初一数学整式的运算单元测试题及答案
整式的乘除 冀教版数学七年级下册单元测试(含答案)
七年级下册数学冀教版第八章整式的乘除时间:60分钟满分:100分一、选择题(本大题共12小题,每小题3分,共36分.每小题给出的四个选项中,只有一项是符合题目要求的)1.下列计算正确的是()A.a·a2=a2B.(x3)2=x5C.(2a)2=4a2D.(x+1)2=x2+12.如图是小明的测试卷,则他的成绩为()A.25分B.50分C.75分D.100分3.一个长方体的长、宽、高分别为3a-4,2a,a,它的体积等于()A.3a3-4a2B.a2C.6a3-8aD.6a3-8a24.式子(2a-b)(-b+2a)的运算结果正确的是()A.4a2-4ab+b2B.4a2+4ab+b2C.2a2-b2D.4a2-b25.若(x2-mx+1)(x-1)中x2项的系数为零,则常数m的值是()A.-2B.-1C.1D.26.若ab2=-6,则-ab(a2b5-ab3-b)的值为()A.216B.246C.-216D.1747.计算5(6+1)(62+1)(64+1)+1的结果为()A.616B.68C.68+1D.68-18.已知(x-1)|x|-1有意义且恒等于1,则x的值为()A.-1或2B.1C.±1D.09.从边长为a的正方形内剪掉一个边长为b的小正方形(如图1),然后将剩余部分剪拼成一个长方形(如图2),上述操作所能验证的等式是()A.(a-b)2=a2-2ab+b2B.a2-b2=(a+b)(a-b)C.(a+b)2=a2+2ab+b2D.a2+ab=a(a+b)10.已知a m=7,b n=17,则(-a3m b n)2(a m b2n)3的值为()A.1B.-1C.7D.1711.若(m+n)2=11,(m-n)2=3,则(mn)-2=()A.-14B.14C.-114D.1812.设x,y为任意数,定义运算:x*y=(x+1)(y+1)-1.给出下列五个结论:①x*y=y*x;②x*(y+2)=x*y+x*2;③(x+1)*(x-1)=x*x-1;④x*0=0;⑤(x+1)*(x+1)=x*x+2*x+1.其中正确结论的序号是() A.①③ B.③⑤ C.①②④ D.②⑤二、填空题(本大题共4小题,每小题3分,共12分)13.计算:2 0190+(13)-1=.14.若27x=9x+2,则x=.15.已知(x-1)(x+2)=ax2+bx+c,则代数式4a-2b+c的值为.16.设a1,a2,a3,…是一列正整数,其中a1表示第一个数,a2表示第二个数……a n表示第n个数(n是正整数).已知a1=1,4a n=(a n+1-1)2-(a n-1)2,则a2 018=.三、解答题(本大题共6小题,共52分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分8分)计算:(1)5·(-5)2m+(-5)2m+1; (2)99.82;(3)3(2x-1)(x+6)-5(x-3)(x+6)+(2x-1)2; (4)-82 019×(-0.125)2 018+(-0.25)3×26.18.(本小题满分6分)化简并求值:(1)(3x+1)(2x-3)-(6x-5)(x-4),其中x=-2;(2)(2a+1)(2a-1)+(a-2)2-4(a+1)(a-2),其中a=-2.若(x m÷x2n)3÷x m-n与4x2为同类项,且m+5n=7,求m2-25n2的值.20.(本小题满分8分)“囧”是一个网络流行词.如图,将一张长为x+y,宽为3x的长方形的纸片,剪去两个一样的小直角三角形和一个小长方形得到一个“囧”字图案(阴影部分).(1)用含有x,y的式子表示图中“囧”字图案的面积;(2)当x=2,y=6时,求“囧”字图案的面积.21.(本小题满分10分)规定三角“”表示abc,方框“”表示x m+y n.例如:=1×19×3÷(24+31)=3.请根据这个规定解答下列问题.(1)计算:=.(2)解方程:=6x2+7.研究下列算式:0×1×2-13=-1,1×2×3-23=-2,2×3×4-33=-3,3×4×5-43=-4,…(1)你发现了什么规律?请将你发现的规律用公式表示出来,并用你学过的知识推导出这个公式.(2)用得到的公式计算:999×1 000×1 001.第八章综合能力检测卷答案题号1 2 3 4 5 6 7 8 9 10 11 12答案C B D A B B B A B C B A13.414.415.016.40351.C【解析】a·a2=a3,故A选项错误;(x3)2=x6,故B选项错误;(2a)2=4a2,故C选项正确;(x+1)2=x2+2x+1,故D选项错误.故选C.2.B【解析】由a2·a3=a5,(a3)2=a6,(ab)3=a3b3,a5÷a5=1.可知小明的成绩为25×2=50(分).3.D【解析】由题意知,V长方体=(3a-4)·2a·a=6a3-8a2.故选D.4.A【解析】(2a-b)(-b+2a)=(2a-b)2=4a2-4ab+b2.故选A.5.B【解析】∵(x2-mx+1)(x-1)=x3-x2-mx2+mx+x-1=x3-(1+m)x2+(1+m)x-1,且(x2-mx+1)(x-1)中x2项的系数为零,∴1+m=0,解得m=-1.故选B.6.B【解析】-ab(a2b5-ab3-b)=-a3b6+a2b4+ab2=-(ab2)3+(ab2)2+ab2,∵ab2=-6,∴原式=-(-6)3+(-6)2-6=216+36-6=246,故选B.7.B【解析】5(6+1)(62+1)(64+1)+1=(6-1)(6+1)(62+1)(64+1)+1=(62-1)(62+1)(64+1)+1=(64-1)(64+1)+1=68-1+1= 68.故选B.8.A【解析】根据题意,得x-1≠0,|x|-1=0或x=2.由|x|-1=0,得x=±1,由x-1≠0,得x≠1.综上可知,x 的值是-1或2.故选A.9.B【解析】从边长为a的正方形内剪掉一个边长为b的小正方形,剩余部分的面积是a2-b2,剩余部分剪拼成的长方形的面积是(a+b)(a-b),根据剩余部分的面积相等,得a2-b2=(a+b)(a-b).故选B.10.C【解析】(-a3m b n)2(a m b2n)3=(a m)6(b n)2(a m)3(b n)6=(a m)9(b n)8=79×(17)8=78×(17)8×7=(7×17)8×7=7.故选C.11.B【解析】∵(m+n)2=11,(m-n)2=3,∴m2+2mn+n2=11,m2-2mn+n2=3.两式相减,可得4mn=8,∴mn=2,∴(mn)-2=2-2=14.故选B.12.A【解析】x*y=y*x=xy+x+y,所以①正确;x*(y+2)=(x+1)(y+3)-1=xy+3x+y+2,x*y+x*2=(x+1)(y+1)-1+(x+1)(2+1)-1=xy+x+y+3x+3-1=xy +4x+y+2,所以②错误;(x+1)*(x-1)=(x+2)x-1=x2+2x-1,x*x-1=(x+1)(x+1)-1-1=x2+2x-1,所以③正确;x*0=x,所以④错误;(x+1)*(x+1)=(x+2)(x+2)-1=x2+4x+3,x*x+2*x+1=(x+1)(x+1)-1+3(x+1)-1+1=x2+5x+3,所以⑤错误.故选A.13.4【解析】 2 0190+(13)-1=1+3=4.14.4【解析】∵27x=9x+2,∴(33)x=(32)x+2,33x=32x+4,∴3x=2x+4,x=4.15.0【解析】(x-1)(x+2)=x2-x+2x-2=x2+x-2=ax2+bx+c,则a=1,b=1,c=-2.故4a-2b+c=4-2-2=0.16.4 035【解析】∵4a n=(a n+1-1)2-(a n-1)2,∴(a n+1-1)2=(a n-1)2+4a n=(a n+1)2.又∵a1,a2,a3,…是一列正整数,∴a n+1-1=a n+1,∴a n+1=a n+2,∵a1=1,∴a2=3,a3=5,a4=7,a5=9,…,∴a n=2n-1,∴a2 018=4 035.17.【解析】(1)5·(-5)2m+(-5)2m+1=-(-5)·(-5)2m+(-5)2m+1=-(-5)2m+1+(-5)2m+1=0.(2)99.82=(100-0.2)2=10 000-40+0.04=9 960.04.(3)3(2x-1)(x+6)-5(x-3)(x+6)+(2x-1)2=3(2x2+12x-x-6)-5(x2+6x-3x-18)+4x2-4x+1=6x2+36x-3x-18-5x2-30x+15x+90+4x2-4x+1=5x2+14x+73.(4)-82 019×(-0.125)2 018+(-0.25)3×26=-8×82 018×0.1252 018+(-0.25)3×43=-8×(8×0.125)2 018+(-0.25×4)3=-8×12 018+(-1)3=-8-1=-9.18.【解析】(1)(3x+1)(2x-3)-(6x-5)(x-4)=6x2-9x+2x-3-6x2+24x+5x-20=22x-23,当x=-2时,原式=22×(-2)-23=-67.(2)(2a+1)(2a-1)+(a-2)2-4(a+1)(a-2)=4a2-1+a2-4a+4-4a2+4a+8=a2+11,当a=-2时,原式=15.19.【解析】(x m÷x2n)3÷x m-n=(x m-2n)3÷x m-n=x3m-6n÷x m-n= x2m-5n,因为(x m÷x2n)3÷x m-n与4x2为同类项,所以2m-5n=2.又因为m+5n=7,所以m=3,n=45,所以m2-25n2=9-16=-7.20.【解析】(1)“囧”字图案的面积S=3x(x+y)-12·x+y2·x·2-x+y2·x=2x2+2xy.(2)当x=2,y=6时,“囧”字图案的面积S=8+2×2×6=32.21.【解析】(1)-32.=[2×(-3)×1]÷[(-1)4+31]=-6÷4=-32(2)∵=6x2+7, ∴(3x-2)(3x+2)-[(x+2)(3x-2)+32]=6x2+7,∴9x2-4-(3x2+4x-4+9)=6x2+7,∴9x2-4-3x2-4x-5=6x2+7,解得x=-4.22.【解析】(1)公式:(n-1)n(n+1)-n3=-n(n为正整数).推导:(n-1)n(n+1)-n3=n(n2-1)-n3=n3-n-n3=-n(n为正整数).(2)由(1)知,999×1 000×1 001-1 0003=-1 000,所以999×1 000×1 001=-1 000+1 0003=999 999 000.。
初一整式测试题及答案
初一整式测试题及答案一、选择题(每题3分,共30分)1. 以下哪个选项是单项式?A. 3x^2yB. 2x + 3yC. 4x^2 - 5xD. 7答案:A2. 合并同类项 2x^2 + 3x^2 的结果是:A. 5x^2B. 5x^4C. 2x^4D. 3x^2答案:A3. 多项式 3x^2 - 2x + 1 的次数是:A. 1B. 2C. 3D. 4答案:B4. 以下哪个表达式是多项式?A. 2x^2 + 3xB. 2x^2 + 3x + 1/xC. 2x^2 + 3x - 5D. 2x^2 + 3x - 5/x答案:C5. 单项式 -5x^3y^2 的系数是:A. -5C. 3D. 2答案:A6. 以下哪个表达式不是同类项?A. 3x^2 和 5x^2B. 4xy 和 6xyC. 2x 和 3yD. 7 和 9答案:C7. 多项式 4x^3 - 2x^2 + 3x - 5 的常数项是:A. -2B. 3C. -5答案:C8. 合并同类项 7x^2 - 3x^2 + 5 的结果是:A. 4x^2 + 5B. 4x^2 - 5C. 9x^2D. 10x^2答案:A9. 单项式 2xy^2 的次数是:A. 1B. 2C. 3D. 4答案:C10. 以下哪个表达式是单项式?A. 2x^2 - 3x + 1B. 4x^3y^2C. 5x^2 + 3xD. 6x^2 - 7答案:B二、填空题(每题3分,共30分)11. 单项式 7a^3b^2 的系数是 _______。
答案:712. 合并同类项 4x^2y + 6x^2y 的结果是 _______。
答案:10x^2y13. 多项式 5x^3 - 3x^2 + 2x - 7 的最高次项是 _______。
答案:5x^314. 单项式 -3a^2b 的次数是 _______。
答案:315. 合并同类项 8x - 5x + 3 的结果是 _______。
答案:3x + 316. 多项式 2x^2 + 4x - 6 的常数项是 _______。
七年级上册数学整式的加减单元测试卷(含答案)
七年级上册数学整式的加减单元测试卷(含答案)整式的加减试卷满分:100分,考试时间:90分钟第Ⅰ卷一、选择题(本小题共10个小题,每小题3分,共30分)1.下列说法正确的是()。
A。
xyz与xy是同类项;B。
99x2与23是同类项;C。
0.5xy与xy是同类项;D。
5mn与2是同类项。
2.去括号是我们要掌握的最基础的运算法则,下列去括号计算正确的是()。
A。
x(3y2)x3y2;B。
m(n a b)m n a b;C。
(4x6y3)4x6y3;D。
(a b)(c2)a b c 2.3.下列计算正确的是()。
A。
4x7x6x3x;B。
2a22(a1);C。
x5x3x3(x21);D。
4.目前我校正在开展篮球运动会,已知买一块毛巾需要x 元,买2个篮球需要y元,七年级3班购买了4块毛巾,6个篮球,需要的费用是()。
A。
4x6y;B。
4x3y;C。
3x4y;D。
6x4y。
5.两个4次多项式的和的次数是()。
A。
八次;B。
四次;C。
不低于四次;D。
不高于四次。
6.计算:6a25a3与5a22a1的差,结果正确的是()。
A。
a23a4;B。
a23a2;C。
a27a2;D。
a27a 4.7.在一次数学考试中,不听劝告的___同学使用了钢笔作答,这不!他不小心将一滴墨水滴在了试卷上面:(x23xy0.5y2)(0.5x24xy y2)0.5x2xy y2.那么被墨水遮住的部分应该是()。
A。
xy;B。
xy;C。
7xy;D。
7xy。
8.x2+ax-2y+7-(bx2-2x+9y-1)的值与x的取值无关,则a+b的值为()。
A。
-1;B。
1;C。
-2;D。
2.9.如果m-n=5,那么-3m+3n-7的值是()。
A。
22;B。
-8;C。
8;D。
-22.10.下列图形都是由同样大小的五角星按一定的规律组成,其中第1个图形一共有2个五角星,第2个图形一共有8个五角星,第3个图形一共有18个五角星,第4个图形中有32个五角星,…,则第12个图形中五角星的个数为()。
人教版七年级上册数学第二章整式的加减单元测试题附答案
人教版七年级上册数学第二章整式的加减单元测试题附答案精品数学单元测试人教版数学七年级上学期第二章整式的加减达标测试卷一、选择题(共10小题,每小题3分,共30分)1.式子 $3x^2+2xy-5y^2$ 中整式有()A。
3个 B。
4个 C。
5个 D。
