阵加法 = { }92. 矩阵减法 = { }93. 矩阵数量积 = { }94. 矩阵乘法 = { }第三十九部分:立体几何95. 空间中点到直线距离 = { }96. 空间中点到平面距离 = { }第四十部分:导数应用97. 变化率定义 = { }第四十一部分:隐函数与参数方程98. 隐函数求导 = { }99. 参数方程求导 = { }第四十二部分:潜在函数100. 潜在函数求导 = { }。
初中数学中考数学必做的100道基础提分题
中考数学必做的100道基础提分题1、【绝对值】有四包真空小包装火腿,每包以标准克数(450克)为基数,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是( )A. 2+B. -3C. 3+D. 4+2、【有理数大小比较】下面是几个城市某年一月份的平均温度,其中平均温度最低的是( )A. 桂林市11.2C ︒B. 广州13.5C ︒C. 北京-4.8C ︒D. 南京3.4C ︒3、【科学记数法】一种花瓣的花粉颗粒直径约为0.0000065米,0.0000065用科学记数法表示为( )A. 56.510-⨯B. 66.510-⨯C. 76.510-⨯D. 66510-⨯4、【数轴】如图,矩形OABC 的边OA 长为2,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )A. 2.5B.C. 3D. 55、【数的开方】9的平方根是( )A. 3B. 3±C. 3D.6、【无理数的识别】下列实数:2313,12π,0.55,0.685885888588885…...(相邻两个5之间8的个数依次增加1个),其中无理数的个数有 个.7、【用字母表示数】有a 名男生和b 名女生在社区做义工,他们为建花坛搬砖,男生每人搬了40块,女生每人搬了30块,这a 名男生和b 名女生一共搬了 块砖(用含a 、b 的代数式表示).8、【同类项】(1)已知代数式312n a b +与223m a b --是同类项,则23m n += .(2)若3x 5m +y 2与3n x y 可以进行合并,则n m = .9、【整式加减】多项式 与222m m +-的和是22m m -.10、【幂的运算性质】下列计算正确的是( )A. 426x x x +=B. 422x x x -=C. 428x x x ⋅=D. 428()x x =11、【整式的乘法】先化简,再求值:2(2)(1)(5)x x x +++-,其中x12、【乘法公式】已知2()4a b +=,2()6a b -=,求22a b +的值.13、【变形求值】设0n m <<,224m n mn +=,则nm n m -+的值等于 . 14、【提公因式法分解因式】分解因式:262mx mxy my -+= .15、【套用公式法分解因式】(1)分解因式:(4)4x x ++的结果是 .(2)分解因式:2(2)8a b ab +-= .16、【分式的值为零的问题】若分式21+-x x 的值为0,则( ) A. 2x =- B. 0x = C. 1x =或2x =- D. 1x =17、【分式的运算】先化简,再求值: 22144(1)1a a a a a-+-÷--,其中1a =-.18、【二次根式的意义】式子1-x 在实数范围内有意义,则x 的取值范围是( )A. 1x <B. 1x ≤C. 1x >D. 1x ≥19、【二次根式的乘除与化简】计算222+的结果是 .20、= . 21、【一元一次方程】如果2x =是方程112x a +=-的解,那么a 的值是( ) A. 0 B. 2 C. 2- D. 6-22、【一元一次不等式】若不等式组⎩⎨⎧≤->+0421x a x 有解,则a 的取值范围是( ) A. 3a ≤ B. 3a < C. 2a < D. 2a ≤23、【二元一次方程组】小明在解关于x 、y 的二元一次方程组331x y x y +⊗=⎧⎨-⊕=⎩时得到了正确结果⎩⎨⎧=⊕=1y x 后来发现“⊗”、“⊕”处被墨水污损了,请你帮他找出“⊗”、“⊕”处的值分别是( )A. 1⊗=,1⊕=B. 2⊗=,1⊕=C. 1⊗=,2⊕=D. 2⊗=,2⊕=24、【二元一次方程组的应用问题】一辆汽车从A 地驶往B 地,前31路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h ,在高速公路上行驶的速度为100km/h ,汽车从A 地到B 地一共行驶了2.2h .请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用二元一次方程组.......解决的问题,并写出解答过程.25、【分式方程】解方程:22+-x x +244x -=126、【分式方程的应用问题】在达成铁路复线工程中,某路段需要铺轨.先由甲工程队独做2天后,再由乙工程队独做3天刚好完成这项任务.已知乙工程队单独完成这项任务比甲工程队单独完成这项任务多用2天,求甲、乙工程队单独完成这项任务各需要多少天?27、【一元二次方程根的意义】已知1是关于x 的一元二次方程2(1)10m x x -++=的一个根,则m 的值是( )A. 1B. 1-C. 0D. 无法确定28、【一元二次方程的配方解法】用配方法解方程2410x x ++=,配方后的方程是( )A. 2(2)3x +=B. 2(2)3x -=C. 2(2)5x -=D. 2(2)5x +=29、【一元二次方程根的判别式】若关于x 的一元二次方程220x x m --=有两个相等的实数根,则m 的值是 .30、【形积问题与一元二次方程】如图,在一块长为22米、宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.若设道路宽为x 米,则根据题意可列出方程为 .31、【市场营销与一元二次方程】山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克. 后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?32、【函数的图象】下列四幅图象近似刻画两个变量之间的关系,请按图象顺序将下面四种情景与之对应排序( )① 一辆汽车在公路上匀速行驶(汽车行驶的路程与时间的关系)② 向锥形瓶中匀速注水(水面的高度与注水时间的关系)③ 将常温下的温度计插入一杯热水中(温度计的读数与时间的关系)④ 一杯越来越凉的水(水温与时间的关系)A. ①②③④B. ③④②①C. ①④②③D. ③②④①33、【一次函数解析式的确定】一次函数1y mx m =+-的图象过点(0,2),且y 随x 的增大而增大,则m=( )A. 1-B. 3C. 1D. 1-或334、【一次函数图象与性质】一次函数14y x =+的图象如图所示,则一次函数2y x b =-+的图象与14y x =+的图象的交点不可能在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限35、【点在直线上】若点(m ,n )在函数21y x =+的图象上,则2m n -的值是( )A. 2B. 2-C. 1D. 1-36、【从一次函数的视角看二元一次方程(组)】如图,已知函数2y x =-和21y x =-+的图象交于点P ,根据图象可得方程组⎩⎨⎧=+=-122x y x y 的解是 .。
初中数学计算题复习大全附答案【中考必备】
..初中数学计算题大全(一)计算下列各题1 .36)21(60tan 1)2(100+-----π 2. 431417)539(524----3.)4(31)5.01(14-÷⨯+-- 4.5.++ 6.7112238. (1)03220113)21(++-- (2)23991012322⨯-⨯10.11.(1)- (2)÷(3)1---+42338-()232812564.0-⨯⨯⎪⎭⎫ ⎝⎛-÷⎪⎭⎫⎝⎛-+601651274312.418123+-13.⎛ ⎝14..x x x x 3)1246(÷- 15.61)2131()3(2÷-+-;16.20)21()25(2936318-+-+-+-17.(1))3127(12+- (2)()()6618332÷-+-18.()24335274158.0--+⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛---1911()|2|4-- 20.())120131124π-⎛⎫---+ ⎪⎝⎭。
21.. 22.112812623-+23.2+参考答案1.解=1-|1-3|-2+23 =1+1-3-2+23 =3【解析】略2.5【解析】原式=14-9=53.87-【解析】解:)4(31)5.01(14-÷⨯+--⎪⎭⎫⎝⎛-⨯⨯--=4131231811+-=87-=先算乘方,再算乘除,最后算加减,有括号的先算括号里面的。
注意:41-底数是4,有小数又有分数时,一般都化成分数再进行计算。
4.==.【解析】略5.3 6.4【解析】主要考查实数的运算,考查基本知识和基本的计算能力,题目简单,但易出错,计算需细心。
1、+ +=232=3+-252=42⨯⨯ 722【解析】试题分析:先化简,再合并同类二次根式即可计算出结果.11223432223232332考点: 二次根式的运算.8.(1)32(2)9200 【解析】(1)原式=4+27+1 =32(2)原式=23(1012-992) (1分)=23(101+99)(101-99)(2分)=232200⨯⨯=9200 (1分) 利用幂的性质求值。
七年级数学常考100题
七年级常考100题1、笔尖在纸上快速滑动写出一个又一个字,用数学知识解释为()A.点动成线B.线动成面C.面动成体D.以上答案都不对【分析】利用点动成线,线动成面,面动成体,进而得出答案.【答案】解:笔尖在纸上快速滑动写出一个又一个字,用数学知识解释为点动成线.故选:A.【点睛】此题主要考查了点、线、面、体,正确把握它们之间的关系是解题关键.2、如图所示的几何体是由以下四个图形中的哪一个图形绕着虚线旋转一周得到的()A.B.C.D.【分析】根据面动成体结合常见立体图形的形状解答即可.【答案】解:根据面动成体结合常见立体图形的形状得出只有A选项符合,故选:A.【点睛】本题考查了点、线、面、体的知识,是基础题,熟悉常见几何体的形成是解题的关键.3、下列各个平面图形中,属于圆锥表面展开图的是()A.B.C.D.【分析】由圆锥的展开图特点:侧面是扇形,底面是个圆.【答案】解:因为圆锥的展开图为一个扇形和一个圆形.故选:D.【点睛】本题考查了几何体的展开图,熟悉圆锥的展开图特点,是解答此题的关键.4、如图,在数学活动课上,同学们用一个平面分别去截下列四个几何体,所得截面是三角形的是()A.B.C.D.【分析】观察截面的图形,即可得出答案.【答案】解:A、截面是三角形,故这个选项符合题意;B、截面是圆,故这个选项不符合题意;C、截面是五边形,故这个选项不符合题意;D、截面是长方形,故这个选项不符合题意.故选:A.【点睛】此题主要考查了截一个几何体,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法.5、如图所示的几何体是由若干个完全相同的小正方体组成,从左面看这个几何体得到的平面图形是()A.B.C.D.【分析】从左面看得到从左往右3列,正方形的个数依次为3,2,1,依此画出图形即可.【答案】解:从左面看这个几何体得到的平面图形是:故选:B.【点睛】此题主要考查了简单几何体的三视图,关键是掌握左视图所看的位置.6、如图是由一些相同的小正方体构成的几何体从不同方向看得到的平面图形,在这个几何体中,小正方体的个数是()A.7B.6C.5D.4【分析】根据三视图的知识,该几何体共有两列两行组成,底面有4个正方体,第二层有1个.【答案】解:综合主视图,俯视图,左视图底面有3+1=4个正方体,第二层有1个正方体,所以搭成这个几何体所用的小立方块的个数是5,故选C.