数学建模之灰色预测模型

合集下载

01灰色预测

01灰色预测

算法简介1、灰色预测模型(必掌握) 灰色预测模型使用范围:①数据样本点个数少,6-15个 ②数据呈现指数或曲线的形式③只适合做中短期预测,不适合长期预测。

灰色预测原理比较简单,详细的可以参考司守奎《数学建模算法与应用》。

需要注意的几点是:(1)灰色预测的使用范围(2)灰色预测中的“级比”如果级比不在范围要对数据进行处理。

(3)司老师书中的代码,并没有运行出后面的运行结果,如果想运行出预测的结果,看下面的说明。

(4)在使用灰色预测的时候要考虑残差等(见代码的最后三行) (5)代码直接复制粘贴文本文档的文件就可以了。

(6)文本文档是给出了两种代码,不要复制错了,第一个是司老师书中的。

第二个是学员提交的作业,可以直接得出预测结果,但是没有检验结果。

例 北方某城市 1986~1992 年道路交通噪声平均声级数据见1。

表1 城市交通噪声数据/dB(A)序号 年份 eq L序号 年份 eq L1 1986 71.1 5 1990 71.42 1987 72.4 6 1991 72.03 1988 72.4 7 1992 71.6 4198972.1该例题源代码如下: clc,clearx0=[71.1 72.4 72.4 72.1 71.4 72.0 71.6]';%注意这里为列向量 n=length(x0);lamda=x0(1:n-1)./x0(2:n) %计算级比 range=minmax(lamda') %计算级比的范围 x1=cumsum(x0); %累加运算B=[-0.5*(x1(1:n-1)+x1(2:n)),ones(n-1,1)]; Y=x0(2:n); u=B\Y syms x(t)x=dsolve(diff(x)+u(1)*x==u(2),x(0)==x0(1));%求微分方程的符号解xt=vpa(x,6)%以小数格式显示微分方程的解yuce1=subs(x,t,[0:n-1]);%为提高预测精度,先计算预测值,再显示微分方程的解。

数学建模-灰色预测模型(讲解

数学建模-灰色预测模型(讲解
(5)系统预测. 通过对系统行为特征指标建立一组相互关联的灰 色预测模型,预测系统中众多变量间的相互协调关系的变化。
2 灰色系统的模型
在灰色系统理论中,把一切随机变量都看作灰色数,
即使在指定范围内变化的所有白色数的全体,对灰数处理 主要是利用数据处理的方法去寻求数据间的内在规律,通 过对已知数据列中的数据进行处理而产生新的数据列,以 此来研究寻求数据的规律性,这种方法称为数据的生成。
得到原始数据序列
7.3 销售额预测
注意到一阶常微分方程是导出GM(1,1)模型的桥梁,在我 们应用GM(1,1)模型于实际问题预测时,不必求解一阶常 微分方程。
7.2 灰色系统的模型
4.GM(1,1)的建模步骤 综上所述,GM(1,1)的建模步骤如下:
销售额预测
7.3 销售额预测
随着生产的发展、消费的扩大,市场需求通常总是 增加的,一个商店、一个地区的销售额常常呈增长趋 势. 因此,这些数据符合建立灰色预测模型的要求。
或称相减生成,它是指后前两个数据之差,如上例中
7.2 灰色系统的模型
x(1) (5) x(1) (5) x(1) (4) 34 27 7, x(1) (4) x(1) (4) x(1) (3) 27 17 10, x(1) (3) x(1) (3) x(1) (2) 17 9 8, x(1) (2) x(1) (2) x(1) (1) 9 6 3, x(1) (1) x(1) (1) x(1) (0) 6 0 6. 归纳上面的式子得到如下结果:一次后减
1 灰色系统的定义和特点 2 灰色系统的模型 3 Sars 疫情 4 销售额预测 5 城市道路交通事故次数的灰色预测 6 城市火灾发生次数的灰色预测 7灾变与异常值预测