6个2.已知 $a=2$,$b=-3$,当 $x=1$ 时,$3a+2b$ 的结果为()A。
8 B。
-8 C。
-6 D。
64.下列运算正确的是()A。
$4m-m=3$ B。
$2a^2-3a^2=-a^2$ C。
$a^2b-ab^2=0$ D。
$x-(y-x)=-y$5.单项式的系数和次数依次是()A。
$-2,2$ B。
$-3,4$ C。
$-1,2$ D。
$-5,5$6.下列说法正确的是()A。
整式一定是单项式 B。
多项式一定是整式C。
多项式一定是单项式 D。
单项式一定是多项式7.若 $2x^2+3x+1$ 和 $3x^2+2x+1$ 是同类项,则$2x^2+3x+1$ 的系数是 $x^2$ 的系数与 $x$ 的系数之和。
其值为()A。
5 B。
6 C。
7 D。
88.下列说法中错误的是()A。
单项式的系数是一个数 B。
单项式与单项式的次数相加得到多项式的次数C。
与单项式的次数为0的单项式是常数项 D。
二次三项式不是一个术语9.下列单项式中,与 $-5xy$ 是同类项的是()A。
$-5xy$ B。
$3x^2y$ C。
$-5xy^2$ D。
$-5$10.将多项式按降幂排列,正确的是()A。
$x^3-2x+2x^2+5$ B。
$5-2x+2x^2-x^3$ C。
$-x^3+2x^2+2x+5$ D。
$-x^3+2x^2-2x+5$二、填空题(共10小题,每小题3分,共30分)11.计算:$(2a^2-3ab+4b^2)-(a^2+2ab-3b^2)$答案:$a^2-5ab+7b^2$12.已知 $x=2$,$y=-3$,计算 $2x^2-xy+3y^2$ 的值答案:$29$13.矩形的周长为 $18$,其中一边长为 $3$,求另一边长答案:$4.5$14.已知 $a+b=3$,$a-b=1$,求 $a$ 和 $b$ 的值答案:$a=2$,$b=1$15.若 $2x^2-xy+3y^2$ 与 $-4x^2+xy$ 是同类项,则 $x$ 的值为 $-2$,一边长为 $5$,则矩形的另一边长为 $6$。
七年级数学上册整式的加减单元测试卷
七年级数学上册整式的加减单元测试卷(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.“m 与n 差的3倍”用代数式可以表示成( )A .3m n -B .3m n -C .()3n m -D .()3m n -2.在棋盘上的米粒故事中,皇帝往棋盘的第1格中放1粒米,第2格中放2粒米,在第3格中加倍至4粒米……,以此类推,每一格均是前一格的双倍,那么他在 第12格中所放的米粒数是( )A .22B .24C .211D .2123.若2335a x y --与425b xy +相加后,结果仍是个单项式,则相加后的结果为( ) A .24x y B .315x y C .315y x D .315xy - 4.若2360x y -+=,则213922x y -+-的值为( ) A .0 B .6 C .﹣6 D .15.按如图所示的运算程序,能使输出y 值为1的是( )A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==,6.小李今年a 岁,小王今年(a -15)岁,过n +1年后,他们相差( )岁A .15B .n +1C .n +16D .16 7.整式532x y -,0,12x + ,2312ab a b -,-46中是单项式的个数有( ) A .2个 B .3个 C .4个 D .58.下列变形正确的是( )A .452x x -=+与425x x -=-+B .215332x x -=+得4533x x -=+C .4(1)2(3)x x -=+得4126x x -=+D .32x =得23x = 9.下列说法中,错误的是( )A .单项式2a bc -的系数是1-,次数是4B .整式可分为单独一个数字、单独一个字母、单项式、多项式C .多项式243a b -是二次二项式D .()243x -与()223x --可以看作是同类项 10.《九章算术》中记载一问题:今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱.问人数、物价各多少?设有x 人,则表示物价的代数式可以是( )A .83-xB .83x +C .74x -D .()74x +二、填空题11.请你写出一个系数为3,次数为4,只含字母a 、b 的单项式:________.12.如图,在△ABC 中,点D 在BC 的延长线上,△A =m °,△ABC 和△ACD 的平分线交于点A 1,得△A 1;△A 1BC 和△A 1CD 的平分线交于点A 2,得△A 2;…;△A 2019BC 和△A 2019CD 的平分线交于点A 2020,则△A 2020=________°.13.若|a |=2,|b |=5,且a <b ,则a ﹣b 的值为______.14.单项式2335a bc 的系数是m ,次数是n ,则m n +=____. 15._____________________,叫做合并同类项.16.如图,在这个数据运算程序中,如果开始输入的x 的值为10,那么第1次输出的结果是5,返回进行第二次运算,那么第2次输出的结果是16,……以此类推,第204次输出的结果是_____.17.已知:2321A B a a -=--,223B C a -=-,则C A -的值是__________三、解答题18.已知:23231A x xy y =++-,2B x xy =-.(1)计算:A -3B ;(2)若()2120x y ++-=,求A -3B 的值;(3)若A -3B 的值与y 的取值无关,求x 的值.19.如图,将长和宽分别是a 、b 的矩形纸片折成一个无盖的长方体纸盒,方案是在矩形纸片的四个角都剪去一个边长为x 的正方形.(1)用含a 、b 、x 的代数式表示纸片剩余部分的面积;(2)当10,8a b ==,且剪去部分的正方形的边长为最小的正整数时,求无盖长方体纸盒的底面积;(3)当10,8a b ==,若x 取整数,以x 作为高,将纸片剩余部分折成无盖长方体,求长方体的体积最大值. 20.将边长相等的黑、白两色小正方形按如图所示的方式拼接起来,第1个图由5个白色小小正方形和1个黑色小正方形拼接起来,第2个图由8个白色小正方形和2个黑色小正方形拼接起来,第3个图由11个白色小正方形和3个黑色小正方形拼接起来,依此规律拼接.(1)第4个图白色小正方形的个数为__;(2)第10个图白色小正方形的个数为___;(3)第n 个图白色小正方形的个数为(用含n 的代数式表示,结果应化简);(4)是否存在某个图形,其白色小正方形的个数为2021个,若存在,求出是第几个图形;若不存在,请说明理由.21.在整式的加减练习课中,已知2232A a b ab =-,嘉淇错将“A B -”看成“A B +”,所算的错误..结果是2243a b ab -.请你解决下列问题.(1)求出整式B ;(2)若1a =-,2b =.求B 的值;(3)求该题的正确计算结果.22.有理数a ,b 在数轴上的位置如图所示.(1)在数轴上表示出-a ,-b ,122-;(2)把a ,b ,-a ,-b ,122-,用“<”连接起来.23.如图,在数轴上,点A 所表示的数为a ,点B 所表示的数为b ,满足211(4)08a b ++-=,点D 从点A 出发以2个单位长度/秒的速度沿数轴向右运动,点E 从点B 出发以1个单位长度/秒的速度沿数轴向左运动,当D 、E 两点相遇时停止运动.(1)点A 表示的数为 ,点B 表示的数为 ;(2)点P 为线段DE 的中点,D 、E 两点同时开始运动,设运动时间为t 秒,试用含t 的代数式表示BP 的长度.(3)在(2)的条件下,探索3BP -DP 的值是否与t 有关,请说明理由.参考答案:1.D【分析】先求x 与y 的差,最后写出它们的3倍来求解.【详解】解:m 与n 差的即m n -,m 与n 差的3倍为()3m n -.故选:D .【点睛】本题考查了列代数式的知识,解答本题的关键是熟练读题,找出题目所给的等量关系. 2.C【分析】根据题意找出规律:每一格均是前一格的双倍,所以a n =2n -1.【详解】解:设第n 格中放的米粒数是a n ,则a 1=1,a 2=a 1×2,a 3=a 2×2=a 1×22,…a n =a 1×2n -1,△a 12=a 1×211=211.故选:C .【点睛】本题考查探索与表达规律,解答本题的关键是从题意中找出规律:每一格均是前一格的双倍,即a n =2n -1.3.D 【分析】根据单项相加后,结果仍是个单项式可知,2335a x y --与425b xy +为同类项 【详解】△2335a x y --与425b xy +相加后,结果仍是个单项式, △2335a x y --与425b xy +是同类项, △2143a b -=⎧⎨+=⎩,解得31a b =⎧⎨=-⎩△2335a x y --+425b xy +=335xy -+325xy =315xy -, 故选D.【点睛】本题考查了利用同类项的定义求字母的值以及合并同类项,熟练掌握同类项的定义是解答本题的关键,所含字母相同,并且相同字母的指数也相同的项,叫做同类项,根据相同字母的指数相同列方程求解即可.4.C 【分析】先将213922x y -+-化为21(3)92x y ---,然后整体代入即可得出答案. 【详解】213922x y -+-=21(3)92x y ---,236x y -=-, ∴21319(6)96222x y -+-=-⨯--=-. 故选:C .【点睛】本题考查代数式求值,解题的关键是熟练掌握整体代入法在代数式求值中的应用.5.D【分析】逐项代入,寻找正确答案即可.【详解】解:A 选项满足m≤n ,则y=2m+1=3;B 选项不满足m≤n ,则y=2n -1=-1;C 选项满足m≤n ,则y=2m+1=3;D 选项不满足m≤n ,则y=2n -1=1;故答案为D ;【点睛】本题考查了根据条件代数式求值问题,解答的关键在于根据条件正确地代入代数式及代入的值. 6.A【分析】用大李今年的年龄减去小王今年的年龄,即可求出两人的年龄差,再根据年龄差不会随着时间的变化而改变,由此即可确定再过n +1年后,大李和小王的年龄差仍然不变.【详解】解:a ﹣(a ﹣15)=15(岁)答:他们相差15岁.故选:A .【点睛】此题考查了列代数式及年龄问题,要注意:两个人的年龄差是一个永远也不变的数值. 7.B【分析】根据单项式的定义判断即可.【详解】解:整式532x y -,0,12x +,2312ab a b -,-46中, 是单项式的为:-2x 5y 3,0,-46,共有3个;故选:B .【点睛】本题考查了单项式,熟练掌握单项式的定义是解题的关键.8.D【分析】根据等式基本性质和去括号法则进行判断即可.【详解】解:A 、452x x -=+变形为425x x -=+,故A 错误,不符合题意;B 、215332x x -=+变形得:430318x x -=+,故B 错误,不符合题意; C 、4(1)2(3)x x -=+得:4426x x -=+,故C 错误,不符合题意;D 、32x =得23x =,故D 正确,符合题意. 故选:D .【点睛】本题主要考查了等式的基本性质和去括号法则,熟练掌握等式的基本性质和去括号法则,是解题的关键.9.B【分析】根据单项式的系数和次数,整式的定义,多项式的次数和项数以及同类项的概念进行判断即可.【详解】解:A .单项式2a bc -的系数是1-,次数是4,不符合题意;B .整式分为单项式和多项式,符合题意;C .多项式243a b -是二次二项式,不符合题意;D .()243x -与()223x --是同类项,不符合题意; 故选:B .【点睛】本题考查了单项式的系数和次数,整式的定义,多项式的次数和项数以及同类项的概念,熟练地掌握以上知识是解决问题的关键.10.A【分析】根据题意可直接进行求解.【详解】设有x 人,由题意可表示物价的代数式是83-x 或74x +,故选A .【点睛】本题主要考查代数式的实际意义,熟练掌握代数式的书写是解题的关键.11.3a 2b 2(答案不唯一)【分析】根据单项式的系数和次数的意义判断即可.【详解】解:一个系数为3,次数为4,只含字母a 、b 的单项式:3a 2b 2,故答案为:3a 2b 2(答案不唯一).【点睛】本题考查了单项式,熟练掌握单项式的次数的意义,所有字母的指数和是解题的关键.12.20202m【分析】根据角平分线的性质可得△A 1CD =12△ACD ,△A 1BD =12△ABC ,再根据外角的性质可得△A 1=12△A ,找出规律即可求出△A 2020.【详解】解:△BA 1平分△ABC ,A 1C 平分△ACD ,△△A 1CD =12△ACD ,△A 1BD =12△ABC ,△△A 1=△A 1CD -△A 1BD =12△ACD △-12△ABC =12△A ,同理可得△A 2=12△A 1=(12)2△A ,△△A 2020=(12)2020△A ,△△A =m °,△△A 2020=2020°2m , 故答案为:2020°2m . 【点睛】本题考查了角平分线的性质与图形规律的综合,涉及三角形外角性质,找出△A 1和△A 之间的规律是解题的关键.13.3-或7-【分析】根据绝对值的定义求出a ,b 的值,再根据a <b ,分两种情况分别计算即可.【详解】解:△|a |=2,|b |=5,△a =±2,b =±5,△a <b ,△a =2时,b =5,a ﹣b =2﹣5=﹣3,a =﹣2时,b =5,a ﹣b =﹣2﹣5=﹣7,综上所述,a ﹣b 的值为﹣3或﹣7.故答案为:﹣3或﹣7.【点睛】本题主要考查了绝对值和代数式求值,解题的关键在于能够根据题意确定a 、b 的值. 14.335【分析】根据单项式的定义求出m 和n ,代入求值即可.【详解】解:△单项式2335a bc 的系数是m ,次数是n ,△35m =,2136n =++=, △33303365555m n +=+=+=, 故答案为:335. 【点睛】本题考查代数式求值,熟练掌握单项式定义,得到m 和n 的值是解决问题的关键.15.把同类项合并成一项【解析】略16.1【分析】根据数据运算程序,从第1次开始往后逐个计算输出结果,直到找出规律即可求解.【详解】解:由数据运算程序得,如果开始输入的x 的值为10,那么:第1次输出的结果是5,第2次输出的结果是16,第3次输出的结果是8,第4次输出的结果是4,第5次输出的结果是2,第6次输出的结果是1,第7次输出的结果是4,……综上可得,从第4次开始,每三个一循环,由()2043367-÷= 可得第204次输出的结果与第6次输出的结果相等.故答案为:1.【点睛】本题主要考查了代数式求值问题,解题的关键是通过计算特殊结果发现一般规律.17.21a -【分析】根据两个等式的左端式子的特征,将两个等式相加先求出21A C a -=-+,进而求出21C A a -=-.