大学化学第四章溶液化学
大学无机化学第四章 酸与碱
酸碱质子理论的优点
与电离理论相比,扩大了酸和碱的范围。如NH4Cl
与NaAc,在电离理论中认为是盐,而质子理论认 为NH4Cl中的NH4+是酸, NaAc中的Ac-是碱。
• 酸碱反应是质子传递过程,符合这种要求的反应都
可划归为酸碱反应,从而扩大了酸碱反应的范围。
• 建立了酸碱强度和质子传递反应的辨证关系,把酸
二、 酸-水、碱-水质子传递
弱酸
HA + H2O HA
Ka
H3O+ + A H+ + A
可简写为 平衡常数
H / c A / c
HA/ c
c 1mol L1
Ka,HA
K a 酸度常数,acidity constant
弱碱
B + H2O
BH+ + OH
实质: 两对共轭酸碱对之间的质子(H+)传递反应。
第一节 质子酸碱概念
(1) 电离作用:
H+ HCl + H2O ≒H3O+ + Cl-
酸1 碱2 酸2 碱1
H+ (2) 中和反应: H3O+ + OH- ≒ H2O + H2O 酸1 碱2 酸2 碱1
H+ (3) 水解反应: H2O + Ac- ≒ HAc + OH- 酸1 碱2 酸2 碱1
酸碱的分类
一元弱酸、弱碱 多元弱酸、弱碱 两性物质
第三节 酸碱平衡中的浓度计算
一、一元弱酸、弱碱
例:试计算浓度为c的弱酸HA水溶液的[H+]。 解: (1) 忽略水的质子自递平衡,则: HA ⇋ H+ + A– 起始浓度: c 0 0 电离浓度:[H+] [H+] [H+] 平衡浓度: c - [H+] [H+] [H+]
大学化学 电解质溶液和电离平衡(第4章)
非电解质(稀 溶液的通性 溶液的通性——稀溶液定律 非电解质 稀)溶液的通性 稀溶液定律 对于非电解质(稀 溶液来说 溶液来说, 对于非电解质 稀)溶液来说,一些物理化学性 质具有特殊性:性质的值仅与溶剂物质、 质具有特殊性:性质的值仅与溶剂物质、溶液浓 度有关,而与溶质物质是什么无关——稀溶液的 度有关,而与溶质物质是什么无关 稀溶液的 依数性。 依数性。 这些性质包括:蒸气压下降、沸点升高、凝固点 蒸气压下降、沸点升高、 蒸气压下降 下降及渗透压等。 下降及渗透压等。
外界压(KPa) 103.3 沸点(K) 373 202.6 393 405.2 416 810.4 443
3.凝固点:某物质液相蒸气压和固相蒸气压达到 3.凝固点 凝固点: 相等的温度. 相等的温度.
273 温度(K) 蒸汽压(Kpa)0.61 271 269 0.52 0.44 267 0.37 265 0.31
1、溶液的蒸气压下降 、 2、沸点上升及凝固点下降 、 3、渗透压与反渗透技术 、
一 溶液的蒸气压下降
(一)纯水的蒸气压 沸点和凝固点 纯水的蒸气压 什么叫蒸发?什么叫凝聚 什么叫凝聚? 什么叫蒸发 什么叫凝聚
蒸发
水(液态 液态) 液态
凝聚
水(气态 气态) 气态
1.水的饱和蒸气压:平衡时,水蒸气所具有的压力. 1.水的饱和蒸气压 平衡时,水蒸气所具有的压力. 水的饱和蒸气压: 水的蒸气压与温度有关
沸点上升及凝固点下降: 沸点上升及凝固点下降: p/kPa B 101.325 0.611 A
∆p
O O’ ∆Tfp Tfp 0
B’ 纯水 溶液 ∆Tbp 100 Tbp T/℃ ℃ 下降多少? 下降多少?