数学建模灰色预测法

数学建模灰色预测法

i1,2,...n,
回总目录 回本章2目9 录
在建立模型后,还必须对模型进行精度检验,其 检验标准见表1。
表1 精度检验等级参照表
2021/10/10
30
(2)关联度检验
根据前面所述关联度的计算方法算出 Xˆ 0i
与原始序列 X0i的关联系数,然后计算出关联
度,根据经验,当ρ=0.5时,关联度大于0.6便 满意了。
28
二、模型检验 灰色预测检验一般有残差检验、关联度检
验和后验差检验。 (1)残差检验
按预测模型计算 Xˆ 1i, 并将Xˆ 1i 累减生成 Xˆ0i, 然后计算原始序列X0i 与 Xˆ 0i的绝对误差序列及相
对误差序列。
0iX 0iX ˆ0i i1,2,...n,
2021/10/10
iX 00ii10% 0
回总目录 回本章1目4 录
Ø累减 将原始序列前后两个数据相减得到累减生成列
• 累减是累加的逆运算,累减可将累加生成 列 还原为非生成列,在建模中获得增量信息。 一次累减的公式为:
X 1 k X 0 k X 0 k 1
2021/10/10
回总目录 回本章1目5 录
三、关联度
关联度分析是分析系统中各因素关联程度 的方法,在计算关联度之前需先计算关联系数。
X ˆ(0 )(k ) X ˆ(1 )(k ) X ˆ(1 )(k 1 )
2021/10/10
27
由灰色预测方法原理, - a 主要控制系统发展态
势的 大小,即反映预测的发展态势,被称为发展系数;
μ 的大小反映了数据变化的关系,被称为灰色作用量,
其中:
①当- a < 0.3 时, GM(1 ,1) 模型可用于中长期预测;

灰色预测模型

灰色预测模型

灰色系统模型(Grey Model,GM)一:解决的关键问题 (所谓灰色系统是指部分信息已知而部分信息未知的系统,灰色系统所要考察和研究的是对信息不完备的系统,通过已知信息来研究和预测未知领域从而达到了解整个系统的目的)灰色系统模型作为一种预测方法广泛应用于工程控制,经济管理,社会系统等众多领域。

二:GM(1,1)模型(一):对原始序列累加处理一次累加生产序列②(即1-AGO序列),表示为其中,一次累加序列(1)X 的第k 项由原序列的前k 项和产生,即: 由(1)X 的相邻项平均得到(1)X 的紧邻均值生成序列(1)z ,表示为:根据上述序列,有灰色系统模型GM(1,1)的基本形式:(二)构造GM(1,1)模型方程组的矩阵形式,并求解参数 GM(1,1)模型的微分方程基本形式:(三)求的时间响应序列,累减得到原序列的预测值(四)模型检验残差的均值、方差分别为:21S C S 称为均方差比值,对于给定的00C ,当0C C 时,称模型为均方差比合格模型;1(()0.6745)p p k S 称为小误差概率,对于给定的00P ,当0P P 时,称模型为小误差概率合格模型。

一般均方差比值C 越小越好(因为C 小说明S 小,1S 大,即残差方差小,原始数据方差大,说明残差比较集中,摆动幅度小,原始数据比较分散,摆动幅度大,所以模拟效果好,要求2S 与1S 相比尽可能小),以及小误差概率p 越大越好,给定000,,,C p 的一组取值,就确定了检验模型模拟精度的一个等级,常用的精度等级见表1。