【点睛】本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置,综合上述分析数出小立方块的个数.7、如图,这是一个由小立方块塔成的几何体从上面看到的形状图,小正方形中的数字表示该位置的小立方块的个数.请你画出它从正面、从左面看到的形状图.【分析】分别利用小立方块的个数得出其形状,进而画出左视图与主视图.【答案】解:如图所示:.【点睛】此题主要考查了作三视图,正确想象出立体图形的形状是解题关键.8、下列说法中,不正确的是()①符号不同的两个数互为相反数②所有有理数都能用数轴上的点表示③绝对值等于它本身的数是正数④两数相加和一定大于任何一个加数⑤有理数可分为正数和负数A.①②③⑤B.③④C.①③④⑤D.①④⑤【分析】根据有理数的加法、相反数、绝对值判断即可.【答案】解:①只有符号不同的两个数互为相反数,错误;②所有有理数都能用数轴上的点表示,正确;③绝对值等于它本身的数是非负数,错误;④两数相加和不一定大于任何一个加数,错误⑤有理数可分为正数、0和负数,错误;故选:C.【点睛】此题考查有理数的加法,关键是根据有理数的加法、相反数、绝对值解答.9、数轴上一动点A向左移动3个单位长度到达点B,再向右移动6个单位长度到达点C,若C表示的数为3,则点A表示的数为()A.6B.0C.﹣6D.﹣2【分析】根据数轴上的点左移减,右移加,可得答案.【答案】解:3﹣6+3=0故选:B.【点睛】本题考查了数轴,注意C点左移6个单位再右移3个单位,得A 点.10、下列比较有理数的大小,正确的是()A.﹣105>0B.﹣0.0001<−1 10C.−12019>−12020D.−20192018<−20202019【分析】根据有理数比较大小的法则负数都小于零;两个负数相比较,绝对值大的反而小可得答案.【答案】解:A.∵负数都小于零,∴﹣105<0,故本选项不合题意;B.∵|﹣0.0001|<−110,∴﹣0.0001>−110,故本选项不合题意;C.∵|−12019|>|−12020|,∴−12019<−12020,故本选项不合题意;D.∵|−20192018|>|−20202019|,∴−20192018<−20202019,故本选项符合题意.故选:D.【点睛】本题考查了有理数的大小比较:正数大于零,负数小于零;负数的绝对值越大,这个数反而越小.11、随着环境污染整治的逐步推进,某经济开发区的40家化工企业已关停、整改38家,每年排放的污水减少了167000吨.将167000用科学记数法表示为()A.167×103B.16.7×104C.1.67×105D.0.167×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【答案】解:167000=1.67×105,故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12、下列说法正确的是()A.0.750精确到百分位B.3.079×104精确到千分位C.38万精确到个位D.2.80×105精确到千位【分析】根据近似数的精确度分别进行判断,即可得出答案.【答案】解:A、0.750精确到千分位,故本选项错误;B、3.079×104精确到十位,故本选项错误;C、38万精确到万位,故本选项错误;D、2.80×105精确到千位,故本选项正确;故选:D.【点睛】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.13、把(−12)×(−12)×(−12)×(−12)×(−12)写成幂的形式(不用计算)为【分析】求n个相同因数积的运算,叫做乘方,据此把(−12)×(−12)×(−12)×(−12)×(−12)写成幂的形式即可.【答案】解:把(−12)×(−12)×(−12)×(−12)×(−12)写成幂的形式(不用计算)为(−12)5.故答案为:(−12)5.【点睛】此题主要考查了有理数的乘方的运算方法,以及有理数的乘法的运算方法,要熟练掌握.14、对于有理数a、b,定义一种新运算“※”如下:a※b=ab−b2a,则(﹣3)※(−34)=.【分析】根据a※b=ab−b2a,可以求得所求式子的值.【答案】解:∵a※b=ab−b 2a,∴(﹣3)※(−3 4)=(−3)×(−34)−(−34)2×(−3)=94 +34−6=3−6=−1 2,故答案为:−1 2.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.15、计算:(1)﹣5﹣(﹣4)+(﹣3)﹣[﹣(﹣2)] (2)2×(﹣5)+23﹣3÷12(3)(14−59−13+712)÷(−136)(4)﹣12﹣2×(﹣3)2﹣(﹣2)2+[313÷(−23)×15]4【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘方、有理数的乘除法和加法可以解答本题; (3)先把除法转化为乘法,然后根据乘法分配律即可解答本题; (4)根据有理数的乘方、有理数的乘除法和加减法可以解答本题. 【答案】解:(1)﹣5﹣(﹣4)+(﹣3)﹣[﹣(﹣2)] =﹣5+4+(﹣3)+(﹣2) =﹣6;(2)2×(﹣5)+23﹣3÷12=(﹣10)+8﹣3×2 =(﹣10)+8﹣6 =﹣8; (3)(14−59−13+712)÷(−136) =(14−59−13+712)×(﹣36)=(﹣9)+20+12+(﹣21) =2;(4)−12−2×(−3)2−(−2)2+[313÷(−23)×15]4=﹣1﹣2×9﹣4+(103×32×15)4=﹣1﹣18﹣4+14 =﹣1﹣18﹣4+1 =﹣22.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.16、某天早上,一辆交通巡逻车从A地出发,在东西向的马路上巡视,中午到达B地,如果规定向东行驶为正,向西行驶为负,行驶纪录如下.(单位:km)第一次第二次第三次第四次第五次第六次第七次+15﹣8+6+12﹣4+5﹣10(1)巡逻车在巡逻过程中,第次离A地最远.(2)B地在A地哪个方向,与A地相距多少千米?(3)若每千米耗油0.2升,每升汽油需7元,问这一天交通巡逻车所需汽油费多少元?【分析】(1)根据有理数的加法运算,分别计算出每次距A地的距离,可得离A地最远距离;(2)根据有理数的加法运算,可得正数或负数,根据向东记为正,向西记为负,可得答案;(3)根据行车就耗油,可得耗油量,再根据总价=单价×数量即可求解.【答案】解:(1)第一次距A地:15千米,第二次距A地:15﹣8=7千米,第三次距A地:7+6=13千米,第四次距A地:13+12=25千米,第五次距A地:25﹣4=21千米,第六次距A地:21+5=26千米,第七次距A地:26﹣10=16千米,26>25>21>16>15>13>7,答:巡逻车在巡逻过程中,第6次离A地最远;(2)15﹣8+6+12﹣4+5﹣10=16(千米),答:B地在A地东方,与A地相距16千米;(3)|+15|+|﹣8|+|+6|+|+12|+|﹣4|+|+5|+|﹣10|=60(千米),60×0.2=12(升),12×7=84(元).答:这一天交通巡逻车所需汽油费84元.故答案为:6.【点睛】本题考查了正数和负数,有理数的加法运算是解题关键.17、一件羽毛球拍先按成本价提高50%标价,再将标价打8折出售,若这件羽毛球拍的成本价是x元,那么售价可表示为.【分析】直接利用成本与原价以及售价与打折的关系进而得出答案.【解答】解:由题意可得:(1+50%)x×0.8=1.2x(元).故答案为:1.2x元.【点评】此题主要考查了列代数式,正确理解打折与售价的关系是解题关键.18、某校去年初一招收新生a人,今年比去年增加x%,今年该校初一学生人数用式子表示为()A.(a+x%)人B.ax%人C.a(1+x)100人D.a(1+x%)人【分析】根据今年招收的新生人数=去年初一招收的新生人数+x%×去年初一招收新生人数,即可得出答案.【解答】解:∵去年初一招收新生a人,∴今年该校初一学生人数为:a(1+x%)人.故选:D.【点评】此题考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.注意今年比去年增加x%和今年是去年的x%的区别.19、东西湖区域出租汽车行驶2千米以内(包括2千米)的车费是10元,以后每行驶1千米,再加0.7元.如果某人坐出租汽车行驶了m千米(m是整数,且m≥2),则车费是()A.(10﹣0.7m)元B.(11.4+0.7m)元C.(8.6+0.7m)元D.(10+0.7m)元【分析】根据题意,可以用含m的代数式表示出需要付的车费,本题得以解决.【解答】解:由题意可得,车费是:10+(m﹣2)×0.7=(0.7m+8.6)元,故选:C.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.20、已知代数式x﹣2y的值是3,则代数式4y+1﹣2x的值是()A.﹣5B.﹣3C.﹣1D.0【分析】直接将原式变形进而把已知代入求出答案.【解答】解:∵x﹣2y=3,∴4y+1﹣2x=﹣2(x+2y)+1=﹣6+1=﹣5.故选:A.【点评】此题主要考查了代数式求值,正确将原式变形是解题关键.21、根据以下程序,当输入x=﹣2时,输出结果为()A.﹣5B.﹣16C.5D.16【分析】首先求出当x=﹣2时,9﹣x2的值是多少,然后把所得的结果和1比较大小,判断是否输出结果即可.【解答】解:当x=﹣2时,9﹣x2=9﹣(﹣2)2=9﹣4=5>1,当x=5时,9﹣x2=9﹣52=9﹣25=﹣16<1,∴当输入x=﹣2时,输出结果为﹣16.故选:B.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.22、4πx2y4z9的系数是,次数是.【分析】直接利用单项式的系数与次数确定方法得出答案.【解答】解:4πx2y4z9的系数是:4π9,次数是:7.故答案为:4π9,7.【点评】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.23、关于多项式5x4y﹣3x2y+4xy﹣2,下列说法正确的是()A.三次项系数为3B.常数项是﹣2C.多项式的项是5x4y,3x2y,4xy,﹣2D.这个多项式是四次四项式【分析】根据多项式的项、次数的定义逐个判断即可.【解答】解:A、多项式5x4y﹣3x2y+4xy﹣2的三次项的系数为﹣3,错误,故本选项不符合题意;B、多项式5x4y﹣3x2y+4xy﹣2的常数项是﹣2,正确,故本选项符合题意;C、多项式5x4y﹣3x2y+4xy﹣2的项为5x4y,﹣3x2y,4xy,﹣2,错误,故本选项不符合题意;D、多项式5x4y﹣3x2y+4xy﹣2是5次四项式,错误,故本选项不符合题意;故选:B.【点评】本题考查了多项式的有关概念,能熟记多项式的次数和项的定义是解此题的关键.24、从2开始,连续n个偶数相加的合计为S,它们和的情况如下表:(1)若n=8时,则S的值为.(2)根据表中的规律猜想:用n的式子表示S的公式为:S=2+4+6+8+…+2n=.加数的个数n S12=1×222+4=6=2×332+4+6=12=3×442+4+6+8=20=4×552+4+6+8+10=30=5×6(3)根据上题的规律计算2+4+6+8+10+…+2018+2020的值.【分析】(1)根据题意,可以求得当n=8时,对应的S的值;(2)根据表格中的数据,可以写出S的值;(3)根据(2)中的结论,可以求得所求式子的值.【解答】解:(1)当n=8时,S=2+4+6+…+16=(2+16)×4=18×4=72,故答案为:72;(2)由表格中的数据可知,S=2+4+6+8+…+2n=n(n+1),故答案为:n(n+1);(3)2+4+6+8+10+…+2018+2020=(2020÷2)×(2020÷2+1)=1010×1011=1021110.