图3-1 冰、水及溶液的蒸气压曲线
大学化学 化学反应的基本原理
示。但是一种物质的绝对焓值 H 是无法测定的,
只能测定某物质从一种状态变化到另一种状态时
的焓变∆H。
在化学反应过程中,体系吸收或放出的热量, 称为化学反应的热效应或反应热,反应热也就
是反应的焓变∆H。
(3)焓和焓变
一个化学反应的焓变∆H与反应物采取什么样的
途径变成产物无关,只要这个化学反应过程的
始态和终态不变,焓变∆H就是一个固定的值,
1 H2 (g) + O2 (g) →H2O(l ) 2
∆rHm = 286 kJ· -1 mol
(4)热化学方程式
书写热化学方程式时要注意:
(1)注明反应的温度和压强条件,如果反应是在 298 K和100 kPa下进行的,习惯上不予注明。
(2)要注明反应物和生成物的聚集状态或晶形。 常用g 、l 、s分别表示气态、液态、固态。 (3)方程式中的配平系数只表示计量数,不表示 分子数,必要时可以写成分数。计量数不同时,同 一反应的反应热数值不同。 (4)正、逆反应的热效应数值相同而符号相反。
等压过程
p = 0
等容过程
V = 0
等温过程
T = 0
一、热力学中的一些常用术语
同 一 过 程 的 两 种 途 径
(Ⅰ) p1=100 kPa 加压 p2=200 kPa V2 =1 m3 终态 p =1000 kPa ( Ⅱ ) 加压 V = 0.2 m3 减压
V1 = 2 m3
始态
p= p2 - p1= 200-100 = 100 kPa, V= V2 -V1=1-2= -1m3
Ө Ө Ө rHm =∑f Hm(产物)-∑fHm(反应物)
(4-3)
要求会查表用标准生成热f Hm 数据
化学溶液的形成
化学溶液的形成
化学溶液是由溶剂和溶质组成的混合物。
溶剂是指能够溶解其他物质的物质,而溶质则是指被溶剂溶解的物质。
在形成化学溶液的过程中,溶剂和溶质之间发生着一系列的相互作用。
当溶质与溶剂接触时,它们之间会发生分子间的相互作用。
这些相互作用可以是静电力、范德华力、氢键等。
这些作用力使得溶质的分子与溶剂的分子之间产生相互吸引力,从而促使溶质分子离开固体表面并进入溶剂中。
随后,溶质分子与溶剂分子之间发生着溶解过程。
在这个过程中,溶质分子被溶剂分子包围,形成一个溶剂分子的“壳”。
这个过程被称为溶解。
溶解过程中,溶质分子与溶剂分子之间的相互作用力逐渐增强,直到达到一个平衡状态。
在这个平衡状态下,溶质分子的离解和溶剂分子的结合达到了一个动态的平衡。
这个过程可以用溶解度来描述,溶解度是指在一定的条件下,单位体积的溶剂中最多可以溶解的溶质的质量。
溶液的浓度是指单位体积溶液中溶质的质量,通常用质量浓度或摩尔浓度来表示。
质量浓度是指单位体积溶液中溶质的质量,摩尔浓度是指单位体积溶液中溶质的物质的摩尔数。
除了浓度,溶液还可以具有其他特性,比如酸碱性、电导率等。
这
些特性与溶质和溶剂的性质有关。
化学溶液的形成是一个复杂的过程,涉及到溶质和溶剂之间的相互作用和溶解过程。
通过合理调节溶剂和溶质的比例和条件,我们可以获得不同浓度和性质的溶液。
这些溶液在化学实验、医药、工业生产等领域起着重要的作用。
中国石油大学华东物理化学课件溶液4-5
二、理想液态混合物中各组分的化学势 设 (A+B) 理 想 液 态 混 合 物 , 一 定 温 度 、 压 力
下达到气液平衡时:
对A组分 A (l) A (g)
ΘA (T )
RT
ln
pA pΘ
ΘA (T )
RT
ln
pA* xA pΘ
ΘA (T )
RT
ln
pA* pΘ
RT
ln
xA
A* (l) RT ln xA
RT ln xA(2) 2RT ln xB(2) 2RT ln xA(1) 2RT ln xB(1)
8.314
298(ln
1 3
2 ln
2 3
2 ln
1 2
2 ln
1 2
)J
2139.4J
∴ WR G 2139.4J
例4 20℃下,将压力为pΘ的1mol气态NH3溶解到大
量的物质的量之比为 nNH3 : nH2O 1: 21 的溶液中。
例3 在298.15K时,要从下列混合物中分出1mol纯A,试计算 Gibbs自由能的变化值及最少必须做功的值。 (1)大量的A 和B的等物质的量的混合物; (2)含A和B的物质的量各为2mol的混合物。 (p267 7题参考)
解:(1)
大量A和B混合物 T, p一定,G大量A和B混合物
nA : nB 1:1
GΘ m
NH3
Θ NH3
RT ln
pNH3 pΘ
8.314
293
.15
ln
3.6 101 .325
J
8134
J
问 题
0.5mol萘溶于1升苯中形成的溶液,与
0.25mol萘溶于0.5升苯中形成的溶液,二溶液
大学化学第4章溶液与胶体
水的离子积
通常将此平衡常数( K )称为水的离
子积( KW ),即
KW
C
(H C
)
C
(OH C
)
平
1.01014
.