软件DPS 的分析结果也提供了C 、p 的检验结果。

(五)残差修正模型(六)建立新陈代谢GM(1,1)进行动态预测在实际建模过程中,原始数据序列的数据不一定全部用来建模。

我们在原始数据序列中取出一部分数据,就可以建立一个模型。

一般说来,取不同的数据,建立的模型也不一样,即使都建立同类的GM(1,1)模型,选择不同的数据,参数a,b的值也不一样。

灰色预测模型原理

灰色预测模型原理

灰色预测模型原理灰色预测模型(Grey Prediction Model)是一种基于灰色系统理论和数学建模方法的预测模型。

灰色系统理论是我国学者黄金云教授于1982年提出的一种系统理论,它是研究非确定性和不完备信息系统的一种新方法,可用于研究多变量、小样本和非线性系统。

灰色预测模型主要基于灰色数学建模方法,通过对已知的部分序列数据进行建模和预测,来推测未知的序列数据趋势。

它适用于研究数据量小、信息不完备、非线性关系复杂的系统。

下面将简要介绍灰色预测模型的原理、模型建立过程以及一些应用案例。

1. 灰色预测模型的原理灰色预测模型的核心思想是通过对已知数据进行灰色关联度的度量,从而建立出合适的数学模型,进行未来数据的预测。

其基本原理可以概括为以下五个步骤:(1)建立灰色微分方程:根据原始数据的特点,确定合适的灰色微分方程,通常使用一阶或高阶灰色微分方程。

(2)求解灰色微分方程:根据所选择的灰色微分方程,求解其参数,得到模型的特征参数。

(3)模型检验:检验所建立的灰色预测模型的拟合程度和误差是否符合要求。

(4)进行灰色关联度分析:根据已知数据的变化规律,计算各个因素的灰色关联度,确定相关因素的重要性。

(5)进行预测:利用建立好的灰色预测模型,对未来的数据进行预测和分析,得出预测值。

2. 模型建立过程灰色预测模型的建立过程中,通常包括以下几个步骤:(1)数据的建立与处理:对原始数据进行筛选、预处理和归一化处理,以满足模型的要求。

(2)建立灰色微分方程:从已知数据中提取主要特征,并根据数据的特点选择合适的灰色微分方程。

(3)求解灰色微分方程:根据所选的灰色微分方程,通过累加生成序列、求解参数等方法,得到模型的特征参数。

(4)模型的检验:根据已知数据的拟合程度和误差范围,评估所建立的灰色预测模型的准确性和可靠性。

(5)模型的应用与预测:利用已建立的模型进行未来数据的预测和分析,得出预测结果。

3. 应用案例灰色预测模型在实际应用中具有广泛的应用范围,以下是一些常见的应用案例:(1)经济领域:用于对经济指标、市场需求、价格变动等进行预测,为经济决策提供参考。

【数学建模】灰色预测模型(预测)

【数学建模】灰色预测模型(预测)

【数学建模】灰色预测模型(预测)文章目录•一、算法介绍•o 1.灰色预测模型o 2.灰色系统理论o 3. 针对类型o 4. 灰色系统o 5. 灰色生成o 6. 累加生成o7. GM(1,1)模型o▪推导▪精度检验▪精度检验等级参照表•二、适用问题•三、算法总结•o 1. 步骤•四、应用场景举例•o 1. 累加生成o 2. 建立GM(1,1)模型o 3. 检验预测值•五、MATLAB代码•六、实际案例•七、论文案例片段(待完善)灰色预测模型主要针对数学建模问题中的一些小的子问题进行求解,如果想直接使用请跳转至——四、五另外之前看过一篇比较完整的【数学建模常用算法】之灰色预测模型GM,作者:張張張張视频回顾一、算法介绍1.灰色预测模型灰色预测模型(Gray Forecast Model)是通过少量的、不完全的的信息,建立数学模型并做出预测的一种预测方法.当我们应用运筹学的思想方法解决实际问题,制定发展战略和政策、进行重大问题的决策时,都必须对未来进行科学的预测.预测是根据客观事物的过去和现在的发展规律,借助于科学的方法对其未来的发展趋势和状况进行描述和分析,并形成科学的假设和判断。

