正方形的内接圆与外接圆教学内容

合集下载

正方体内切球、外接球、棱切球、图例演示ppt课件

正方体内切球、外接球、棱切球、图例演示ppt课件
2
S 4R2 3a 2
D A
D A11
D A
D A11
C B O
C1
B1
C B O
C1
B1
正方体的外接球
正方体的外接球
D A
D1 A1
C
B O
C1 B1
对角面 A
A1
C
O
C1
正方体的外接球直径是体对角线
例2.如图,正方体ABCD-A1B1C1D1的棱长 为a,它的各个顶点都在球O的球面上,问球
球的表面积和体积
D1
A1
d
D
S
A
a
C1
c B1
C
b
B
d2 a2 b2 c2
球的体积
球面:半圆以它的直径为旋转轴,旋转所成的曲面。 球(即球体):球面所围成的几何体。
它包括球面和球面所包围的空间。
半径是R的球的体积:V 4R3
3
2、球的表面积
S 4πR2
练习一:
(1)球的半径伸长为原来的2倍,体积变为原 来的——8 倍.
O的表面积。
略解:RtB1 D1ຫໍສະໝຸດ D中 :(2R)2 a 2 ( 2a)2 , 得 R 3a
2
S 4R2 3a 2
D A
D A11
D A
C B
O C1
B1
C B
D A11
O C1
B1
正方体的棱切球
正方体的棱切球直径是面对角线长
(2)若球的表面积变为原来的2倍,则半径变
2
为原来的——倍。
(3)若球半径变为原来的2倍,则表面积变
4
为原来的——倍。
(4)若两球表面积之比为1:2,则其体积之

难点突破:立体图形的外接球与内切球问题

难点突破:立体图形的外接球与内切球问题

2018届高三数学第一轮复习教学案18:难点突破:立体图形的外接球与内切球问题一、基础知识与概念:1.球的截面:用一个平面去截球,截面是圆面;用一个平面去截球面,截面是圆.大圆:截面过球心,半径等于球半径(截面圆中最大);小圆:截面不过球心.2.球心和截面圆心的连线垂直于截面.3.球心到截面的距离d与球半径R及截面圆半径r的关系:222R d r=+.4.几何体的外接球:几何体的顶点都在球面上;几何体的内切球:球与几何体的各个面都相切.二、多面体的外接球(球包体)模型1:球包直柱(直锥):有垂直于底面的侧棱(有垂底侧边棱)球包直柱球径公式:222hR r⎛⎫=+⎪⎝⎭,(r为底面外接圆半径)球包正方体球包长方体球包四棱柱球包三棱柱球包直锥三棱锥四棱锥r速算模型2:“顶点连心”锥:锥体的顶点及球心在底面的投影都是底面多边形外接圆的圆心(两心一顶连成线)实例:正棱锥球径计算方程:()222h R r R -+=2222202h r h hR r R h+⇒-+=⇒=,(h 为棱锥的高,r 为底面外接圆半径) 特别地,(1)边长为a 正四面体的外接球半径:R =______________.(2)底面边长为a ,高为h 的正三棱锥的外接球半径:R =__________. (3)底面边长为a ,高为h 的正四棱锥的外接球半径:R =__________.例:1.(2017年全国卷III 第8题)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A .πB .34πC .2π D .4π 【解析】模式辨识:“球包体”中的“垂底侧边棱(母线)”类型,1h =,1R =,底面半径为r ,则由222h R r⎛⎫=+ ⎪⎝⎭得:222213124r r ⎛⎫=+⇒= ⎪⎝⎭,234V r h ππ==.2.(2010年全国新课标卷第10题)设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为A .2a πB .273a πC .2113a πD .25a π【解析】“球包体”中的“垂底侧边棱”类型,h a =,3r =,222222724312h a a a R r ⎛⎫=+=+= ⎪⎝⎭, 所以该球的表面积2227744123a a S R ππ==⨯=.答案B . 3.(2014年全国大纲卷第8题)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为A .814πB .16πC .9πD .274π【解析】模式辨识:“球包体”中的“顶点连心锥”,4h =,222r ==221629284h r R h ++===, 所以2818144164S R πππ==⨯=,答案:A . 4.(2013年全国卷I 第6题)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为A .35003cm πB .38663cm πC .313723cm πD .320483cm π【解析】设水面与球的接触点(切点)为P ,球心为O ,则PO 垂直于正方体的上表面,依题意P 到正方体上表面的距离为2h =,球与正方体上表面相交圆的半径4r =,有:()2222R r R -+=,2454r R +⇒==,所以球的体积3450033V R ππ==. 三、定心大法:球心在过截面圆的圆心且垂直于截面圆所在平面的直线上.两圆定心法:如下图,过两个截面圆的圆心分别作相应截面圆的垂线,由两垂线的交点确定圆心.例2:1.已知边长为23的棱形ABCD 中,60∠=︒,现沿对角线BD 折起,使得二面角A BD C --为120︒,此时点A ,B ,C ,D 在同一个球面上,则该球的表面积为( )A .20πB .24πC .28πD .32π2.在矩形ABCD 中,4AB =,3BC =,沿AC 将矩形折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积为___________.3.在边长为1的菱形ABCD 中,60BAD ∠=︒,沿对角线将菱形折成直二面角A BD C --,则三棱锥A BCD -的外接球的表面积为_____________. 四、正多面体的内切球(体中球)锥体的内切球:R =____________.圆锥的内切球:R =边长为a 的正方体: 2aR =等边圆柱(母线a ):R =2a . 边长a 的正八面体:R =五、正多面体的“切边球”(与所有的棱都相切的球)正四面体边长为a ,球半径R =正方体边长为a ,球半径R =正四面体边长为a ,球半径R =例3:1.一个球的外切正方体的全面积为6,则球的体积为_________.2.某圆锥的截面为边长为2的正三角形,则该圆锥的内切球的表面积为_______.3.(2016年全国卷III 第10题)在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是A .4πB .92πC .6πD .323π【解析】考查直三棱柱中截面的内切圆为球的大圆的情景,有()13681068222AA R R ++=⨯⇒=>=,故当球半径为32时球的体积最大为344273382V R πππ9==⨯=.答案B . 练习:1.(2015年全国卷II 第9题)已知A ,B 是球O 的球面上两点,90AOB ∠=︒,C 为该球面上的动点,若三棱锥O ABC -体积的最大值为36,则球O 的表面积为A .36πB .64πC .144πD .256π2.(2016年福建漳州市5月质检)三棱锥S ABC -中,SB ⊥平面ABC ,5SB =ABC ∆3的正三角形,则三棱锥S ABC -的外接球的表面积为()A .3πB .5πC .9πD .12π3.(2014年湖南卷)一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )A .1B .2C .3D .44.(2013年辽宁卷理10)已知三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若3AB =,4AC =,AB AC ⊥,112AA =,则球O 的半径为()A 317B .10C .132D .3105.(2012年全国新课标卷第11题)已知三棱锥S ABC -的所有顶点都在球O 的球面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为A .26B .36C .23D .226.在正三棱锥P ABC -中,3PA PB PC ===,侧棱PA 与底面ABC 所成的角为60︒,则该三棱锥外接球的体积为( )A .πB .3πC .4πD .43π 7.已知底面边长为12的正四棱柱的各顶点均在同一个球面上,则该球的体积为( )A .323πB .4πC .2πD .43π 8.(2017年福建省质检).空间四边形ABCD 的四个顶点都在同一球面上,E 、F 分别是AB 、CD 的中点,且,EF AB EF CD ⊥⊥,若8,4AB CD EF ===,则该球的半径等于A .65216B .28C .652D 659.若三棱锥P ABC -的最长的棱2PA =,且各面均为直角三角形,则此三棱锥的外接球的体积是__________. 10.(2008年高考浙江卷理14)已知球O 的面上四点A 、B 、C 、D ,DA ⊥平面ABC ,AB BC ⊥,3DA AB BC ===,则球O 的体积为____________.11.(2016年东北三省三校联考)三棱柱111ABC A B C -各顶点都在一个球面上,侧棱与底面垂直,120ACB ∠=︒,23CA CB ==14AA =,则这个球的表面积为____________.12.在三棱柱111ABC A B C -中,侧棱1AA 垂直底面,90ACB ∠=︒,30BAC ∠=︒,1BC =,且三棱柱111ABC A B C -的体积为3,则三棱柱111ABC A B C -的外接球表面积为_________.13.在正三棱锥S ABC -中,M ,N 分别是棱SC 、BC 的中点,且AM MN ⊥,若侧棱23SA =,则正三棱锥S ABC -外接球的表面积是____________.14.在三棱锥A BCD -中,2AB CD ==,5AD BC ==7AC BD ==,则三棱锥A BCD -外接球的表面积为__________.15.(2017年天津卷)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为______.16.(2017年江苏卷)如图,在圆柱12O O 内有一个球,该球与圆柱的上、下底面及母线均相切,记圆柱12O O 的体积为1V ,球O 的体积为2V ,则12V V 的值是_____________.。

正多边形和圆教案

正多边形和圆教案

正多边形和圆教案第一章:正多边形的定义和性质1.1 教学目标了解正多边形的定义和性质能够计算正多边形的边数和内角大小1.2 教学内容引入正多边形的概念,通过图片和实物展示让学生直观感受讲解正多边形的性质,如边数、内角大小、对称性等引导学生通过观察和推理得出正多边形的性质1.3 教学活动通过图片和实物引导学生思考什么是正多边形学生自主探究正多边形的性质,记录下来并与同学交流教师总结正多边形的性质,并给出相关例题让学生巩固第二章:圆的定义和性质2.1 教学目标了解圆的定义和性质能够计算圆的半径和直径2.2 教学内容引入圆的概念,通过图片和实物展示让学生直观感受讲解圆的性质,如半径、直径、圆心等引导学生通过观察和推理得出圆的性质2.3 教学活动通过图片和实物引导学生思考什么是圆学生自主探究圆的性质,记录下来并与同学交流教师总结圆的性质,并给出相关例题让学生巩固第三章:正多边形和圆的关系3.1 教学目标了解正多边形和圆的关系能够计算正多边形的内切圆和外接圆3.2 教学内容讲解正多边形和圆的关系,如内切圆和外接圆的概念引导学生通过观察和推理得出正多边形和圆的关系3.3 教学活动学生通过观察和推理得出正多边形和圆的关系学生自主探究正多边形的内切圆和外接圆的计算方法,记录下来并与同学交流教师总结正多边形和圆的关系,并给出相关例题让学生巩固第四章:正多边形和圆的面积计算4.1 教学目标能够计算正多边形的面积和圆的面积4.2 教学内容讲解正多边形和圆的面积计算公式引导学生通过观察和推理得出正多边形和圆的面积计算方法4.3 教学活动学生通过观察和推理得出正多边形和圆的面积计算方法学生自主探究正多边形和圆的面积计算公式,记录下来并与同学交流教师总结正多边形和圆的面积计算方法,并给出相关例题让学生巩固第五章:正多边形和圆的应用5.1 教学目标了解正多边形和圆在实际中的应用5.2 教学内容讲解正多边形和圆在实际中的应用,如几何图形、建筑设计等5.3 教学活动学生通过图片和实物观察正多边形和圆在实际中的应用学生自主探究正多边形和圆在其他领域的应用,记录下来并与同学交流教师总结正多边形和圆的应用,并给出相关例题让学生巩固第六章:正多边形的内切圆和外接圆6.1 教学目标理解正多边形的内切圆和外接圆的概念。