【点评】本题考查数字的变化类、列代数式,解答本题的关键是明确题意,发现题目中数字的变化规律,求出相应的数据.25、如图图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑥个图形中菱形的个数为()A.42B.43C.56D.57【分析】设第n个图形中一共有a n个菱形(n为正整数),根据各图形中菱形个数的变化可得出变化规律“a n=n2+n+1(n为正整数)”,再代入n=6即可求出结论.【解答】解:设第n个图形中一共有a n个菱形(n为正整数),∵a1=12+2=3,a2=22+3=7,a3=32+4=13,a4=42+5=21,…,∴a n=n2+n+1(n为正整数),∴a6=62+7=43.故选:B.【点评】本题考查了规律型:图形的变化类,根据各图形中菱形个数的变化,找出变化规律“a n=n2+n+1(n为正整数)”是解题的关键.26、下列各组式子中是同类项的是()A.2x3与3x2B.12ax与8bx C.x4与a4D.23与32【分析】根据同类项的概念判断即可.【解答】解:A、2x3与3x2,所含字母相同,但相同字母的指数不相同,不是同类项;B、12ax与8bx,所含字母不相同,不是同类项;C、x4与a4,所含字母不相同,不是同类项;D、23与32,是同类项,故选:D.【点评】本题考查的是同类项的概念,所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.27、若代数式x2﹣2kxy+y2﹣6xy+9不含xy项,则k的值为()A.3B.−12C.0D.﹣3【分析】将含xy的项进行合并,然后令其系数为0即可求出k的值.【解答】解:x2﹣2kxy+y2﹣6xy+9令﹣2k﹣6=0,k=﹣3.故选:D.【点评】本题考查多项式的概念,涉及一元一次方程的解法.28、先化简,再求值:2ab+6(12a2b+ab2)﹣[3a2b﹣2(1﹣ab﹣2ab2)],其中a为最大的负整数,b为最小的正整数.【分析】直接去括号进而合并同类项,再得出a,b的值代入求出答案.【解答】解:原式=2ab+3a2b+6ab2﹣3a2b+2﹣2ab﹣4ab2=(2ab﹣2ab)+2+(3a2b﹣3a2b)+(6ab2﹣4ab2)=2ab2+2,∵a为最大的负整数,b为最小的正整数,∴a=﹣1,b=1,∴原式=2×(﹣1)×1+2=0.【点评】此题主要考查了整式的加减﹣化简求值,正确合并同类项是解题关键.29、已知A=3x2﹣x+2y﹣4xy,B=x2﹣2x﹣y+xy(1)求A﹣3B的值.(2)当x+y=56,xy=﹣1,求A﹣3B的值.(3)若A﹣3B的值与y的取值无关,求x的值.【分析】(1)把A与B代入A﹣3B中,去括号合并即可得到结果;(2)把已知等式代入计算即可求出所求;(3)把A﹣3B结果变形后,根据其值与y的取值无关,确定出x的值即可.【解答】解:(1)∵A=3x2﹣x+2y﹣4xy,B=x2﹣2x﹣y+xy,∴A﹣3B=3x2﹣x+2y﹣4xy﹣3x2+6x+3y﹣3xy=5x+5y﹣7xy;(2)∵x+y=56,xy=﹣1,∴A﹣3B=5(x+y)﹣7xy=256+7=676;(3)由A﹣3B=5x+(5﹣7x)y的值与y的取值无关,得到5﹣7x=0,解得:x=5 7.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.30、下列生活现象:①用两个钉子就可以把木条固定在墙上;②从A地到B地架设电线,总是尽可能沿着线段AB架设;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线;④把弯曲的公路改直,就能缩短路程.其中能用“两点之间,线段最短”来解释的现象个数有()A.1B.2C.3D.4【分析】直接利用直线的性质和线段的性质分别判断得出答案.【解答】解:①用两个钉子就可以把木条固定在墙上,利用的是两点确定一条直线,故此选项不合题意;②从A地到B地架设电线,总是尽可能沿着线段AB架设,能用“两点之间,线段最短”来解释,故此选项符合题意;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,利用的是两点确定一条直线,故此选项不合题意;④把弯曲的公路改直,就能缩短路程,能用“两点之间,线段最短”来解释,故此选项符合题意.故选:B.【点评】此题主要考查了直线的性质和线段的性质,正确掌握相关性质是解题关键.31、如图,C,D是线段AB上的两点,已知M,N分别为AC,DB的中点,AB=18cm,且AC:CD:DB=1:2:3,求线段MN的长.【分析】根据题意分别求出AC、CD、DB的长,根据中点的性质计算即可.【解答】解:设AC,CD,DB的长分别为xcm,2xcm,3xcm∵AC+CD+DB=AB,AB=18cm∴x+2x+3x=18解得x=3∴AC=3cm,CD=6cm,DB=9cm∵M,N为AC,DB的中点,∴MC=12AC=1.5,DN=12BD=4.5∴MN=MC+CD+DN=12cm,∴MN的长为12cm.【点评】本题考查的是两点间的距离的计算,掌握线段中点的概念、灵活运用数形结合思想是解题的关键.32、在直线l上有A、B、C三个点,已知BC=3AB,点D是AC中点,且BD=6cm,求线段BC的长.【分析】分为两种情况,画出图形,求出线段AB的长,即可得出答案.【解答】解:(1)当C在AB的延长线上时,∵BC=3AB,∵AC=4AB,∵点D是AC中点,∴AD=CD=2AB,∵BD=6cm,∴2AB﹣AB=6cm,∴AB=6cm,∴AC=4AB=24cm,∴BC=AC﹣AB=24cm﹣6cm=18cm;(2)当C在BA的延长线上时,∵BC=3AB,∵AC=2AB,∵点D是AC中点,∴AD=CD=AB,∵BD=6cm,∴AB=3cm,∴BC=3AB=9cm.【点评】本题考查了求两点之间的距离,能求出符合的所有情况是解此题的关键.33、(1)如图1,线段AC=6cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN的长.(2)如图2,若C为线段AB上任意一点,满足AC+CB=acm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上的一点,且满足AC﹣BC=bcm,M、N 分别为AC、BC的中点,你能猜想MN的长度吗?并说明理由.【分析】(1)根据“点M是AC的中点”,先求出MC、CN的长度,再利用MN=CM+CN即可求出MN的长度即可,(2)当C为线段AB上一点,且M,N分别是AC,BC的中点,则存在MN=12a,(3)点在AB的延长线上时,根据M、N分别为AC、BC的中点,即可求出MN的长度.【解答】解:(1)因为M是AC的中点,AC=6,所以MC=12AC=6×12=3,又因为CN:NB=1:2,BC=15,所以CN=15×13=5,所以MN=MC+CN=3+5=8,所以MN的长为8 cm;(2)MN=12a,当C为线段AB上一点,且M,N分别是AC,BC的中点,则存在MN=12a,(3)当点C在线段AB的延长线时,如图:则AC>BC,∵M是AC的中点,∴CM=12AC,∵点N是BC的中点,∴CN=12BC,∴MN=CM﹣CN=12(AC﹣BC)=12b.【点评】本题主要考查两点间的距离,掌握线段的中点的性质、线段的和差运算是解题的关键.34、如图,AB=10cm,C是线段AB上一个动点,沿A→B→A以2cm/s 的速度往返运动一次,D是线段BC的中点,设点C的运动时间为t秒(0≤t ≤10).(1)当t=2时,求线段CD的长.(2)当t=6时,求线段AC的长.(3)求运动过程中线段AC的长.(用含t的代数式表示)(4)在运动过程中,设AC的中点为E,线段DE的长是否发生变化?若不变,直接写出DE的长;若发生变化,请说明理由.【分析】(1)t=2,AC=4cm,得到CB=6cm;(2)t=6,由题可知A点从B点返回,AC=10﹣2=8cm;(3)当0≤t≤5时,AC=2tcm,当5≤t≤10时,AC=(20﹣2t)cm;(4)DE=EC+CD=12AC+12CB=12(AC+CB)=12AB=5cm.【解答】解:(1)∵t=2,∴AC=4cm,∵AB=10cm,∴CB=6cm,∵D是线段BC的中点,∴CD=3cm;(2)∵t=6,∴AC=10﹣2=8cm,(3)当0≤t≤5时,AC=2tcm,当5≤t≤10时,AC=(20﹣2t)cm;(4)DE=EC+CD=12AC+12CB=12(AC+CB)=12AB=5cm,∴线段DE的长不发生变化.【点评】本题考查两点间的距离;熟练掌握线段的和与差的关系,列出代数式进行运算是解题的关键.35、如图,OC平分∠AOB,∠AOD:∠BOD=3:5,已知∠COD=15°,求∠AOB的度数.【分析】根据角平分线的意义和∠AOD:∠BOD=3:5,设未知数表示∠COD进而求出答案.【解答】解:设∠AOD=3x,则∠BOD=5x.∴∠AOB=∠AOD+∠BOD=3x+5x=8x.∵OC平分∠AOB,∴∠AOC=12∠AOB=12×8x=4x.∴∠COD=∠AOC﹣∠AOD=4x﹣3x=x.∵∠COD=15°,∴x=15°.∴∠AOB=8x=8×15°=120°.【点评】考查角平分线的意义,用方程思想解决几何图形问题是常用方法.36、在直线AB上任取一点O,过点O作射线OC,OD,使∠COD=90°,当∠AOC=50°时,∠BOD的度数是.【分析】分射线OC、OD在直线AB的两侧两种情况作出图形,在同一侧时,根据平角等于180°列式计算即可得解,在两侧时,先求出∠AOD,再根据邻补角的定义列式计算即可得解.【解答】解:如图,射线OC、OD在直线AB的同一侧时,∵∠COD=90°,∴∠BOD=180°﹣90°﹣∠AOC=180°﹣90°﹣50°=40°,射线OC、OD在直线AB的两侧时,∵∠COD=90°,∴∠AOD=90°﹣∠AOC=90°﹣50°=40°,∴∠BOD=180°﹣∠AOD=180°﹣40°=140°.综上所述,∠BOD的度数是40°或140°.故答案为:40°或140°.【点评】本题考查了余角和补角,难点在于考虑射线OC、OD在直线AB 的两侧两种情况,作出图形更形象直观.37、如图1,已知∠AOB=150°,∠COE与∠EOD互余,OE平分∠AOD.(1)在图1中,若∠COE=32°,则∠DOE=;∠BOD=;(2)在图1中,设∠COE=α,∠BOD=β,请探索α与β之间的数量关系;(3)在已知条件不变的前提下,当∠COD绕点O逆时针转动到如图2的位置时,(2)中α与β的数量关系是否仍然成立?若成立,请说明理由;若不成立,直接写出α与β的数量关系.【分析】(1)根据互为余角的两个角的和等于90°列式计算即可得解;根据角平分线的定义求出∠AOD,再根据∠BOD=∠AOB﹣∠AOD计算即可得解;(2)先表示出∠DOE,然后表示出∠AOD,再根据∠AOB=∠BOD+∠AOD整理即可得解;(3)思路同(2).【解答】解:(1)∵∠COE与∠EOD互余,∴∠DOE=90°﹣∠COE=90°﹣32°=58°,∵OE平分∠AOD,∴∠AOD=2∠DOE=2×58°=116°,∴∠BOD=∠AOB﹣∠AOD=150°﹣116°=34°;故答案为:58°,34°;(2)∵∠COE与∠EOD互余,∴∠DOE=90°﹣∠COE=90°﹣α,∵OE平分∠AOD,∴∠AOD=2∠DOE=2(90°﹣α),∵∠AOB=150°,∠BOD=β,∴2(90°﹣α)+β=150°,整理得,2α﹣β=30°;(3))∵∠COE与∠EOD互余,∴∠DOE=90°﹣∠COE=90°﹣α,∵OE平分∠AOD,∴∠AOD=2∠DOE=2(90°﹣α),∵∠AOB=150°,∠BOD=β,∴2(90°﹣α)﹣150°=β,整理得2α+β=30°.