2.灰色系统理论灰色系统理论是研究解决灰色系统分析、建模、预测、决策和控制的理论.灰色预测是对灰色系统所做的预测。

目前常用的一些预测方法(如回归分析等),需要较大的样本,若样本较小,常造成较大误差,使预测目标失效。

灰色预测模型所需建模信息少,运算方便,建模精度高,在各种预测领域都有着广泛的应用,是处理小样本预测问题的有效工具。

3. 针对类型灰色系统理论是由华中理工大学邓聚龙教授于1982年提出并加以发展的。

二十几年来,引起了不少国内外学者的关注,得到了长足的发展。

目前,在我国已经成为社会、经济、科学技术在等诸多领域进行预测、决策、评估、规划控制、系统分析与建模的重要方法之一。

特别是它对时间序列短、统计数据少、信息不完全系统的分析与建模,具有独特的功效,因此得到了广泛的应用.4. 灰色系统灰色系统是黑箱概念的一种推广。

数学建模灰色预测法

数学建模灰色预测法
在预测分析中,最基本的预测模型为线性回归方 程,针对一些规律性较强的数据,该模型能作出精 确的预测,但在实际中,我们得到的常是一些离散 的,规律性不强的数据,为解决此类问题,线性的 方法就不适用了,此时,就需要采用灰色预测的方 法。
灰色预测法
1 灰色预测理论
2 GM(1,1)模型 3 GM(1,1)残差模型及GM (n, h)模型
二、模型检验 灰色预测检验一般有残差检验、关联度检 验和后验差检验。
(1)残差检验
ˆ 0 i , ˆ 1 i 累减生成 X ˆ 1 i , 并将 X 按预测模型计算 X
ˆ 0 i 的绝对误差序列及相 然后计算原始序列X 0 i 与 X
对误差序列。
原始数据进行生成处理来寻找系统变动
的规律,生成有较强规律性的数据序列,
然后建立相应的微分方程模型,从而预
测事物未来发展趋势的状况。
回总目录 回本章目录
• 灰色预测法用等时距观测到的反映预测对 象特征的一系列数量值构造灰色预测模型, 预测未来某一时刻的特征量,或达到某一
特征量的时间。
回总目录 回本章目录
回总目录
1灰色预测理论
一、灰色预测的概念
(1)灰色系统、白色系统和黑色系统 • 白色系统是指一个系统的内部特征是完全 已知的,即系统的信息是完全明确的。
回总目录 回本章目录
• 黑色系统是指一个系统的内部信息对外界
来说是一无所知的,只能通过它与外界的
联系来加以观测研究。 • 灰色系统内的一部分信息是已知的,另一 部分信息是未知 的,系统内各因素间有不
回总目录 回本章目录
一个计算关联度的例子
工业、农业、运输业、商业各部门的行为 数据如下: 工业
X1 45.8, 43.4, 42.3, 41.9

数学建模——灰色预测模型

数学建模——灰色预测模型

数学建模——灰色预测模型灰色预测模型(Grey Forecasting Model)是一种用于预测不确定性数据的数学模型。

它适用于那些缺乏充分历史数据、不具备明显的规律性趋势或周期性的情况。

灰色预测模型基于灰色系统理论,通过分析数据的变化趋势和规律,来进行预测。

该模型在处理少量数据、缺乏趋势规律的情况下,具有一定的优势。

灰色预测模型的基本思想:灰色预测模型基于“白化(Whitening)”和“黑化(Blackening)”的思想,将不确定性数据分为“白色”和“黑色”两部分。

其中,“白色”代表已知数据,具有规律性和趋势,可以进行预测;而“黑色”代表未知数据,缺乏规律,需要进行预测。

通过建立数学模型,将“白色”和“黑色”数据进行融合,得出预测结果。

灰色预测模型的基本步骤:1.建立灰色数列:将原始数据分成“白色”和“黑色”两部分,构建灰色数列。

2.建立灰色微分方程:对“白色”数列进行微分,得到一阶或高阶微分方程。

3.求解微分方程:求解微分方程,得到预测模型的参数。

4.进行预测:利用已知的模型参数,对“黑色”数据进行预测,得出未来的趋势。

示例:用灰色预测模型预测销售量假设你是一家新开设的小型餐厅的经营者,你希望预测未来三个月的月销售量。

然而,你的餐厅刚刚开业不久,历史销售数据有限,且不具备明显的趋势。

这种情况下,你可以考虑使用灰色预测模型来预测销售量。

步骤:1.建立灰色数列:将已知的销售数据分为“白色”(已知数据)和“黑色”(未知数据)两部分。

2.建立灰色微分方程:对“白色”销售数据进行一阶微分,得到灰色微分方程。

3.求解微分方程:根据灰色微分方程的形式,求解微分方程,得到模型的参数。

4.进行预测:利用求解得到的模型参数,对“黑色”销售数据进行预测,得到未来三个月的销售量趋势。

这个例子中,灰色预测模型可以帮助你基于有限的历史销售数据,预测未来的销售趋势。

虽然该模型的精确度可能不如其他更复杂的方法,但在缺乏充足数据时,它可以提供一种有用的预测工具。

数学建模算法:灰色预测模型GM(1,1)及Python代码

数学建模算法:灰色预测模型GM(1,1)及Python代码

数学建模算法:灰⾊预测模型GM(1,1)及Python代码灰⾊预测模型GM(1,1)灰⾊预测模型\(GM(1,1)\)是在数学建模⽐赛中常⽤的预测值⽅法,常⽤于中短期符合指数规律的预测。