正方形的外接圆和内切圆

正方形的外接圆和内切圆

正方形的外接圆和内切圆
正方形的外接圆和内切圆是几何学中常见的概念,它们的性质与
应用在许多领域中都有着不可忽视的作用,尤其在工程设计和数学理
论方面更是如此。

首先,我们来了解一下什么是正方形、外接圆和内切圆。

正方形
是一种有着四个等长且相互垂直的边的四边形,它的特点是四个内角
都是直角,并且对边平行。

外接圆是指一个圆形恰好与正方形的四个
顶点相切,使得圆心位于正方形的外部,并且四条边都是圆的切线。

内切圆是一个圆形恰好位于正方形的内部,使得圆心位于正方形的中心,四条边都是圆的切线。

正方形的外接圆和内切圆有着很多有趣的性质。

首先,正方形的
外接圆和内切圆半径分别为正方形对角线的一半和正方形边长的一半。

其次,当正方形的对角线与一条边重合时,正方形的内切圆与这条边
重合,这意味着正方形的内切圆可以作为一个非常简单但灵活的标尺。

此外,正方形的外接圆和内切圆还可以用来计算正方形的面积、周长
以及各种角度。

在实际应用中,正方形的外接圆和内切圆广泛用于工程设计和数
学理论之中。

举例来说,在建筑设计中,正方形的外接圆可以用于绘
制建筑物的草图和布局,以确定建筑物的各种尺寸和比例。

在电子工
程中,内切圆可以用于计算电容器的最大容量和电感器的最大电感量。

在数学理论中,正方形的外接圆和内切圆又被广泛应用于圆锥曲线、椭圆曲线等知识的研究和证明中。

总之,正方形的外接圆和内切圆是一个有趣且实用的几何概念,它蕴藏着许多奥妙和应用。

在我们的日常工作和学习中,学会运用它们是非常重要的,相信在不久的将来它们会在更多的领域中发挥出不可替代的独特作用。

与球有关的内切、外接问题

与球有关的内切、外接问题

(2)三棱锥A-BCD,侧棱长为2 5 ,底面是边长为2 3 的等边三角形, 125
则该三棱锥外接球的体积为___6__π__.
解析 如图所示,该三棱锥为正三棱锥,O为底面 BCD的中心且AO垂直于底面BCD,O′在线段AO上, O′为外接球球心, 令 O′A=O′D=R,OD=23DE=23×2 3× 23=2, AD=2 5,
(2) 三 棱 锥 A - BCD 的 四 个 面 都 是 直 角 三 角 形 , 且 侧 棱 AB 垂 直 于 底 面
BCD,BC⊥CD,AB=BC=2,且VA-BCD=
4 3
,则该三棱锥A-BCD外接
球的体积为__4___3_π__.
解析 因为AB⊥BC,BC⊥CD,构造如图所示的长方体, 则AD为三棱锥A-BCD的外接球的直径. 设外接球的半径为R. ∵VA-BCD=13×12×BC×CD×AB=16×2×CD×2=43, ∴CD=2,∴该长方体为正方体,∴AD=2 3,∴R= 3, 外接球体积为 V=43πR3=4 3π.
B,C,D都在同一球面上,则此球的体积为___3__.
解析 如图,设正四棱锥的底面中心为O1, ∴SO1垂直于底面ABCD,令外接球球心为O, ∴△ASC的外接圆就是外接球的一个轴截面圆, 外接圆的半径就是外接球的半径. 在△ASC 中,由 SA=SC= 2,AC=2,
得SA2+SC2=AC2. ∴△ASC是以AC为斜边的直角三角形. ∴A2C=1 是外接圆的半径,也是外接球的半径. 故 V 球=43π.
∴AO= AD2-OD2=4,∴OO′=4-R,
又OO′2+OD2=O′D2, ∴(4-R)2+4=R2,解得 R=52,∴V 球=43πR3=1625π.
反思 感悟

正方形的内切圆公式

正方形的内切圆公式

正方形的内切圆公式
正方形的内切圆是指一个圆恰好能够被一个正方形内部的四条
边所切,且与四条边相切。

对于一个边长为a的正方形来说,其内
切圆的半径r可以通过以下公式来计算:
r = a/2。

这个公式的推导可以通过几何分析和代数方法来得到,但在这
篇文章中,我们将重点关注正方形的内切圆的性质和应用。

首先,正方形的内切圆具有许多有趣的性质。

由于内切圆与正
方形的四条边相切,因此内切圆的直径等于正方形的边长,即2r=a。

此外,内切圆的直径也等于正方形的对角线长度,这为我们提供了
一个与内切圆和正方形之间关系的重要性质。

内切圆在几何和工程中有许多重要的应用。

例如,在建筑设计中,内切圆可以用来确定正方形空间内部最大的圆形柱体的尺寸。

在工程学和制造业中,内切圆可以用来确定正方形零件上的最大圆
孔的尺寸。

此外,内切圆还在许多数学问题和证明中扮演着重要的
角色,例如在计算正方形的面积和周长时,内切圆的性质可以被用
来简化问题并得到更简洁的解决方案。

总之,正方形的内切圆是一个简单而重要的几何概念,它具有
许多有趣的性质和广泛的应用。

通过深入理解内切圆的性质和公式,我们可以更好地应用它们于实际问题中,并在数学和工程领域中取
得更多的成就。

空间几何体的外接球和内切球问题讲课教案

空间几何体的外接球和内切球问题讲课教案

空间几何体的外接球和内切球问题空间几何体的外接球和内切球问题类型1 外接球的问题1.必备知识:(1)简单多面体外接球的球心的结论.结论1:正方体或长方体的外接球的球心是其体对角线的中点.结论2:正棱柱的外接球的球心是上下底面中心的连线的中点.结论3:直三棱柱的外接球的球心是上下底面三角形外心的连线的中点.(2)构造正方体或长方体确定球心.(3)利用球心O 与截面圆圆心O 1的连线垂直于截面圆及球心O 与弦中点的连线垂直于弦的性质,确定球心.2.方法技巧:(1)几何体补成正方体或长方体.(2)轴截面法(3)空间向量法1AB DC AD BC BD AC ======例1-1、正四面体的棱长都为,求此四面体外接球和内切球的半径例1-2、四面体中,, 求此四面体外接球的表面积 例1-3.若三棱锥ABC S -的三条侧棱两两垂直,且2=SA ,4==SC SB ,则该三棱锥的外接球半径为( )A.3B.6C.36D.9训练1(创新110页) 某几何体的三视图如图所示,则该几何体的外接球的表面积为( )A.25πB.26πC.32πD.36π训练2(创新110页)已知边长为2的等边三角形ABC ,D 为BC 的中点,沿AD 进行折叠,使折叠后的∠BDC =π2,则过A ,B ,C ,D 四点的球的表面积为( ) A.3π B.4π C.5π D.6π例2-1(创新110页)体积为3的三棱锥P -ABC 的顶点都在球O 的球面上,P A ⊥平面ABC ,P A =2,∠ABC =120°,则球O 的体积的最小值为( ) A.773π B.2873π C.19193π D.76193π 例2-1(创新109页)三棱锥P -ABC 中,平面P AC ⊥平面ABC ,AB ⊥AC ,P A =PC =AC =2,AB =4,则三棱锥P -ABC 的外接球的表面积为( )A.23πB.234πC.64πD.643π 类型2 内切球问题1.必备知识:(1)内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等.(2)正多面体的内切球和外接球的球心重合. (3)正棱锥的内切球和外接球球心都在高线上,但不一定重合.2.方法技巧:体积分割是求内切球半径的通用做法.【例3】 体积为4π3的球与正三棱柱的所有面均相切,则该棱柱的体积为________. 空间几何体的外接球和内切球问题近几年高考题1、(2019全国1卷第12题)已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ==,△ABC 是边长为2的正三角形,E ,F 分别是PA ,PB 的中点,90CEF ∠=︒,则球O 的体积为( )A .B .C . D2、(2018全国3卷第10题).设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为D ABC -体积的最大值为( )A .B .C .D .3.(2017全国1卷第16题)如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为______.4、(2017新课标全国Ⅲ理科)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A.πB.3π4 C.π2 D.π4 5、(2016年全国1卷第6题).如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是 ( )(A )17π (B )18π (C )20π (D )28π6、(2016年全国3卷第10题)在封闭的直三棱柱ABC −A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( ) (A)4π (B)9π2 (C)6π (D)32π37、(2015年全国1卷第11题).圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16 + 20π,则r=( )(A ) 1 (B)2 (C )4 (D )88、(2015年全国2卷第9题).已知是球的球面上两点,,为该球面上的动点.若三棱锥体积的最大值为36,则球的表面积为( ) A .36πB .64πC .144πD .256π 7.(2014·大纲全国,8)正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4B.16πC.9πD.27π49、(2013年课标1卷第6题)、如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为( )A 、500π3cm 3B 、866π3cm 3C 、1372π3cm 3D 、2048π3cm 310、(2012课标卷第11题)已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =;则此棱锥的体积为( )()A 26 ()B 36 ()C 23 ()D 2211、(2011课标卷第15题)已知矩形的顶点都在半径为4的球的球面上,且,则棱锥的体积为 。