KW 不随组成而变,只是温度的函数。
t/℃
5 10 15 20 25 30 50 100
K
W
/10 14
0.186 0.293 0.452 0.681 1.008 1.471 5.476
如:SO3、CO2
3、路易斯(Lewis)酸碱电子理论
与布朗斯特质子酸碱同时,路易斯提出了电子酸 碱理论:
能接受电子对的物质为酸
如:AlCl3、ZnCl2、BF3等。
能给出电子对的物质为碱
如:NH3、 Br- 、S-等。
路易斯酸碱电子理论几乎适用于所有的无机 化合物,特别是配合物,故又称为广义酸碱理论。
蒸气压
把液体置于密闭容器中,在一定温度 下,当液体的蒸发速率与蒸气的凝结速 率相等时,气、液两相达到平衡,此时 蒸气的压力叫做饱和蒸气压,简称蒸气压。
蒸汽压示意图Biblioteka 在一定温度下,若溶质是非挥发性的,则 溶剂的蒸汽压与其占据液面的比例有关。
纯溶剂
溶液
理想溶液
若溶质分子为A,溶剂分子为B。
如果分子之间A与A、A与B、B与B的作用力都 相同,则该溶液为理想溶液。
凝固点
液体的蒸气压随着温度的降低而减小。当 其等于固态的蒸气压时,液体就凝固。
此时的温度叫做凝固点。用Tf表示。在凝 固点时,通常是气、液、固三相共存。
3、具有一定的渗透压
1) 渗透现象
2) 渗透压 3) 渗透现象及应用
1) 渗透现象
大学化学-第四章-化学平衡
( npYeq )Y
Q
p
K n B
(
np
eq A
) A
•
(
np
eq B
) B
p
p
第四章 化学平衡-化学平衡的移动
若∑ B> 0, Q>Kθ, 平衡逆向移动; 若∑ B< 0, Q<Kθ, 平衡正向移动; 若∑ B= 0, Q=Kθ, 平衡不移动。
结论
压强的变化只对反应前后气体分子数目有变化的反 应有影响。增大压强, 平衡向气体分子数减少的方向移动; 减小压强, 平衡向气体分子数增加的方向移动。
2.化学平衡的特征 (1) 前提: 恒温条件下,封闭体系中进行的可逆反应 (2) 条件: v+= v-≠0,动态平衡 (3) 平衡状态是可逆反应进行的最大限度, (4) 标志: 反应物和生成物的浓度不随时间而变化。 (5) 化学平衡是有条件的动态平衡
第四章 化学平衡-化学平衡常数
4-2 化学平衡常数
△fHmθ -505.8
-30.05 -393.509 KJ/mol
Smθ
167.4
121.3 213.74 J/mol·k
可求得: △rHmθ=82.24KJ/mol
△rSmθ=167.6J/mol·K
第四章 化学平衡-化学反应等温式
CO2的分压为: p=101.325×0.030%=30Pa
Ag2CO3固体在110℃的烘箱中烘干时热分解反应的摩 尔吉布斯函数变为:
3 0.0079 0.0192 0.0257 0.00205 0.0133 0.0375 51.3
4
0
0 0.0400 0.00435 0.00435 0.0313 51.8
第四章 化学平衡-化学平衡常数
中国石油大学物理化学模拟试题4
当 p* → 0, f * → p*,1 − β p* → 1 ∴ ln f = ln p p ,f = 1 − βp 1 − βp
3
PDF 文件使用 "pdfFactory Pro" 试用版本创建
物理化学习题解答
10. 在298.151K时,等物质的n量的A和B形成理想溶液,试求ΔminV, ΔminH,ΔminU,ΔminS 和ΔminG。 解:由纯组分液体形成理想溶液,混合前后体积、总焓、总内能都不改变,即 ∆ mixV = 0, ∆ mix H = 0 , ∆ mixU = 0 ∆ mix S = − R(nA ln x A + nB ln xB ) = 11.53nJ ⋅ K −1 ⋅ mol−1 ∆ mixG = ∆ mix H − T ⋅ ∆ mix S = −T ⋅ ∆ mix S = −298.15 × 5.76 × 2nJ = −3.436nkJ ⋅ mol −1 11. 对理想溶液,试证明: ∆ mixG ∂ ∂∆ mix G T = 0 = 0 , ∂T ∂p T p 证明: 理想溶液混合吉布斯函数变为 ∆ mixG = RT ∑ nB ln xB