其数学表达与原理分析参考⽂章尾部⽹页与⽂献资料。

经过整理,以下附上Python代码:灰⾊模型要求数据前后级⽐落⼊范围 \(\displaystyle \Theta\left(e^{-\frac{2}{n+1}},e^{\frac{2}{n+2}}\right)\) ,因此做线性平移预处理使得元数据满⾜要求。

线性平移:将数据平移⾄不⼩于1,检查级⽐,若不满⾜要求则将数据向上平移⼀个最⼩值直到满⾜要求。

可以推断出,级⽐的上下界在给定数据点数越多的情况下,越趋于1。

import numpy as npimport matplotlib.pyplot as plt# 线性平移预处理,确保数据级⽐在可容覆盖范围def greyModelPreprocess(dataVec):"Set linear-bias c for dataVec"import numpy as npfrom scipy import io, integrate, linalg, signalfrom scipy.sparse.linalg import eigsfrom scipy.integrate import odeintc = 0x0 = np.array(dataVec, float)n = x0.shape[0]L = np.exp(-2/(n+1))R = np.exp(2/(n+2))xmax = x0.max()xmin = x0.min()if (xmin < 1):x0 += (1-xmin)c += (1-xmin)xmax = x0.max()xmin = x0.min()lambda_ = x0[0:-1] / x0[1:] # 计算级⽐lambda_max = lambda_.max()lambda_min = lambda_.min()while (lambda_max > R or lambda_min < L):x0 += xminc += xminxmax = x0.max()xmin = x0.min()lambda_ = x0[0:-1] / x0[1:]lambda_max = lambda_.max()lambda_min = lambda_.min()return c# 灰⾊预测模型def greyModel(dataVec, predictLen):"Grey Model for exponential prediction"# dataVec = [1, 2, 3, 4, 5, 6]# predictLen = 5import numpy as npfrom scipy import io, integrate, linalg, signalfrom scipy.sparse.linalg import eigsfrom scipy.integrate import odeintx0 = np.array(dataVec, float)n = x0.shape[0]x1 = np.cumsum(x0)B = np.array([-0.5 * (x1[0:-1] + x1[1:]), np.ones(n-1)]).TY = x0[1:]u = linalg.lstsq(B, Y)[0]def diffEqu(y, t, a, b):return np.array(-a * y + b)t = np.arange(n + predictLen)sol = odeint(diffEqu, x0[0], t, args=(u[0], u[1]))sol = sol.squeeze()res = np.hstack((x0[0], np.diff(sol)))return res# 输⼊数据x = np.array([-18, 0.34, 4.68, 8.49, 29.84, 50.21, 77.65, 109.36])c = greyModelPreprocess(x)x_hat = greyModel(x+c, 5)-c# 画图t1 = range(x.size)t2 = range(x_hat.size)plt.plot(t1, x, color='r', linestyle="-", marker='*', label='True')plt.plot(t2, x_hat, color='b', linestyle="--", marker='.', label="Predict")plt.legend(loc='upper right')plt.xlabel('xlabel')plt.ylabel('ylabel')plt.title('Prediction by Grey Model (GM(1,1))')plt.show()误差分析部分:可就绝对误差、相对误差、级⽐、残差做数据分析,以下⽰例为最⼩⼆乘法线性回归分析。

数学建模——灰色系统理论及其应用

数学建模——灰色系统理论及其应用
2 r 1 r 1 r
x
r
k x k , k 1,2,, n
r x r k r 1 x r k r 1 x r k 1







四、灰色预测的步骤
1.数据的检验与处理
首先,为了保证建模方法的可行性,需要对已知数据列做必要的检验处理。 设参考数据为 x(0) ( x(0) (1), x(0) (2),...,x(0) (n)),计算数列的级比
2 n 1 2 n2
(0)
y (0) (k ) x(0) (k ) c, k 1,2,...,n
五、灰色预测计算实例
例4 北方某城市1986~1992 年道路交通噪声平均声级数据见表6 表6 市近年来交通噪声数据[dB(A)]
第一步: 级比检验 建立交通噪声平均声级数据时间序列如下:
(三)、主要内容
灰色系统理论经过 10 多年的发展,已基本 建立起了一门新兴学科的结构体系,其主 要内容包括以“灰色朦胧集”为基础的理 论体系、以晦涩关联空间为依托的分析体 系、以晦涩序列生成为基础的方法体系, 以灰色模型( G,M)为核心的模型体系。 以系统分析、评估、建模、预测、决策、 控制、优化为主体的技术体系。
x i
1
0 与 x i 之间满足下述关系,即


x 1 k x 0 m
为数列 i x x i 则称数列
1
0
m 1
k
的一次累加生成数列。
显然,
r
次累加生成数列有下述关系:
x r k x r k 1 x r 1 k
(四)、应用范畴
灰色系统的应用范畴大致分为以下几方面: (1)灰色关联分析。 (2)灰色预测:人口预测;初霜预测; 灾变预测….等等。 (3)灰色决策。 (4)灰色预测控制。