【点评】本题考查了余角和补角,角平分线的定义,角的计算,熟记概念并准确识图,理清图中各角度之间的关系是解题的关键.38、如图1,点A、O、B依次在直线MN上,现将射线OA绕点O沿顺时针方向以每秒4°的速度旋转,同时射线OB绕点O沿逆时针方向以每秒6°的速度旋转,直线MN保持不动,如图2,设旋转时间为t(0≤t≤60,单位秒)(1)当t=3时,求∠AOB的度数;(2)在运动过程中,当∠AOB第二次达到72°时,求t的值;(3)在旋转过程中是否存在这样的t,使得射线OB与射线OA垂直?如果存在,请求出t的值;如果不存在,请说明理由.【分析】(1)利用∠AOB=180°﹣∠AOM﹣∠BON,即可求出结论;(2)利用∠AOM+∠BON=180°+∠AOB,即可得出关于t的一元一次方程,解之即可得出结论;(3)分0≤t≤18及18≤t≤60两种情况考虑,当0≤t≤18时,利用∠AOB =180°﹣∠AOM﹣∠BON=90°,即可得出关于t的一元一次方程,解之即可得出结论;当18≤t≤60时,利用∠AOM+∠BON=180°+∠AOB(∠AOB =90°或270°),即可得出关于t的一元一次方程,解之即可得出结论.综上,此题得解.【解答】解:(1)当t=3时,∠AOB=180°﹣4°×3﹣6°×3=150°.(2)依题意,得:4t+6t=180+72,解得:t=126 5.答:当∠AOB第二次达到72°时,t的值为126 5.(3)当0≤t≤18时,180﹣4t﹣6t=90,解得:t=9;当18≤t≤60时,4t+6t=180+90或4t+6t=180+270,解得:t=27或t=45.答:在旋转过程中存在这样的t,使得射线OB与射线OA垂直,t的值为9、27或45.【点评】本题考查了一元一次方程的应用以及角的计算,找准等量关系,正确列出一元一次方程是解题的关键.39、小明在一条直线上选了若干个点,通过数线段的条数,发现其中蕴含了一定的规律,下边是他的探究过程及联想到的一些相关实际问题.(1)一条直线上有2个点,线段共有1条;一条直线上有3个点,线段共有1+2=3条;一条直线上有4个点,线段共有1+2+3=6条…一条直线上有10个点,线段共有条.(2)总结规律:一条直线上有n个点,线段共有条.(3)拓展探究:具有公共端点的两条射线OA、OB形成1个角∠AOB(∠AOB<180°);在∠AOB内部再加一条射线OC,此时具有公共端点的三条射线OA、OB、OC共形成3个角;以此类推,具有公共端点的n条射线OA、OB、OC…共形成个角(4)解决问题:曲沃县某学校九年级1班有45名学生毕业留影时,全体同学拍1张集体照,每2名学生拍1张两人照,共拍了多少张照片?如果照片上的每位同学都需要1张照片留作纪念,又应该冲印多少张纸质照片?【分析】(1)根据图形的变化寻找规律即可求解;(2)根据(1)总结规律即可;(3)结合(2)所得规律即可得结论;(4)根据以上所得规律运用规律即可求解.【解答】解:(1)一条直线上有2个点,线段共有1条;一条直线上有3个点,线段共有1+2=3条;一条直线上有4个点,线段共有1+2+3=6条…一条直线上有10个点,线段共有10×92=45.故答案为45;(2)总结规律:一条直线上有n个点,线段共有n(n−1)2;故答案为:n(n−1)2;(3)根据(2)具有公共端点的n条射线OA、OB、OC…共形成n(n−1)2个角,故答案为:n(n−1)2;(4)解:45(45−1)2+1=991,45×(45﹣1)+1×45=2025.答:共需拍照991张,共需冲印2025张纸质照片.【点评】本题考查了角的概念,解决本题的关键是根据图形的变化寻找规律.40、解方程:(1)3(2x+5)=2(4x+3)+1;(2)x−32−2x+13=1.【分析】(1)方程去括号,移项,合并同类项,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并同类项,把x系数化为1,即可求出解.【解答】解:(1)去括号得:6x+15=8x+6+1,移项得:6x﹣8x=6+1﹣15,合并得:﹣2x=﹣8,解得:x=4;(2)去分母得:3(x﹣3)﹣2(2x+1)=6,去括号得:3x﹣9﹣4x﹣2=6,移项得:3x﹣4x=6+9+2,合并得:﹣x=17,解得:x=﹣17.【点评】此题考查了解一元一次方程,熟练掌握解方程的步骤是解本题的关键.41、如果关于x的方程4x﹣2m=3x+2和x=2x﹣3的解相同,那么m =.【分析】先求出方程x=2x﹣3的解,再把方程的解代入方程4x﹣2m=3x+2中,求出m.【解答】解:方程x=2x﹣3的解为x=3,∵方程4x﹣2m=3x+2和x=2x﹣3的解相同,∴方程4x﹣2m=3x+2的解为x=3,当x=3时,12﹣2m=9+2,解得m=1 2.故答案为:1 2.【点评】本题考查了一元一次方程的解法及方程的同解的含义.理解同解方程是解决本题的关键.42、若关于x的方程x+2=2(m﹣x)的解满足方程|x−12|=1,则m的值是()A.14或134B.14C.54D.−12或54【分析】解含绝对值符号的一元一次方程要根据绝对值的性质和绝对值符号内代数式的值分情况讨论,即去掉绝对值符号得到一般形式的一元一次方程,再求解.【解答】解:因为方程|x−12|=1,所以x−12=±1,解得x=32或x=−12,因为关于x的方程x+2=2(m﹣x)的解满足方程|x−12|=1,所以解方程x+2=2(m﹣x)得,m =3x+22, 当x =32时,m =134, 当x =−12时,m =14. 所以m 的值为:134或14. 故选:A . 【点评】本题考查了含绝对值符号的一元一次方程,解决本题的关键是解含绝对值符号的一元一次方程要根据绝对值的性质和绝对值符号内代数式的值分情况讨论.43、我们规定,若关于x 的一元一次方程ax =b 的解为x =b ﹣a ,则称该方程为“差解方程”.例如:2x =4的解为x =2,且2=4﹣2,则该方程2x =4是差解方程.(1)判断:方程3x =4.5 差解方程(填“是”或“不是”)(2)若关于x 的一元一次方程4x =m +3是差解方程,求m 的值.【分析】(1)检验方程的解是否是常数项与未知数的之差,进而进行判断便可;(2)先解含已知字母方程得出方程的解,再根据差解方程的定义列出关于m 的方程,进行解答便可.【解答】解:(1)∵方程3x =4.5的解为x =1.5=4.5﹣3,∴方程3x =4.5是差解方程,故答案为:是;(2)∵方程4x =m +3的解是x =m+34,又∵方程4x =m +3是差解方程,∴m+34=m +3﹣4, ∴m =73.【点评】本题是一个新定义题,主要考查了新定义,一元一次方程的解法与应用,关键是根据新定义,把题目转化为常规题进行解答.。
七年级数学基础知识百题竞赛试题及答案
七年级数学基础知识百题竞赛试题满分:100分 考试时间:60分钟班级 姓名 得分一、 填空题1、将点P(4,3)先向左平移2个单位,再向下平移2个单位得点P ′,则点P ′的坐标为2、一个长方形在平面直角坐标系中,三个顶点的坐标分别是(-1,-1)、(-1,2)、(3,-1),则第四个顶点的坐标是3、一张电影票的座位5排2号记为(5,2),则3排5号记为 。
4、点(-3,5)到x 轴上的距离是_______,到y 轴上的距离是_______。
5、在平面直角坐标系内,已知点(1-2a ,a-2)在第三象限的角平分线上,则a 的值为________。
6、甲、乙两数这和为16,甲数的3倍等于乙数的5倍,若设甲数为x ,乙数为y ,则方程组7、已知一个两位数,它的十位上的数字x 比个位上的数字y 大1,若颠倒个位数字与十位数字的位置,得到的新数比原数小9,求这个两位数所列的方程组正确的是8、在方程29x ay -=中,如果31x y =⎧⎨=⎩,是它的一个解,那么a 的值为___ ___9、羊圈里白羊的只数比黑羊的脚数少2,黑羊的只数比白羊的脚数少187,则设白羊有X 只,黑羊有y 只,列方程组为10、把面值为1元的纸币换为1角或5角的硬币,则换法共有___ __种11、用一根绳子环绕一棵大树,若环绕大树3周,则绳子还多4尺;若环绕大树4周,则绳子少了3尺,这根绳子长__ ___尺.12、写出满足方程x+2y=9的一对整数解________________。
13、方程组:2,328.y x y x =⎧⎨+=⎩的解是 。
14、二元一次方程组的两个方程的 叫做这个二元一次方程组的解。
15、已知x+y=5,且x -y=1,则xy=_________。
16、写出一个以⎩⎨⎧==23y x 为解的二元一次方程组 . 17、-32x y __________5的系数是,次数是__________. 18、直线外一点到这条直线的___ _____,叫做点到直线的距离.19、如右图所示,已知直线AB,CD 相交于O,OA 平分∠EOC,∠EOC=70°,则∠BOD=•______.20、对顶角的性质是______________________. 21、在同一平面内,____________________________________叫做平行线.22、若AB ∥CD,AB ∥EF,则_____∥______,理由是_________ _________.23、直线L 同侧有A,B,C 三点,若过A,B 的直线L 1和过B,C 的直线L 2都与L 平行,则A,•B,C 三点________,理论根据是___________________________.24、大数和小数的差为12,这两个数的和为60,则大数是______ ______.25、某哨卡运回一箱苹果,若每个战士分6个,则少6个;若每个战士分5个,•则多5个,那么这个哨卡共有________名战士,箱中有_______个苹果.26、若方程13121m n x y -++=是二元一次方程,则m =_____,n =_____.27、AD 是中线,则⊿ABD 的面积______ ⊿ACD 的面积(填“>”“<”“=”)。
初一数学基础题100道
1.一个数除以3的余数是2,那么这个数可能是哪些?答案:可能是3n+2的形式,其中n是任意整数。
2.一个长方形的长是10厘米,宽是4厘米,求它的周长和面积。
答案:周长是28厘米,面积是40平方厘米。
3.解方程:2x + 3 = 7。
答案:x = 2。
4.一个三角形的三个角的度数比是2:3:4,求每个角的度数。
答案:最小的角是30度,第二个角是45度,最大的角是60度。
5.一个班级有40名学生,其中有20名女生,求男生的人数。
答案:男生有20名。
6.一个数的2倍加上5等于17,求这个数。
答案:这个数是6。
7.一个圆的直径是14厘米,求它的半径和周长。
答案:半径是7厘米,周长是44厘米(使用π≈3.14)。
8.一个数乘以自己等于81,求这个数。
答案:这个数是9或-9。
9.一个数的1/3减去4等于-2,求这个数。
答案:这个数是6。
10.一个数的5倍减去10等于30,求这个数。
答案:这个数是8。
11.一个数的3倍加上2等于17,求这个数。
答案:这个数是5。
12.一个数的4倍减去3等于19,求这个数。
答案:这个数是5。
13.一个数的2倍加上1等于11,求这个数。
答案:这个数是5。
14.一个数的3倍减去5等于10,求这个数。
答案:这个数是5。
15.一个数的4倍加上2等于18,求这个数。
答案:这个数是4。
16.一个数的5倍减去1等于14,求这个数。
答案:这个数是3。
17.一个数的6倍加上3等于39,求这个数。
答案:这个数是6。
18.一个数的7倍减去4等于45,求这个数。
答案:这个数是7。
19.一个数的8倍加上5等于69,求这个数。
答案:这个数是9。
20.一个数的9倍减去6等于78,求这个数。
答案:这个数是9。
21.一个数的10倍加上7等于107,求这个数。
答案:这个数是10。
22.一个数的11倍减去8等于119,求这个数。
11答案:这个数是12。
24.一个数的13倍减去10等于153,求这个数。
答案:这个数是12。
七年级数学题100道
七年级数学题100道一、有理数运算相关题目。
1. 计算:(-2)+3-(-5)- 解析:- 去括号法则为:括号前是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都不改变;括号前是“ - ”,把括号和它前面的“ - ”去掉后,原括号里各项的符号都要改变。