同理
−4 −1 m′ N2 = 0.78mN 2 = 5.468 × 10 mol ⋅ kg −4 −1 m′ Ar = 0.0094 m Ar = 0.141 × 10 mol ⋅ kg
则
xO2 =
′2 mO = 0.342 ′ ′ m′ N 2 + mO2 + m Ar
xN 2 = 0.641 , x Ar = 0.017 8. 若气体的状态方程式为pV(1-βp)=RT,求其逸度的表示式。 ∂U 解:对纯物质, ∂p = Vm , dU = Vm dp T 纯气体, U = U ! + RT ln p ! 当 T 一定时, dU = RTd ln( f / p ! )
化学溶液的形成
化学溶液的形成
化学溶液是指由溶质和溶剂组成的混合物,其中溶质是被溶解的物质,而溶剂则是溶解溶质的物质。
当溶质与溶剂接触并混合在一起时,它们之间发生了相互作用,从而形成了溶液。
化学溶液的形成过程可以分为三个主要步骤:溶质的分散、溶质与溶剂之间的相互作用,以及溶质和溶剂的均匀混合。
溶质的分散是指将溶质的微小颗粒分散到溶剂中。
这一过程通常发生在溶质与溶剂之间的界面上。
在这个过程中,溶质的颗粒会逐渐与溶剂的分子发生相互作用,使溶质的颗粒逐渐分散到溶剂中。
接下来,溶质与溶剂之间的相互作用起着至关重要的作用。
这些相互作用可以是物理性质的,如静电相互作用、范德华力等,也可以是化学性质的,如氢键、离子键等。
这些相互作用使得溶质的分子或离子与溶剂的分子之间发生吸引或排斥,从而使溶质逐渐溶解在溶剂中。
溶质和溶剂的均匀混合是化学溶液形成的最后一步。
在这个过程中,溶质和溶剂的分子或离子会发生碰撞和混合,从而使溶质均匀分布在溶剂中。
通过不断的混合和扩散,溶质的分子或离子会逐渐与溶剂的分子或离子均匀混合在一起,形成一个均匀的溶液。
化学溶液的形成是一个复杂的过程,涉及到溶质的分散、溶质与溶
剂之间的相互作用,以及溶质和溶剂的均匀混合。
这个过程不仅涉及到物理性质的相互作用,也涉及到化学性质的相互作用。
通过这些相互作用,溶质逐渐溶解在溶剂中,形成了化学溶液。
通过深入理解化学溶液的形成过程,我们可以更好地理解溶液的性质和应用。
大学化学稀溶液的依数性
什么是稀溶液的依数性?
溶液的性质有别于溶质和溶剂,可分为 两类:一类是由溶质的本性决定的;另一类 性质则只与溶质、溶剂微粒(分子、离子) 数的比值有关,而与溶质的本性无关,这类 性质称为稀溶液的依数性。
溶液的性质
非依数性 依数性
颜色 酸碱性 导电性 粘度 相对密度
蒸气压下降 沸点升高 凝固点降低 渗透压
2.1 溶液的蒸气压下降(Vapor Pressure Lowering)
2.1.2 溶液的蒸气压下降
定义 纯溶剂在一定温度下,其蒸气压是一定值,当在 此溶剂中加入少量的难挥发的非电解质溶质时,此 溶液的蒸气压会小于纯溶剂的蒸气压,这种现象称 为溶液的蒸气压下降。
原因 溶液表面的某些部位被溶质分子所占据,而溶
一、溶液的沸点升高
溶液的沸点升高与溶质的质量摩尔浓度的关系 由于 ΔTb ∝ Δp,Δp ∝ bB 故 ΔTb ∝ bB 即 ΔTb = Tb - Tb0 = Kb bB 式中Kb为溶剂的质量摩尔沸点升高常数,它只与
溶剂的本性有关,单位为K·kg·mol-1
溶液的沸点升高是稀溶液的依数性 上式表明 ,难挥发性非电解质稀溶液的沸点升高
利用溶液的沸点升高和凝固点降低都可以测定溶质的相 对分子质量
医学和生物科学实验中凝固点降低法的应用更为广泛。 这是因为:
① 对同一溶剂来说,Kf总是大于Kb,所以凝固点降低法 测定时的灵敏度高;
② 用沸点升高法测定相对分子质量时,往往会因实验温 度较高引起溶剂挥发,使溶液变浓而引起误差;
0.150 (mol kg )
0.100
实验测得溶液中各种溶质的总质量摩尔浓度为
T f b总 K f
1.1 0.591(mol kg 1 ) 1.86
大学化学知识点归纳总结
大学化学知识点归纳总结化学是一门探索物质结构、性质以及它们之间变化的科学,是非常重要的自然科学学科。