灰色预测模型1

灰色预测模型1

灰色系统的模型
通过下面的数据分析、处理过程,我们将了解到,有 了一个时间数据序列后,如何建立一个基于模型的灰色 预测。
1. 数据的预处理 首先我们从一个简单例子来考察问题. 【例1】 设原始数据序列
x(0) {x(0) (1), x(0) (2), , x(0) (N ) } {6, 3, 8, 10, 7}
x(1) 的拟合值,用后减运算还原,当k 1, 2, , N 1时,
就可得原始序列 x (0) 的拟合值 xˆ(0) (k 1);当k N时,
可得原始序列 x (0) 预报值.
3.精度检验
(1)残差检验:分别计算
7.2 灰色系统的模型
7.2 灰色系统的模型
(3)预测精度等级对照表,见表7.1.
或称相减生成,它是指后前两个数据之差,如上例中
7.2 灰色系统的模型
x(1) (5) x(1) (5) x(1) (4) 34 27 7, x(1) (4) x(1) (4) x(1) (3) 27 17 10, x(1) (3) x(1) (3) x(1) (2) 17 9 8, x(1) (2) x(1) (2) x(1) (1) 9 6 3, x(1) (1) x(1) (1) x(1) (0) 6 0 6. 归纳上面的式子得到如下结果:一次后减 x(1) (i) x(1) (i) x(1) (i 1) x(0) (i)
x (0)(3) ax (1)(3) u, ..............................
x (0)(N ) ax (1)(N ) u.
7.2 灰色系统的模型
把ax(1) (i) 项移到右边,并写成向量的数量积形式
x(0) (2)
[
x(1)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、灰色预测模型简介(P372)特点:模型使用的不是原始数据列,而是生成的数据列。

优点:不需要很多数据,一般只用4个数据就能解决历史数据少,序列的完整性和可靠性低的问题。

缺点:只适用于中短期的预测和指数增长的预测。

1、GM(1,1)预测模型GM(1,1)表示模型为一阶微分方程,且只含有一个变量的灰色模型。

模型的应用 ①销售额预测②交通事故次数的预测③某地区火灾发生次数的预测④灾变与异常值预测,如对旱灾,洪灾,地震等自然灾害的时间与程度进行预报。

(百度文库)⑤基于GM(1,1)模型的广州市人口预测与分析(下载的文档) ⑥网络舆情危机预警(下载的文档) 步骤①级比检验与判断由原始数据列(0)(0)(0)(0)((1),(2),,())x x x x n =计算得序列的级比为(0)(0)(1)(),2,3,,.()x k k k n x k λ-==若序列的级比()k λ∈ 2212(,)n n e e-++Θ=,则可用(0)x 作令人满意的GM(1,1)建模。

光滑比为(0)1(0)1()()()k i x k p k xi -==∑若序列满足[](1)1,2,3,,1;()()0,,3,4,,;0.5.p k k n p k p k k n ϕϕ+<=-∈=<则序列为准光滑序列。