- 所以(-2)+3 - (-5)= - 2+3 + 5。
- 接着按照从左到右的顺序计算:-2 + 3=1,1+5 = 6。
2. 计算:-3×(-4)÷(-2)- 解析:- 根据有理数的乘除法运算法则,先计算乘法-3×(-4) = 12。
- 再计算除法12÷(-2)= - 6。
3. 计算:((1)/(2)-(2)/(3))×(-6)- 解析:- 先计算括号内的式子(1)/(2)-(2)/(3)=(3)/(6)-(4)/(6)=-(1)/(6)。
- 再计算乘法-(1)/(6)×(-6)=1。
二、整式相关题目。
4. 化简:3a + 2b - 5a - b- 解析:- 合并同类项,同类项是指所含字母相同,并且相同字母的指数也相同的项。
- 对于3a和-5a是同类项,2b和-b是同类项。
- 合并得(3a - 5a)+(2b - b)= - 2a + b。
5. 先化简,再求值:(2x^2-3xy + 4y^2)-3(x^2-xy+(5)/(3)y^2),其中x = - 1,y = 2- 解析:- 先去括号:- 2x^2-3xy + 4y^2-3x^2+3xy - 5y^2。
- 再合并同类项:(2x^2-3x^2)+(-3xy + 3xy)+(4y^2-5y^2)=-x^2-y^2。
- 当x=-1,y = 2时,代入式子得-(-1)^2-2^2=-1 - 4=-5。
三、一元一次方程相关题目。
6. 解方程:2x+3 = 5x - 6- 解析:- 移项,把含有x的项移到等号一边,常数项移到等号另一边,移项要变号。
初中数学全套试题及答案
初中数学全套试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正数?A. -2B. 0C. 3D. -5答案:C2. 计算下列哪个等式的结果为正数?A. 3 - 5B. 4 + 2C. 6 × (-2)D. 8 ÷ (-4)答案:B3. 哪个图形是轴对称图形?A. 平行四边形B. 矩形C. 菱形D. 梯形答案:B4. 以下哪个分数是最简分数?A. 3/6B. 5/10C. 7/14D. 8/12答案:C5. 一个圆的半径是5厘米,那么它的周长是多少?A. 10π厘米B. 15π厘米C. 20π厘米D. 25π厘米答案:C6. 一个等腰三角形的两个底角相等,如果一个底角是40度,那么顶角的度数是多少?A. 100度B. 80度C. 60度D. 120度答案:B7. 以下哪个表达式的结果是一个整数?A. √4B. √9C. √16D. √25答案:D8. 一个数的相反数是-3,那么这个数是多少?A. 3B. -3C. 0D. 6答案:A9. 一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 5或-5D. 0答案:C10. 下列哪个选项表示的是乘法?A. 3 + 4B. 3 - 4C. 3 × 4D. 3 ÷ 4答案:C二、填空题(每题2分,共20分)11. 一个数的立方是-8,这个数是____。
答案:-212. 一个数的平方根是4,这个数是____。
答案:1613. 一个数的倒数是1/3,这个数是____。
答案:314. 一个数的绝对值是7,这个数可能是____或____。
答案:7或-715. 一个数的平方是25,这个数可能是____或____。
答案:5或-516. 一个三角形的内角和是____度。
答案:18017. 一个圆的直径是10厘米,它的半径是____厘米。
答案:518. 一个数的立方根是2,这个数是____。
答案:819. 一个数的平方是36,这个数可能是____或____。
实用文档之20以内100题口算题卡-10套可直接打印
实用文档之"20以内加减法口算练习题(1) "
姓名:__________ 时间:_______ 做对了_______题(共100题)
20以内加减法口算练习题(2)
姓名:__________ 时间:_______ 做对了_______题(共100题)
20以内加减法口算练习题(3)
姓名:__________ 时间:_______ 做对了_______题(共100题)
20以内加减法口算练习题(4)
姓名:__________ 时间:_______ 做对了_______题(共100题)
20以内加减法口算练习题(5)
姓名:__________ 时间:_______ 做对了_______题(共100题)
20以内加减法口算练习题(6)
姓名:__________ 时间:_______ 做对了_______题(共100题)
姓名:__________ 时间:_______ 做对了_______题(共100题)
20以内加减法口算练习题(8)
姓名:__________ 时间:_______ 做对了_______题(共100题)
20以内加减法口算练习题(9)
姓名:__________ 时间:_______ 做对了_______题(共100题)
姓名:__________ 时间:_______ 做对了_______题(共100题)
姓名:_____ 时间:______ 做对了_____题
按规律填数:。
初一数学百题经典
18 则 m+n 等于( )
A.36
B.37
C.38
D.39
发现数学本质,直取提分真谛
10
(1)如图,已知 ∠AOB = 90° , ∠BOC = 30° ,OM 平分 ∠AOC ,ON 平分 19 ∠BOC ,求 ∠MON 的度数;
A M
O
B
N
C
(2) 如果(1)中 ∠AOB = α ,其他条件不变,求∠MON 的度数.
D
C
我的锦囊
B
O
A
发现数学本质,直取提分真谛
14
如图,M、N、P、R 分别是数轴上四个整数所对应的点,其中有一点 25 是原点,并且 M= N N=P P=R 1 ,数 a 对应的点在 M 和 N 之间,数 b
对应的点在 P 与 R 之间,若 a + b = 3 ,则原点可能是( )
a
M
N
b
P
R
A.M 或 R C.M 或 N
(2)当 A、B 两点都不在原点时,
①点 A、B 都在原点的右边,
AB = OB − OA = b − a = b − a = a − b ;
②点 A、B 都在原点的左边,
AB =OB − OA =b − a =−b − (−a) =a − b =a − b ;
突破口 我的锦囊
(3) 如果(1)中 ∠BOC = β (β 为锐角),其他条件不变,求∠MON 的度数.
(4) 从(1)、(2)、(3)的结果中能得出什么结论?
(5)线段的计算与角的计算存在着紧密的联系,它们之间可以互相借鉴 解法,请你模仿(1)~(4)设计一道以线段为背景的计算题,写出其中的 规律,并给出解答
《整式地加减》专项练习100题(有问题详解)
整式的加减专项练习100题(有答案)1、3(a+5b)-2(b-a)2、3a-(2b-a)+b3、2(2a2+9b)+3(-5a2-4b)4、(x3-2y3-3x2y)-(3x3-3y3-7x2y)5、3x2-[7x-(4x-3)-2x2]6、(2xy-y)-(-y+yx)7、5(a2b-3ab2)-2(a2b-7ab)8、(-2ab+3a)-2(2a-b)+2ab9、(7m2n-5mn)-(4m2n-5mn)10、(5a2+2a-1)-4(3-8a+2a2).11、-3x2y+3xy2+2x2y-2xy2;12、2(a-1)-(2a-3)+3.13、-2(ab-3a2)-[2b2-(5ab+a2)+2ab]14、(x2-xy+y)-3(x2+xy-2y)15、3x2-[7x-(4x-3)-2x2]16、a2b-[2(a2b-2a2c)-(2bc+a2c)];17、-2y3+(3xy2-x2y)-2(xy2-y3).18、2(2x-3y)-(3x+2y+1)19、-(3a2-4ab)+[a2-2(2a+2ab)].20、5m-7n-8p+5n-9m-p ;21、(5x 2y-7xy 2)-(xy 2-3x 2y );22、3(-3a 2-2a )-[a 2-2(5a-4a 2+1)-3a].23、3a 2-9a+5-(-7a 2+10a-5);24、-3a 2b-(2ab 2-a 2b )-(2a 2b+4ab 2).25、(5a-3a 2+1)-(4a 3-3a 2);26、-2(ab-3a 2)-[2b 2-(5ab+a 2)+2ab]27、(8xy -x 2+y 2)+(-y 2+x 2-8xy );28、(2x 2-21+3x )-4(x -x 2+21);29、3x 2-[7x -(4x -3)-2x 2].30、5a+(4b-3a )-(-3a+b );31、(3a2-3ab+2b2)+(a2+2ab-2b2);32、2a2b+2ab2-[2(a2b-1)+2ab2+2].33、(2a 2-1+2a )-3(a-1+a 2);34、2(x 2-xy )-3(2x 2-3xy )-2[x 2-(2x 2-xy+y 2)].35、 -32ab +43a 2b +ab +(-43a 2b )-136、(8xy -x 2+y 2)+(-y 2+x 2-8xy );37、2x-(3x-2y+3)-(5y-2);38、-(3a+2b)+(4a-3b+1)-(2a-b-3)39、4x3-(-6x3)+(-9x3)40、3-2xy+2yx2+6xy-4x2y41、 1-3(2ab+a)十[1-2(2a-3ab)].42、 3x-[5x+(3x-2)];43、(3a2b-ab2)-(ab2+3a2b)44、()[] {}yxxyx--+--3233245、(-x2+5+4x3)+(-x3+5x-4)46、(5a 2-2a+3)-(1-2a+a 2)+3(-1+3a-a 2).47、5(3a 2b-ab 2)-4(-ab 2+3a 2b ).48、4a 2+2(3ab-2a 2)-(7ab-1).49、 21xy+(-41xy )-2xy 2-(-3y 2x )50、5a 2-[a 2-(5a 2-2a )-2(a 2-3a )]51、5m-7n-8p+5n-9m+8p52、(5x 2y-7xy 2)-(xy 2-3x 2y )53、 3x 2y-[2x 2y-3(2xy-x 2y )-xy]54、 3x 2-[5x-4(21x 2-1)]+5x 255、2a 3b- 21a 3b-a 2b+ 21a 2b-ab 2;56、(a 2+4ab-4b 2)-3(a 2+b 2)-7(b 2-ab ).57、a 2+2a 3+(-2a 3)+(-3a 3)+3a 2;58、5ab+(-4a 2b 2)+8ab 2-(-3ab )+(-a 2b )+4a 2b 2;59、(7y-3z )-(8y-5z );60、-3(2x 2-xy )+4(x 2+xy-6). 