【详解】解: 2321①A B a a -=--,223②B C a -=-,∴①+②得()()()()2232123A B B C a a a -+-=--+-,()()2232123A B B C a a a -+-=--+-,2232123A C a a a -=--+-,21A C a -=-+,∴()()2121C A A C a a -=--=--+=-,故答案为:21a -.【点睛】本题主要考查了整式的加减,熟练运用合并同类项法则是解题的关键.18.(1)5xy +3y -1(2)-5 (3)35x =-【分析】(1)把A 和B 代入计算即可;(2)利用非负数的性质求出x ,y 的值,代入计算即可;(3)A -3B 变形后,其值与y 的取值无关,确定出x 的值即可.(1)解:A -3B=23231x xy y ++--3(2x xy -)=23231x xy y ++--3x 2+3xy=5xy +3y -1(2)解:因为()2120x y ++-=,()21x +≥0,2y -≥0,所以x +1=0,y -2=0,解得x =-1,y =2,把x =-1,y =2代入得,原式=5×(-1)×2+3×2-1=-5.(3)解:A -3B=5xy +3y -1=(5x +3)y -1,要使A -3B 的值与y 的取值无关,则5x +3=0,所以35x =-. 【点睛】本题考查整式的加减,整式的化简求值,非负数的性质,熟练掌握运算法则是解题的关键. 19.(1)24ab x -(2)48(3)48【分析】(1)根据图形可知剩余部分的面积=长方形的面积﹣4个小正方形的面积,从而可以用代数式表示出来;(2)根据题意可以求得正方形边长x 的值,从而求出长方体纸盒的底面积.(3)根据题意可以求得x 的取值范围,然后由x 取整数,从而可以分别求各种情况下长方体的体积,进而求出长方体体积的最大值.(1)由题意得,纸片剩余部分的面积是ab ﹣4x 2;(2)设:正方形边长为x由已知得,当a=10,b=8时,S=(a﹣2x)(b﹣2x)=(10﹣2x)×(8﹣2x)△边长为最小的正整数时△x=1,当x=1时,S=(10﹣2×1)(8﹣2×1)=48,即底面积是48.(3)由已知得,当a=10,b=8时,V=(a﹣2x)(b﹣2x)x=(10﹣2x)×(8﹣2x)×x△10﹣2x>0且8﹣2x>0,解得,x<4,△x取整数,△x=1或x=2或x=3,当x=1时,V=(10﹣2×1)(8﹣2×1)×1=48,当x=2时,V=(10﹣2×2)(8﹣2×2)×2=48,当x=3时,V=(10﹣2×3)(8﹣2×3)×3=24,即长方体的体积最大值是48.【点睛】本题考查列代数式,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20.(1)14(2)32(3)32n(4)存在,第673个【分析】(1)由图可知,第一个图形由5个白色小正方形,第二个图形由8个,第三个图形由11个,往后每个图形依次增加3个,第四个图形在第三个图形的基础上增加3个即可;(2)根据(1)中观察得到的结论“往后每个图形依次增加3个白色小正方形”,则第十个应该在第一个的基础上增加9×3个;(3)第一个:5=2+3,第二个:8=2+3×2,第三个:11=2+3×3,则第n 个应该在2的基础上增加3n 个; (4)设第n 个图白色小正方形的个数为2021,将2021代入(3)中的代数式,求出n ,若n 为整数,则存在,否则,不存在.(1)11+3=14(个),故答案为:14(2)5+3×9=32(个),则答案为:32(3)第一个:5=2+3,第二个:8=2+3×2,第三个:11=2+3×3,则地n 个:2+3n ,故答案为:2+3n(4)设第n 个图白色小正方形的个数为2021则322021n +=解得673n =所以第673个图白色小正方形的个数为2021【点睛】本题主要考查了图形的变化规律,根据题目给出的图形找出其中的变化规律是解题的关键. 21.(1)a 2b -ab 2(2)6(3)2a 2b -ab 2【分析】(1)根据A B +=2243a b ab -即可得B =4a 2b -3ab 2-A ,从而可求出整式B ;(2)把1a =-,2b =代入(1)中的整式B 即可求解;(3)直接将整式A 、B 代入A -B ,利用整式的加减法则即可求解.(1)解:△A B +=2243a b ab -,2232A a b ab =-,△B =4a 2b -3ab 2-A =4a 2b -3ab 2-(3a 2b -2ab 2)=a 2b -ab 2;(2)解:当1a =-,2b =时,B =()()22-12-12=2+4=6⨯-⨯;(3)解△△2232A a b ab =-, B =a 2b -ab 2,△A -B =3a 2b -2ab 2-(a 2b -ab 2)=2a 2b -ab 2.【点睛】本题考查了整式的加减以及求代数式的值,熟练掌握合并同类项法则是解题的关键. 22.(1)数轴表示见解析;(2)122b a a b <-<-<<- 【分析】(1)先画出数轴,然后把根据题意表示出对应的有理数即可;(2)根据数轴上点表示的有理数左边的数小于右边的数进行求解即可.【详解】解:(1)数轴表示如下所示:(2)根据数轴上点的位置可得:122b a a b <-<-<<-. 【点睛】本题主要考查了用数轴表示有理数,利用数轴比较有理数的大小,解题的关键在于能够熟练掌握有理数与数轴的关系.23.(1)-8,4 (2)162BP t =- (3)3BP -DP 为定值12,与t 无关,理由见解析【分析】(1)根据若干个非负数的和为0,则这些非负数均为0,建立方程求解即可;(2)用含t 的代数式表示点D 、E 对应数,再利用中点性质即可求得点P 对应的数,最后利用B 对应数与P 对应数的差,表示数轴上两点之间的距离即可;(3)由(2)得:162BP t =-,1(123)2DP t =-,代入3BP -DP 即可得出答案. (1)解:△211(4)08a b ++-=,△110,408a b +=-=,解得:8,4a b =-=,△点A 表示的数为-8,点B 表示的数为4;故答案为:-8,4(2)解:如图,根据题意得:得:AD =2t ,BE =t ,△点D 、E 对应数分别为:-8+2t ,4-t ,且点E 在点D 的右侧,△DE =4-t -(-8+2t )=12-3t ,△点P 为线段DE 的中点,△11(123)22DP DE t ==-,△点P 对应的数为1182(123)222t t t -++-=-,△114(2)622BP t t =--=-; (3)解:3BP -DP 为定值12,与t 无关,理由如下:由(2)得:162BP t =-,1(123)2DP t =-,△113333(6)(123)186122222BP DP t t t t ⎡⎤-=---=--+=⎢⎥⎣⎦,△3BP -DP 为定值12,与t 无关. 【点睛】本题考查了数轴、绝对值、代数式、数轴上两点之间的距离、整式加减的应用等,找准等量关系,正确列出代数式是解题的关键.。
整式的乘除测试题(3套)及答案
北师大版七年级数学下册第一章 整式的乘除 单元测试卷(一)班级 姓名 学号 得分一、精心选一选(每小题3分,共21分)1.多项式892334+-+xy y x xy 的次数是 ( ) A. 3 B. 4 C. 5 D. 62.下列计算正确的是 ( ) A. 8421262x x x =⋅ B. ()()m mm y y y =÷34C. ()222y x y x +=+ D. 3422=-a a3.计算()()b a b a +-+的结果是 ( ) A. 22a b - B. 22b a - C. 222b ab a +-- D. 222b ab a ++- 4. 1532+-a a 与4322---a a 的和为 ( ) A.3252--a a B. 382--a a C. 532---a a D. 582+-a a 5.下列结果正确的是 ( )A. 91312-=⎪⎭⎫ ⎝⎛- B. 0590=⨯ C. ()17530=-. D. 8123-=-6. 若()682b a b a nm =,那么n m 22-的值是 ( )A. 10B. 52C. 20D. 32 7.要使式子22259y x +成为一个完全平方式,则需加上 ( ) A. xy 15 B. xy 15± C. xy 30 D. xy 30±二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)1.在代数式23xy , m ,362+-a a , 12 ,22514xy yz x -,ab32中,单项式有 个,多项式有 个。
2.单项式z y x 425-的系数是 ,次数是 。
3.多项式5134+-ab ab 有 项,它们分别是 。
4. ⑴ =⋅52x x 。
⑵ ()=43y 。
⑶ ()=322ba 。
⑷ ()=-425y x 。
⑸ =÷39a a 。
⑹=⨯⨯-024510 。
初一数学整式练习题精选(含答案)
初一数学整式练习题精选(含答案) 初一数学第三单元整式练题精选(含答案)一、判断题1.x+1是关于x的一次两项式。
(正确)2.-3不是单项式。
(正确)3.单项式xy的系数是1.(错误,应该是1,因为单项式xy 的系数是1)4.x^3+y^3是6次多项式。
(错误,应该是3次多项式)5.多项式是整式。
(正确)二、选择题1.在下列代数式:1a+b/32.2ab。
ab^2+b+1.x^3+x-3中,多项式有()(选B,3个)A。
2个B。
3个C。
4个D。
5个2.多项式-23m-n^2是()(选B,三次二项式)A。
二次二项式B。
三次二项式C。
四次二项式D。
五次二项式3.下列说法正确的是()(选A,3x-2x+5的项是3x,2x,5)A。
3x-2x+5的项是3x,2x,5B。
22/2-与2x-2xy-5都是多项式C。
多项式-2x+4xy的次数是3D。
一个多项式的次数是6,则这个多项式中只有一项的次数是64.下列说法正确的是()(选D,整式2x+1是一次二项式)A。
3x-2x+5的项是3x,2x,5B。
22/2-与2x-2xy-5都是多项式C。
多项式-2x+4xy的次数是3D。
整式2x+1是一次二项式5.下列代数式中,不是整式的是()(选D,-2005)A。
整式abc没有系数B。
6/75xC。
23/4xD。
-20056.下列多项式中,是二次多项式的是()(选A,3x+1)A。
3x+1B。
x^2+2x+1C。
3xy-1D。
3x-5/227.x减去y的平方的差,用代数式表示正确的是()(选C,3xy-1)A。
(x-y)^2B。
x-y^2/2C。
3xy-1D。
3x-5/228.某同学爬一楼梯,从楼下爬到楼顶后立刻返回楼下。
已知该楼梯长S米,同学上楼速度是a米/分,下楼速度是b米/分,则他的平均速度是()米/分。
(选A,(a+b)/2)A。
(a+b)/2B。
s/(a+b)XXX(2s)D。
s/(ab+b)9.下列单项式次数为3的是() (选A,3abc)A。
初一数学(整式的运算)单元测试题(二)
初一数学(整式的运算)单元测试题(二)一、填空题:(每空2分,共28分)1.把下列代数式的字母代号填人相应集合的括号内:A. xy+1B. –2x 2+yC.3xy 2-D.214-E.x 1-F.x 4G.x ax 2x 8123--H.x+y+zI.3ab 2005-J.)y x (31+K.c 3ab 2+(1)单项式集合 { …}(2)多项式集合 { …}(3)三次多项式 { …}(4)整式集合 { …}2.单项式bc a 792-的系数是 . 3.若单项式-2x 3y n-3是一个关于x 、y 的五次单项式,则n = .4.(2x+y)2=4x 2+ +y 2.5.计算:-2a 2(21ab+b 2)-5a(a 2b-ab 2) = . 6.32243b a 21c b a 43⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-= . 7.-x 2与2y 2的和为A ,2x 2与1-y 2的差为B , 则A -3B= .8.()()()()()=++++-884422y x y x y x y x y x .9.有一名同学把一个整式减去多项式xy+5yz+3xz 误认为加上这个多项式,结果答案为 5yz-3xz+2xy ,则原题正确答案为 .10.当a = ,b = 时,多项式a 2+b 2-4a+6b+18有最小值.二、选择题(每题3分,共24分)1.下列计算正确的是( )(A )532x 2x x =+ (B )632x x x =⋅ (C )336x x x =÷ (D )623x x -=-)( 2.有一个长方形的水稻田,长是宽的2.8倍,宽为6.5210⨯,则这块水稻田的面积是( )(A )1.183710⨯ (B )510183.1⨯ (C )71083.11⨯ (D )610183.1⨯3.如果x 2-kx -ab = (x -a )(x +b ), 则k 应为( )(A )a +b (B ) a -b (C ) b -a (D )-a -b4.若(x -3)0 -2(3x -6)-2 有意义,则x 的取值范围是( )(A ) x >3 (B )x ≠3 且x ≠2 (C ) x ≠3或 x ≠2 (D )x < 25.计算:30022)2(21)x (4554---÷⎪⎭⎫ ⎝⎛--π-+⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛得到的结果是( ) (A )8 (B )9 (C )10 (D )116.若a = -0.42, b = -4-2, c =241-⎪⎭⎫ ⎝⎛-,d =041⎪⎭⎫ ⎝⎛-, 则 a 、b 、c 、d 的大小关系为( )(A ) a<b<c<d (B )b<a<d<c (C ) a<d<c<b (D )c<a<d<b7.下列语句中正确的是( )(A )(x -3.14)0 没有意义(B )任何数的零次幂都等于1(C ) 一个不等于0的数的倒数的-p 次幂(p 是正整数)等于它的p 次幂(D )在科学记数法a×10 n 中,n 一定是正整数8.若k xy 30x 252++为一完全平方式,则k 为( )(A ) 36y 2 (B ) 9y 2 (C ) 4y 2 (D )y 2三、解答下列各题(每小题6分,共48分)1.计算(1)(3xy -2x 2-3y 2)+(x 2-5xy +3y 2)(2)-51x 2(5x 2-2x +1) (3)(-35ab 3c)⋅103a 3bc ⋅(-8abc)2(4)20052006315155321352125.0)()()()(-⨯+⨯- (5)〔21xy (x 2+y )(x 2-y )+23x 2y 7÷3xy 4〕÷(-81x 4y ) (6)))((c b a c b a ---+2.用简便方法计算:(1)7655.0469.27655.02345.122⨯++(2)9999×10001-1000023.化简求值:4(x 2+y )(x 2-y )-(2x 2-y )2 , 其中 x=2, y=-5已知:2x -y =2, 求:〔(x 2+y 2)-(x -y )2+2y (x -y )〕÷4y4.已知:a (a -1)-(a 2-b )= -5 求: 代数式 2b a 22+-ab 的值. 5.已知: a 2+b 2-2a +6b +10 = 0, 求:a 2005-b1的值. 6.已知多项式x 2+nx+3 与多项式 x 2-3x+m 的乘积中不含x 2和x 3项,求m 、n 的值.7.请先阅读下面的解题过程,然后仿照做下面的题.已知:01x x 2=-+,求:3x 2x 23++的值.44004)1x x ()1x x (x 3x x x x x 3x 2x 2222323=++=+-++-+=+++-+=++若:0x x x 132=+++,求:200432x x x x ++++ 的值.附加题:1.计算:2200320052003200320032004222-+2.已知:多项式42bx ax x 323+++能被多项式6x 5x 2+-整除,求:a 、b 的值 .。