小学六年级人教版数学上册第四单元《圆》知识点汇总

小学六年级人教版数学上册第四单元《圆》知识点汇总

第四单元圆一、基本概念1、圆心一个圆最中心的那一点,用大写字母O 表示(1) 圆心决定圆的位置。

(2) 圆心到圆上任意一点的距离都相等。

(3) 一张圆形纸片至少对折两次,就能找到圆心。

2、半径圆心到圆上任意一点的线段,用小写字母r 表示(1) 半径决定圆的大小。

(2) 在同一个圆里面,半径都相等。

(3) 在同一个圆里面,半径有无数条。

(4) 半径是直径的一半,即d 21r =3、直径通过圆心并且两端都在圆上的线段,用小写字母d 表示(1) 在同一个圆里面,直径都相等。

(2) 在同一个圆里面,直径有无数条。

(3) 直径是半径的两倍,即r 2d =(4) 在一个正方形内画最大的圆,圆的直径等于正方形的边长(5) 在一个长方形内画最大的圆,圆的直径等于长方形的宽二、使用圆规的步骤1、先确定圆心的位置和半径。

(1) 轴对称图形中,两条对称轴的交点就是中心点(2) 如果知道直径,那么直径的一半就是半径2、用直尺量出两脚之间的距离为半径。

(1) 量好后不能再改变两脚之间的距离3、把针尖放在圆心位置,保持针尖不动,旋转另一只脚一周,即可画出指定的圆。

(1)如果旋转圆规一周不顺手,可以保持圆规不动,旋转纸一周。

(2)如果旋转一周画出来的线条不清晰,可以多旋转几周加深线条。

三、轴对称图形1、轴对称图形沿对称轴对折之后,两边可以完全重合。

2、常见的轴对称图形以及它们的对称轴条数:(1)只有一条对称轴的图形:角、等腰三角形、等腰梯形、扇形、半圆(2)有2条对称轴的图形:长方形(3)有3条对称轴的图形:等边三角形(4)有4条对称轴的图形:正方形(5)有无数条对称轴的图形:圆、圆环【圆的对称轴就是直径】四、周长与面积1、圆周率ππ是一个无限不循环小数,一般取 3.14π≈。

我国数学家祖冲之是第一个把圆周率算出来的人。

2、圆的周长(1)圆的周长用大写字母C 表示,计算公式是πd πr 2C ==即圆的周长等于两倍的π乘以半径,也等于π乘以直径(2) 半圆的周长半圆的周长等于半个圆的周长加上直径,即r 2πr +3、圆的面积圆的面积用大写字母S 表示,计算公式是2πr S =4、周长与面积的关系(1) 在同一个圆中,半径扩大或缩小几倍,直径和周长就扩大或缩小几倍,而面积扩大或者缩小这个倍数的平方倍,例如:在同一个圆内,如果半径扩大3倍,那么直径和周长就扩大3倍,面积扩大9倍。

让你爱上数学认识几何形的外接圆与内切圆

让你爱上数学认识几何形的外接圆与内切圆

让你爱上数学认识几何形的外接圆与内切圆数学是一门普遍被人们所认为枯燥乏味的学科,但实际上,数学是一门富有魅力和创造力的学科。

它不仅存在于我们日常生活的方方面面,而且还具有深层次的美学价值。

在数学中,几何形是一种令人着迷的概念,其中外接圆和内切圆是两个值得探索的重要概念。

本文将以简洁明了的语言介绍外接圆和内切圆的概念,以期让读者爱上数学,更深入地认识几何形。

一、外接圆的概念外接圆是指一个圆正好与一个几何形的每条边相切。

对于不同的几何形,外接圆的性质有所不同。

下面将分别介绍外接圆在三角形、四边形和多边形中的性质。

1. 三角形的外接圆对于任意一个三角形ABC,可以通过三角形的三个顶点来确定一个外接圆。

这个外接圆的圆心就是三角形的三边的垂直平分线的交点。

同时,外接圆的半径等于三角形三边的中线的长度的三分之一。

利用外接圆的性质可以解决一些与三角形相关的难题,如寻找三角形的垂心和外心等。

2. 四边形的外接圆对于一个四边形ABCD,如果存在一个圆,使得这个圆正好与四边形的每条边相切,那么这个圆就是四边形的外接圆。

外接圆的圆心是四边形的对角线的交点的中点。

值得注意的是,不是所有的四边形都有外接圆,只有特定条件下的四边形才具有外接圆。

3. 多边形的外接圆多边形的外接圆同样可以通过连接多边形的顶点以及利用垂直平分线来确定。

外接圆的圆心位于垂直平分线的交点处,半径等于相连各边的中线长度的三分之一。

通过研究几何形的外接圆,我们可以更好地理解几何形的形态和性质。

外接圆为我们解决几何难题提供了一种新的思路和方法。

二、内切圆的概念内切圆是指一个圆正好与一个几何形的每条边相切,并且圆心位于这个几何形的内部。

接下来将介绍三角形、四边形和多边形中的内切圆性质。

1. 三角形的内切圆对于任意一个三角形ABC,可以通过连接三角形的三个内切点来确定一个内切圆。

内切圆的圆心即为三角形的内切点的交点,其半径等于三角形的三条边的和除以半周长。

2. 四边形的内切圆对于一个四边形ABCD,如果存在一个圆,使得这个圆正好与四边形的每条边相切,并且圆心位于四边形的内部,那么这个圆就是四边形的内切圆。

2019几何体外接球精美讲义

2019几何体外接球精美讲义

第二讲 几何体的外接球和内切球问题※基础知识:1.常见平面图形:正方形,长方形,正三角形的外接圆和内切圆长方形(正方形)的外接圆半径为对角线长的一半,正方形的内切圆半径为边长的一半;正三角形的内切圆半径:6a外接圆半径:3a 三角形面积:24正三角形三心合一,三线合一,心把高分为2:1两部分。

2.球的概念:概念1:与定点距离等于或小于定长的点的集合,叫做球体,简称球.,定长叫球的半径;与定点距离等于定长的点的集合叫做球面.一个球或球面用表示它的球心的字母表示,例如球O 或O .概念2:半圆以它的直径为旋转轴,旋转所成的曲面叫做球面,球面所围成的几何体叫做球体,简称球。

3.球的截面:用一平面α去截一个球O ,设OO '是平面α的垂线段,O'为垂足,且OO d '=,所得的截面是以球心在截面内的射影为圆心,以r .球面被经过球心的平面截得的圆叫做大圆,被不经过球心的平面截得的圆叫做小圆.4.空间几何体外接球、内切球的概念: 定义1:若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球。

定义2:若一个多面体的各面都与一个球的球面相切, 则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球。

长方体的外接球 正方体的内切球5.外接球和内切球性质:(1)内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等。

(2)正多面体的内切球和外接球的球心重合。

(3)正棱锥的内切球和外接球球心都在高线上,但不重合。

(4)基本方法:构造三角形利用相似比和勾股定理。

(5)体积分割是求内切球半径的通用做法。

长方体的外接球半径公式:2222c b a R ++=,其中,,a b c 分别为长方体共顶点的3条棱长正棱锥的外接球半径公式:2,2a R h= 2侧棱=2R h ⋅外正棱锥,其中a 为侧棱长,h 为正棱锥的高正棱柱的外接球球心在两底面中心连线的中点处。

二年级数学教案4.2《平行四边形的外接圆和内切圆》

二年级数学教案4.2《平行四边形的外接圆和内切圆》

这是一篇二年级数学教案,讲的是“平行四边形的外接圆和内切圆”。

本次教学内容将涉及一些基本的几何知识,包括平行四边形的定义及其性质,以及外接圆和内切圆的概念和特点。

我们将通过一些图例和实例来让学生深入理解这些概念。

一、教学目标1.掌握平行四边形的定义和性质,了解其构造方法;2.了解外接圆和内切圆的概念及在平行四边形中的特点;3.能够应用所学知识,解决些许有关平行四边形的数学问题。

二、教学重点1.平行四形的性质及构造方法;2.外接圆和内切圆的概念及特点。

三、教学难点1.通过实例理解外接圆和内切圆的概念和特点;2.理解外接圆和内切圆的区别及其相关知识。

四、教学步骤1.导入教师带领学生复习平行四边形的定义及性质。

请学生小组讨论平行四边形的构造方法。

在班级中选取一名代表阐述。

2.讲解教师通过PPT或板书向学生介绍外接圆和内切圆的概念及其特点。

通过图例和实例让学生深入了解。

3.操作请学生在纸上手工画出一个平行四边形,并用直尺和圆规完成该平行四边形的外接圆和内切圆。

让学生小组练习并相互检查。

4.讨论请学生小组就外接圆和内切圆的区别及其相关知识展开讨论,教师及时点评。

5.总结教师总结本课程的学习内容,回顾学生练习的成果,提高学生的自我约束和自我评价的意识。

五、教学评价1.学生在纸上手工画出一个平行四边形及其内切圆与外接圆;2.学生能够掌握平行四边形的定义及性质;3.学生能够较好地区分外接圆和内切圆的特点和概念;4.学生能够应用所学知识,解决由平行四边形所产生的数学问题。

六、教学方法1.教师讲授法:通过多媒体、板书等方式向学生普及相关的知识。

2.问答法:从学生的实际情况出发,引导学生自己探究问题。

3.实践法:让学生亲自动手实践,提高学生的实际动手能力和观察分析能力。

4.讨论法:鼓励学生相互合作,共同完成某些课程内容。

七、教学反思本次教学,学生们学习积极性较高,能够跟随教师快速完成练习任务。

教师在教学过程中尽量贴近生活实际,通过实例帮助学生快速掌握所需知识。

正方体内切球、外接球、棱切球、图例演示课件

正方体内切球、外接球、棱切球、图例演示课件

感谢观看
THANKS
棱切球的半径与正方体的边长关系
半径公式
棱切球的半径r与正方体的边长a满足关系 r = a/2。
VS
几何解释
棱切球的球心位于正方体中心,且与正方 体的每个顶点距离为a/2,因此半径为 a/2。
棱切球的几何性质
相切性质
棱切球与正方体的所有棱都相切 ,与每个面都相切。
中心性质
棱切球的球心位于正方体的中心, 且与正方体的每个顶点距离相等。
半径与边长的关系
正方体的内切球半径r等于正方体边 长a的一半,即r = a/2。
证明方法
由于内切球与正方体的各面都相切, 其半径必然等于正方体中心到各面的 距离,即正方体边长的一半。
内切球的几何性质
01
02
03
04
性质1
内切球的直径等于正方体的对 角线长度。
性质2
内切球的表面积与正方体的表 面积之比为π:4。
外接球的半径R与正方体的边长a满足公式R = (√3/2)a。
推导过程
正方体的对角线长度等于外接球的直径,即2R,而正方体的对角线长度又等于空 间中两点(正方体的两个顶点)距离的最大值,即√(a^2 + a^2 + a^2) = √3a ,解得R = (√3/2)a。
外接球的几何性质
性质1
正方体的外接球与其六个 面都相切,且每个面上的 切点都是该面的中心。
性质3
内切球的体积与正方体的体积 之比为π:6。
证明方法
利用勾股定理和球的几何性质 ,可以推导出上述性质。
03
正方体的外接球
外接球的定义与特性
定义
外接球是指与正方体的八个顶点都相切的球。
特性