61、(x 3+3x 2y-5xy 2+9y 3)+(-2y 3+2xy 2+x 2y-2x 3)-(4x 2y-x 3-3xy 2+7y 3)62、-3x 2y+2x 2y+3xy 2-2xy 2;63、3(a 2-2ab )-2(-3ab+b 2);64、5abc-{2a 2b-[3abc-(4a 2b-ab 2]}.65、5m 2-[m 2+(5m 2-2m )-2(m 2-3m )].66、-[2m-3(m-n+1)-2]-1.67、31a-( 21a-4b-6c)+3(-2c+2b)68、 -5a n -a n -(-7a n )+(-3a n )69、x 2y-3xy 2+2yx 2-y 2x70、 41a 2b-0.4ab 2- 21a 2b+ 52ab 2;71、3a-{2c-[6a-(c-b )+c+(a+8b-6)]}72、-3(xy-2x 2)-[y 2-(5xy-4x 2)+2xy];73、化简、求值21x 2-2212- (x + y )2⎡⎤⎢⎥⎣⎦-23(-32x 2+31y 2),其中x =-2, y =-3474、化简、求值21x -2(x -31y 2)+(-23x +31y 2),其中x =-2,y =-3275、x x x x x x 5)64(213223312323-++-⎪⎭⎫ ⎝⎛---其中x =-121;76、 化简,求值(4m+n )-[1-(m-4n )],m=52 n=-13177、化简、求值2(a2b+2b3-ab3)+3a3-(2ba2-3ab2+3a3)-4b3,其中a=-3,b=278、化简,求值:(2x3-xyz)-2(x3-y3+xyz)+(xyz-2y3),其中x=1,y=2,z=-3.79、化简,求值:5x2-[3x-2(2x-3)+7x2],其中x=-2.80、若两个多项式的和是2x2+xy+3y2,一个加式是x2-xy,求另一个加式.81、若2a2-4ab+b2与一个多项式的差是-3a2+2ab-5b2,试求这个多项式.82、求5x2y-2x2y与-2xy2+4x2y的和.83、 求3x 2+x -5与4-x +7x 2的差.84、计算 5y+3x+5z 2与12y+7x-3z 2的和85、计算8xy 2+3x 2y-2与-2x 2y+5xy 2-3的差86、 多项式-x 2+3xy-21y 与多项式M 的差是-21x 2-xy+y ,求多项式M87、当x=-21,y=-3时,求代数式3(x 2-2xy )-[3x 2-2y+2(xy+y )]的值.88、化简再求值5abc-{2a 2b-[3abc-(4ab 2-a 2b )]-2ab 2},其中a=-2,b=3,c=-4189、已知A=a 2-2ab+b 2,B=a 2+2ab+b 2(1)求A+B ;(2)求41(B-A);90、小明同学做一道题,已知两个多项式A ,B ,计算A+B ,他误将A+B 看作A-B ,求得9x 2-2x+7,若B=x 2+3x-2,你能否帮助小明同学求得正确答案?91、已知:M=3x 2+2x-1,N=-x 2-2+3x ,求M-2N .92、已知222244,5A x xy y B x xy y =-+=+-,求3A -B93、已知A =x 2+xy +y 2,B =-3xy -x 2,求2A -3B .94、已知2-a +(b +1)2=0,求5ab 2-[2a 2b -(4ab 2-2a 2b )]的值.95、化简求值:5abc-2a 2b+[3abc-2(4ab 2-a 2b )],其中a 、b 、c 满足|a-1|+|b-2|+c 2=0.96、已知a ,b ,z 满足:(1)已知|x-2|+(y+3)2=0,(2)z 是最大的负整数,化简求值:2(x2y+xyz)-3(x2y-xyz)-4x2y.97、已知a+b=7,ab=10,求代数式(5ab+4a+7b)+(6a-3ab)-(4ab-3b)的值.98、已知m2+3mn=5,求5m2-[+5m2-(2m2-mn)-7mn-5]的值99、设A=2x2-3xy+y2+2x+2y,B=4x2-6xy+2y2-3x-y,若|x-2a|+(y-3)2=0,且B-2A=a,求a的值.100、有两个多项式:A=2a2-4a+1,B=2(a2-2a)+3,当a取任意有理数时,请比较A 与B的大小.答案:1、3(a+5b)-2(b-a)=5a+13b2、3a-(2b-a)+b=4a-b.3、2(2a2+9b)+3(-5a2-4b)=—11a2+6b24、(x3-2y3-3x2y)-(3x3-3y3-7x2y)= -2x3+y3+4x2y5、3x2-[7x-(4x-3)-2x2] = 5x2 -3x-36、(2xy-y)-(-y+yx)= xy7、5(a22b-3ab2)-2(a2b-7ab) = -a2b+11ab8、(-2ab+3a)-2(2a-b)+2ab= -2a+b9、(7m2n-5mn)-(4m2n-5mn)= 3m2n10、(5a2+2a-1)-4(3-8a+2a2)= -3a2+34a-1311、-3x2y+3xy2+2x2y-2xy2= -x2y+xy212、2(a-1)-(2a-3)+3.=413、-2(ab-3a2)-[2b2-(5ab+a2)+2ab]= 7a2+ab-2b214、(x2-xy+y)-3(x2+xy-2y)= -2x2-4xy+7y15、3x2-[7x-(4x-3)-2x2]=5x2-3x-316、a2b-[2(a2b-2a2c)-(2bc+a2c)]= -a2b+2bc+6a2c17、-2y3+(3xy2-x2y)-2(xy2-y3)= xy2-x2y18、2(2x-3y)-(3x+2y+1)=2x-8y-119、-(3a2-4ab)+[a2-2(2a+2ab)]=-2a2-4a20、5m-7n-8p+5n-9m-p = -4m-2n-9p21、(5x2y-7xy2)-(xy2-3x2y)=4xy2-4x2y22、3(-3a2-2a)-[a2-2(5a-4a2+1)-3a]=-18a2 +7a+223、3a2-9a+5-(-7a2+10a-5)=10a2-19a+1024、-3a2b-(2ab2-a2b)-(2a2b+4ab2)= -4a2b-64ab225、(5a-3a2+1)-(4a3-3a2)=5a-4a2+126、-2(ab-3a2)-[2b2-(5ab+a2)+2ab]=7a2+ab-2b227、(8xy-x2+y2)+(-y2+x2-8xy)=028、(2x 2-21+3x )-4(x -x 2+21) = 6x 2-x-25 29、3x 2-[7x -(4x -3)-2x 2]= 5x 2-3x -330、5a+(4b-3a )-(-3a+b )= 5a+3b31、(3a 2-3ab+2b 2)+(a 2+2ab-2b 2)= 4a 2-ab32、2a 2b+2ab 2-[2(a 2b-1)+2ab 2+2].= -133、(2a 2-1+2a )-3(a-1+a 2)= -a 2-a+234、2(x 2-xy )-3(2x 2-3xy )-2[x 2-(2x 2-xy+y 2)]=-2x 2+5xy-2y 235、-32ab +43a 2b +ab +(-43a 2b )-1 = 31ab-1 36、(8xy -x 2+y 2)+(-y 2+x 2-8xy )=037、2x -(3x -2y +3)-(5y -2)=-x-3y-138、-(3a +2b )+(4a -3b +1)-(2a -b -3)= -a-4b+439、4x 3-(-6x 3)+(-9x 3)= x 340、3-2xy +2yx 2+6xy -4x 2y = -2 x 2y+441、 1-3(2ab +a )十[1-2(2a -3ab )]=2-7a42、 3x -[5x +(3x -2)]=-5x+243、(3a 2b -ab 2)-(ab 2+3a 2b )= -2ab 244、()[]{}y x x y x --+--32332 = 5x+y45、(-x 2+5+4x 3)+(-x 3+5x -4)= 3x 3-x 2+5x+146、(5a 2-2a+3)-(1-2a+a 2)+3(-1+3a-a 2)=a 2+9a-147、5(3a 2b-ab 2)-4(-ab 2+3a 2b ).=3a 2b-ab 248、4a 2+2(3ab-2a 2)-(7ab-1)=1-ab49、 21xy+(-41xy )-2xy 2-(-3y 2x )=41xy+xy 250、5a 2-[a 2-(5a 2-2a )-2(a 2-3a )]=11a 2-8a51、5m-7n-8p+5n-9m+8p=-4m-2n 52、(5x 2y-7xy 2)-(xy 2-3x 2y )=8x 2y-6xy253、 3x 2y-[2x 2y-3(2xy-x 2y )-xy]=-2x 2y+7xy 54、 3x 2-[5x-4( 21x 2-1)]+5x 2 = 10x 2-5x-4 55、2a 3b- 21a 3b-a 2b+ 21a 2b-ab 2 = 23a 3b- 21a 2b-ab 2 56、(a 2+4ab-4b 2)-3(a 2+b 2)-7(b 2-ab )=-2a 2+11ab-14b 257、a 2+2a 3+(-2a 3)+(-3a 3)+3a 2 = -3a 3+4a2 58、5ab+(-4a 2b 2)+8ab 2-(-3ab )+(-a 2b )+4a 2b 2=8ab+8ab 2-a 2b59、(7y-3z )-(8y-5z )=-y+2z60、-3(2x 2-xy )+4(x 2+xy-6)=-2x 2+7xy-2461、(x 3+3x 2y-5xy 2+9y 3)+(-2y 3+2xy 2+x 2y-2x 3)-(4x 2y-x 3-3xy 2+7y 3)=062、-3x 2y+2x 2y+3xy 2-2xy 2= -x 2y+xy 2 63、3(a 2-2ab )-2(-3ab+b 2)=3a 2-2b 264、5abc-{2a 2b-[3abc-(4a 2b-ab 2]}=8abc-6a 2b+ab 265、5m 2-[m 2+(5m 2-2m )-2(m 2-3m )]=m 2-4m66、-[2m-3(m-n+1)-2]-1=m-3n+4 67、31a-( 21a-4b-6c)+3(-2c+2b)= -61a+10b 68、 -5a n -a n -(-7a n )+(-3a n )= -2a n69、x 2y-3xy 2+2yx 2-y 2x=3x 2y-4xy 271、 41a 2b-0.4ab 2- 21a 2b+ 52ab 2 = -41a 2b 71、3a-{2c-[6a-(c-b )+c+(a+8b-6)]}= 10a+9b-2c-672、-3(xy-2x 2)-[y 2-(5xy-4x 2)+2xy]= 2x 2-y 273、化简、求值21x 2-2212- (x + y )2⎡⎤⎢⎥⎣⎦-23(-32x 2+31y 2),其中x =-2, y =-34 原式=2x 2+21y 2-2 =698 74、化简、求值21x -2(x -31y 2)+(-23x +31y 2),其中x =-2,y =-32 原式=-3x+y 2=69475、x x x x x x 5)64(213223312323-++-⎪⎭⎫ ⎝⎛---其中x =-121; 原式=x 3+x 2-x+6=68376、 化简,求值(4m+n )-[1-(m-4n )],m=52 n=-131 原式=5m-3n-1=577、化简、求值2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =2原式=-2ab 3+3ab 2=12 78、化简,求值:(2x 3-xyz )-2(x 3-y 3+xyz )+(xyz-2y 3),其中x=1,y=2,z=-3. 原式=-2xyz=679、化简,求值:5x 2-[3x-2(2x-3)+7x 2],其中x=-2. 原式=-2x 2+x-6=-1680、若两个多项式的和是2x 2+xy+3y 2,一个加式是x 2-xy ,求另一个加式.(2x 2+xy+3y 2 ) ——( x 2-xy )= x 2+2xy+3y 281、若2a 2-4ab+b 2与一个多项式的差是-3a 2+2ab-5b 2,试求这个多项式.( 2a 2-4ab+b 2 )—(-3a 2+2ab-5b 2)=5a 2 -6ab+6b 282、求5x 2y -2x 2y 与-2xy 2+4x 2y 的和.(5x 2y -2x 2y )+(-2xy 2+4x 2y )=3xy 2+2x 2y83、 求3x 2+x -5与4-x +7x 2的差.(3x 2+x -5)—(4-x +7x 2)=—4x 2+2x -984、计算 5y+3x+5z 2与12y+7x-3z 2的和(5y+3x+5z 2)+(12y+7x-3z 2)=17y+10x+2z 285、计算8xy 2+3x 2y-2与-2x 2y+5xy 2-3的差(8xy 2+3x 2y-2)—(-2x 2y+5xy 2-3)=5x 2y+3xy 2+1 86、 多项式-x 2+3xy-21y 与多项式M 的差是-21x 2-xy+y ,求多项式M M=-21x 2+4xy —23y 87、当x=- 21,y=-3时,求代数式3(x 2-2xy )-[3x 2-2y+2(xy+y )]的值. 