七年级数学上册《整式的加减》单元测试卷及答案
人教新版七年级上册《第2章整式的加减》单元测试(1)一.选择题(共13小题)1.下列各式﹣mn,m,8,,x2+2x+6,,,中,整式有()A.3个B.4个C.6个D.7个2.单项式的系数与次数分别为()A.,7B.π,6C.4π,6D.π,4 3.﹣2x﹣2x合并同类项得()A.﹣4x2B.﹣4x C.0D.﹣44.下列各选项中是同类项的是()A.﹣a2b和ab2B.a2和22C.﹣ab2和2b2a D.2ab和2xy5.若﹣3a2b x与﹣3a y b是同类项,则y x的值是()A.1B.2C.3D.46.若﹣2a m b2m+n与5a n+2b2m+n可以合并成一项,则m﹣n的值是()A.2B.0C.﹣1D.17.如果M=x2+6x+22,N=﹣x2+6x﹣3,那么M与N的大小关系是()A.M>N B.M<N C.M=N D.无法确定8.已知2a+3b=4,则整式﹣4a﹣6b+1的值是()A.5B.3C.﹣7D.﹣109.按如图所示的运算程序,能使输出y值为1的是()A.m=﹣1,n=1B.m=1,n=0C.m=1,n=2D.m=2,n=1 10.若多项式3x|m|+(m﹣2)x+1是关于x的二次三项式,则m的值()A.2或﹣2B.2C.﹣2D.﹣411.把多项式1﹣5ab2﹣7b3+6a2b按字母b的降幂排列正确的是()A.1﹣7b3﹣5ab2+6a2b B.6a2b﹣5ab2﹣7b3+1C.﹣7b3﹣5ab2+1+6a2b D.﹣7b3﹣5ab2+6a2b+112.设A=x2﹣3x﹣2,B=2x2﹣3x﹣1,若x取任意有理数.则A与B的大小关系为()A.A<B B.A=B C.A>B D.无法比较13.关于多项式26﹣3x5+x4+x3+x2+x的说法正确的是()A.是六次六项式B.是五次六项式C.是六次五项式D.是五次五项式二.填空题(共6小题)14.若x2y3﹣0.1x4y n+xy5是关于x,y的六次多项式,则正整数n的值为.15.当k=时,关于x、y的多项式x2+kxy﹣2xy﹣6中不含xy项.16.单项式2x m y3与﹣3xy3n是同类项,则m+n=.17.已知a2+a﹣3=0,则2024﹣a2﹣a=.18.x2﹣2x+y=x2﹣().19.已知x+y=3,xy=1,则代数式(5x+2)﹣(3xy﹣5y)的值.三.解答题(共5小题)20.化简:3x2+2xy﹣4y2﹣3xy+4y2﹣3x2.21.先化简,再求值:3(4a2+2a)﹣(2a2+3a﹣5),其中a=﹣2.22.化简与求值:(1)化简(5a+4c+7b)+(5c﹣3b﹣6a);(2)化简(2a2b﹣ab2)﹣2(ab2+3a2b);(3)化简,求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=1,y=﹣2.(4)化简,求值:已知A=4x2y﹣5xy2,B=3x2y﹣4y2,当x=﹣2,y=1时,求2A﹣B 的值.23.请回答下列问题:(1)若多项式mx2+3xy﹣2y2﹣x2+nxy﹣2y+6的值与x的取值无关,求(m+n)3的值.(2)若关于x、y的多项式6mx2+4nxy+2x+2xy﹣x2+y+4不含二次项,m﹣n的值.(3)若2x|k|+1y2+(k﹣1)x2y+1是关于x、y的四次三项式,求k值.24.某工厂第一车间有x人,第二车间人数比第一车间人数的少20人,第三车间人数是第二车间人数的多10人.(1)求第三车间有多少人?(用含x的代数式表示)(2)求三个车间共有多少人?(用含x的代数式表示)(3)如果从第二车间调出10人到第一车间,原第三车间人数比调动后的第一车间人数少多少人?人教新版七年级上册《第2章整式的加减》单元测试卷(1)参考答案与试题解析一.选择题(共13小题)1.下列各式﹣mn,m,8,,x2+2x+6,,,中,整式有()A.3个B.4个C.6个D.7个【考点】整式.【分析】根据整式的定义,结合题意即可得出答案.【解答】解:整式有﹣mn,m,8,x2+2x+6,,,故选:C.2.单项式的系数与次数分别为()A.,7B.π,6C.4π,6D.π,4【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:单项式的系数与次数分别为,4,故选:D.3.﹣2x﹣2x合并同类项得()A.﹣4x2B.﹣4x C.0D.﹣4【考点】合并同类项.【分析】根据合并同类项的法则判断即可得结论.【解答】解:﹣2x﹣2x=(﹣2﹣2)x=﹣4x.故选:B.4.下列各选项中是同类项的是()A.﹣a2b和ab2B.a2和22C.﹣ab2和2b2a D.2ab和2xy【考点】同类项.【分析】根据同类项的概念逐一判断即可得.【解答】解:A.﹣a2b和ab2相同字母的指数不相同,不是同类项;B.a2和22所含字母不相同,不是同类项;C.﹣ab2和2b2a所含字母相同,且相同字母的指数也相同,是同类项;D.2ab与2xy所含字母不相同,不是同类项;故选:C.5.若﹣3a2b x与﹣3a y b是同类项,则y x的值是()A.1B.2C.3D.4【考点】同类项.【分析】根据同类项的概念求出x、y的值,再代入所求式子计算即可.【解答】解:∵﹣3a2b x与﹣3a y b是同类项,∴x=1,y=2,∴y x=21=2.故选:B.6.若﹣2a m b2m+n与5a n+2b2m+n可以合并成一项,则m﹣n的值是()A.2B.0C.﹣1D.1【考点】合并同类项.【分析】直接利用两式可以合并进而得出m=n+2,即可得出答案.【解答】解:∵﹣2a m b2m+n与5a n+2b2m+n可以合并成一项,∴m=n+2,则m﹣n=2.故选:A.7.如果M=x2+6x+22,N=﹣x2+6x﹣3,那么M与N的大小关系是()A.M>N B.M<N C.M=N D.无法确定【考点】整式的加减.【分析】直接利用整式的加减运算法则计算进而得出答案.【解答】解:∵M=x2+6x+22,N=﹣x2+6x﹣3,∴M﹣N=x2+6x+22﹣(﹣x2+6x﹣3)=x2+6x+22+x2﹣6x+3=2x2+25,∵x2≥0,∴2x2+25>0,∴M>N.故选:A.8.已知2a+3b=4,则整式﹣4a﹣6b+1的值是()A.5B.3C.﹣7D.﹣10【考点】代数式求值.【分析】根据相反数的定义得:﹣2a﹣3b=﹣4,首先化简﹣4a﹣6b+1,然后把﹣2a﹣3b =﹣4代入化简后的算式,求出算式的值是多少即可.【解答】解:∵2a+3b=4,∴﹣2a﹣3b=﹣4,∴﹣4a﹣6b+1=2(﹣2a﹣3b)+1=﹣8+1=﹣7,故选:C.9.按如图所示的运算程序,能使输出y值为1的是()A.m=﹣1,n=1B.m=1,n=0C.m=1,n=2D.m=2,n=1【考点】代数式求值;有理数的混合运算.【分析】根据题意一一计算即可判断.【解答】解:当m=﹣1,n=1时,y=2m﹣n+1=2×(﹣1)﹣1+1=﹣2,不合题意;当m=1,n=0时,y=2m+n=2×1+0=2,不合题意;当m=1,n=2时,y=2m﹣n+1=2×1﹣2+1=1,符合题意;当m=2,n=1时,y=2m+n=2×2+1=5,不合题意;故选:C.10.若多项式3x|m|+(m﹣2)x+1是关于x的二次三项式,则m的值()A.2或﹣2B.2C.﹣2D.﹣4【考点】多项式.【分析】根据多项式的定义即可求解.【解答】解:因为多项式3x|m|+(m﹣2)x+1是关于x的二次三项式,所以|m|=2,且m﹣2≠0,解得m=±2,且m≠2,则m的值为﹣2.故选:C.11.把多项式1﹣5ab2﹣7b3+6a2b按字母b的降幂排列正确的是()A.1﹣7b3﹣5ab2+6a2b B.6a2b﹣5ab2﹣7b3+1C.﹣7b3﹣5ab2+1+6a2b D.﹣7b3﹣5ab2+6a2b+1【考点】多项式.【分析】字母b的最高次数为3,然后按照字母b的指数从高到低进行排列即可.【解答】解:1﹣5ab2﹣7b3+6a2b按字母b的降幂排列为﹣7b3﹣5ab2+6a2b+1.故选:D.12.设A=x2﹣3x﹣2,B=2x2﹣3x﹣1,若x取任意有理数.则A与B的大小关系为()A.A<B B.A=B C.A>B D.无法比较【考点】整式的加减.【分析】首先计算两个整式的差,再通过分析差的正负性可得答案.【解答】解:∵A=x2﹣3x﹣2,B=2x2﹣3x﹣1,∴B﹣A=(2x2﹣3x﹣1)﹣(x2﹣3x﹣2)=2x2﹣3x﹣1﹣x2+3x+2=x2+1,∵x2≥0,∴B﹣A>0,则B>A,故选:A.13.关于多项式26﹣3x5+x4+x3+x2+x的说法正确的是()A.是六次六项式B.是五次六项式C.是六次五项式D.是五次五项式【考点】多项式.【分析】根据多项式次数的定义知,该多项式的次数是5次,又因为次多项式有6个单项式组成,所以是五次六项式.【解答】解:多项式26﹣3x5+x4+x3+x2+x次数最高的项的次数是5,且有6个单项式组成,所以是五次六项式.故选:B.二.填空题(共6小题)14.若x2y3﹣0.1x4y n+xy5是关于x,y的六次多项式,则正整数n的值为2或1.【考点】多项式.【分析】根据多项式的次数定义和n是正整数得出4+n=6或4+n=5,求出n的值即可.【解答】解:∵x2y3﹣0.1x4y n+xy5是关于x,y的六次多项式,又∵n是正整数,∴4+n=6或4+n=5,∴n=2或n=1;故答案为:2或1.15.当k=2时,关于x、y的多项式x2+kxy﹣2xy﹣6中不含xy项.【考点】合并同类项;多项式.【分析】根据多项式的概念即可求出答案.【解答】解:∵多项式x2+kxy﹣2xy﹣6中不含xy项,∴原式=x2+(k﹣2)xy﹣6令k﹣2=0,∴k=2故答案为:2.16.单项式2x m y3与﹣3xy3n是同类项,则m+n=2.【考点】同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)求出n,m的值,再代入代数式计算即可.【解答】解:由单项式2x m y3与﹣3xy3n是同类项,得m=1,3n=3,解得m=1,n=1.∴m+n=1+1=2.故答案为:2.17.已知a2+a﹣3=0,则2024﹣a2﹣a=2021.【考点】代数式求值.【分析】由a2+a﹣3=0可得a2+a=3,再将a2+a=3整体代入要求的式子即可.【解答】解:∵a2+a﹣3=0,∴a2+a=3,∴2024﹣a2﹣a=2024﹣(a2+a)=2024﹣3=2021,故答案为:2021.18.x2﹣2x+y=x2﹣(2x﹣y).【考点】去括号与添括号.【分析】本题添了1个括号,且所添的括号前为负号,括号内各项改变符号.【解答】解:根据添括号的法则可知,x2﹣2x+y=x2﹣(2x﹣y),故答案为:2x﹣y.19.已知x+y=3,xy=1,则代数式(5x+2)﹣(3xy﹣5y)的值14.【考点】整式的加减.【分析】先将代数式(5x+2)﹣(3xy﹣5y)化简为:5(x+y)﹣3xy+2,然后把x+y=3,xy=1代入求解即可.【解答】解:∵x+y=3,xy=1,∴(5x+2)﹣(3xy﹣5y)=5x+2﹣3xy+5y=5(x+y)﹣3xy+2=5×3﹣3×1+2=14.故答案为:14.三.解答题(共5小题)20.化简:3x2+2xy﹣4y2﹣3xy+4y2﹣3x2.【考点】合并同类项.【分析】这个式子的运算是合并同类项的问题.根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变.【解答】解:原式=(3x2﹣3x2)+(2xy﹣3xy)+(4y2﹣4y2)=﹣xy.21.先化简,再求值:3(4a2+2a)﹣(2a2+3a﹣5),其中a=﹣2.【考点】整式的加减—化简求值.【分析】先去括号,再合并同类项,最后代入求值.【解答】解:原式=12a2+6a﹣2a2﹣3a+5=10a2+3a+5.当a=﹣2时,原式=10×(﹣2)2+3×(﹣2)+5=40﹣6+5=39.22.化简与求值:(1)化简(5a+4c+7b)+(5c﹣3b﹣6a);(2)化简(2a2b﹣ab2)﹣2(ab2+3a2b);(3)化简,求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=1,y=﹣2.(4)化简,求值:已知A=4x2y﹣5xy2,B=3x2y﹣4y2,当x=﹣2,y=1时,求2A﹣B 的值.【考点】整式的加减—化简求值.【分析】(1)先去掉括号,再合并同类项即可得出答案;(2)先去掉括号,再合并同类项即可;(3)先把给出的式子进行化简,再代入x,y的值进行计算即可;(4)根据题意先列出算式,再合并同类项,最后把x,y的值进行计算即可.【解答】解:(1)(5a+4c+7b)+(5c﹣3b﹣6a)=5a+4c+7b+5c﹣3b﹣6a=5a﹣6a+7b﹣3b+4c+5c=﹣a+4b+9c;(2)(2a2b﹣ab2)﹣2(ab2+3a2b)=2a2b﹣ab2﹣2ab2﹣6a2b=2a2b﹣6a2b﹣ab2﹣2ab2=﹣4a2b﹣3ab2;(3)4xy﹣(2x2+5xy﹣y2)+2(x2+3xy)=4xy﹣2x2﹣5xy+y2+2x2+6xy=y2+5xy,当x=1,y=﹣2时原式=(﹣2)2+5×1×(﹣2)=4﹣10=﹣6;(4)2A﹣B=2(4x2y﹣5xy2)﹣(3x2y﹣4y2)=8x2y﹣10xy2﹣3x2y+4y2=5x2y﹣10xy2+4y2当x=﹣2,y=1时,原式=5×(﹣2)2×1﹣10×(﹣2)×12+4×12=5×4×1﹣(﹣20)×1+4=20+20+4=44.23.请回答下列问题:(1)若多项式mx2+3xy﹣2y2﹣x2+nxy﹣2y+6的值与x的取值无关,求(m+n)3的值.(2)若关于x、y的多项式6mx2+4nxy+2x+2xy﹣x2+y+4不含二次项,m﹣n的值.(3)若2x|k|+1y2+(k﹣1)x2y+1是关于x、y的四次三项式,求k值.【考点】合并同类项;多项式;绝对值;代数式求值.【分析】(1)先把多项式合并同类项,再令含x项的系数等于0,求出m、n的值即可;(2)先把多项式合并同类项,然后根据多项式不含二次项,得到关于m、n的一次方程,求出m、n的值,再代入计算即可.(3)根据四次三项式的概念,得关于k的方程,求解即可.【解答】解:(1)原式=(m﹣1)x2+(3+n)xy﹣2y2﹣2y+6.∵原式的值与x的值无关,∴m﹣1=0,3+n=0,∴m=1,n=﹣3,∴(m+n)3=(1﹣3)3=﹣8,(2)原式=(6m﹣1)x2+(4n+2)xy+2x+y+4,∵多项式不含二次项,∴6m﹣1=0,4n+2=0.∴.∴.(3)由题意得:|k|+1+2=4,∴k=±1.又∵k﹣1≠0,∴k≠1.∴k=﹣1.24.某工厂第一车间有x人,第二车间人数比第一车间人数的少20人,第三车间人数是第二车间人数的多10人.(1)求第三车间有多少人?(用含x的代数式表示)(2)求三个车间共有多少人?(用含x的代数式表示)(3)如果从第二车间调出10人到第一车间,原第三车间人数比调动后的第一车间人数少多少人?【考点】列代数式.【分析】(1)先表示出第二车间的人数,再表示出第三车间的人数即可;(2)把表示三个车间的人数的代数式相加即可得到答案;(3)先表示出调动后第一车间的人数,再用调动后第一车间的人数减去第三车间的人数即可.【解答】解:(1)∵第二车间的人数比第一车间人数的少20人,即人,而第三车间人数是第二车间人数的多10人,∴第三车间的人数为:人;(2)三个车间共有:人;(3)(x+10)﹣(x﹣15)=25(人),答:原第三车间人数比调动后的第一车间人数少25人.。