否则,选取常数c 对序列(0)x 做如下平移变换(0)(0)()(),1,2,,,y k x k c k n =+=序列(0)y 的级比0(0)(1)(),2,3,,.()y y k k k n y k λ-=∈Θ=②对原始数据(0)x 作一次累加得 (1)(1)(1)(1)(0)(0)(0)(0)(0)((1),(2),,())(11+(2),,(1)()).x x x x n x x x x x n ==++(),()建立模型:(1)(1),dx ax b dt+= (1)③构造数据矩阵B 及数据向量Y(1)(1)(1)(2)1(3)1,()z z B z n ⎡⎤- ⎢⎥- ⎢⎥=⎢⎥ ⎢⎥⎢⎥- 1⎣⎦(0)(0)(0)(2)3()x x Y x n ⎡⎤⎢⎥⎢⎥=⎢⎥ ⎢⎥⎢⎥⎣⎦() 其中:(1)(1)(1()0.5()0.5(1),2,3,,.z k x k x k k n =+-=)④由1ˆˆ()ˆT T auB B B Y b -⎡⎤==⎢⎥⎣⎦求得估计值ˆa= ˆb = ⑤由微分方程(1)得生成序列预测值为ˆ(1)(0)ˆˆˆ(1)(1)k 0,1,,1,,ˆˆak b b xk x e n a a -⎛⎫+=-+=- ⎪ ⎪⎝⎭,则模型还原值为(0)(1)(1)ˆˆˆ(1)(1),1,2,,1,.x k x k x k n +=+-=-⑥精度检验和预测残差(0)(0)ˆ()()(),1,2,,,k x k xk k n ε=-= 相对误差(0)|()|()k x k ε∆=相对误差精度等级表级比偏差10.5()1(),10.5a k k a ρλ-⎛⎫=-⎪+⎝⎭若()k ρ<则可认为达到一般要求;若()k ρ<,则可认为达到较高要求。

利用matlab 求出模型的各种检验指标值的结果如表经过验证,给出相应预测预报。

2、新陈代谢模型灰色新陈代谢模型是一个不断考虑新信息的预测模型,它考虑了随着时间推移相继进入系统的扰动因素带来的影响,在不断补充新信息的同时,及时去掉旧信息,使整个系统一直处于更新和发展的过程中,更符合现实世界的变化。

与GM(1,1)模型相比,既能充分发挥传统GM(1,1)模型仅利用少量数据, 就能获得较高预测精度的优点,又能反映出数据的变化趋势, 从而使预测结果的精度获得更进一步的提高。

局限性在于该模型适合预测具有较强指数规律的序列, 只能描述单调变化的过程。

模型的应用①深圳货运量预测;(下载文档)②天津市城市人均住宅建筑面积及非农业户籍人口总数预测(下载文档); ③网络舆情危机预警(下载文档)。

步骤①建立新陈代谢数据序列原始数据列(0)(0)(0)(0)((1),(2),,())x x x x n =,用最新信息(0)(1)x n +替换最初数据(0)(1)x ,即得到新陈代谢数据序列(0)(0)(0)(0)((2),,(),(1))y x x n x n =+。

②后续步骤同GM(1,1)模型。

③用②计算出的最新结果再次替换最初信息(0)(2)x 得到新序列重复步骤②,以此类推,将计算结果制表并分析。

3、波形预测波形预测, 是对一段时间内行为特征数据波形的预测。

当原始数据频频摆动且摆动幅度较大时,可以考虑根据原始数据的波形预测未来的行为数据发展变化, 以便进行决策。

从本质上来看,波形预测是对一个变化不规则的行为数据列的整体发展进的预测。

模型的应用①区域降水量预测(下载文档)②运量需求不平衡航线下客流量预测(下载文档) ③网络舆情危机预警(下载文档) 步骤①求出序列折线由原始数据列((1),(2),,())x x x x n =得出序列X 的k 段折线图形为[]()()(1)()k x x k x k x k x k '=+-+-序列X 的折线为[]{}()()(1)()|1,2,,1kxx k x k x k x k k n '=+-+-=-②选取等高线令{}{}max min 11(),()max min k nk nx k x k σσ≤≤≤≤==则有0min 1max min min 1max min min min max min max 1,(),,(),,1(),(0,1,2,,)s s is ss i s sγσγσσσγσσσγσσσγσ==-+=-+-=++==如果k x 的i 段折线上有γ等高点,则坐标为()(,)(1)()x i i x i x i γγ-++-。

