函数概念及复合函数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数概念及复合函数
目的:要求学生从映射的观点去理解函数的概念,明确决定函数的三个要素。
过程:
一、复习:(提问)
1.什么叫从集合到集合上的映射?
2.传统(初中)的函数的定义是什么?初中学过哪些函数?
二、函数概念:
1.重复初中时讲的函数(传统)定义:“定义域”“函数值”“值域”的定义。
2.从映射的观点定义函数(近代定义):
1︒函数实际上就是集合A到集合B的一个映射f:A B这里A, B非空。
2︒A:定义域,原象的集合
B:值域,象的集合(C)其中C⊆B
f:对应法则x∈A y∈B
3︒函数符号:y=f(x) ——y是x的函数,简记f(x)
3.举例消化、巩固函数概念:见课本P51—52
一次函数,反比例函数,二次函数
注意:1︒务必注意语言规范
2︒二次函数的值域应分a>0, a<0 讨论
4.关于函数值f(a) 例:f(x)=x2+3x+1 则f(2)=22+3×2+1=11 注意:1︒在y=f(x)中f表示对应法则,不同的函数其含义不一样。
2︒f(x)不一定是解析式,有时可能是“列表”“图象”。
3︒f(x)与f(a)是不同的,前者为函数,后者为函数值。
三、函数的三要素:对应法则、定义域、值域
只有当这三要素完全相同时,两个函数才能称为同一函数。
例一:判断下列各组中的两个函数是否是同一函数?为什么?
1.
3
)5
)(
3
(
1+
-
+
=
x
x
x
y5
2
-
=x
y解:不是同一函数,定义域不同2。1
1
1
-
+
=x
x
y)1
)(
1
(
2
-
+
=x
x
y解:不是同一函数,定义域不同3。x
x
f=
)
(2
)
(x
x
g=解:不是同一函数,值域不同4.x
x
f=
)
(33
)
(x
x
F=解:是同一函数
5.2
1
)5
2
(
)
(-
=x
x
f5
2
)
(
2
-
=x
x
f解:不是同一函数,定义域、值域都不同例二:P55 例三(略)
四、关于复合函数
设f(x)=2x-3 g(x)=x2+2 则称f[g(x)](或g[f(x)])为复合函数。
f[g(x)]=2(x2+2)-3=2x2+1
g[f(x)]=(2x-3)2+2=4x2-12x+11
例三:已知:f(x)=x2-x+3 求:f(
x
1
) f(x+1)
解:f(
x
1
)=(
x
1
)2-
x
1
+3
f(x+1)=(x+1)2-(x+1)+3=x2+x+3
例四:课本P54 例一
五、小结:从映射观点出发的函数定义,符号f(x)
函数的三要素,复合函数
六、作业:选择课后习题及教师自选自编习题。