华东师大版七年级数学上册《第二章整式及其加减》单元测试卷带答案
华东师大版七年级数学上册《第二章整式及其加减》单元测试卷带答案(测试时间:90分钟;试卷满分:100分)一、选择题(每小题3分,共24分)1.下列叙述中,正确的是( )A.0是单项式B.单项式23xy的次数是5C.单项式-2x 2y5的系数为-2 D.多项式3a3b+2a2是六次二项式2.用代数式表示“a的平方与b的平方的差”,正确的是( )A.(a-b)2B.a2-b2C.a-b2D.a-2b3.(2024·湘潭模拟)下列计算正确的是( )A.5-(-1)=4B.(-2)4=-16C.2a2-a=2aD.3x-(-2y+4)=3x+2y-44.当x=1时,整式ax3+bx+1的值为2 023,则当x=-1时,整式ax3+bx-2的值是( )A.2 024B.-2 024C.2 022D.-2 0225.若单项式a3m b9-n与78a6b2n的和仍是单项式,则m-n的值是( )A.1B.5C.-5D.-16.观察下列关于x的单项式,探究其规律:-x,3x2,-5x3,7x4,-9x5,11x6……按照此规律,第2 025个单项式是( )A.-2 025x2 025B.4 049x2 025C.-4 049x2 025D.4 051x2 0257.(2024·包头模拟)甲、乙两店卖豆浆,每杯售价均相同.已知甲店的促销方式为每买2杯,第1杯原价,第2杯半价;乙店的促销方式为每买3杯,第1,2杯原价,第3杯免费.若东东想买12杯豆浆,则下列所花的钱最少的方式是( )A.在甲店买12杯B.在甲店买8杯,在乙店买4杯C.在甲店买6杯,在乙店买6杯D.在乙店买12杯8.有依次排列的3个整式:x,x+6,x-3,对任意相邻的两个整式,都用右边的整式减去左边的整式,所得之差写在这两个整式之间,可以产生一个新整式串,例如:x,6,x+6,-9,x-3,我们称它为整式串1;将整式串1按上述方式再做一次操作,可以得到整式串2;以此类推,通过实际操作,得到以下结论:①整式串2为:x,6-x,6,x,x+6,-x-15,-9,x+6,x-3;②整式串3的所有整式的和比整式串2的所有整式的和小3;③整式串5共65个整式;④整式串2 024的所有整式的和为3x-6 069;上述四个结论正确的有( )A.1个B.2个C.3个D.4个二、填空题(每小题4分,共24分)9.(2024·郴州模拟)单项式-5a2b(m+2)与3a n+5b是同类项,那么m-n=.10.多项式13x|m|-(m+4)x-11是关于x的四次三项式,则m的值是.11.(2024·长沙模拟)已知关于x的多项式(4x2-3x+5)-(2mx2-x+1)化简后不含x2项,则m的值是.12.如果x=5时,代数式ax5+bx-7的值为9,那么x=-5时,代数式a2x5+b2x+7的值为.13.已知三个有理数a,b,c,其积是负数,其和是正数,当x=|a|a +|b|b+|c|c时,代数式x2 025-2x+2的值为.14.(2024·台州模拟)如图所示,未来公园的广场背景墙上有一系列用灰砖和白砖铺成的图案,图①有1块灰砖,8块白砖;图②有4块灰砖,12块白砖;以此类推.若某个图案中有49块灰砖,则此图案中有块白砖.三、解答题(共52分)15.(6分)计算:(1)3m-3n-2m+n;(2)(8x-7y)-(4y-5x).16.(8分)先化简,再求值.(1)4(3a2b-ab2)-2(-ab2+3a2b),其中a是1的相反数,b是2的倒数;(2)3(x-2y)+5(x+2y-1)-2,其中2x+y=3.17.(8分)(2024·苏州期末)已知代数式A=3x2+3xy+2y,B=x2-xy+x.(1)计算A-3B;(2)当x=-1,y=3时,求A-3B的值;(3)若A-3B的值与x的取值无关,求y的值.18.(8分)有理数a,b,c在数轴上的位置如图所示.(1)比较大小:a +1 0,2-b a -c ; (2)|b -c |= ; (3)化简:|c -3|+|c -b |-|b +1|.19.(10分)近年来,电商多选择在11月11日促销.今年的促销期间,某电商客服在为买家包装商品时用到长、宽、高分别为a 厘米、b 厘米、c 厘米的箱子,并发现有如图所示的甲、乙两种打包方式(打包带不计接头处的长).回答下列问题:(1)用含a ,b ,c 的式子表示甲、乙两种打包方式所用的打包带的长度: 甲需要 厘米,乙需要 厘米;(2)当a =50厘米,b =40厘米,c =30厘米时,直接写出甲、乙两种打包方式所用的打包带的长度:甲需要 厘米,乙需要 厘米;(3)当a >b >c 时,两种打包方式中,哪种方式节省打包带?并说明你的理由.20.(12分)观察下列等式.11×2=1-12,12×3=12-13,13×4=13-14将以上三个等式两边分别相加得:11×2+12×3+13×4=1-12+12-13+13-14=1-14=34.(1)猜想并写出:1n (n+1)= .(2)直接写出下列各式的计算结果:①11×2+12×3+13×4+…+12022×2023=;②11×2+12×3+13×4+…+1n(n+1)=.(3)探究并计算:①11×3+13×5+15×7+…+12021×2023.②11×3-12×4+13×5-14×6+15×7-…+12021×2023-12022×2024.【附加题】(10分)某市居民使用自来水按如下标准缴费(水费按月缴纳):用户月用水量单价不超过12 m3的部分a元/m3超过12 m3但不超过20 m3的部分1.5a元/m3超过20 m3的部分 2a元/m3(1)当a=2时,某户一个月用了15 m3的水,求该户这个月应缴纳的水费.(2)设某户月用水量为28 m3,该户应缴纳的水费为元.(3)当a=2时,甲,乙两户一个月共用水40 m3,已知甲户缴纳的水费超过了24元,设甲户这个月用水x m3,试求甲,乙两户一个月共缴纳的水费(用含x的式子表示).参考答案一、选择题(每小题3分,共24分)1.下列叙述中,正确的是(A)A.0是单项式B.单项式23xy的次数是5C.单项式-2x 2y5的系数为-2 D.多项式3a3b+2a2是六次二项式2.用代数式表示“a的平方与b的平方的差”,正确的是(B)A.(a-b)2B.a2-b2C.a-b2D.a-2b3.(2024·湘潭模拟)下列计算正确的是(D)A.5-(-1)=4B.(-2)4=-16C.2a2-a=2aD.3x-(-2y+4)=3x+2y-44.当x=1时,整式ax3+bx+1的值为2 023,则当x=-1时,整式ax3+bx-2的值是(B)A.2 024B.-2 024C.2 022D.-2 0225.若单项式a3m b9-n与78a6b2n的和仍是单项式,则m-n的值是(D)A.1B.5C.-5D.-16.观察下列关于x的单项式,探究其规律:-x,3x2,-5x3,7x4,-9x5,11x6……按照此规律,第2 025个单项式是(C)A.-2 025x2 025B.4 049x2 025C.-4 049x2 025D.4 051x2 0257.(2024·包头模拟)甲、乙两店卖豆浆,每杯售价均相同.已知甲店的促销方式为每买2杯,第1杯原价,第2杯半价;乙店的促销方式为每买3杯,第1,2杯原价,第3杯免费.若东东想买12杯豆浆,则下列所花的钱最少的方式是(D)A.在甲店买12杯B.在甲店买8杯,在乙店买4杯C.在甲店买6杯,在乙店买6杯D.在乙店买12杯8.有依次排列的3个整式:x,x+6,x-3,对任意相邻的两个整式,都用右边的整式减去左边的整式,所得之差写在这两个整式之间,可以产生一个新整式串,例如:x,6,x+6,-9,x-3,我们称它为整式串1;将整式串1按上述方式再做一次操作,可以得到整式串2;以此类推,通过实际操作,得到以下结论:①整式串2为:x,6-x,6,x,x+6,-x-15,-9,x+6,x-3;②整式串3的所有整式的和比整式串2的所有整式的和小3;③整式串5共65个整式;④整式串2 024的所有整式的和为3x-6 069;上述四个结论正确的有(D)A.1个B.2个C.3个D.4个二、填空题(每小题4分,共24分)9.(2024·郴州模拟)单项式-5a2b(m+2)与3a n+5b是同类项,那么m-n=2.10.多项式13x|m|-(m+4)x-11是关于x的四次三项式,则m的值是4.11.(2024·长沙模拟)已知关于x的多项式(4x2-3x+5)-(2mx2-x+1)化简后不含x2项,则m的值是2.12.如果x=5时,代数式ax5+bx-7的值为9,那么x=-5时,代数式a2x5+b2x+7的值为-1.13.已知三个有理数a,b,c,其积是负数,其和是正数,当x=|a|a +|b|b+|c|c时,代数式x2 025-2x+2的值为1.14.(2024·台州模拟)如图所示,未来公园的广场背景墙上有一系列用灰砖和白砖铺成的图案,图①有1块灰砖,8块白砖;图②有4块灰砖,12块白砖;以此类推.若某个图案中有49块灰砖,则此图案中有32块白砖.三、解答题(共52分)15.(6分)计算:(1)3m-3n-2m+n;(2)(8x-7y)-(4y-5x).【解析】(1)原式=(3-2)m+(-3+1)n=m-2n;(2)原式=8x-7y-4y+5x=13x-11y.16.(8分)先化简,再求值.(1)4(3a2b-ab2)-2(-ab2+3a2b),其中a是1的相反数,b是2的倒数;(2)3(x-2y)+5(x+2y-1)-2,其中2x+y=3.【解析】(1)原式=12a2b-4ab2+2ab2-6a2b=6a2b-2ab2;因为a是1的相反数,b是2的倒数所以a=-1,b=12所以原式=6×(-1)2×12-2×(-1)×(12)2=3+12=72;(2)原式=3x-6y+5x+10y-5-2=8x+4y-7;当2x+y=3时,原式=4(2x+y)-7=4×3-7=12-7=5.17.(8分)(2024·苏州期末)已知代数式A=3x2+3xy+2y,B=x2-xy+x.(1)计算A-3B;(2)当x=-1,y=3时,求A-3B的值;(3)若A-3B的值与x的取值无关,求y的值.【解析】(1)因为A=3x2+3xy+2y,B=x2-xy+x所以A-3B=(3x2+3xy+2y)-3(x2-xy+x)=3x2+3xy+2y-3x2+3xy-3x=6xy+2y-3x;(2)当x=-1,y=3时,A-3B=6xy+2y-3x=6×(-1)×3+2×3-3×(-1)=-18+6+3=-9;(3)A-3B=6xy+2y-3x=(6y-3)x+2y因为A-3B的值与x的取值无关所以6y-3=0,解得y=1.218.(8分)有理数a,b,c在数轴上的位置如图所示.(1)比较大小:a+10,2-b a-c;(2)|b-c|=;(3)化简:|c-3|+|c-b|-|b+1|.【解析】(1)由题意得,-3<a<-2,-1<b<0,1<c<2所以a+1<0,2-b>0>a-c.答案:<>(2)因为b-c<0,所以|b-c|=-(b-c)=c-b.答案:c-b(3)因为-3<a<-2,-1<b<0,1<c<2,所以c-3<0,c-b>0,b+1>0所以|c-3|+|c-b|-|b+1|=3-c+c-b-(b+1)=2-2b.19.(10分)近年来,电商多选择在11月11日促销.今年的促销期间,某电商客服在为买家包装商品时用到长、宽、高分别为a厘米、b厘米、c厘米的箱子,并发现有如图所示的甲、乙两种打包方式(打包带不计接头处的长).回答下列问题:(1)用含a ,b ,c 的式子表示甲、乙两种打包方式所用的打包带的长度: 甲需要 厘米,乙需要 厘米;(2)当a =50厘米,b =40厘米,c =30厘米时,直接写出甲、乙两种打包方式所用的打包带的长度:甲需要 厘米,乙需要 厘米;(3)当a >b >c 时,两种打包方式中,哪种方式节省打包带?并说明你的理由. 【解析】(1)2×2(a +c )+2(b +c )=(4a +2b +6c )厘米,2(a +c )+2×2(b +c )=(2a +4b +6c )厘米 所以甲需要(4a +2b +6c )厘米,乙需要(2a +4b +6c )厘米; 答案:(4a +2b +6c ) (2a +4b +6c )(2)当a =50厘米,b =40厘米,c =30厘米时,4a +2b +6c =4×50+40×2+6×30=460厘米,2×50+4×40+30×6=440厘米 所以甲需要460厘米,乙需要440厘米; 答案:460 440(3)乙种节省,理由如下:(4a +2b +6c )-(2a +4b +6c )=4a +2b +6c -2a -4b -6c =2a -2b 因为a >b >c ,所以2a -2b >0 所以(4a +2b +6c )-(2a +4b +6c )>0 所以乙种打包方式更节省. 20.(12分)观察下列等式.11×2=1-12,12×3=12-13,13×4=13-14将以上三个等式两边分别相加得:11×2+12×3+13×4=1-12+12-13+13-14=1-14=34.(1)猜想并写出:1n (n+1)= .(2)直接写出下列各式的计算结果: ①11×2+12×3+13×4+…+12 022×2 023= ;②11×2+12×3+13×4+…+1n (n+1)= .(3)探究并计算: ①11×3+13×5+15×7+…+12 021×2 023.②11×3-12×4+13×5-14×6+15×7-…+12 021×2 023-12 022×2 024.【解析】(1)1n (n+1)=1n -1n+1.答案:1n -1n+1(2)①11×2+12×3+13×4+…+12 022×2 023=1-12+12-13+…+12 022-12 023=1-12 023=2 0222 023.