玩转外接球、内切球、棱切球(最新人教版优质教案)( 含解析 )

玩转外接球、内切球、棱切球(最新人教版优质教案)( 含解析 )

玩转外接球、内切球、棱切球【考点预测】知识点一:正方体、长方体外接球1.正方体的外接球的球心为其体对角线的中点,半径为体对角线长的一半.2.长方体的外接球的球心为其体对角线的中点,半径为体对角线长的一半.3.补成长方体(1)若三棱锥的三条侧棱两两互相垂直,则可将其放入某个长方体内,如图1所示.(2)若三棱锥的四个面均是直角三角形,则此时可构造长方体,如图2所示.(3)正四面体P -ABC 可以补形为正方体且正方体的棱长a =PA 2,如图3所示. (4)若三棱锥的对棱两两相等,则可将其放入某个长方体内,如图4所示图1 图2 图3 图4知识点二:正四面体外接球如图,设正四面体ABCD 的的棱长为a ,将其放入正方体中,则正方体的棱长为22a ,显然正四面体和正方体有相同的外接球.正方体外接球半径为R =22a ⋅32=64a ,即正四面体外接球半径为R =64a .知识点三:对棱相等的三棱锥外接球四面体ABCD 中,AB =CD =m ,AC =BD =n ,AD =BC =t ,这种四面体叫做对棱相等四面体,可以通过构造长方体来解决这类问题.如图,设长方体的长、宽、高分别为a ,b ,c ,则b 2+c 2=m 2a 2+c 2=n 2a 2+b 2=t 2,三式相加可得a 2+b 2+c 2=m 2+n 2+t 22,而显然四面体和长方体有相同的外接球,设外接球半径为R ,则a 2+b 2+c 2=4R 2,所以R =m 2+n 2+t 28.知识点四:直棱柱外接球如图1,图2,图3,直三棱柱内接于球(同时直棱柱也内接于圆柱,棱柱的上下底面可以是任意三角形)图1图2图3第一步:确定球心O的位置,O1是ΔABC的外心,则OO1⊥平面ABC;第二步:算出小圆O1的半径AO1=r,OO1=12AA1=12h(AA1=h也是圆柱的高);第三步:勾股定理:OA2=O1A2+O1O2⇒R2=h22+r2⇒R=r2+h2 2,解出R知识点五:直棱锥外接球如图,PA⊥平面ABC,求外接球半径.解题步骤:第一步:将ΔABC画在小圆面上,A为小圆直径的一个端点,作小圆的直径AD,连接PD,则PD必过球心O;第二步:O1为ΔABC的外心,所以OO1⊥平面ABC,算出小圆O1的半径O1D=r(三角形的外接圆直径算法:利用正弦定理,得asin A=bsin B=csin C=2r),OO1=12PA;第三步:利用勾股定理求三棱锥的外接球半径:①(2R)2=PA2+(2r)2⇔2R=PA2+(2r)2;②R2=r2+OO12⇔R=r2+OO12.知识点六:正棱锥与侧棱相等模型1.正棱锥外接球半径:R =r 2+h 22h.2.侧棱相等模型:如图,P 的射影是ΔABC 的外心⇔三棱锥P -ABC 的三条侧棱相等⇔三棱锥P -ABC 的底面ΔABC 在圆锥的底上,顶点P 点也是圆锥的顶点.解题步骤:第一步:确定球心O 的位置,取ΔABC 的外心O 1,则P ,O ,O 1三点共线;第二步:先算出小圆O 1的半径AO 1=r ,再算出棱锥的高PO 1=h (也是圆锥的高);第三步:勾股定理:OA 2=O 1A 2+O 1O 2⇒R 2=(h -R )2+r 2,解出R =r 2+h 22h.知识点三:侧棱为外接球直径模型方法:找球心,然后作底面的垂线,构造直角三角形.知识点四:共斜边拼接模型如图,在四面体ABCD 中,AB ⊥AD ,CB ⊥CD ,此四面体可以看成是由两个共斜边的直角三角形拼接而形成的,BD 为公共的斜边,故以“共斜边拼接模型”命名之.设点O 为公共斜边BD 的中点,根据直角三角形斜边中线等于斜边的一半的结论可知,OA =OC =OB =OD ,即点O 到A ,B ,C ,D 四点的距离相等,故点O 就是四面体ABCD 外接球的球心,公共的斜边BD 就是外接球的一条直径.知识点五:垂面模型如图1所示为四面体P-ABC,已知平面PAB⊥平面ABC,其外接球问题的步骤如下:(1)找出△PAB和△ABC的外接圆圆心,分别记为O1和O2.(2)分别过O1和O2作平面PAB和平面ABC的垂线,其交点为球心,记为O.(3)过O1作AB的垂线,垂足记为D,连接O2D,则O2D⊥AB.(4)在四棱锥A-DO1OO2中,AD垂直于平面DO1OO2,如图2所示,底面四边形DO1OO2的四个顶点共圆且OD为该圆的直径.图1图2知识点六:最值模型这类问题是综合性问题,方法较多,常见方法有:导数法,基本不等式法,观察法等知识点七:二面角模型如图1所示为四面体P-ABC,已知二面角P-AB-C大小为α,其外接球问题的步骤如下:(1)找出△PAB和△ABC的外接圆圆心,分别记为O1和O2.(2)分别过O1和O2作平面PAB和平面ABC的垂线,其交点为球心,记为O.(3)过O1作AB的垂线,垂足记为D,连接O2D,则O2D⊥AB.(4)在四棱锥A-DO1OO2中,AD垂直于平面DO1OO2,如图2所示,底面四边形DO1OO2的四个顶点共圆且OD为该圆的直径.知识点八:坐标法对于一般多面体的外接球,可以建立空间直角坐标系,设球心坐标为O(x,y,z),利用球心到各顶点的距离相等建立方程组,解出球心坐标,从而得到球的半径长.坐标的引入,使外接球问题的求解从繁琐的定理推论中解脱出来,转化为向量的计算,大大降低了解题的难度.知识点九:圆锥圆柱圆台模型1.球内接圆锥如图1,设圆锥的高为h,底面圆半径为r,球的半径为R.通常在△OCB中,由勾股定理建立方程来计算R.如图2,当PC>CB时,球心在圆锥内部;如图3,当PC<CB时,球心在圆锥外部.和本专题前面的内接正四棱锥问题情形相同,图2和图3两种情况建立的方程是一样的,故无需提前判断.由图2、图3可知,OC=h-R或R-h,故(h-R)2+r2=R2,所以R=h2+r2 2h.2.球内接圆柱如图,圆柱的底面圆半径为r,高为h,其外接球的半径为R,三者之间满足h2+r2=R2.3.球内接圆台R2=r22+r22-r21-h22h2,其中r1,r2,h分别为圆台的上底面、下底面、高.知识点四:锥体内切球方法:等体积法,即R=3V体积S表面积知识点五:棱切球方法:找切点,找球心,构造直角三角形【题型归纳目录】题型一:正方体、长方体模型题型二:正四面体模型题型三:对棱相等模型题型四:直棱柱模型题型五:直棱锥模型题型六:正棱锥与侧棱相等模型题型七:侧棱为外接球直径模型题型八:共斜边拼接模型题型九:垂面模型题型十:最值模型题型十一:二面角模型题型十二:坐标法模型题型十三:圆锥圆柱圆台模型题型十四:锥体内切球题型十五:棱切球【典例例题】题型一:题型一:正方体、长方体模型例1.(2022·陕西安康·高二期末(理))长方体的长,宽,高分别为3,2,1,其顶点都在球O的球面上,则球O的体积为( )A.43πB.12πC.48πD.323π【答案】A【解析】球O的半径为32+22+122=3,∴体积V=4π⋅333=43π.故选:A例2.(2022·全国·高一阶段练习)已知三棱锥P-BCD中,BC⊥CD,PB⊥底面BCD,BC=1,PB= CD=2,则该三棱锥的外接球的体积为( )A.74πB.92πC.278πD.259π【答案】B【解析】解:如图所示,将三棱锥P-BCD放在长、宽、高分别为2,1,2的长方体中,则三棱锥P-BCD的外接球即为该长方本的外接球,所以外接球的直径PD=BC2+CD2+PB2=12+22+22=3,∴该球的体积为43π×32 3=92π.故选:B例3.(2022·北京市第三十五中学高一阶段练习)已知正方体外接球的体积是323π,那么正方体的体对角线等于( )A.233B.4C.423D.433.【答案】B【解析】解:正方体外接球的直径即为正方体的体对角线,设外接球的半径为R,则V=43πR3=323π,解得R=2,所以正方体的体对角线等于2R=4;故选:B例4.(2022·黑龙江·勃利县高级中学高一期中)据《九章算术》记载,“鳖臑”为四个面都是直角三角形的三棱锥.如图所示,现有一个“鳖臑”,PA⊥底面ABC,AB⊥BC,且PA=AB=BC=2,三棱锥外接球表面积为( )A.10πB.12πC.14πD.16π【答案】B【解析】如图,将三棱锥补形为正方体,则外接球半径R =PC 2=AP 2+AB 2+BC 22=4+4+42=3.所以三棱锥外接球表面积S =4πR 2=4π×3=12π.故选:B .例5.(2022·河北·高一期中)《九章算术》中将底面为长方形且有一条侧棱与底面垂直的四棱锥称为“阳马”.现有一“阳马”P -ABCD ,PA ⊥平面ABCD ,AB =4,△PAD 的面积为4,则该“阳马”外接球的表面积的最小值为( )A.24πB.28πC.32πD.36π【答案】C【解析】如图,将四棱锥P -ABCD 补成长方体,则该四棱锥的外接球与长方体的外接球相同.因为长方体外接球的半径r =42+AD 2+PA 22,所以该“阳马”外接球的表面积为:4π×r 2=AD 2+PA 2+16 π≥(2AD ⋅PA +16)π=4×12AD ⋅PA +16 =4×4+16 π=32π.故选:C .例6.(2022·河南·模拟预测(文))在三棱锥A -BCD 中,已知AC ⊥平面BCD ,BC ⊥BD ,且AC =3,BC =2,BD =5,则该三棱锥外接球的表面积为( )A.12πB.7πC.9πD.8π【答案】A【解析】由AC ⊥平面BCD ,BC ⊥BD ,知三棱锥A -BCD 可补形为以BD ,BC ,AC 为长宽高的长方体,三棱锥的外接球即长方体的外接球,设外接球的半径为R ,则2R 2=3+4+5=12,所以S 球=4πR 2=12π.故选:A 题型二:正四面体模型例7.(2022·全国·高三专题练习(理))棱长为a 的正方体内有一个棱长为x 的正四面体,且该正四面体可以在正方体内任意转动,则x 的最大值为( )A.12aB.32aC.36aD.63a 【答案】D【解析】棱长为a 的正方体的内切球的半径为a 2,正四面体可以在正方体内任意转动,只需该正四面体为球的内接正四面体,换言之,棱长为x 的正四面体的外接球的半径为a 2,设正四面体为P -ABC ,过P 作PO ⊥平面ABC ,垂足为O ,O 为底面正ΔABC 的中心,则AO =23×32x =33x ,体高为x 2-33x 2=63x ,由于外接球半径为a 2 ,利用勾股定理得:63x -a 2 2+33x2=a 2 2 ,解得x =63a ,选D .例8.(2022·河南·西平县高级中学模拟预测(理))一个正四面体的棱长为2,则这个正四面体的外接球的体积为( )A.6πB.2πC.3πD.22π【答案】A 【解析】如图,四面体BDMN 是正四面体,棱长BD =2,将其补形成正方体GB CD -MENF ,则正方体GB CD -MENF 的棱长GB =22BD =2,此正方体的体对角线长为6,正四面体BDMN 与正方体GB CD -MENF 有相同的外接球,则正四面体BDMN的外接球半径R =62,所以正四面体BDMN 的外接球体积为V =43πR 3=43π⋅623=6π.故选:A例9.(2022·贵州师大附中高二开学考试(理))已知正四面体的棱长为2,则其外接球的表面积为( )A.4πB.6πC.8πD.10π【答案】B【解析】因为正四面体的棱长为2,所以底面三角形的高3,棱锥的高为h =22-233 2=263,设外接球半径为R ,则R 2=263-R 2+233 2,解得R =62.所以外接球的表面积为S =4πR 2=4π622=6π.故选:B .例10.(2022·河北·石家庄二中一模(理))如图所示,正四面体ABCD 中,E 是棱AD 的中点,P 是棱AC上一动点,BP +PE 的最小值为14,则该正四面体的外接球表面积是( )A.12πB.32πC.8πD.24π【答案】A【解析】将侧面△ABC 和△ACD 沿AC 边展开成平面图形,如图所示,菱形ABCD ,在菱形ABCD 中,连接BE ,交AC 于点P ,则BE 的长即为BP +PE 的最小值,即BE =14,因为正四面体ABCD ,所以AC =AB ,所以∠BCD =120°,因为E 是棱AD 的中点,所以∠DCE =30°,所以∠BCE =∠BCD -∠DCE =90°,设DE =x ,则AB =BC =CD =AD =2x ,所以CE =3x ,则BE =BC 2+CE 2=7x =14,所以x =2,则正四面体ABCD 的棱长为22,所以正四面体的外接球半径为64×22=3,所以该正四面体外接球的表面积为S =4π3 2=12π,故选:A例11.(2022·贵州·凯里一中高二期末(理))我们将四个面均为正三角形的四面体称为“正四面体”,在正四面体ABCD 中,E ,F 分别为棱AB ,CD 的中点,当EF =2时,四面体ABCD 的外接球的表面积为()A.12πB.4πC.3πD.6π【答案】D【解析】设正四面体的棱长为2a ,则:AF =BF =3a ,在等腰三角形ABF 中,AF =3a ,AE =a ,∴EF =3a 2-a 2=2a ,据此可得:2a =2,a =1,正四面体的棱长为:2a =2,外接球半径为:R =64×2a =62,其表面积为:4πR 2=6π.本题选择D 选项.例12.