原式=-8xy+y= —1588、化简再求值5abc-{2a 2b-[3abc-(4ab 2-a 2b )]-2ab 2},其中a=-2,b=3,c=-41 原式=83abc-a 2b-2ab 2=3689、已知A=a 2-2ab+b 2,B=a 2+2ab+b 2(1)求A+B ;(2)求41(B-A); A+B=2a 2+2b 2 41(B-A)=ab 90、小明同学做一道题,已知两个多项式A ,B ,计算A+B ,他误将A+B 看作A-B ,求得 9x 2-2x+7,若B=x 2+3x-2,你能否帮助小明同学求得正确答案?A=10x 2+x+5 A+B=11x 2+4x+391、已知:M=3x 2+2x-1,N=-x 2-2+3x ,求M-2N .M-2N=5x 2-4x+3 92、已知222244,5A x xy y B x xy y =-+=+-,求3A -B3A -B=11x 2-13xy+8y 293、已知A =x 2+xy +y 2,B =-3xy -x 2,求2A -3B .2A -3B= 5x 2+11xy +2y 294、已知2-a +(b +1)2=0,求5ab 2-[2a 2b -(4ab 2-2a 2b )]的值.原式=9ab2-4a2b=3495、化简求值:5abc-2a2b+[3abc-2(4ab2-a2b)],其中a、b、c满足|a-1|+|b-2|+c2=0.原式=8abc-8a2b=-3296、已知a,b,z满足:(1)已知|x-2|+(y+3)2=0,(2)z是最大的负整数,化简求值:2(x2y+xyz)-3(x2y-xyz)-4x2y.原式=-5x2y+5xyz=9097、已知a+b=7,ab=10,求代数式(5ab+4a+7b)+(6a-3ab)-(4ab-3b)的值.原式=10a+10b-2ab=5098、已知m2+3mn=5,求5m2-[+5m2-(2m2-mn)-7mn-5]的值原式=2m2+6mn+5=1599、设A=2x2-3xy+y2+2x+2y,B=4x2-6xy+2y2-3x-y,若|x-2a|+(y-3)2=0,且B-2A=a,求a的值.B-2A=-7x-5y=-14a-15=a a=-1100、有两个多项式:A=2a2-4a+1,B=2(a2-2a)+3,当a取任意有理数时,请比较A 与B的大小.A=2a2-4a+1 B=2a2-4a+3 所以A<B。
初中数学基础100题
1511、请用“<”、“>”或“=”填空:3,223253 2、在实数9,,16,,0.1010010001,33,0,2+1,7,0.303003,,中,无理数有________个.3、21的倒数为_______,绝对值为________,相反数为_______.2 4、如果a3b44a3bc0;则c ab=5、分解因式:①a x=;②8xy8xy2y49ay249ay22。
6、9的平方根为_______,127的立方根为_______.7、当x时,式子x3x 26有意义。
11 8、计算:3.14181229、已知1x求2111a2a2a1的值m+2n b n-2m+2与10、若单项式2am的值=.a是同类项,则n3b3b412.下列运算正确的是()A.2x5-3x3=-x2B.23+22=25C.(-x)52(-x2)=-x10D.(3a6x3-9ax5)÷(-3ax3)=3x2-a514、计算:m622m39mm3的结果为。
116、计算321aaa=_________.计算8-2(2+2)=_________.18、计算:33212(31)334.19、已知方程组a xbyaxby 2,4的解为xy2,,则2a-3b的值=。
2-2mx+1=0的一个解,则m的值是,它的20、已知x=1是一元二次方程x另一个解为25、如图,已知函数y=ax+b和y=kx的图象交于点P,?则根2据图像可得,关于y axb, ykx的二元一次方程组的解是。
26、下列方程中肯定是一元二次方程的是() A .-ax2+bx+c=0B .3x 2-2x+1=mx 212+1)x 2-2x-3=0C .x+=1D .(ax27、两圆的半径分别是方程x2-3x+2=0的两根.且圆心距d=1,则两圆的位置关系是()A .外切B .内切C .外离D .相交28、方程(x-2)(x-3)=6的解为______. 2+8x-3=029、分别用配方法和求根公式法解方程:3x30、(1)某印刷厂1?月份印刷了书籍60?万册,?第一季度共印刷了200万册, 问2、3月份平均每月的增长率是多少?(2)市政府为了解决市民看病难的问题,决定下调药品的价格.?某种药品经 过连续两次降价后,由每盒200元下调至128元,求这种药品平均每次降价的百 分率是多少?31、?已知一元二次方程有一个根是2,?那么这个方程可以是_______(填上你认为正确的一个方程即可). 32、若一个等腰三角形三边长均满足方程x2-6x+8=0,则此三角形的周长为_____.33、指出下列方程中,分式方程有() ① 11 2 2x3x =5② 2 xx 232-5x=0④52=5③2xx 25x+3=0A .1个B .2个C .3个D .4个 34、若关于x 的方程m 1x x1x1=0有增根,则m 的值是。
初一上下册初中数学应用题100题练习与答案
列方程解应用题百题-学生练习一、多位数的表示1、有一个三位数,百位上的数字是1,若把1放在最后一位上,而另两个数字的顺序不变,则所得的新数比原数大234,求原三位数。
解:(多位数表示) 设后两位数(即十位与个数)为x ,100+x+234=10x+12、一个三位数,百位上的数字比十位上的数字大1,个位上的数字比十位上的数字的3倍少2.若将三个数字顺序倒过来,所得的三位数与原三位数的和是1171,求这个三位数。
解:(多位数表示)设十位数字为x,则百位数字为x+1,个位数字为3x-2100(x+1)+10x+3x-2+100(3x-2)+10(x+1)+x=11713、有大小两个两位数,在大数的右边写上一个0后写上小的数,得到一个五位数,又在小数的右边写上大数,然后再写上一个零,也得到一个五位数,第一个五位数除第二个五位数得到的商为2,余数为599,此外,大数的2倍与小数3倍的和为72,求这两个两位数。
解:(多位数表示)设大的两位数为x ,小的两位数为y大○小y x +⇒1000, 小大○x y 101000+⇒∴⎩⎨⎧=+++=+7232599)101000(21000y x x y y x 4、有一个三位数,各数位上的数字的和是15,个位数字与百位数字的差是5,如果颠倒各数位的数字顺序,则所用到的新数比原数的3倍少39,求这个三位数。
解:(多位数表示) 百 十 个X+5 10-2x x原数=100(x+5)+10(10-2x)+x , 新数=100x+10(10-2x)+x+5∴3[100(x+5)+10(10-2x)+x]-39=100x+10(10-2x)+x+55、两个三位数,它们的和加1得1000,如果把较大的数放在小数的左边,点一个小数点在两数之间所成的数,正好等于把小数放在大数的左边,中间点一个小数点所成的数的6倍,求两个三位数。
解:(多位数表示+已知和)设大三位数=x ,小三位数为999- x.9991000x x -•=+大小 999-1000x x •=+小大 9996(999)10001000x x x x -∴+=-+ 6、一个两位数,个位上的数字比十位上的数字大5,且个位上的数字与十位上的数字的和比这个两位数的大6,求这个两位数。
实用文档之初一数学绝对值计算题及答案过程-七年级下册数学去绝对值计算题
实用文档之"初一数学绝对值计算题及答案过程"例1求下列各数的绝对值:(1)-38; (2)0.15; (3)a(a<0); (4)3b(b >0);(5)a-2(a<2); (6)a-b.例2判断下列各式是否正确(正确入“T”,错误入“F”):(1)|-a|=|a|; ( )(2)-|a|=|-a|; ( )(4)若|a|=|b|,则a=b; ( )(5)若a=b,则|a|=|b|; ( )(6)若|a|>|b|,则a>b; ( )(7)若a>b,则|a|>|b|; ( )(8)若a>b,则|b-a|=a-b. ( )例3判断对错.(对的入“T”,错的入“F”)(1)如果一个数的相反数是它本身,那么这个数是0. ( )(2)如果一个数的倒数是它本身,那么这个数是1和0. ( )(3)如果一个数的绝对值是它本身,那么这个数是0或1. ( )(4)如果说“一个数的绝对值是负数”,那么这句话是错的. ( )(5)如果一个数的绝对值是它的相反数,那么这个数是负数. ( )例4 已知(a-1)2+|b+3|=0,求a、b.例5填空:(1)若|a|=6,则a=______; (2)若|-b|=0.87,则b=______;(4)若x+|x|=0,则x是______数.例6 判断对错:(对的入“T”,错的入“F”)(1)没有最大的自然数. ( )(2)有最小的偶数0. ( )(3)没有最小的正有理数. ( )(4)没有最小的正整数. ( )(5)有最大的负有理数. ( )(6)有最大的负整数-1. ( )(7)没有最小的有理数. ( )(8)有绝对值最小的有理数. ( )例7 比较下列每组数的大小,在横线上填上适当的关系符号 (“<”“=”“>”)(1)|-0.01|______-|100|; (2)-(-3)______-|-3|;(3)-[-(-90)]_______0; (4)当a<3时,a-3______0;|3-a|______a-3.例8在数轴上画出下列各题中x的范围: (1)|x|≥4;(2)|x|<3;(3)2<|x|≤5.例9 (1)求绝对值不大于2的整数;(2)已知x是整数,且2.5<|x|<7,求x.例10解方程:(1) 已知|14-x|=6,求x;*(2)已知|x+1|+4=2x,求x.*例11 化简|a+2|-|a-3|1,解:(1)|-38|=38;(2)|+0.15|=0.15; (3)∵a<0,∴|a|=-a; (4)∵b>0,∴3b>0,|3b|=3b; (5)∵a<2,∴a-2<0,|a-2|=-(a-2)=2-a;说明:分类讨论是数学中的重要思想方法之一,当绝对值符号内的数(用含字母的式子表示时)无法判断其正、负时,要化去绝对值符号,一般都要进行分类讨论.分析:判断上述各小题正确与否的依据是绝对值的定义,所以思维应集中到用绝对值的定义来判断每一个结论的正确性.判数(或证明)一个结论是错误的,只要能举出反例即可.如第(2)小题中取a=1,则-|a|=-|1|=-1,而|-a|=|-1|=1,所以-|a|≠|-a|.同理,在第(6)小题中取a=-1,b=0,在第(4)、(7)小题中取a=5,b =-5等,都可以充分说明结论是错误的.要证明一个结论正确,须写出证明过程.如第(3)小题是正确的.证明步骤如下:此题证明的依据是利用|a|的定义,化去绝对值符号即可.对于证明第(1)、(5)、(8)小题要注意字母取零的情况.2,解:其中第(2)、(4)、(6)、(7)小题不正确,(1)、(3)、(5)、(8)小题是正确的.说明:判断一个结论是正确的与证明它是正确的是相同的思维过程,只是在证明时需要写明道理和依据,步骤都要较为严格、规范.而判断一个结论是错误的,可依据概念、性质等知识,用推理的方法来否定这个结论,也可以用举反例的方法,后者有时更为简便.3,解:(1)T. (2)F.-1的倒数也是它本身,0没有倒数.(3)F.正数的绝对值都等于它本身,所以绝对值是它本身的数是正数和0. (4)T.任何一个数的绝对值都是正数或0,不可能是负数,所以这句话是错的. (5)F.0的绝对值是0,也可以认为是0的相反数,所以少了一个数0.说明:解判断题时应注意两点: (1)必须“紧扣”概念进行判断; (2)要注意检查特殊数,如0,1,-1等是否符合题意.分析:根据平方数与绝对值的性质,式中(a-1)2与|b+3|都是非负数.