②11×2+12×3+13×4+…+1n (n+1)=1-12+12-13+…+1n -1n+1=1-1n+1=n n+1.答案:①2 0222 023②nn+1(3)①11×3+13×5+15×7+…+12 021×2 023=12(1-13+13-15+15-17+…+12 021-12 023)=12(1-12 023)=1 0112 023.②11×3-12×4+13×5-14×6+15×7-…+12 021×2 023-12 022×2 024 =(11×3+13×5+…+12 021×2 023)- (12×4+14×6+…+12 022×2 024)=12(1-13+13-15+…+12 021-12 023)-12(12-14+14-16+…+12 022-12 024)=12(1-12 023)-12(12-12 024)=1 0112 023-1 0114 048=2 025×1 0112 023×4 048.【附加题】(10分)某市居民使用自来水按如下标准缴费(水费按月缴纳):用户月用水量单价不超过12 m3的部分a元/m3超过12 m3但不超过20 m3的部分1.5a元/m3超过20 m3的部分 2a元/m3(1)当a=2时,某户一个月用了15 m3的水,求该户这个月应缴纳的水费.(2)设某户月用水量为28 m3,该户应缴纳的水费为元.(3)当a=2时,甲,乙两户一个月共用水40 m3,已知甲户缴纳的水费超过了24元,设甲户这个月用水x m3,试求甲,乙两户一个月共缴纳的水费(用含x的式子表示).【解析】(1)12×2+(15-12)×1.5×2=24+9=33(元)所以该户这个月应缴纳的水费为33元;(2)12a+(20-12)×1.5a+(28-20)×2a=12a+12a+16a=40a(元).答案:40a(3)因为12×2=24所以x>12当12<x≤20时,甲用水量超过12 m3但不超过20 m3,乙用水量超过20 m3所以12×2+(x-12)×1.5×2+12×2+(20-12)×2×1.5+(40-x-20)×2×2=24+3x-36+24+24+80-4x= (116-x)元;当20<x<28时,甲的用水量超过20 m3,乙的用水量超过12 m3但不超过20 m3所以12×2+(20-12)×1.5×2+(x-20)×2×2+12×2+(40-x-12)×2×1.5=24+24+4x-80+24+84-3x= (x+76)元当28≤x≤40时,甲的用水量超过20 m3,乙的用水量不超过12 m3所以12×2+(20-12)×1.5×2+(x-20)×2×2+(40-x)×2=24+24+4x-80+80-2x=(2x+48)元; 综上所述,当12<x≤20时,甲,乙两户一个月共缴纳的水费为(116-x)元;当20<x<28时,甲,乙两户一个月共缴纳的水费为(x+76)元;当28≤x≤40时,甲,乙两户一个月共缴纳的水费为(2x+48)元.。
七年级数学整式的加减单元测试题(含答案)
七年级数学整式的加减单元测试题(含答案)份报纸,若他获得了10元的利润,则a与b的关系式为a=。
b=。
16、将多项式3x3-2x2+5x+1与多项式2x3+4x2-3x+2相减,得到的结果多项式的次数是。
17、已知多项式P(x)=x3-3x2+2x-5,求P(2)的值。
18、将多项式4x3-5x2+3x-2分解因式,得到的结果是。
19、将多项式x4-2x3+3x2-4x+5除以x-2,商式为。
余式为。
20、将多项式2x4-5x3+3x2-7x+4乘以3x-2,得到的结果是。
第八章整式的加减单元测试一、选择题(每小题3分,共30分)1.在下列代数式a+1a+b13,4xy,a,2009,a2bc,-mn中,单项式的个数是()A.3B.4C.5D.62、在下列代数式ab,22xy,a2b3c4中,多项式有()A.2个B.3个C.4个D.5个3、单项式的系数和次数分别是()A.1,9B.0,9C.3,9D.3,244、下列各组单项式中,不是同类项的是()A.12ay与2ya3B.6a2mb与-a2bmC.23与32D.x3y与-xy35、多项式-23m2-n2是()A.二次二项式B.三次二项式C.四次二项式D.五次二项式6、若A和B都是4次多项式,则A+B一定是()A.8次多项式B.4次多项式C.次数不高于4次的整式D.次数不低于4次的整式7、一个多项式A与多项式B=2x2-3xy-y2的和是多项式C=x2+xy+y2,则A等于()A.x2-4xy-2y2B.-x2+4xy+2y2C.3x2-2xy-2y2D.3x2-2xy8、在多项式x3-xy2+25中,最高次项是()A.x3B.x3,xy2C.x3,-xy2D.259、下列各项中,去括号正确的是()A.x2-2(2x-y+2)=x2-4x-2y+4B.-3(m+n)-mn=-3m+3n-mnC.-(5x-3y)+4(2xy-y2)=-5x+3y+8xy-4y2D.ab-5(-a+3)=ab+5a-310.系数为-且只含有x、y的四次单项式,可以写出()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共30分)11、多项式-x4+3x3y-6x2y2-2y4的次数是4.12、某厂今年的产值a万元,若年平均增长率为x,则两年后的产值是a(1+2x)万元。
新人教版七年级上册数学整式加减单元测试题及答案
七年级整式加减测试题一.选择题(共10小题共20分)1.计算﹣3(x﹣2y)+4(x﹣2y)的结果是()A.x﹣2y B.x+2y C.﹣x﹣2y D.﹣x+2y2.若2y m+5x n+3与﹣3x2y3是同类项,则m n=()A .B .C.1 D.﹣23.下列各式中,是3a2b的同类项的是()A.2x2y B.﹣2ab2 C.a2b D.3ab4.若﹣x3y m与x n y是同类项,则m+n的值为()A.1 B.2 C.3 D.45.下列计算正确的是()A.3a﹣2a=1 B. B、x2y﹣2xy2=﹣xy2 C.3a2+5a2=8a4 D.3ax ﹣2xa=ax6.若单项式2x n y m﹣n与单项式3x3y2n的和是5x n y2n,则m与n的值分别是()A.m=3,n=9 B.m=9,n=9 C.m=9,n=3 D.m=3,n=3 7.下列判断错误的是()A.若x<y,则x+2010<y+2010 B .单项式的系数是﹣4C.若|x﹣1|+(y﹣3)2=0,则x=1,y=3 D.一个有理数不是整数就是分数8.化简m﹣n﹣(m+n)的结果是()A.0 B.2m C.﹣2n D.2m﹣2n9.已知a,b两数在数轴上对应的点的位置如图所示,则化简代数式|a+b|﹣|a﹣2|+|b+2|的结果是()A.2a+2b B.2b+3 C.2a﹣3 D.﹣1若x﹣y=2,x﹣z=3,则(y﹣z)2﹣3(z﹣y)+9的值为()A.13 B.11 C.5 D.7二.填空题(共10小题共30分)11.如果单项式﹣xy b+1与x a﹣2y3是同类项,那么(a﹣b)2015= .12.若单项式2x2y m与的和仍为单项式,则m+n的值是.13.若﹣2x2y m与6x2n y3是同类项,则mn= .14.单项式﹣4x2y3的系数是,次数.15.单项式的系数与次数之积为.16.多项式与m2+m﹣2的和是m2﹣2m.17.多项式﹣2m2+3m﹣的各项系数之积为.18.在代数式3xy2,m,6a2﹣a+3,12,,中,单项式有个,多项式有个.19.单项式﹣2πa2bc的系数是.20.观察一列单项式:x,3x2,5x3,7x,9x2,11x3…,则第2013个单项式是.三.解答题(共6小题共70分21题每小题4分、每题6分、27与28题各8分21.合并同类项/化简(每小题4分)(1)3a﹣2b﹣5a+2b (2)(2m+3n ﹣5)﹣(2m﹣n﹣5)(3)7x﹣y+5x﹣3y+3 (4)2(x2y+3xy2)﹣3(2xy2﹣4x2y)(5)a2+(2a2﹣b2)+b2 (6)6a2b+(2a+1)﹣2(3a2b﹣a)23、已知|a﹣2|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]的值(6分)24、已知x=3时,多项式ax3﹣bx+5的值是1,求当x=﹣3时,ax3﹣bx+5的值(6分)25.化简:8n2﹣[4m2﹣2m﹣(2m2﹣5m)].(6分)26.已知代数式mx3+x3﹣nx+2015x﹣1的值与x的取值无关.求m x的值;(6分)27.已知:A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1.若3A+6B的值与x的值无关,求y的值.(8)28.已知A=5a+3b,B=3a2﹣2a2b,C=a2+7a2b﹣2,当a=1,b=2时,求A﹣2B+3C的值.(8)2015年10月27日113859的初中数学组卷参考答案与试题解析一.选择题(共10小题)1.(2015镇江)计算﹣3(x﹣2y)+4(x﹣2y)的结果是()A.x﹣2y B.x+2y C.﹣x﹣2y D.﹣x+2y考点:整式的加减.专题:计算题.分析:原式去括号合并即可得到结果.解答:解:原式=﹣3x+6y+4x﹣8y=x﹣2y,故选A点评:此题考查了整式的加减,熟练掌握运算法则是解本题的关键.2.(2015临淄区校级模拟)若2y m+5x n+3与﹣3x2y3是同类项,则m n=()A .B .C.1 D.﹣2考点:同类项.专题:计算题.分析:根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程m+5=3,n+3=2,求出n,m的值,再代入代数式计算即可.解答:解:∵2y m+5x n+3与﹣3x2y3是同类项,∴m+5=3,n+3=2,∴m=﹣2,n=﹣1,∴m n=(﹣2)﹣1=﹣.故选B.点评:本题考查同类项的定义、方程思想,是一道基础题,比较容易解答,但有的学生可能会把x与y的指数混淆.3.(2015盐城校级三模)下列各式中,是3a2b的同类项的是()A.2x2y B.﹣2ab2C.a2b D.3ab考点:同类项.分析:运用同类项的定义判定即可解答:解:A、2x2y,字母不同,故A选项错误;B、﹣2ab2,相同字母的指数不同,故B选项错误;C、a2b是3a2b的同类项,故C选项正确;D、3ab,相同字母的指数不同,故D选项错误.故选:C.点评:本题主要考查了同类项,解题的关键是运用同类项的定义判定即可.4.(2015石峰区模拟)若﹣x3y m与x n y是同类项,则m+n的值为()A.1 B.2 C.3 D.4考点:同类项.分析:根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m 的值,再代入代数式计算即可.解答:解:根据题意得:n=3,m=1,则m+n=4.故选D.点评:本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.5.(2015达州模拟)下列计算正确的是()A.3a﹣2a=1 B.x2y﹣2xy2=﹣xy2C.3a2+5a2=8a4D.3ax﹣2xa=ax考点:合并同类项.分析:根据合并同类项的法则,把同类项的系数加减,字母与字母的指数不变,进行计算作出正确判断.解答:解:A、3a﹣2a=a,错误;B、x2y与2xy2不是同类项,不能合并,故错误;C、3a2+5a2=8a2,故错误;D、符合合并同类项的法则,正确.故选D.点评:本题属于简单题型,只要熟记合并同类项法则即可.6.(2015重庆校级模拟)若单项式2x n y m﹣n与单项式3x3y2n的和是5x n y2n,则m与n的值分别是()A.m=3,n=9 B.m=9,n=9 C.m=9,n=3 D.m=3,n=3考点:合并同类项.分析:根据同类项的概念,列出方程求解.解答:解:由题意得,,解得:.故选C.点评:本题考查了合并同类项,解答本题的关键是掌握同类项定义中的相同字母的指数相同.7.(2015宝应县校级模拟)下列判断错误的是()A.若x<y,则x+2010<y+2010B .单项式的系数是﹣4 C.若|x﹣1|+(y﹣3)2=0,则x=1,y=3D.一个有理数不是整数就是分数考点:单项式;有理数;非负数的性质:绝对值;有理数大小比较;非负数的性质:偶次方.分析:分别根据单项式系数的定义、不等式的性质、非负数的性质即及有理数的定义对各选项进行逐一分析即可.解答:解:A、∵x<y,∴x+2010<y+2010,故本选项正确;B、∵单项式﹣的数字因数是﹣,∴此单项式的系数是﹣,故本选项错误;C、∵|x﹣1|+(y﹣3)2=0,∴x﹣1=0,y﹣3=0,解得x=1,y=3,故本选项正确;D、∵整数和分数统称为有理数,∴一个有理数不是整数就是分数,故本选项正确.故选:B.点评:本题考查的是单项式,熟知单项式系数的定义、不等式的性质、非负数的性质即及有理数的定义是解答此题的关键.8.(2015泰安模拟)化简m﹣n﹣(m+n)的结果是()A.0 B.2m C.﹣2n D.2m﹣2n考点:整式的加减.分析:根据整式的加减运算法则,先去括号,再合并同类项.注意去括号时,括号前是负号,去括号时,括号里各项都要变号;合并同类项时,只把系数相加减,字母和字母的指数不变.解答:解:原式=m﹣n﹣m﹣n=﹣2n.故选C.点评:解决此类题目的关键是熟记去括号法则,及熟练运用合并同类项的法则,其是各地中考的常考点.注意去括号法则为:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.9.(2015泗洪县校级模拟)已知a,b两数在数轴上对应的点的位置如图所示,则化简代数式|a+b|﹣|a﹣2|+|b+2|的结果是()A.2a+2b B.2b+3 C.2a﹣3 D.﹣1考点:整式的加减;数轴;绝对值.分析:根据a,b两数在数轴上对应的点的位置可得:b<﹣1<1<a<2,然后进行绝对值的化简,最后去括号合并求解.解答:解:由图可得:b<﹣1<1<a<2,则有:|a+b|﹣|a﹣2|+|b+2|=a+b+(a﹣2)+b+2=a+b+a﹣2+b+2=2a+2b.故选A.点评:本题考查了整式的加减,解答本题的关键是根据a、b在数轴上的位置进行绝对值的化简.10.(2015春淅川县期末)若x﹣y=2,x﹣z=3,则(y﹣z)2﹣3(z﹣y)+9的值为()A.13 B.11 C.5 D.7考点:整式的加减—化简求值.分析:先求出z﹣y的值,然后代入求解.解答:解:∵x﹣y=2,x﹣z=3,∴z﹣y=(x﹣y)﹣(x﹣z)=﹣1,则原式=1+3+9=13.故选A.点评:本题考查了整式的加减﹣化简求值,解答本题的关键是根据题目所给的式子求出z﹣y的值,然后代入求解.二.填空题(共10小题)11.(2015遵义)如果单项式﹣xy b+1与x a﹣2y3是同类项,那么(a﹣b)2015= 1 .考点:同类项.分析:根据同类项的定义(所含字母相同,相同字母的指数相同)可得:a﹣2=1,b+1=3,解方程即可求得a、b的值,再代入(a﹣b)2015即可求解.解答:解:由同类项的定义可知a﹣2=1,解得a=3,b+1=3,解得b=2,所以(a﹣b)2015=1.