(2022·全国·高三专题练习)金刚石是碳原子的一种结构晶体,属于面心立方晶胞(晶胞是构成晶体的最基本的几何单元),即碳原子处在立方体的8个顶点,6个面的中心,此外在立方体的对角线的14处也有4个碳原子,如图所示(绿色球),碳原子都以共价键结合,原子排列的基本规律是每一个碳原子的周围都有4个按照正四面体分布的碳原子.设金刚石晶胞的棱长为a ,则正四面体SPQR 的棱长为__________;正四面体SPQR 的外接球的体积是__________.【答案】 22a 316πa 3【解析】依题意可知,O 为正四面体SPQR 的中心,如图:连接SO ,延长交平面PQR 于点M ,则M 为△PQR 的中心,所以设SR =x ,MR =23×32x =33x ,因为OR =SO =14ST =14×3a =34a ,所以SM =SR 2-MR 2=x 2-33x 2=63x ,由OM 2+MR 2=OR 2,得(SM -SO )2+MR 2=OR 2,得63x -34a 2+33x 2=34a 2,解得x =22a ,所以正四面体SPQR 的棱长为22a .依题意可知,正四面体SPQR 的外接球的圆心为O ,半径为34a ,所以正四面体SPQR 的外接球的体积是43π×34a 3=316πa 3.故答案为:22a ;316πa 3.题型三:对棱相等模型例13.(2022•让胡路区校级模拟)在四面体ABCD 中,若AB =CD =3,AC =BD =2,AD =BC =5,则四面体ABCD 的外接球的表面积为( )A.2πB.4πC.6πD.8π【解析】解:如下图所示,将四面体ABCD 放在长方体AEBF -GCHD 内,设该长方体的长、宽、高分别为x 、y 、z ,则长方体的体对角线长即为长方体的外接球直径,设该长方体的外接球半径为R ,由勾股定理得AB2=x2+y2=3 AC2=x2+z2=4 AD2=y2+z2=5 ,上述三个等式全加得2(x2+y2+z2)=12,所以,该四面体的外接球直径为2R=x2+y2+z2=6,因此,四面体ABCD的外接球的表面积为4πR2=π×(2R)2=6π,故选:C.例14.已知四面体ABCD中,AB=CD=5,BC=AD=10,AC=BD=13,若该四面体的各个顶点都在同一球面上,则此球的表面积为( )A.42πB.43πC.14πD.16π【解析】解:由题意,四面体扩充为长方体,且面上的对角线分别为5,10,13,∴长方体的对角线长为5+10+132=14,∴球的半径为142,∴此球的表面积为4π∙144=14π.故选:C.例15.如图,在三棱锥P-ABC中,PA=BC=3,PB=AC=2,PC=AB=5,则三棱锥P-ABC 外接球的体积为( )A.2πB.3πC.6πD.6π【解析】解:由题意,PA=BC=3,PB=AC=2,PC=AB=5,将三棱锥P-ABC放到长方体中,可得长方体的三条对角线分别为3,2,5,即a2+b2=3,a2+c2=2,c2+b2=5,解得:a=1,b=2,c=3.外接球的半径R=12×a2+b2+c2=62.∴三棱锥P-ABC外接球的体积V=43πR3=6π.故选:C.例16.(2022•永安市校级期中)在三棱锥P-ABC中,PA=BC=4,PB=AC=5,PC=AB=11,则三棱锥P-ABC的外接球的表面积为( )A.26πB.12πC.8πD.24π【解析】解:∵三棱锥P -ABC 中,PA =BC =4,PB =AC =5,PC =AB =11,∴构造长方体,使得面上的对角线长分别为4,5,11,则长方体的对角线长等于三棱锥P -ABC 外接球的直径.设长方体的棱长分别为x ,y ,z ,则x 2+y 2=16,y 2+z 2=25,x 2+z 2=11,∴x 2+y 2+z 2=26,∴三棱锥P -ABC 外接球的直径为26,∴三棱锥P -ABC 外接球的表面积为4π2622=26π.故选:A .例17.(2022•罗湖区月考)已知在四面体ABCD 中,AB =CD =22,AD =AC =BC =BD =5,则四面体ABCD 的外接球表面积为 .【解析】解:如下图所示,将四面体ABCD 放在长方体AEBF -GCHD 内,在四面体ABCD 中,AB =CD =22,AD =AC =BC =BD =5,设该长方体的长、宽、高分别为2、2、1,则长方体的体对角线长即为长方体的外接球直径,设该长方体的外接球半径为R ,所以,该四面体的外接球直径为2R =22+22+12=3,因此,四面体ABCD 的外接球的表面积为4πR 2=π×(2R )2=9π,故答案为:9π.例18.(2022•三模拟)在四面体ABCD 中,AC =BD =2,AD =BC =5,AB =CD =7,则其外接球的表面积为 .【解析】解:如下图所示,将四面体ABCD 放在长方体AEBF -GCHD 内,设该长方体的长、宽、高分别为x、y 、z ,则长方体的体对角线长即为长方体的外接球直径,设该长方体的外接球半径为R ,由勾股定理得x 2+y 2=4y 2+z 2=5z 2+x 2=7,上述三个等式全加得2(x 2+y 2+z 2)=16,所以,该四面体的外接球直径为2R =x 2+y 2+z 2=22,因此,四面体ABCD 的外接球的表面积为4πR 2=π×(2R )2=8π,故答案为:8π.题型四:直棱柱模型例19.(2022·山西·太原五中高一阶段练习)在直三棱柱ABC -A 1B 1C 1中,若AB ⊥BC ,AB =6,BC =8,AA 1=6,则该直三棱柱外接球的表面积为( )A.72πB.114πC.136πD.144π【答案】C【解析】由题意可得三棱柱的上下底面为直角三角形,取直角三角形斜边的中点O 1,O 2,直三棱柱ABC -A 1B 1C 1的外接球的球心O 为上下底面的外接圆圆心的连线O 1O 2的中点,连接AO ,AB ⊥BC ,AB =6,BC =8,AC =10,设外接球的半径为R ,下底面外接圆的半径为r ,r =AO 2=5,则R 2=25+9=34,该直三棱柱外接球的表面积为4πR 2=136π,故选:C 例20.(2022·安徽·合肥市第六中学高一期中)设直三棱柱ABC -A 1B 1C 1的所有顶点都在一个球面上,AB =AC =AA 1,∠BAC =120°,且底面△ABC 的面积为23,则此直三棱柱外接球的表面积是( )A.16πB.4010π3C.40πD.64π【答案】C 【解析】设AB =AC =AA 1=m ,因为∠BAC =120°,所以12×m ×m ×sin120°=23,m =22,而∠ACB =30°,所以22sin30°=2r (r 于是是△ABC 外接圆的半径),r =22,即AM =22,如图,设M ,N 分别是△ABC 和△A 1B 1C 1的外接圆圆心,由直棱柱的性质知MN 的中点O 是三棱柱ABC -A 1B 1C 1的外接球球心,OM =12MN =12AA 1=2,所以外接球为R =OA =AM 2+OM 2=22 2+2 2=10.于是球的表面积为S =4πR 2=4π10 2=40π.故选:C .例21.(2022·河南·高三阶段练习(文))已知正六棱柱ABCDEF-A1B1C1D1E1F1的每个顶点都在球O的球面上,且AB=3,AA1=4,则球O的表面积为( )A.42πB.48πC.50πD.52π【答案】D【解析】因为AB=3,所以正六边形ABCDEF外接圆的半径r=3,所以球O的半径R=r2+AA122=13,故球O的表面积为4πR2=52π.故选:D例22.(2022·全国·高二课时练习)表面积为81π的球,其内接正四棱柱(底面是正方形的直棱柱)的高是7,则这个正四棱柱的底面边长为______.【答案】4【解析】由题意知:正四棱柱的体对角线即为球的直径,设球的半径为R,则4πR2=81π,解得R=9 2,设正四棱柱的底面边长为a,则a2+a2+72=2R,解得a=4.故答案为:4.例23.(2022·河南·高三阶段练习(理))已知正三棱柱ABC-A1B1C1的外接球表面积为40π,则正三棱柱ABC-A1B1C1的所有棱长之和的最大值为______.【答案】1210【解析】由已知可得正三棱柱的外接球的球心为上下底面中心连线的中点,由外接球的表面积求出外接球半径,由底面边长求出底面外接圆半径,求出球心到底面的距离,进而求出正三棱柱的高,即可求出结论,【详解】设正三棱柱上下底面中心分别为H,H1,连HH1,取HH1中点O为正三棱柱外接球的球心,连OA为外接球的半径,如图,∴4π×OA2=40π,∴OA=10设正三棱柱ABC-A1B1C1的底面边长为x,∴AH=23×32x=33x,在RtΔAOH中,OH=OA2-AH2=10-13x2,∴HH1=210-13x2三棱柱ABC-A1B1C1的所有棱长之和为l=6x+610-13x2(0<x<30).l =61-x 310-13x 2 ,(0<x <30),令l =0,解得x =3102,当0<x <3102时,l >0,当3102<x <30时,l <0,所以x =3102是函数在定义域内有唯一极大值点,故当x =3102时,l =6x +610-13x 2(0<x <30)有最大值1210.故答案为: 1210.例24.(2022·浙江·高二期中)在直三棱柱ABC -A 1B 1C 1中,∠BAC =90°且BB 1=4,已知该三棱柱的体积为2,则此三棱柱外接球表面积的最小值为______.【答案】18π【解析】设BC 的中点为D ,B 1C 1的中点为D 1,AB =x ,AC =y ,由题,得三棱柱外接球的球心在线段DD 1的中点O 处,由三棱柱的体积为2,得12xy ×4=2,即xy =1,由题,得R 2=OB 2=OD 2+BD 2=4+14x 2+y 2 ,所以,外接球表面积S =4πR 2=4π⋅4+14x 2+y 2 =16π+x 2+y 2 π≥16π+2xy π=18π.故答案为:18π题型五:直棱锥模型例25.(2022·青海·海东市第一中学模拟预测(理))已知四棱锥P -ABCD 中,PA ⊥平面ABCD ,底面ABCD 是矩形,AD =3AB =3PA ,若四棱锥P -ABCD 外接球的表面积为11π,则四棱锥P -ABCD 的体积为( )A.3B.2C.2D.1【答案】D【解析】设四棱锥P -ABCD 外接球的半径为R ,则4πR 2=11π,即4R 2=11.由题意,易知PC 2=4R 2,得PC =11,设AB =x ,得x 2+9x 2+x 2=11,解得x =1,所以四棱锥P -ABCD 的体积为13×1×3×1=1.故选:D 例26.(2022·全国·高三专题练习)《九章算术》中将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥M -ABC 为鳖臑,MA ⊥平面ABC ,AB ⊥BC ,AB =BC =2,MA =4,三棱锥M -ABC 的四个顶点都在球O 的球面上,则球O 的表面积为( )A.9πB.16πC.20πD.24π【答案】D【解析】如图所示,作AC 边上的中点D ,MC 边上的中点O ,连接ODMA ⊥平面ABC ,可得:MA ⊥AC ,OD ⊥AC可得:O 为球O 的球心,OC 为球的半径在直角三角形△ABC 中,可得:AC =22在直角三角形△ODC 中,可得:OC =6故球的表面积为:4π6 2=24π故选:D 例27.(2022·广西·宾阳中学高一阶段练习)已知三棱锥S -ABC 中,SA ⊥平面ABC ,AB =BC =CA=33,三棱锥S -ABC 外接球O 的表面积为100π,则球O 的体积为_______,异面直线SA ,OB 所成角的余弦值为________.【答案】 5003π;45【解析】由外接球表面积可知S =4πR 2=100π,解得R =5,所以球的体积V =43πR 3=5003π,如图,设球心为O ,H 为SA 中点,G 为△ABC 中心,连接OB ,OG ,因为G 为△ABC 中心,球心为O ,所以OG ⊥平面ABC ,又SA ⊥平面ABC ,所以OG ⎳SA ,由OG ⎳SA 可知,异面直线SA ,OB 所成角为∠BOG ,在Rt △ABC 中,cos ∠BOG =OG OB=R 2-BG 2R=25-23×32×33 25=45,故答案为:5003π;45.例28.(2022·河南·新乡市第一中学高一期末)已知三棱锥S -ABC 中,SA ⊥平面ABC ,SA =4,BC =23,∠BAC =60∘,则三棱锥S -ABC 外接球的表面积为______.【答案】32π【解析】如下图所示:圆柱O 1O 2的底面圆直径为2r ,母线长为h ,则O 1O 2的中点O 到圆柱底面圆上每点的距离都相等,则O 为圆柱O1O 2的外接球球心,球O 的半径为R =r 2+h 2 2,可将三棱锥S -ABC 置于圆柱O 1O 2内,使得圆O 2为△ABC 的外接圆,如下图所示:由正弦定理可知圆O 2的直径为2r =BC sin60∘=4,所以,三棱锥S -ABC 外接球的半径R =SA 2 2+r 2=22,因此,三棱锥S -ABC 外接球的表面积为4πR 2=32π.故答案为:32π.例29.