在大学化学学习中,我们需要掌握一系列的基础知识和概念,下面将对大学化学的知识点进行归纳总结。
一、基础概念1. 原子结构:原子由质子、中子和电子组成,质子和中子位于原子核中,电子绕原子核运动。
2. 元素:由具有相同原子序数的原子组成,可根据化学性质分类为金属、非金属和类金属。
3. 化合物:由不同元素通过化学键结合而成。
4. 阴离子和阳离子:带负电荷的离子为阴离子,带正电荷的离子为阳离子。
5. 分子式和结构式:分子式表示化合物中原子的数量和种类,结构式表示化合物中原子间的连接方式。
6. 化学键:构成化合物的原子间的连接。
二、元素周期表1. 元素周期表的结构:包括周期数、组数、主族元素和过渡元素。
2. 元素周期表的排列规律:按照原子序数递增的顺序排列。
3. 元素周期表的主要分区:主族元素、过渡元素和稀有气体。
1. 化学反应类型:包括合成反应、分解反应、置换反应和燃烧反应等。
2. 化学方程式:用化学符号表示化学反应的反应物和生成物。
四、化学平衡1. 动态平衡:反应物和生成物浓度在一定范围内保持不变。
2. 平衡常数:表示反应物和生成物浓度之间的关系。
五、化学键和分子结构1. 共价键和离子键:共价键是通过电子对的共用形成的,离子键是通过离子的吸引力形成的。
2. 分子形状:根据电子对排列方式可分为线性、三角形、四面体和平面四方等。
3. 极性分子:具有正负电荷分布的分子。
4. 分子间力:包括范德华力、氢键和离子-离子力。
六、溶液化学1. 溶质和溶剂:溶质指溶解在溶剂中的物质。
2. 浓度计量单位:包括摩尔浓度、质量分数和体积分数等。
3. 溶解度:指单位温度下在给定溶剂中溶质的溶解程度。
1. 反应速率:某化学物质在单位时间内消耗或生成的量。
2. 反应速率影响因素:包括浓度、温度、压力和催化剂等。
3. 反应级数:根据反应物浓度对速率的影响,可分为一级反应、二级反应和零级反应。
大学化学课后习题答案第四章
第四章电化学与金属腐蚀1.是非题(对的在括号内填“+”,错的填“-”号)(1)取两根铜棒,将一根插入盛有0.1mol·dm-3CuSO4溶液的烧杯中,另一根插入盛有1mol·dm-3CuSO4溶液的烧杯中,并用盐桥将两只烧杯中的溶液连结起来,可以组成一个浓差原电池。
( )(2)金属铁可以置换Cu2+,因此三氯化铁不能与金属铜反应。
( )(3)电动势E(或电极电势φ)的数值与反应式(或半反应式)的写法无关,而标准平衡常数Kθ的数据,随反应式的写法(即化学计量数不同)而变。
( )(4)钢铁在大气的中性或弱酸性水膜中主要发生吸氧腐蚀,只有在酸性较强的水膜中才主要发生析氢腐蚀。
( )(5)有下列原电池(-)Cd|CdSO4(1.0mol·dm-3)||CuSO4(1.0mol·dm-3)|Cu(+) 若往CdSO4溶液中加入少量Na2S 溶液,或往CuSO4溶液中加入少量CuSO4·5H2O晶体,都会使原电池的电动势变小。
( )解:(1)+;(2)–;(3)+;(4)+;(5)–。
2.选择题(将所有正确答案的标号填入空格内)(1)在标准条件下,下列反应均向正方向进行:Cr2O72 - +6Fe2++14H+=2Cr3++6Fe3++7H2O2Fe3++Sn2+=2Fe2++Sn4+它们中间最强的氧化剂和最强的还原剂是______。
(a)Sn2+和Fe3+(b)Cr2O72 -和Sn2+(c)Cr3+和Sn4+(d)Cr2O72 -和Fe3+(2)有一个原电池由两个氢电极组成,其中有一个是标准氢电极,为了得到最大的电动势,另一个电极浸入的酸性溶液[设p(H2)=100kPa]应为(a)0.1mol·dm-3HCl (b)0.1mol·dm-3HAc+0.1mol·L-1NaAc(c)0.1mol·dm-3Hac (d)0.1mol·dm-3H3PO4(3)在下列电池反应中Ni(s)+Cu2+(aq)→Ni2+(1.0mol·dm-3)+Cu(s)当该原电池的电动势为零时,Cu2+浓度为(a)5.05×10-27mol·dm-3(b)5.71×10-21mol·dm-3(c)7.10×10-14mol·dm-3(d)7.56×10-11mol·dm-3(4)电镀工艺是将欲镀零件作为电解池的();阳极氧化是将需处理的部件作为电解池的()。