因为两个非负数的和为“0”,当且仅当每个非负数的值都等于0时才能成立,所以由已知条件必有a-1=0且b+3=0.a、b即可求出.4,解:∵(a-1)2≥0,|b+3|≥0,又(a-1)2+|b+3|=0 ∴a-1=0且b+3=0∴a=1,b=-3.说明:对于任意一个有理数x,x2≥0和|x|≥0这两条性质是十分重要的,在解题过程中经常用到.分析:已知一个数的绝对值求这个数,则这个数有两个,它们是互为相反数. 5,解:(1)∵|a|=6,∴a=±6; (2)∵|-b|=0.87,∴b =±0.87;(4)∵x+|x|=0,∴|x|=-x.∵|x|≥0,∴-x≥0∴x≤0,x 是非正数.说明:“绝对值”是代数中最重要的概念之一,应当从正、逆两个方面来理解这个概念.对绝对值的代数定义,至少要认识到以下四点:6,解:(1)T.(2)F.数的范围扩展后,偶数的范围也随之扩展.偶数包含正偶数,0,负偶数(-2,-4,…),所以0不是最小的偶数,偶数没有最小的. (3)T. (4)F.有最小的正整数1. (5)F.没有最大的负有理数. (6)T. (7)T. (8)T.绝对值最小的有理数是0.分析:比较两个有理数的大小,需先将各数化简,然后根据法则进行比较. 7,解:(1)|-0.01|>-|100|; (2)-(-3)>-|-3|; (3)-[-(-90)]<0; (4)当a<3时,a-3<0,|3-a|>a-3.说明:比较两个有理数大小的依据是:①在数轴上表示的两个数,右边的数总比左边的数大,正数大于0,大于一切负数,负数小于0,小于一切正数,两个负数,绝对值大的反而小.②两个正分数,若分子相同则分母越大分数值越小;若分母相同,则分子越大分数值越大;也可将分数化成小数来比较.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实用文档之"1、请用“<”、“>”或“=”填空:231,3251-⎪⎭⎫ ⎝⎛----"2、在实数9-,325,16,π,0.1010010001,3,0+1,7,0.303003……中,无理数有________个.3、12-的倒数为_______,绝对值为________,相反数为_______.4、如果()034432=+-+-+-c b a b a ;则()cab = 5、分解因式:①249ay ax -= ;②y xy y x 2882+- 。
6、9的平方根为_______ ,271-的立方根为_______. 7、当x 时,式子632--x x 有意义。
8、计算:()21211814.310--⎪⎭⎫ ⎝⎛-++--π9、已知121+=x 求11122-•⎪⎭⎫ ⎝⎛-a a a 的值10、若单项式2a m+2n b n-2m+2与43b a 是同类项,则n m 的值= .12.下列运算正确的是( )A .2x 5-3x 3=-x 2B .C .(-x )5·(-x 2)=-x 10 D.(3a 6x 3-9a x 5)÷(-3ax 3)=3x 2-a 514、计算:262393m m m m -÷+--的结果为 。
16、a .+2)=_________.1821)+.19、已知方程组2,4ax by ax by +=⎧⎨-=⎩的解为2,1.x y =⎧⎨=⎩,则2a-3b 的值= 。
20、已知x=1是一元二次方程x 2-2mx+1=0的一个解,则m 的值是 ,它的另一个解为25、如图,已知函数y=ax+b 和y=kx 的图象交于点P ,•则根据图像可得,关于,y ax b y kx =+⎧⎨=⎩的二元一次方程组的解是 。
26、下列方程中肯定是一元二次方程的是( ) A .-ax 2+bx+c=0 B .3x 2-2x+1=mx 2C .x+1x=1 D .(a 2+1)x 2-2x-3=0 27、两圆的半径分别是方程x 2-3x+2=0的两根.且圆心距d=1,则两圆的位置关系是( )A .外切B .内切C .外离D .相交28、方程(x-2)(x-3)=6的解为___ ___.29、分别用配方法和求根公式法解方程:3x 2+8x-3=030、(1)某印刷厂1•月份印刷了书籍60•万册,•第一季度共印刷了200万册,问2、3月份平均每月的增长率是多少?(2)市政府为了解决市民看病难的问题,决定下调药品的价格.•某种药品经过连续两次降价后,由每盒200元下调至128元,求这种药品平均每次降价的百分率是多少?31、•已知一元二次方程有一个根是2,•那么这个方程可以是_____ __(填上你认为正确的一个方程即可).32、若一个等腰三角形三边长均满足方程x 2-6x+8=0,则此三角形的周长为___ __.33、指出下列方程中,分式方程有( )①21123x x -=5 ②223x x -=5 ③2x 2-5x=0 ④22x -+3=0A.1个 B.2个 C.3个 D.4个34、若关于x的方程111 m xx x----=0有增根,则m的值是。
35、方程21111x x=--的解是。
36、若x+1x=2,则x2+21x=_____ __.37、请根据所给方程665x x++=1,联系生活实际,编写一道应用题(要求题目完整题意清楚,不要求解方程)x37、已知21,xx是方程0232=-+xx的两根,则=+2212xx ,(21xx-)2= .38、解不等式x>13x-2,并将其解集表示在数轴上.39、解不等式组,并在数轴上表示解集.338,213(1)8.xx x-⎧+≥⎪⎨⎪--<-⎩40、一堆玩具分给若干个小朋友,若每人分3件,则剩余3件;•若前面每人分5件,则最后一人得到的玩具不足3件.则小朋友的人数为_____ _人.41、关于x的不等式组153,2223xxxx a+⎧>-⎪⎪⎨+⎪<+⎪⎩只有4个整数解,则a的取值范围是。
42、下列四个命题中,正确的...有()①若a>b,则a+1>b+1;②若a>b,则a-1>b-1;③若a>b,则-2a<-2b;④若a>b,则2a<2b.A.1个 B.2个 C.3个 D.4个43、不等式组110210xx⎧+>⎪⎨⎪-≥⎩的整数解是____ ___.44、如右图,点A关于y轴的对称点的坐标是。
45、将点A (3,1)绕原点O 顺时针旋转90°到点B ,则点B•的坐标是__________.46、在平面直角坐标系中,点A 、B 、C 的坐标分别为A (-•2,1),B (-3,-1),C (1,-1).若四边形ABCD 为平行四边形,那么点D 的坐标是________.47、如图,在平面直角坐标系中,A 点坐标为(3,4),将OA 绕原点O 逆时针旋转90•°得到OA ′,则点A ′的坐标是 。
48、点A (m-4,1-2m )在第三象限,则m 的取值范围是 。
49、如图,在平面直角坐标系中,三角形②、•③是由三角形①依次旋转所得的图形.(1)在图中标出旋转中心P 的位置,并写出它的坐标;(2)在图上画出再次旋转后的三角形④.50、若一次函数y=2x 222m m --+m-2的图象经过第一、第二、三象限,则m 的值= .51、如图,直线y=kx+b 与x 轴交于点(-4,0),则y>0时,x 的取值范围是( )A .x>-4B .x>0C .x<-4D .x<052、函数y 1=x+1与y 2=ax+b 的图象如图所示,•这两个函数的交点在y 轴上,那么y 1、y 2的值都大于零的x 的取值范围是_______.53、经过点(2,0)且与坐标轴围成的三角形面积为2•的直线解析式是_________.54、若函数y=(m 2-1)x 235m m +-为反比例函数,则m=________.55、已知P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3)是反比例函数y=2x•的图象上的三点,且x 1<x 2<0<x 3,则y 1,y 2,y 3的大小关系是 。
56、已知矩形的面积为10,则它的长y 与宽x 之间的关系用图象大致可表示为( )57、函数y=k x(k ≠0)的图象如图所示,那么函数y=kx-k•的图象大致是( )58、如图,梯形AOBC 的顶点A 、C 在反比例函数图象上,OA ∥BC ,上底边OA 在直线y=x 上,下底边BC 交x 轴于E (2,0),则四边形AOEC 的面积为( )A .3B 33359、如图是一次函数y 1=kx+b 和反比例函数y 2=m x的图象,观察图象写出y 1>y 2时,x•的取值范围__________.60、已知点P 是反比例函数y=k x(k ≠0)的图像上任一点,过P•点分别作x 轴,轴的平行线,若两平行线与坐标轴围成矩形的面积为2,则k 的值为( )A .2B .-2C .±2D .461、在平面直角坐标系XOY 中,直线y=-x 绕点O 顺时针旋转90°得到直线L ,直线L 与反比例函数y=k x的图象的一个交点为A (a ,3),试确定反比例函数的解析式.62、二次函数y=ax 2+bx+c 的图像如图1,则点M (b ,c a)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限63、将抛物线y=x 2向左平移4个单位后,再向下平移2个单位,•则此时抛物线的解析式是________.64、二次函数y=-(x-1)2+3图像的顶点坐标是 ,对称轴是 。
65、将抛物线y=2x 2+4x+5向 平移 个单位,再向 平移 个单位的抛物线5422+-=x x y 。
66、已知抛物线y=12x 2+x-52. (1)用配方法求它的顶点坐标和对称轴.(2)若该抛物线与x 轴的两个交点为A 、B ,与y 的交点为C ,求△ABC 的面积.67、直线y=kx+b (k ≠0)的图象如图,则方程kx+b=0•的解为 x=_______,不等式kx+b<0的解集为x_______.68、已知二次函数y1=ax2+bx+c(a≠0)和直线y2=kx+b(k≠0)的图象如图,则当x=______时,y 1=0;当x___ ___时,y1<0;当x____ __时,y1>y2.69、若直线y=12x-2与直线y=-14x+a相交于x轴,则直线y=-14x+a不经过的象限是_____.70、如图,直线y1=k1x+b1与直线y2=k2x+b2交于点(-2,2),则当x____时,y1<y2.71、若方程2x2+bx+c=0有两个不相等的实数根,则抛物线y=2x2+bx+c与x轴有____个交点.72、如图,平面直角坐标系中画出了函数y=kx+b的图象.(1)根据图象,求k,b的值;(2)在图中画出函数y=-2x+2的图象;(3)求x的取值范围,使函数y=kx+b的函数值大于函数y=-2x+2的函数值.73、二次函数y=12x2+x-1,当x=______时,y有最_____值,这个值是________.74、在函数y=2x,y=x+5,y=x2的图象中是中心对称图形,且对称中心是原点的有()A.0个 B.1个 C.2个 D.3个75、下列四个函数中,y随x的增大而减少的是()A.y=2x B.y=-2x+5 C.y=-3xD.y=-x2-2x-176、如图是二次函数y1=ax2+bx+c和一次函数y2=mx+n的图象,观察图象写出y2≥y1时,x的取值范围__________.(第76题) (第77A B C DEF G 题)77、如图是一次函数y 1=kx+b 和反比例函数y 2=m x的图象,•观察图象写出y 1>y 2时,x 的取值范围是_________.78、有6个数,它们的平均数是12,再添加一个数5,则这7个数的平均数是 .79、某校要了解初三女生的体重,以掌握她们的身体发育情况,从初三的300名女生中抽出30名进行体重检测,就这个问题来说,下面说法正确的是( )A.300名女生是个体B.300名女生是总体C.300名女生是总体的一个样本D.30是样本容量80、已知频数是5,频率是0.10,则样本容量是_______。
81、已知一组数据x 1,x 2,…,x n 的平均数是x ,方差是a ,另一组数据3x 1-2,3x 2-2,…,3x n -2的平均数是______,方差是________。