(2022·青海·海东市第一中学模拟预测(文))已知在三棱锥P -ABC 中,PA =4,BC =26,PB =PC =3,PA ⊥平面PBC ,则三棱锥P -ABC 的外接球的表面积是( )A.43πB.42πC.48πD.46π【答案】A【解析】在△PBC 中,由余弦定理得:cos ∠BPC =PB 2+PC 2-BC 22PB ⋅PC =-618=-13,∴sin ∠BPC =1-cos 2∠BPC =223,∴△BPC 外接圆半径r =12×BC sin ∠BPC =12×26223=332,又PA ⊥平面PBC ,∴三棱锥P -ABC 的外接球半径R =r 2+12PA 2=274+4=432,则三棱锥P -ABC 的外接球的表面积S =4πR 2=43π.故选:A .例30.(2022·全国·高一阶段练习)已知三棱锥P -BCD 中,BC ⊥CD ,PB ⊥底面BCD ,BC =1,PB =CD =2,则该三棱锥的外接球的体积为( )A.74π B.92πC.278π D.259π【答案】B【解析】解:如图所示,将三棱锥P -BCD 放在长、宽、高分别为2,1,2的长方体中,则三棱锥P -BCD 的外接球即为该长方本的外接球,所以外接球的直径PD =BC 2+CD 2+PB 2=12+22+22=3,∴该球的体积为43π×32 3=92π.故选:B 例31.(2022·河北沧州·高一期末)已知在三棱锥A -BCD 中,AB ⊥平面BCD ,AB =23,AC =AD =4,CD =2,则三棱锥A -BCD 外接球的表面积为( )A.40π3B.15πC.52π3D.20π【答案】C【解析】因AB ⊥平面BCD ,BC ,BD ⊂平面BCD ,则AB ⊥BC ,AB ⊥BD ,而AB=23,AC =AD =4,则BC =BD =2=CD ,三棱锥A -BCD 的外接球O 截平面BCD 所得小圆圆心O 1是正△BCD 的中心,O 1B =233,连OO 1,则OO 1⊥平面BCD ,取线段AB 的中点E ,则球O 的球心O 在过E 垂直于直线AB 的垂面上,连OE ,如图,则四边形BEOO 1是矩形,OO 1=BE =12AB =3,因此,球O 的半径BO 有:BO 2=BO 21+OO 21=133,所以三棱锥A -BCD 外接球的表面积S =4π⋅BO 2=52π3.故选:C题型六:正棱锥与侧棱相等模型例32.(2022·江西·高三阶段练习(文))在正三棱锥P -ABC 中,PA ⊥PB ,P 到平面ABC 的距离为2,则该三棱锥外接球的表面积为( )A.36πB.16πC.16π3D.4π【答案】A【解析】因为PA ⊥PB ,由正三棱锥的性质知,PA ,PB ,PC 两两垂直且相等.设PA =PB =PC =a ,则AB =BC =CA =2a .根据V P -ABC =V A -PBC ,得13×12×a 2×a =13×12×2a 2sin60°×2,解得a =23.设三棱锥P -ABC 外接球的半径为R ,则2R =PA 2+PB 2+PC 2=36=6,所以R =3.故所求外接球的表面积为36π.故选:A .例33.(2022·江苏·高一课时练习)如图在正三棱锥S -ABC 中,M ,N 分别是棱SC ,BC 的中点,Q 为棱AC 上的一点,且AQ =12QC ,MN ⊥MQ ,若AB =22,则此正三棱锥S -ABC 的外接球的体积为( )A.12πB.433πC.83πD.43π【答案】D 【解析】因为在△SBC 中,M ,N 分别是棱SC ,BC 的中点,所以MN ⎳SB ,因为MN ⊥MQ ,所以SB ⊥MQ ,因为三棱锥S -ABC 为正三棱锥,所以SB ⊥AC (对棱垂直),又因为MQ ,AC ⊂面SAC ,MQ ∩AC =Q ,所以SB ⊥面SAC ,因为SA ,SC ⊂面SAC ,所以SB ⊥SA ,SB ⊥SC ,在Rt △SAB 中,SA 2+SB 2=AB 2,因为三棱锥S -ABC 为正三棱锥,所以△SBC 是等腰三角形,△ABC 是等边三角形,所以SB =SC ,AB =AC ,所以SA 2+SC 2=AC 2,即SA ⊥SC ,所以SA ,SB ,SC 两两垂直,将此三棱锥放入正方体中,此正方体的面对角线长等于AB 长,为22,则该正方体棱长为2,外接球半径R =22 2+222 2=3,正方体外接球体积V =43πR 3=43π×3 3=43π,此正三棱锥S -ABC 的外接球体积和正方体外接球体积相同,为43π.故选:D例34.(2022·重庆市实验中学高一阶段练习)三棱锥P -ABC 体积为36,且PA =PB =PC ,AB =AC =1,BC =3,则三棱锥外接球的表面积为____________.【答案】254π【解析】三棱锥P -ABC 中,取BC 中点D ,连PD ,连AD 并延长至O 1,使DO 1=AD ,连接BO 1,CO 1,PO 1,如图:于是得四边形ABO 1C 为平行四边形,而AB =AC =1,▱ABO 1C 是菱形,在△ABC 中,BC =3,由余弦定理有cos ∠BAC =AB 2+AC 2-BC 22AB ⋅AC =-12,即∠BAC =120∘,则∠ABO 1=60∘,△ABO 1是正三角形,O 1A =O 1B =O 1C =1,于是得O 1是△ABC 外接圆圆心,因PA =PB =PC ,D 为BC 中点,则PD ⊥BC ,又AO 1⊥BC ,PD ∩AO 1=D ,PD ,AO 1⊂平面PAO 1,从而有BC ⊥平面PAO 1,PO 1⊥BC ,同理PO 1⊥AC ,而AC ∩BC =C ,从而得PO 1⊥平面ABC ,由球的截面小圆性质知,三棱锥P -ABC 外接球球心O 在直线PO 1上,又S △ABC =12AB ⋅AC sin120∘=34,则V P -ABC =13PO 1⋅S △ABC =36,解得PO 1=2,设球O 的半径为R ,则OB =OP =R ,OO 1=|R -2|,Rt △OO 1B 中,O 1B 2+O 1O 2=OB 2,即1+(R -2)2=R 2,解得R =54,则球O 的表面积为S =4πR 2=25π4,所以三棱锥外接球的表面积为254π.故答案为:254π例35.(2022·重庆·高二期末)如图,在三棱锥A -BCD 中,AB =AC =BC =BD =CD ,二面角A -BC-D 的余弦值为-13,若三棱锥A -BCD 的体积为13,则三棱锥A -BCD 外接球的表面积为______.【答案】4π【解析】取BC 的中点E ,连接AE ,DE ,过点A 作AH ⊥DE ,交DE 的延长线于点H ,所以∠AED 为二面角A -BC -D 的平面角,设AB =2a ,则AE =DE =3a ,cos ∠AED =-13,所以sin ∠AEH =sin ∠AED =223,所以AH =263a ,EH =13AE =33a ,因为三棱锥A -BCD 的体积为13,所以13×34×(2a )2×263a =13,解得:a =22,EH =66,设△BCD 外接圆的圆心为O ',三棱锥A -BCD 外接球的球心为O ,连接OO ,OC ,O C ,过点O 作OF ⊥AH 于点F ,则O 'C =O 'D =23DE =63,O E =13DE =66,O H =OF ,OA =OC ,设OO =FH =h ,则AF =AH -FH =233-h ,OF =O H =O E +EH =63,由勾股定理得:h 2+632=233-h 2+63 2,解得:h =33,所以三棱锥A -BCD 外接球的半径R 满足R 2=O 'O 2+O 'C 2=1,则三棱锥A -BCD 的外接球的表面积为4πR 2=4π.故答案为:4π.例36.(2022·全国·高一期末)在正三棱锥P -ABC 中,AB =23,正三棱锥P -ABC 的体积是43,则正三棱锥P -ABC 外接球的表面积是( )A.5πB.15πC.25πD.35π【答案】C【解析】如图所示,设点G 为△ABC 的外心,则PG ⊥平面ABC ,由V P -ABC =13S △ABC ⋅PG =13×12×23×23×32⋅PG =43,∴PG =4,则三棱锥P -ABC 的外接球的球心O 在直线PG 上.设其外接球的半径为R ,由正弦定理得AG =AB2sin π3=2,在Rt △OAG 中,OG =|PG -R |=|4-R |,由勾股定理得OA 2=OG 2+AG 2,即R 2=22+|4-R |2,解得R =52.正三棱锥P -ABC 外接球的表面积是S =4πR 2=4π×52 2=25π,故选:C .例37.(2022·天津市咸水沽第一中学模拟预测)已知正三棱锥S -ABC 的三条侧棱两两垂直,且侧棱长为1,则此三棱锥的外接球的表面积为( )A.πB.3πC.6πD.9π【答案】B【解析】由题意,正三棱锥S -ABC 的三条侧棱两两垂直,且侧棱长为1,此三棱锥S -ABC 可补形为一个棱长为1的正方体,三棱锥S -ABC 的外接球与补成的棱长为1的正方体的外接球为同一个球,设正方体的外接球的半径为R ,可得2R =3,即R =32,所以此三棱锥的外接球的表面积为S =4πR 2=4π×322=3π.故选:B .例38.(2022·河南安阳·高二阶段练习(理))如图,在三棱锥A -BCD 中,AB =BC =AC =CD =2,∠BCD =120°,二面角A -BC -D 的大小为120°,则三棱锥A -BCD 的外接球的表面积为( )A.82π3B.80π3C.27πD.244π9【答案】D【解析】如图1,过D 作DM ⊥BC 垂足为M ,取BC 的中点E ,连接AE ,CM AE =DM =3,CM =1,BD =23过M 作MN ∥AE ,且MN =AE ,连接AN ,则AN =2∵△ABC 为等边三角形,则AE ⊥BC∴MN ⊥BC ,DM ⊥BC ,根据题意可得∠DMN =2π3∵DN 2=MN 2+DM 2-2MN ⋅DM ⋅cos ∠DMN =9,则DN =3由题意可得AN ⊥DN ,则AD 2=AN 2+DN 2=13,则AD =13如图2,∵AC =BC =CD ,则顶点C 在平面ABD 的投影为△ABD 的外接圆圆心O 1,则三棱锥A -BCD 的外接球的球心O 在直线CO 1上,连接O 1A ,O 1C ,OA cos ∠ABD =AB 2+BD 2-AD 22AB ⋅BD =38,则sin ∠ABD =618∴△ABD 的外接圆半径AO 1=12AD sin ∠ABD =41361,则CO 1=CA 2-AO 12=661设棱锥A -BCD 的外接球的半径为R ,则OA 2=AO 12+OO 12即R 2=413612+661-R 2,解得R =613三棱锥A -BCD 的外接球的表面积为S =4πR 2=244π9故选:D .例39.(2022·江苏南通·高三期末)已知正四棱锥P -ABCD 的底面边长为22,侧棱PA 与底面ABCD所成的角为45°,顶点P ,A ,B ,C ,D 在球O 的球面上,则球O 的体积是( )A.16πB.323π C.8π D.823π【答案】B【解析】在正四棱锥P -ABCD 中,连接AC ,BD ,AC ∩BD =O ,连PO ,如图,则有PO ⊥平面ABCD ,∠PAO 为侧棱PA 与底面ABCD 所成的角,即∠PAO =45∘,于是得O P =O A =O B =O C =O D =22AB =2,因此,顶点P ,A ,B ,C ,D 在以O 为球心,2为半径的球面上,即点O 与O 重合,所以球O 的体积是V =43π×23=323π.故选:B例40.(2022·全国·高考真题)已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3≤l ≤33,则该正四棱锥体积的取值范围是( )A.18,814B.274,814C.274,643D.[18,27]【答案】C【解析】∵ 球的体积为36π,所以球的半径R =3,设正四棱锥的底面边长为2a ,高为h ,则l 2=2a 2+h 2,32=2a 2+(3-h )2,所以6h =l 2,2a 2=l 2-h 2所以正四棱锥的体积V =13Sh =13×4a 2×h =23×l 2-l 436 ×l 26=19l 4-l 636 ,所以V=194l 3-l 56 =19l 324-l 26,当3≤l ≤26时,V >0,当26<l ≤33时,V <0,所以当l =26时,正四棱锥的体积V 取最大值,最大值为643,又l =3时,V =274,l =33时,V =814,所以正四棱锥的体积V 的最小值为274,所以该正四棱锥体积的取值范围是274,643.故选:C .题型七:侧棱为外接球直径模型例41.(2022•五华区校级期末)已知三棱锥P -ABC 的所有顶点都在球O 的球面上,AB =5,AC =3,BC =4,PB 为球O 的直径,PB =10,则这个三棱锥的体积为( )A.303B.153C.103D.53【解析】解:如图所示,由条件ΔABC 为直角三角形,则斜边AB 的中点O 1为ΔABC的外接圆的圆心,连接OO 1得OO 1⊥平面ABC ,OO 1=BO 2-BO 12=523,∵OO 1⎳PA ,PA =2OO 1=53,∴PA ⊥平面ABC ,∴三棱锥的体积为13×12×3×4×53=103.故选:C .例42.(2022•红花岗区校级月考)已知三棱锥A -BCD 的所有顶点都在同一个球面上,ΔBCD 是边长为。