大学基础化学 第四章 沉淀-溶解平衡 PPT课件
§4-1 溶度积和溶度积规则
一、溶度积常数
1. 难溶强电解质
常温下溶解度小于0.01g/100gH2O的电解质叫做 难溶电解质(electrolyte of difficult dissolution)。
难溶强电解质的特点:溶解度很小,但溶解的
部分全部解离。
2. 难溶强电解质的沉淀溶解平衡
溶解
例如: BaSO4(s) 沉淀 Ba2+(aq) + SO42-(aq) 这种平衡是多相平衡,又称沉淀溶解平衡。
Ksp [Ag+ ]2[CrO42 ] (13.08105 )2 6.54 105
1.12 1012
因此对于A2B或AB2型的难溶强电解质有:Ksp=4S3
例 3 : Mg(OH)2 在 298.15K 时 的 Ksp 值 为 5.61×10-12 , 求该温度时Mg(OH)2的溶解度。
解:设Mg(OH)2的溶解度为S,根据其沉淀溶解 平衡可得:
前言
强电解质
电 易溶电解质
解
弱电解质
质
难溶电解质 沉淀溶解
单相离子平衡 多相离子平衡
25 º, 100克水中可溶解 (克)
ZnCl2 432 ; PbCl2 0.99;HgS 1.47x10-25
易溶物: > 1 克 微溶物: 0.01~1 克 难溶物: < 0.01 克
1、沉淀溶解平衡的建立:
例2 Ag2CrO4在298.15K时的溶解度为6. 54×10-5mol·L-1 计算其溶度积。
解: Ag2CrO4(s)
2Ag+(aq) + CrO42-(aq)
因此:[Ag+]=2 × 6.54 ×10-5=13.08 ×10-5 (mol·L-1) [CrO42-]= 6.54 ×10-5 (mol·L-1)
南京大学物理化学 第四章 多组分均相系统热力学及其在溶液中的应用
大能力(可逆时系统对外所做功最大) ② 当W’=0时,:反应永远向着化学势降低的方向进行,可用来判断
反应进行的情况(=0可逆,<0不可逆) 该判据也可推广到多组分多相系统:和 2. 判据的应用 (1) 相变
广义的相变是物质由一个相迁往另一个相的过程,是一个物质流动的 过程。
第15次课
3. 理想溶液的化学势
化学势是物质迁移的推动力,不论物质是否混合,只要气液两相平 衡,则气液两相的化学势相等。 混合前:纯组分 混合后:溶液组分
是纯液体A在温度为T、压力为溶液上方总压时的化学势。
4. 理想溶液的热力学性质 (1) 蒸气压与液相组成的关系
,故 (2) 蒸气压与气相组成的关系
等温等压条件下,非挥发性溶质形成的溶液中,溶剂的蒸气压等于 纯溶剂的蒸汽压乘以溶液中溶剂的摩尔分数(或:溶剂蒸气压的降低值 与纯溶剂的蒸气压之比等于溶质的摩尔分数) 说明:公式只适用于溶液中只有A、B两个组分的系统(),而则具有 普适性。
2. 亨利定律(Henry) 一定温度、压力下,稀溶液中某挥发性物质的平衡分压与该溶质的
① ∵∴压力p升高,化学势μB也随之增加 ② 若已知,则可求出 说明:实际上,在与吉布斯自由能有关的关系式中,如果把G换成μ, 并将公式中其它广度量换成相应的偏摩尔量,则公式仍然成立。 例:
第14次课
(四)化学势判据
1. 判据推导 组成可变的封闭系统,发生广义化学变化时(可逆取等号) 将上述四式与⑤-⑧式对比,得到
可称为定浓物理量
2 偏摩尔量的集合公式(加和定理) 等温等压条件下,
在任一系统中,将各组分的物质的量增加一倍,其各组分浓度仍不 变,广度量Z则相应增加一倍。 注:在所有偏摩尔量中,只有偏摩尔体积可测,可由求出溶液的总体 积。
大学化学-第3章-溶液
第 章 溶液
3
3.1 溶液的通性
(3) 稀溶液的沸点上升
p/kPa
p外,pA*
101.325 p 水
A
C 溶液 B
Tb
p溶
Tb*=100 Tb T/℃
水和溶液的蒸气压温度曲线
第 章 溶液
3
3.1 溶液的通性
(4) 稀溶液的凝固点下降
p/kPa
3
3.1 溶液的通性
如果在溶液一方所加的额外压力超过 溶液的渗透压,会有什么现象?