故答案为:1.点评:考查了同类项,要求代数式的值,首先要求出代数式中的字母的值,然后代入求解即可.12.(2015泗洪县校级模拟)若单项式2x2y m与的和仍为单项式,则m+n的值是5 .考点:同类项.专题:计算题.分析:根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程m=3,n=2,再代入代数式计算即可.解答:解:由题意得:n=2,m=3,∴m+n=5,故答案为:5.点评:本题考查同类项的知识,注意掌握同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.13.(2015诏安县校级模拟)若﹣2x2y m与6x2n y3是同类项,则mn= 3 .考点:同类项.分析:根据同类项的定义中相同字母的指数也相同,可先列出关于m和n的二元一次方程组,再解方程组求出它们的值,即可解答.解答:解:∵﹣2x2y m与6x2n y3是同类项,∴,解得,mn=3,故答案为:3.点评:本题考查了同类项,利用同类项得出关于m、n的方程组是解题关键.14.(2015衡阳县校级二模)单项式﹣4x2y3的系数是﹣4 ,次数是 5 .考点:单项式.专题:计算题.分析:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.解答:解:单项式﹣4x2y3的系数是﹣4,次数是5.故答案为:﹣4、5.点评:此题考查了单项式的知识,掌握单项式的系数、次数的定义是解答本题的关键.15.(2015长沙校级二模)单项式的系数与次数之积为﹣2 .考点:单项式.分析:根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.求出次数和系数,再将其相乘即可.解答:解:根据单项式定义得:单项式的系数是﹣,次数是3;其系数与次数之积为﹣×3=﹣2.点评:确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.16.(2015徐州模拟)多项式﹣3m+2 与m2+m﹣2的和是m2﹣2m.考点:整式的加减.专题:计算题.分析:根据题意列出关系式,去括号合并即可得到结果.解答:解:根据题意得:(m2﹣2m)﹣(m2+m﹣2)=m2﹣2m﹣m2﹣m+2=﹣3m+2.故答案为:﹣3m+2.点评:此题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.17.(2015秋开封校级月考)多项式﹣2m2+3m﹣的各项系数之积为 3 .考点:多项式.分析:根据多项式各项系数的定义求解.多项式的各项系数是单项式中各项的系数,由此即可求解.解答:解:多项式﹣2m2+3m﹣的各项系数之积为:﹣2×3×(﹣)=3.故答案为:3.点评:此题主要考查了多项式的相关定义,解题的关键是熟练掌握多项式的各项系数和次数的定义即可求解.18.(2015春乐平市期中)在代数式3xy2,m,6a2﹣a+3,12,,中,单项式有 3 个,多项式有 2 个.考点:多项式;单项式.专题:计算题.分析:数字与字母或字母与字母的乘积为单项式,单独一个数字或字母也是单项式;多项式为几个单项式的和组成,即可做出判断.解答:解:代数式3xy2,m,6a2﹣a+3,12,4x2yz﹣xy2,中,单项式有3xy2,m,12共3个,多项式有6a2﹣a+3,4x2yz﹣xy2共2个.故答案为:3;2点评:此题考查了多项式与单项式,熟练掌握各自的定义是解本题的关键.19.(2014高港区二模)单项式﹣2πa2bc的系数是﹣2π.考点:单项式.分析:根据单项式系数的定义来判断,单项式中数字因数叫做单项式的系数.解答:解:根据单项式系数的定义,单项式﹣2πa2bc的系数是﹣2π,故答案为:﹣2π.点评:本题属于简单题型,注意单项式中的数字因数叫做单项式的系数.20.(2015春滨海县校级月考)观察一列单项式:x,3x2,5x3,7x,9x2,11x3…,则第2013个单项式是4025x3.考点:单项式.专题:规律型.分析:根据题意找出规律,根据此规律即可得出结论.解答:解:第一个单项式=x;第二个单项式=(1+2)x2=3x2;第三个单项式=(1+2+2)x3=5x3;第四个单项式=(1+2+2+2)x2=x2;…,∴第四个单项式的系数为1+2+…+2,(n﹣1)个2相加,∴第2013个单项式的系数2012个2与1的和=1+2012×2=4025,∵=671,∴第2013个单项式的次数是3,∴第2013个单项式是4025x3.故答案为:4025x3.点评:本题考查的是单项式,根据题意找出规律是解答此题的关键.三.解答题(共6小题)21.(2014秋镇江校级期末)合并同类项①3a﹣2b﹣5a+2b②(2m+3n﹣5)﹣(2m﹣n﹣5)③2(x2y+3xy2)﹣3(2xy2﹣4x2y)考点:合并同类项;去括号与添括号.分析:(1)根据合并同类项:系数相加字母部分不变,可得答案;(2)根据去括号,可化简整式,根据合并同类项,可得答案;(3)根据去括号,可化简整式,根据合并同类项,可得答案.解答:解:(1)原式=(3a﹣5a)+(﹣2b+2b)=﹣2a;(2)原式=2m+3n﹣5﹣2m+n+5=(2m﹣2m)+(3n+n)+(﹣5+5)=4n;(3)原式=2x2y+6xy2﹣6xy2+12x2y=(2x2y+12x2y)+(6xy2﹣6xy2)=14x2y.点评:本题考查了合并同类项,合并同类项:系数相加字母部分不变,去括号要注意符号.22.(2014秋海口期末)化简:(1)16x﹣5x+10x(2)7x﹣y+5x﹣3y+3(3)a2+(2a2﹣b2)+b2(4)6a2b+(2a+1)﹣2(3a2b﹣a)考点:整式的加减.专题:计算题.分析:(1)原式合并同类项即可得到结果;(2)原式合并同类项即可得到结果;(3)原式去括号合并即可得到结果;(4)原式去括号合并即可得到结果.解答:解:(1)原式=(16﹣5+10)x=21x;(2)原式=7x﹣y+5x﹣3y+3=12x﹣4y+3;(3)原式=a2+2a2﹣b2+b2=3a2;(4)6a2b+2a+1﹣6a2b+2a=4a+1.点评:此题考查了整式的加减,熟练掌握运算法则是解本题的关键.23.(2014秋江西期末)化简:8n2﹣[4m2﹣2m﹣(2m2﹣5m)].考点:整式的加减.分析:运用整式的加减的法则求解即可.解答:解:8n2﹣[4m2﹣2m﹣(2m2﹣5m)]=8n2﹣(4m2﹣2m﹣2m2+5m)=8n2﹣4m2+2m+2m2﹣5m=8n2﹣2m2﹣3m.点评:本题主要考查了整式的加减,解题的关键是熟记整式的加减运算法则.24.(2014秋武侯区期末)已知代数式mx3+x3﹣nx+2015x﹣1的值与x的取值无关.(1)求m x的值;(2)若关于y 的方程﹣y=2的解是y=m x,求|1﹣2a|的值.考点:多项式;解一元一次方程.分析:(1)根据题意知,x3、x的系数为0,由此求得m、n的值.(2)把(1)中的m x的值代入已知方程求得a的值,然后来求|1﹣2a|的值.解答:解:(1)mx3+x3﹣nx+2015x﹣1=(m+1)x3+(2015﹣n)x﹣1.∵代数式mx3+x3﹣nx+2015x﹣1的值与x的取值无关,∴m+1=0,2015﹣n=0,解得m=﹣1,n=2015.∴m x=1或m x=﹣1;(2)由(1)知,m x=1或m x=﹣1.①当m x=1时,y=1,则﹣1=2,解得a=3,则|1﹣2a|=|1﹣2×3|=5;当m x=﹣1时,y=﹣1,则+1=2,解得a=7,则|1﹣2a|=|1﹣2×7|=13;综上所,|1﹣2a|=5或|1﹣2a|=13.点评:本题考查了多项式,先合并同类项,再根据x3、x的系数都为零得出方程.25.(2014秋腾冲县校级期末)已知:A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1.若3A+6B的值与x的值无关,求y的值.考点:整式的加减.分析:先求出3A+6B的结果,然后根据3A+6B的值与x的值无关,可知x的系数为0,据此求出y的值.解答:解:3A+6B=3(2x2+3xy﹣2x﹣1)+6(﹣x2+xy﹣1)=(15y﹣6)x﹣9,∵3A+6B的值与x的值无关,∴15y﹣6=0,解得:y=.点评:本题考查了整式的加减,解答本题的关键是掌握去括号法则和合并同类项法则.26.(2014咸阳模拟)已知A=5a+3b,B=3a2﹣2a2b,C=a2+7a2b﹣2,当a=1,b=2时,求A﹣2B+3C的值.考点:整式的加减.分析:先把A、B、C代入,再进行化简,最后代入求出即可.解答:解:∵A=5a+3b,B=3a2﹣2a2b,C=a2+7a2b﹣2,∴A﹣2B+3C=(5a+3b)﹣2(3a2﹣2a2b)+3(a2+7a2b﹣2)=5a+3b﹣6a2+4a2b+3a2+21a2b﹣6=﹣3a2+25a2b+5a+3b﹣6,当a=1,b=2时,原式=﹣3×12+25×12×2+5×1+3×2﹣6=52.点评:本题考查了整式的化简求值和有理数的混合运算的应用,主要考查学生的计算能力和化简能力.。
整式的运算练习题及答案
整式的运算练习题及答案一、填空题:1、单项式53223的系数是_________,次数是___________。
2、多项式?x2y?xy3三次项系数是_______,常数项是_________。
?3x?2?中,23、若am?2,an?3,则am?n?__________,a3m?2n?___________。
、单项式?2x2y,?12xy,2xy,?xy的和是_____________________________。
2225、若2x?3?3x?3?36x?2,则x=_________________。
、=___________________。
32n?_________7、若?x2?mx?n,则m?_________,。
8、 ??________________。
、 52?4?4。
10、3xy?214y。
211、0.1256?26?46?______________。
12、??_____________。
二、选择题:1、代数式?x?2x?2是A、多项式B、三次多项式C、三次三项式D、四次三项式、 ?[a?]去括号后应为A、?a?b?cB、?a?b?cC、?a?b?cD、?a?b?c 、?4n?3A、x4nB、xC、x4n?1D、x4n?14、下列式子正确的是A、a?1B、?5445C、?a2?9D、2?a2?b2、下列式子错误的是 A、2?116B、?2??11161C、3??6、2100?9964D、?3?64?12A、2B、?C、、4?3?D、?12A、p?qB、?p?qC、q?pD、p?q、已知3a?5,9b?10,则3a?2b?A、?50B、50C、500D、不知道、a?b?2,ab??2,则a2?b2?A、?B、C、0D、?810、一个正方形的边长若增加3cm,它的面积就增加39cm,这个正方形的边长原来是 A、8cm B、6cmC、5cmD、10cm二、计算:1、3?2?42、??4232645105112112124、x??5、2?[x?]?6、232323xy?549xy)?433xy332?2??2xy?[3xy?2?]四、先化简,再求值1、?2,其中a??5,b?2、已知A?五、利用整式的乘法公式计算:① 1999?2001 ②992?1六、在一次水灾中,大约有2.5?105个人无家可归,假如一顶帐篷占地100米2,可以放置40个床位,为了安置所有无家可归的人,需要多少顶帐篷?这些帐篷大约要占多少地方?估计你的学校的操场可安置多少人?要安置这些人,大约需要多少个这样的操场?七、探究题: 1、求??1的个位数字。
七年级上学期数学《整式的运算》章节测试题附详细答案
七年级上学期数学《整式的运算》章节测试题(时间:90分钟 满分:100分)一、选择题(每题3分,共30分)1.下列计算:①a 3·a 3=2a 6;②m 2+m 3=2m 5;③(−2a 2)2=−4a 4;④x 8÷x 4= x 2;⑤a 2·(a 10÷a 4)=a 8;⑥(a −b)2÷(b −a)2=1;⑦m+a 2n+a 2=m n 。
其中正确的个数为( )。
A.4个B.3个C.2个D.1个2.若单项式8a k+m b n 与a k+2b 2的和是一个单项式,且k 为非负整数,则满足条件的k 值有( )。
A.1组B.2组C.3组D.无数组3.若M+N=x 2−3,M=3x −3,则N 是( )。
A.x 2+3x −6B.−x 2+3xC.x 2−3x −6D.x 2−3x4.代数式2a 2−3a+1的值是6,则4a 2−6a+5的值是( )。
A.17B.15C.20D.255.若a 3·a 4·a n =a 9,则n=( )。
A.1B.2C.3D.46.若a ≠0,下面各式中错误的是( )。
A.a -n =(1a )nB.a -m =1a mC.a -p =−1a pD.a -8=1a 8 7.( 34)-2、( 65)2、(76)0三个数中,最大的是( )。
A.(34)-2 B.(65)2 C.(76)0 D.无法确定 8.若a+b=0,ab=11,则a 2−ab+b 2的值为( )。
A.11B.−11C.−33D.339.代数式(y −1)(y+1)(y 2+1)−(y 4+1)的值是( )。
A.0B.2C.−2D.不确定10.若a −b=2,a −c=1,则(2a −b −c)2+(c −a)2=( )。
A.9B.10C.2D.1二、填空题(每题3分,共30分)11.多项式4x −23x 2y 2−x 3y+5y 3−7按x 的降幂排列是____________________。
人教版七年级数学下册第一章《整式的乘除》单元测试卷含答案