《外圆内方和外方内圆》

《外圆内方和外方内圆》

研究主题教学内容《外方内圆和外圆内方》杨冰飞教学年级六年级课时安排 1把握教材《外方内圆和外圆内方》是人教版六年级上册第五单元《圆》新增内容,是在学习了各平面图形的面积、圆的认识、圆的周长、圆的面积及圆环的面积的基础上学习的。

教材的文字和图片分析,由欣赏古代建筑物的图片引入,抽象出图形提出问题:你能求出正方形和圆之间部分的面积吗?针对圆内方的图形,书上出现分割法,借助图形直观帮助学生突破“圆内方”难点。

最后,在学生反思验证过程中通过推理得到一般性规律,培养学生严谨的数学意识。

研究学生前置学习单:课前有对学生进行访谈以及前测, 95%的学生可以看出并且画图表达大正方形面积是小正方形面积的2倍。

100%的学生能理解圆的直径就是正方形的边长并区分圆的周长和面积的计算方法。

对于画圆内最大的正方形,约50%的学生利用对折绘制;有30%的学生利用外切正方形绘制。

可以看出,对于外方内圆的面积,学生已经掌握,但是学生对观察组合图形间的关系经验比较欠缺,认识有限。

教学目标预设整体教学目标上限目标下限目标适合学生1.结合具体情境,学生通过画图、分析、推理等活动过程探究圆和正方通过画图、分析、推理等活动,在探究过程中掌握知识,建立数学模型,能掌握计算此类图形面积的方法,并能准确计算。