第 章 溶液
3
3.1 溶液的通性
反渗透(Reverse Osmosis )
在溶液浓度高的一侧所加额外压力超过 渗透压时,溶液中的溶剂分子反向渗透到浓 度低的一侧。
应用: 果汁浓缩 污水处理 海水淡化
第 章 溶液
3
3.1 溶液的通性
“渗透压”的作用
第 章 溶液
3
3.1 溶液的通性
3.1.3 溶液的渗透压
渗透定义:溶剂分子通过半透膜进入到溶液中 的扩散过程。 渗透原因:溶剂分子能通过半透膜,而溶质分 子不能。 产生条件:① 半透膜 ② 膜两侧相同体积的溶液浓度不等。 渗透方向:溶剂分子从纯溶剂→溶液,或是从 稀溶液→浓溶液。
第 章 溶液
凝固点下降和渗透压等性质,且浓度越大,影响越
大。
稀溶液定律所表达 的这些依数性与溶 原因:对浓溶液:溶液中溶质微粒较多,溶质微粒 液浓度的定量关系 不适用于浓溶液或 之间的相互影响以及溶质微粒与溶剂分子之间的相 电解质溶液。
互影响增强。对电解质溶液:电解质发生解离。
以上复杂因素使稀溶 液定律的定量关系产 生了偏差,所以无法 严格遵守。
大学无机化学第四版第四章课件
EMF
=
EMF
0.0592 V Z
lg
J
对于非标准态下的反应:
EMF > 0.2V EMF > 0 反应正向进行; EMF < - 0.2V EMF < 0 反应逆向进行。 0.2V < EMF < 0.2V 用 EMF 判断
例:判断在酸性溶液中H2O2与Fe2+混合 时,能否发生氧化还原反应?若能反应,写
3
4.1.2 氧化还原反应方程式的配平
配平原则:
① 电荷守恒:氧化剂得电子数等于 还原剂失电子数。
② 质量守恒:反应前后各元素原子 总数相等。
配平步骤:
①用离子式写出主要反应物和产物(气 体、纯液体、固体和弱电解质则写分子式)。
②分别写出氧化剂被还原和还原剂被氧 化的半反应。
③分别配平两个半反应方程式,等号两 边的各种元素的原子总数各自相等且电荷数 相等。
= E (Ag+ / Ag) + 0.0592V lg {c(Ag+ )} = E (Ag+ / Ag) + 0.0592V lg Ksp (AgCl) = 0.799V + 0.0592V lg1.8×1010 = 0.222V
AgCl(s)+ e Ag(s)+ Cl (aq) 当c(Cl ) = 1.0mol L1 时 , c(Ag+ ) = Ksp (AgCl)
①
MnO
4
+
SO
2 3
SO
2 4
+
Mn 2+
②
MnO
4
+ 8H +
+ 5e
=
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
溶液的性质,除了与溶质和溶剂的本性有关外, 还与溶质与溶剂的相对含量密切相关。
溶液浓度的表示方法
1 摩尔分数(x) 溶质物质的量占全部溶液物质的量的分数 组分A的摩尔分数: xA=nA/(nA+nB)=nA/n总
2 质量摩尔浓度(bB)
1kg溶剂中所含溶质的物质的量的分数
bB=nB/m
单位:mol/kg
:渗透压 n :溶质的摩尔数 C :溶液中溶质的物质的量浓度(mol·dm-3)
稀溶液的渗透压相当大
例 25℃时,0.1 mol/L 溶液的渗透压为
= CRT=(0.1×8.314×298) kPa=248kPa 相当于25m高水柱的压力
p65 例 计算物质的相对分子质量
反渗透技术: 在溶剂一侧施加一个大于渗透压
4.4 溶液的通性
溶液—按溶质类型不同分为电解质溶液与非电解
质溶液;按溶质相对含量不同分为 浓溶液 与稀溶液
非电解质稀溶液的通性
难挥发的非电解质稀溶液,具有一些共同性质,这些 性质仅与溶液中溶质的粒子数(量)成正比,而与溶 质的本性无关--稀溶液定律 溶液的蒸气压下降、沸点上升、凝固点下降和溶液的 渗透压--稀溶液的依数性
2 气体在液体中的溶解度随温度的升高而减小。 放热过程
固体和液体在液体中的溶解
1 固体在液体中的溶解度随温度的升高而增大。 吸热过程
2 温度对液体溶质的溶解度影响较小。压力对固体 和液体溶质的溶解度几乎没有影响。
相似相溶原理
溶质与溶剂在结构上相似,则两者彼此互溶。
例 ROH 醇 等 与水 O2, H2 与水
酸碱电子理论: 电子对
酸 共轭酸
HAc (aq)
质子 + 碱 质子 + 共轭碱
Ac-(aq) + H + (aq)
NH4+ (aq)