七年级数学下册第一章《整式的乘除》单元测试卷满分:150分题号一二三四总分得分一、选择题(本大题共15小题,共45.0分)1.下列计算正确的是()A. b3⋅b3=2b3B. (ab2)3=ab6C. (a3) 2⋅a4=a9D. (a5)2=a102.数学家赵爽公元3~4世纪在其所著的《勾股圆方图注》中记载如下构图,图中大正方形的面积等于四个全等长方形的面积加上中间小正方形的面积.若大正方形的面积为100,小正方形的面积为25,分别用x,y(x>y)表示小长方形的长和宽,则下列关系式中不正确的是A. x+y=10B. x−y=5C. xy=15D. x2−y2=503.若x2+(m−3)x+16是完全平方式,则m=()A. 11或−7B. 13或−7C. 11或−5D. 13或−54.计算(2a2b)2÷(ab)2的结果是()A. 4a3B. 4abC. a3D. 4a25.若x+y=7,xy=10,则x2−xy+y2的值为()A. 30B. 39C. 29D. 196.如图,对一个正方形进行了分割,通过面积恒等,能够验证下列哪个等式()A. x2−y2=(x−y)(x+y)B. (x−y)2=x2−2xy+y2C. (x+y)2=x2+2xy+y2D. (x−y)2+4xy=(x+y)27.下列计算正确的是A. a2·a3=a6B. (a2)3=a6C. (2a)3=2a3D. a10÷a2=a58.如图,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成一矩形如图,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是()A. (a−b)(a+2b)=a2−2b2+abB. (a+b)2=a2+2ab+b2C. (a−b)2=a2−2ab+b2D. (a−b)(a+b)=a2−b29.观察下面图形,从图1到图2可用式子表示为()A. (a+b)(a−b)=a2−b2B. a2−b2=(a+b)(a−b)C. (a+b)2=a2+2ab+b2D. a2+2ab+b2=(a+b)210.下列语句中正确的是()A. (−1)−2是负数B. 任何数的零次幂都等于1C. 一个不为0的数的倒数的−p次幂(p是正整数)等于它的p次幂D. (23−8)0=111.下列四个算式: ①2a3−a3=1; ②(−xy2)⋅(−3x3y)=3x4y3; ③(x3)3⋅x=x10; ④2a2b3⋅2a2b3=4a2b3.其中正确的有()A. 1个B. 2个C. 3个D. 4个12.如果一个数等于两个连续奇数的平方差,那么我们称这个数为“幸福数”.下列数中为“幸福数”的是()A. 205B. 250C. 502D. 52013.下列运算正确的是()A. (−2ab)⋅(−3ab)3=−54a4b4B. 5x2⋅(3x3)2=15x12×10n)=102nC. (−0.1b)⋅(−10b2)3=−b7D. (3×10n)(1314.已知多项式x2+kx+36是一个完全平方式,则k=()A. 12B. 6C. 12或−12D. 6或−615.与(a−b)3[(b−a)3]2相等的是()A. (a−b)8B. −(b−a)8C. (a−b)9D. (b−a)9二、填空题(本大题共5小题,共25.0分)16.若单项式3x2y与−2x3y3的积为mx5y n,则m+n=.17.定义a※b=a(b+1),例如2※3=2×(3+1)=2×4=8.则(x−1)※x的结果为.18.计算:(1)8m÷4m=;(2)27m÷9m÷3=.19.计算:2019×1981=.20.已知31=3,32=9,33=27,34=81,35=243,36=729⋯⋯,设A=(3+1)×(32+1)×(34+1)×(38+1)×(316+1)×(332+1)×2+1,则A的个位数字是.三、计算题(本大题共2小题,共18.0分)计算:(1)(−2)8⋅(−2)5;(2)(a−b)2⋅(a−b)⋅(a−b)5;(3)x m⋅x n−2⋅(−x2n−1)21. 先化简,再求值:(2x +3y)2−(2x +y)(2x −y),其中x =13,y =−12.四、解答题(本大题共5小题,共62.0分)22. 某中学为了响应国家“发展体育运动,增强人民体质”的号召,决定建一个长方体游泳池,已知游泳池长为(4a 2+9b 2)m ,宽为(2a +3b)m ,深为(2a −3b)m ,请你计算一下这个游泳池的容积是多少⋅23. 形如|acb d |的式子叫做二阶行列式,它的运算法则用公式表示为|acb d |=ad −bc ,比如:|2513|=2×3−1×5=1.请你按照上述法则,计算|−2ab a 2b−3ab 2(−ab)|的结果.24.如图,甲长方形的两边长分别为m+1,m+7;乙长方形的两边长分别为m+2,m+4.(其中m为正整数)(1)图中的甲长方形的面积S1,乙长方形的面积S2,比较:S1S2;(填“<”“=”或“>”)(2)现有一正方形,其周长与图中的甲长方形的周长相等,试探究:该正方形的面积S与图中的甲长方形的面积S1的差(即S−S1)是一个常数,求出这个常数.25.小明想把一张长为60cm、宽为40cm的长方形硬纸片做成一个无盖的长方体盒子,于是在长方形纸片的四个角各剪去一个相同的小正方形.(1)若设小正方形的边长为x cm,求图中阴影部分的面积;(2)当x=5时,求这个盒子的体积.26.小红家有一块L型的菜地,如图所示,要把L型的菜地按图那样分成面积相等的梯形,种上不同的蔬菜,这两个梯形的上底都是a m,下底都是b m,高都是(b−a)m,请你帮小红家算一算这块菜地的面积共有多少,并求出当a=10,b=30时,L型菜地的总面积.答案1.D2.C3.C4.D5.D6.C7.B8.D9.A10.C11.B12.D13.D14.C15.C16.−217.x2−118.2m3m−119.399963920.121.解:(1)原式=−28×25=−213;(2)原式=(a−b)2+1+5=(a−b)8;(3)原式=−x m+n−2+2n−1=−x m+3n−3.22.解:(2x+3y)2−(2x+y)(2x−y)=(4x2+12xy+9y2)−(4x2−y2)=4x2+12xy+9y2−4x2+y2=12xy+10y2,当x =13,y =−12时,原式=12×13×(−12)+10×(−12)2=12.23.解:这个游泳池的容积是(16a 4−81b 4)m 3.24.解:|−2ab a 2b −3ab 2(−ab )|=−2ab ⋅(−ab )−a 2b ·(−3ab 2)=2a 2b 2+3a 3b 3.25.解:(1)>(2)图中的甲长方形的周长为2(m +7+m +1)=4m +16.所以该正方形的边长为m +4.所以S −S 1=(m +4)2−(m 2+8m +7)=9.所以这个常数为9.26.解:(1)阴影部分的面积为(4x 2−200x +2400)cm 2.(2)这个盒子的体积为7500cm 3.27.解:这块菜地的面积共有(b 2−a 2)m 2,当a =10,b =30时,L 型菜地的总面积为800m 2.。
整式的运算单元测试题及答案
整式的运算单元测试题及答案北师大版七年级数学(下)第一章单元测试题时量:90分钟总分:100分)XXXXXX班级:________ 姓名:________ 成绩:________一、填空题:(每小题2分,计24分)1、单项式的系数是-2,次数是3.2、多项式-xy-5的三次项系数是3,常数项是-2π。
3、若am=2.an=3,则am-n=2/3,a3m-2n=8.4、单项式-2xy。
-2.2xy。
-xy2的和是0.5、若2a-3b=5,则a=(5+3b)/2.6、(-22xy)3= -88x3y3.7、(a-b)(b-a)=-(a-b)2.8、(-6x+18x-8x)/(-6x)=-4.9、(-x5)÷(x2×2×4)=-(1/8)x3.10、(x+xy)/(-3xy)= -5/3.11、0.125×2×4=0.25.12、(a-b)2=a2-2ab+b2.二、选择题:(每小题2分,共20分)1、代数式- x+2x+2是四次三项式。
2、- [a-(b+c)]去括号后应为- a+b+c。
3、(xn+12)×(x2)n-1=x4n+3.4、下列式子正确的是a=1.5、下列式子错误的是- 2=-23.6、2×(-1/2)=-1.7、(-2)2=4.8、(-a+3)(-a-3)=a2-9.9、下列各式中,正确的是(-x5)÷(x2×2×4)=-(1/8)x3.10、(x+xy)-(-3xy)= -2xy。
11、0.125×2×4=0.25.12、(a-b)2=a2-2ab+b2.1、(p-q)/(q-p)=A、p-qB、-p-qC、q-pD、p+q改写:(p-q)/(q-p)可以简化为-(q-p)/(q-p),即-A2、a+2b=8,已知3=5,9=10,则3ab/43改写:a+2b=8,3/5=9/10,则3ab/43=3/5*9/10*(a+b)^2=27/50*(a+b)^23、a+b=2,ab=-2,则a+b=?改写:a+b=2,ab=-2,可以得到(a-b)^2=0,即a-b=0,所以a+b=24、一个正方形的边长若增加3cm,它的面积就增加39cm²,这个正方形的边长原来是A、8cmB、6cmC、5cmD、10cm改写:设原正方形边长为x,则(x+3)²-x²=39,解得x=5,所以原正方形边长为5cm五、①1999×2001=xxxxxxx②99-1=98六、需要帐篷的数量为2.5×10⁴/40=625,占地面积为625×100=平方米。
整式的运算单元测试题
一、选择题1. 下列计算正确的是()A.( a^3cdot a^4 = a^7)B.( (a^2)^3 = a^5)C.( a^0div a^3 = a^3)D.( (a^2)^4 = a^8)答案:D2. 若单项式( 3x^my^2m) 与( -2x^{2n-2}y^8) 的和仍是一个单项式,则 m 的值是()A. 1B. 2C. 3D. 4答案:C3. 如果( a^2n - 1/a^{n+5} = a^{16}),那么 n 的值为()A. 3B. 4C. 5D. 6答案:B4. 计算( (-4a^2 + 12a^3b)div (-4a^2)) 的结果是()A.( 1 - 3ab)B.( -3ab)C.( 1 + 3ab)D.( -1 - 3ab)答案:B5. 若等式( x^2 + ax + 19 = (x-5)^2 - b) 成立,则( a+b) 的值为()A. 16B. -16C. 4D. -4答案:A6. 如果多项式( y^2 - 4my + 4) 是完全平方式,那么 m 的值是()A. 1B. -1C. ±1D. ±2答案:C7. 如图的面积关系,可以得到的恒等式是()A.( m(a+b+c) = ma + mb + mc)B.( (a+b)(a-b) = a^2 - b^2)C.( (-x+y)(-x-y) = x^2 - y^2)D.( (2x^2 - y)(2x^2 + y) = 4x^4 - y^2)答案:B8. 若( a - b = 2),\( a - c = 1),则( (2a - b - c)^2 + (c - a)^2) 的值是()A. 11B. -11C. -33D. 33答案:D9. 代数式( (y-1)(y+1)(y^2+1) - (y^4+1)) 的值是()A. 0B. 2C. -2D. -1答案:A10. 若( a - b = 2),\( a - c = 1),则( (2a - b - c)^2 + (c - a)^2) 的值是()A. 11B. -11C. -33D. 33答案:D二、填空题11. 在适宜的动物身上可以复制某种疾病,从而了解疾病的__________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学整式的运算单元测试题及答案
第七章整式的运算
一、选择题。
1、下列判断中不正确的是( )
①单项式m的次数是0 ②单项式y的系数是1
③,-2a都是单项式④ +1是二次三项式
2、如果一个多项式的次数是6次,那么这个多项式任何一项的次数( )
A、都小于6
B、都等于6
C、都不小于6
D、都不大于6
3、下列各式中,运算正确的是( )
A、B、
C、D、
4、下列多项式的乘法中,可以用平方差公式计算的有( )
A、B、
C、D、
5、在代数式中,下列结论正确的是( )
A、有3个单项式,2个多项式
B、有4个单项式,2个多项式
C、有5个单项式,3个多项式
D、有7个整式
6、关于计算正确的是( )
A、0
B、1
C、-1
D、2
7、多项式中,最高次项的系数和常数项分别为( )
A、2和8
B、4和-8
C、6和8
D、-2和-8
8、若关于的积中常数项为14,则的值为( )
A、2
B、-2
C、7
D、-7
9、已知,则的值是( )
A、9
B、49
C、47
D、1
10、若,则的值为( )
A、-5
B、5
C、-2
D、2
二、填空题
11、=_________。
12、若,则。
13、若是关于的完全平方式,则。
14、已知多项多项式除以多项式A得商式为,余式为,则多项式A为________________。
15、把代数式的共同点写在横线上_______________。
16、利用_____公式可以对进行简便运算,运算过程为:原式=_________________。
17、。
18、,则P=______,=______。
三、解答题
19、计算:(1)
(2)
(3)
20、解方程:
21、先化简后求值:,其中。
参考答案
一、选择题
1、B
2、D
3、D
4、B
5、A
6、B
7、D
8、B
9、C 10、C
二填空题
11、12、2;4 13、或7 14、
15、(1)都是单项式(2)都含有字母、;(3)次数相同
16、平方差;
17、18、;
三、解答题
19、(1)1 (2) (3)
20、
唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。
而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。
“教授”和“助教”均原为学官称谓。
前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。
“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。
唐代
国子学、太学等所设之“助教”一席,也是当朝打眼的学官。
至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。
至此,无论是“博士”“讲师”,还是“教授”“助教”,其今日教师应具有的基本概念都具有了。
要练说,得练听。
听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。
我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我特别重视教师的语言,我对幼儿说话,注意声音清楚,高低起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。
当我发现有的幼儿不专心听别人发言时,就随时表扬那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们专心听,用心记。
平时我还通过各种趣味活动,培养幼儿边听边记,边听边想,边听边说的能力,如听词对词,听词句说意思,听句子辩正误,听故事讲述故事,听谜语猜谜底,听智力故事,动脑筋,出主意,听儿歌上句,接儿歌下句等,这样幼儿学得生动活泼,轻松愉快,既训练了听的能力,强化了记忆,又发展了思维,为说打下了基础。
21、34
其实,任何一门学科都离不开死记硬背,关键是记忆有技
巧,“死记”之后会“活用”。
不记住那些基础知识,怎么会向高层次进军?尤其是语文学科涉猎的范围很广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基础知识抓起,每天挤一点时间让学生“死记”名篇佳句、名言警
句,以及丰富的词语、新颖的材料等。
这样,就会在有限的时间、空间里给学生的脑海里注入无限的内容。
日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。