形的组合图形的面积差和面积比的关系,掌握计算此类图形面积的方法,并能准确计算。

灵活解决此类图形计算问题。

2、通过数学建模的过程,得到一般性结论,渗透分割法,借助图形旋转的动态方式帮助学生积累经验,发展几何直观,培养学生发现问题、提出问题、分析问题和解决问题的能力。

积累活动经验,发展几何直观,串联沟通已有的知识经验和活动经验,能方法迁移,解决类似数学问题,可以用动态的眼光看数学图形。

在小组讨论,全班交流的过程中,推理出一般性结论,应用结论,解决简单的外圆内方和外方内圆的问题。

3、结合例题渗透传统文化的教育,通过体验图形和生活的联系感受数学的价值,提高学生对数学的兴趣。

含有圆的组合图形教学设计及反思

含有圆的组合图形教学设计及反思

含有圆的组合图形教学设计说明北屯镇中学朱慧敏教学内容:人教版小学数学教材六年级上册第69~70页例3及相关练习。

教学目标:1.结合具体情境认识与圆相关的组合图形的特征,掌握计算此类图形面积的方法,并能准确计算。

2.在解决实际问题的过程中,通过独立思考、合作探究、讨论交流等活动,培养学生分析问题和解决问题的能力。

3.结合例题渗透传统文化的教育,通过体验图形和生活的联系感受数学的价值,提升学习的兴趣。

教学重点:使学生了解在任何正方形都有一个外接圆和一个内切圆,这两个圆是同心圆,掌握计算组合图形面积的方法,并能准确计算。

教学难点:通过正方形性质的教学培养学生的探索、推理、归纳、迁移等能力;对组合图形进行分析。

教学准备:课件、学具、作业纸。

教学过程:一、创设情景,谈话引入1.师:古时候,由于人们的活动范围狭小,往往凭自己的直觉认识世界,看到眼前的地面是平的,以为整个大地是平的,并且把天空看作是倒扣着的一口巨大的锅。

我国古代有“天圆如张盖,地方如棋局”的说法。

(结合课件出示)虽然这种说法是错误的,却产生了深远的影响,尤其体现在建筑设计上。

2.课件展示:生活中关于方与圆的精美图片,精美的雕窗。

【设计意图】由传统文化对建筑设计产生的影响导入课堂,自然地引出例题的教学,极大地激发了学生学习的兴趣和探索的热情。

二、探究新知,解决问题1.实践操作(课件出示教材例3中的雕窗插图)中国建筑中经常能见到“外方内圆”和“外圆内方”的设计。

上图中的两个圆半径都是1m,你能求出正方形和圆之间部分的面积吗?上图中两个圆的半径都是1m,怎样求正方形和圆之间部分的面积呢?题目中都告诉了我们什么?师:谁能说说这两种设计有什么联系和区别?预设1:左边的雕窗外面是方的里面是圆的;右边的雕窗外面是圆的里面是方的。

师:我们可以将上述特征分别概括地称为外方内圆、外圆内方。

预设2:都是由圆和正方形这两个图形组成的。

师:也就是我们以前学过的什么图形?(组合图形)你能用学具组合出这两个图形吗?【设计意图】动手操作的过程是从实物中抽象出图形的过程,使学生充分体会图形的组合与位置关系,理解组合图形面积的产生。

初中数学内切圆外切圆教案

初中数学内切圆外切圆教案

初中数学内切圆外切圆教案一、教学目标:1. 让学生理解并掌握内切圆和外切圆的概念及性质。

2. 培养学生运用几何知识解决实际问题的能力。

3. 培养学生的观察能力、思考能力和动手实践能力。

二、教学内容:1. 内切圆和外切圆的定义及性质。

2. 内切圆和外切圆在实际问题中的应用。

三、教学过程:1. 导入:利用多媒体展示一些生活中的圆形物体,如篮球、足球、圆桌等,引导学生关注这些物体的内部和外部关系。

提问:你们能找出这些圆形物体的内切圆和外切圆吗?2. 新课讲解:(1)内切圆:定义:一个圆内部切于另一个圆,这个圆称为内切圆。

性质:内切圆的半径小于被切圆的半径,内切圆与被切圆的切点处,两圆的切线垂直。

(2)外切圆:定义:一个圆外部切于另一个圆,这个圆称为外切圆。

性质:外切圆的半径大于被切圆的半径,外切圆与被切圆的切点处,两圆的切线垂直。

3. 例题解析:(1)求一个圆的内切圆半径。

(2)求一个圆的外切圆半径。

4. 课堂练习:(1)找出生活中一个圆形物体,画出它的内切圆和外切圆。

(2)计算内切圆和外切圆的半径。

5. 拓展与应用:(1)利用内切圆和外切圆的性质解决实际问题。

(2)探讨内切圆和外切圆在几何图形中的应用。

四、教学评价:1. 课堂讲解:关注学生对内切圆和外切圆概念及性质的理解程度。

2. 课堂练习:检查学生运用几何知识解决实际问题的能力。

3. 课后作业:收集生活中的内切圆和外切圆实例,分析其特点。

五、教学反思:本节课通过生活实例引导学生关注内切圆和外切圆的概念及性质,培养学生运用几何知识解决实际问题的能力。

在教学过程中,要注意关注学生的学习情况,及时解答学生的疑问,提高学生的学习兴趣和积极性。

同时,结合实际生活中的例子,让学生更好地理解和掌握内切圆和外切圆的应用。

2023-2024学年苏科版九年级数学教学设计:第32讲 正多边形的外接圆

2023-2024学年苏科版九年级数学教学设计:第32讲 正多边形的外接圆

2023-2024学年苏科版九年级数学教学设计:第32讲正多边形的外接圆一. 教材分析本讲主要内容是正多边形的外接圆。

在学习了圆的性质和正多边形的性质的基础上,学生能够理解正多边形的外接圆的定义和性质,并能够运用这些性质解决一些实际问题。

本讲的内容在数学中占有重要的地位,对于学生形成完整的数学知识体系具有重要的意义。

二. 学情分析九年级的学生已经学习过圆的性质和正多边形的性质,对于本讲的内容有一定的基础知识。

但是,学生对于一些抽象的数学概念的理解仍然存在困难,因此需要通过具体的例子和实际问题来帮助学生理解和掌握正多边形的外接圆的性质。

三. 教学目标1.理解正多边形的外接圆的定义和性质。

2.能够运用正多边形的外接圆的性质解决一些实际问题。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.正多边形的外接圆的定义和性质。

2.如何运用正多边形的外接圆的性质解决实际问题。

五. 教学方法1.采用问题驱动的教学方法,通过提出问题引导学生思考和探索。

2.使用多媒体辅助教学,通过动画和图形帮助学生直观地理解正多边形的外接圆的性质。

3.提供丰富的实际问题,让学生通过解决实际问题来巩固和应用所学的知识。

六. 教学准备1.多媒体教学设备。

2.正多边形的图形和动画。

3.实际问题和相关练习题。

七. 教学过程导入(5分钟)通过提出问题引导学生思考:“为什么所有的正多边形都可以内切一个圆?这个圆和正多边形有什么特殊的关系?”让学生回忆起圆和正多边形的性质,激发学生的学习兴趣。

呈现(15分钟)使用多媒体展示正多边形的图形和动画,引导学生观察和思考正多边形的外接圆的性质。

通过动画展示正多边形的外接圆的定义和性质,让学生直观地理解正多边形的外接圆的概念。

操练(10分钟)提供一些实际的例子和练习题,让学生运用所学的知识解决实际问题。

例如,给出一个正五边形,让学生计算其外接圆的半径。

通过解决实际问题,帮助学生巩固和应用所学的知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正方形的内接圆与外接圆
教学内容:五年级数学奥林匹克自编教材
学习主体:四年级数学奥林匹克兴趣小组成员
教学目标:
1.学生通过演算推理,自主发现正方形与内接圆、正方形与外接圆的面积关系。

2.在探索过程中,渗透整体思想解题、用特殊值法解题、图形变换解题等思想,提升思维层次
3.能利用探究到的知识合理地、灵活地解决数学问题。

4.培养学生解题时要有整体把握的习惯,善于发现题中隐含着的丰富知识。

教学重点:整体思想解题、归纳运用知识解答新问题
教学准备:发给每人印有组合图形的练习纸
教学过程
一、复习引入
1.前面我们已经学习了圆的面积,圆的面积公式是(生:S=лr2)
正方形的面积公式是(生:S=a2,S=l2÷2)
2.口算
正方形的面积是36平方厘米,边长()cm,他的对角线的平方是()平方厘米。

正方形的对角线长是6厘米,面积是()平方厘米。

2r×2r= (2r)2÷2=
圆的直径是6cm,面积是()
3.引入
今天我们将圆与正方形组合在一起,得到内接圆、外接圆。

研究一下它们与正方形的面积关系。

(展示:正方形的内接圆、正方形的外接圆)
二、新课教学
1.出示例题
正方形与内接圆的面积关系正方形与外接圆的面积关系
2.用特殊值法计算它们各自的面积,推导出面积关系
1)学生上台板演第一题(优秀学生用特殊值法和假设法两种方法计算)
2)推导出正方形与内接圆的面积关系
正方形面积÷内接圆面积=4
π,
正方形面积=内接圆面积×4
π;内接圆面积=正方形面积×
π
4(板书:电脑演示)
3)用特殊值法计算第二个图
正方形的面积是2×2=4,
设圆的半径为r ,正方形面积=2r ×2r ÷2=4,r 2=2
圆的面积是S=πr 2=2π
4)推导出正方形与外接圆的面积关系
学生表达:
正方形面积=外接圆面积×2π
;外接圆面积=正方形面积×π2(板书:电脑演示) 5)如何记住这两个公式
3.应用 1)口答: 正方形面积96,内接圆的面积是();圆面积628,内接正方形面积()。

正方形面积16,外接圆面积是()。

2)求阴影部分的面积
过程:4×4×π2-4×4= 重点:怎么求最后两个图形的阴影部分面积(怎么确认大正方形面积是小正方形面积的2倍——移位法)
推想:下图大圆、小圆之间的关系会是怎样的?怎样验证?
三、小结
今天学到的知识同桌之间互相说说。

师:今天我们用到的数学思想有“整体思想解题、用特殊值法解题、图形变换解题”,另外还有推想、验证等。

四、作业将练习纸上的作业完成在练习簿上。

(前面三个图中小正方形的边长是4厘米)
思考题:如图阴影部分的面积是6.84平方厘米,求圆环的面积。

相关文档
最新文档