③等高点的计算解方程k x =γ得到折线k x 与γ的交点(0)()x i =(,())(1,2,)i i x x x i ''=,即γ等高点。

④(0)()x i 构成等高时刻序列,求出各等高时刻序列的GM(1,1)预测。

⑤得出波形预测画出波形图,并分析。

4、Verhulst 模型Verhulst 模型主要用来描述具有饱和状态的过程,即S 型过程。

常用于人口预测、生物生长、繁殖预测和产品经济寿命预测等。

(例如B 题艾滋病疗法的评价及治疗预测) 步骤①模型的建立对原始数据(0)(0)(0)(0)((1),(2),,())x x x x n =作一次累加得(1)(1)(1)(1)(0)(0)(0)(0)(0)((1),(2),,())(11+(2),,(1)()).x x x x n x x x x x n ==++(),()令(1)(1)(1)()0.5()0.5(1),2,3,,,z k x k x k k n =+-=得(1)x 的均值生成序列为(1)(1)(1)(1)((2),(3),,()).z z z z n =则得到灰色Verhulst 模型为(0)(1)(1)2()x az b z +=灰色Verhulst 模型的白化方程为(1)(1)(1)2()dx ax b x dt+= (2) ②参数求解构造数据矩阵B 及数据向量Y(1)(1)2(1)(1)2(1)(1)2(2)(2)(3)(3)),()())z z z z B z n z n ⎡⎤- ( )⎢⎥- (⎢⎥=⎢⎥ ⎢⎥⎢⎥- (⎣⎦(0)(0)(0)(2)3()x x Y x n ⎡⎤⎢⎥⎢⎥=⎢⎥ ⎢⎥⎢⎥⎣⎦() 由1ˆˆ()ˆT T au B B B Y b -⎡⎤==⎢⎥⎣⎦求得估计值ˆa= ˆb = ③解微分方程(2)得灰色Verhulst 模型的时间序列响应为(0)(1)ˆ(0)(0)ˆ(1)(1),ˆˆˆ(1)(1)ak axx k bx abx e +=⎡⎤+-⎣⎦通过累减还原得(0)(1)(1)ˆˆˆ(1)(1)().xk x k x k +=+- ④精度检验和预测同GM(1,1)模型。

例题:某地区年平均降雨量数据如表1。

规定ξ= 320,并认为(0)()x i ξ≤为旱灾。

预测下一次发生的时间。

表1 某地区年平均降雨量数据解:模型的建立:①列出原始数据列(0)(0)(0)(0)((1),(2),,())x x x x n =,确定在(0)320x s ≤的条件下的下限灾变数列0x ξ与其相对应的时刻数列(0)t 。

计算光滑比(0)1(0)1()()()k i t k p k ti -==∑判断序列(0)t 是否满足满足[](1)1,2,3,,5;()()0,,3,4,5;0.5.p k k p k p k k ϕϕ+<=∈=<②对数列(0)t 做1次累加,得(1)t 。

③建立GM(1,1)模型。

(1)(1),dt at b dt+= (1) ④构造数据矩阵B 及数据向量Y(1)(1)(1)(2)1(3)1,()z z B z n ⎡⎤- ⎢⎥- ⎢⎥=⎢⎥ ⎢⎥⎢⎥- 1⎣⎦(0)(0)(0)(2)3()x x Y x n ⎡⎤⎢⎥⎢⎥=⎢⎥ ⎢⎥⎢⎥⎣⎦() 其中:(1)(1)(1()0.5()0.5(1),2,3,,5.z k t k t k k =+-=)⑤由1ˆˆ()ˆT T auB B B Y b -⎡⎤==⎢⎥⎣⎦求得估计值ˆa,ˆb 。

⑥由微分方程(1)得生成序列预测值为ˆ(1)(0)ˆˆˆ(1)(1)k 0,1,,1,,ˆˆak b b xk x e n a a -⎛⎫+=-+=- ⎪ ⎪⎝⎭,则模型还原值为(0)(1)(1)ˆˆˆ(1)(1),1,2,,1,.xk x k x k n +=+-=-预测到第6个和第7个数据。

模型的求解(1)根据题得:原始数据列(0)x =,412,320,,,,553,310, 561,300,632,540,,,576,,因为当(0)320x s ≤时的(0)()x i 为异常值,可得下限灾变数列为0x ξ=(320,310,300,,与其相对应的时刻数列为: (0)t = (3,8,10,14,17) 利用matlab 计算得出序列光滑。

(2)对数列(0)t 做1次累加,得(1)t =(3,11,21,35,52)(3)由步骤③,④,⑤并利用matlab 解得ˆa = ˆb = (4)由步骤⑥,预测得到第6个和第7个数据为(0)(0)(6)22.034,(7)28.3946t t ==由于与17相差这表明下一次旱灾将发生在五年以后。

相关文档
最新文档