NH3 (aq) + H + (aq)
H2O (aq)
H + (aq) + OH- (aq)
H2O (aq) + H + (aq)
H3O + (aq)
2.弱电解质的解离平衡 平衡常数K叫做解离常数
3 物质的量浓度(c)
1L溶液中所含溶质物质的量的分数(与温度有关)
c=n/V
单位:mol/L
4.2 溶解度与相似相溶原理
溶解度
在一定温度下,100g溶剂所能溶解溶质的最大质量(g)。
气体在液体中的溶解
1 气体在液体中的溶解度随这种气体压力的增加而 增大。
亨利定理 :气体在液体中的溶解度与溶液上方气 相中该气体的分压呈正比。(发生化学反应除外)
结构相似的一类气体,沸点越高,分子间结合力 越大,其结构越接近液体。 结构相似的一类固体,熔点越低,分子间结合力越 小,其结构越接近液体。
4.3 分配定律与萃取分离
分配定律
在一定温度和压力下,某物质在互不相溶的两相(溶剂A
与溶剂B)中达到溶解平衡时,该物质在两相中的浓度的
比值是一个常数。
分配系数 K = cA /cB
量浓度 mol/L
4.3 分配定律与萃取分离
萃取分离 利用分配定律来实现分离及纯化操作
若体积为V的熔液A中含有m0的某溶质C,用一种与A 不相溶但能溶解C的B溶剂来萃取,每次用V‘体积的B 溶剂,n次萃取后,A溶剂中残留的C物资为mn(g) 一次萃取后 m1=m0·KV/(KV+V') n次萃取后 mn=m0·[KV/ (KV+V')]n 一次萃取与分次萃取的效果比较,p61例
第四章 溶液及溶液中的
离子平衡
本章简述稀溶液的通性及应用,进而 讨论可溶电解质在水溶液中的单相离子平 衡,再讨论可溶电解质的多相离子平衡。
4.1 溶液及其浓度表示方法
溶液概述
溶液与溶剂:溶剂是介质,在其中均匀地分布着溶质 的分子或离子。 物质的溶解过程:一种特殊的物理化学过程。 溶液的种类:气体溶液、固体溶液、液体溶液。
弱酸 Ka 弱碱 Kb
(1) 一元弱酸、弱碱的解离平衡
以HAc为例来说明。
HAc(aq)
H+ (aq) + Ac- (aq)
{ Ceq(H+) / C} . { Ceq(Ac- ) / C}
Ka =
Ceq( HAc ) / C
简化为:
Ka =
Ceq(H+) . Ceq(Ac- ) Ceq( HAc )
NH3 (aq) + H2O(l)
NH4+ (aq) + OH- (aq)
Kb
={
Ceq(NH4 +) / C Ceq(NH3) /
}.{ C
Ceq(OH-
)
/
C
}
Ka ,Kb 只是温度的函数; Ka ,Kb 与浓度无关; Ka ,Kb 反应弱电解质解离能力的大小。
解离度 (离解度,电离度): = C(H+) / C始(HAc)
Kb :溶剂的沸点上升常数 Kf :溶剂的凝固点下降常数
举例
3 溶液的渗透压
渗透现象—用一种仅让溶剂分子通过而不
让溶质分子通过的半透膜把一种溶液和它的 纯溶剂隔开时,纯溶剂将通过半透膜扩散到 溶液中而使其稀释。
半透膜
渗透压——维持被半透膜所隔开的溶液与纯 溶剂之间的渗透平衡所需要的额外压力。
渗透压定律(范特霍夫方程) = nRT/V = CRT
1 溶液的蒸气压下降
蒸发
(T一定)H2O(l) 凝聚 H2O(g)
υ蒸发 =υ凝聚
此时蒸气所具有的压 力叫饱和蒸气压
温度升高,平衡常数 增大,蒸气压增大。
在溶液中溶解任何一种难挥发的非电解质溶 质,溶液的蒸气压便下降。
拉乌尔定律: P = x(B) P(A)
P : 溶液的蒸气压下降
x(B) :溶质物质的量分数 P(A) :纯溶剂的蒸气压
的压力,使溶液中的溶剂向纯溶剂中 扩散。 技术关键:制造高强度的半透膜。
2.2 电解质溶液
2.2.1 弱电解质的解离平衡 2.2.2 缓冲溶液
2.2.1 弱电解质的解离平衡
2.2.1 弱电解质的解离平衡
1. 酸碱理论
酸碱电离理论: 解离时正离子全部是 H+ 酸 解离时负离子全部是OH- 碱
酸碱质子理论: 酸: 给出质子的物质(分子或离子) 碱: 接受质子的物质(分子或离子)
2 溶液的沸点上升和凝固点下降
沸 点 Tb 由于难挥发的非电解质溶质的加入,溶液的沸
质溶质的加入,溶液的
凝固点低于纯溶剂的沸点
难挥发的非电解质稀溶液的沸点上升和凝固点下降与
溶质的质量摩尔浓度b成正比,而与溶质的本性无关。
Tb = Kb b Tf = Kfb