九年级中考数学一次函数压轴题专题练习
(名师整理)最新人教版数学中考冲刺压轴题《一次函数》专题训练(含答案解析)
中考数学二轮复习:《一次函数》压轴专题训练1.如图,将一张边长为8的正方形纸片OABC放在直角坐标系中,使得OA与y轴重合,OC与x轴重合,点P为正方形AB边上的一点(不与点A、点B重合).将正方形纸片折叠,使点O落在P处,点C 落在G处,PG交BC于H,折痕为EF.连接OP、OH.初步探究(1)当AP=4时①直接写出点E的坐标;②求直线EF的函数表达式.深入探究(2)当点P在边AB上移动时,∠APO与∠OPH的度数总是相等,请说明理由.拓展应用(3)当点P在边AB上移动时,△PBH的周长是否发生变化?并证明你的结论.2.已知直线y=2x+b与x轴交于点A,与y轴交于点B,将线段BO绕着点B逆时针旋转90°得到线段BC,过点C作CD⊥x轴于点D,四边形OBCD的面积为36.(1)求直线AB的解析式;(2)点P为线段OD上一点,连接CP,点H为CP上一点,连接BH,且BH=BC,过点H作CP的垂线交CD、OB于E、F,连接AE、AC,设点P的横坐标为t,△ACE的面积为S,求S与t的函数解析式;(3)在(2)的条件下,连接OH,过点F作FK⊥OH交x轴于点K,若PD=PK,求点P的坐标.3.如图(1)所示,在A,B两地间有一车站C,甲汽车从A地出发经C站匀速驶往B地,乙汽车从B地出发经C站匀速驶往A地,两车速度相同.如图(2)是两辆汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.(1)填空:a=km,b=h,AB两地的距离为km;(2)求线段PM、MN所表示的y与x之间的函数表达式(自变量取值范围不用写);(3)求行驶时间x满足什么条件时,甲、乙两车距离车站C的路程之和最小?4.如图,在平面直角坐标系xOy中,直线AB与x轴、y轴分别交于点A、点B,直线CD与x轴、y轴分别交于分别交于点C、点D,直线AB的解析式为y=﹣x+5,直线CD的解析式为y=kx+b(k≠0),两直线交于点E(m,),且OB:OC=5:4.(1)求直线CD的解析式;(2)将直线CD向下平移一定的距离,使得平移后的直线经过A点,且与y轴交于点F,求四边形AEDF 的面积.5.小明从家去李宁体育馆游泳,同时,妈妈从李宁体育馆以50米/分的速度回家,小明到体育馆后发现要下雨,立即返回,追上妈妈后,小明以250米/分的速度回家取伞,立即又以250米/分的速度折回接妈妈,并一同回家.如图是两人离家的距离y(米)与小明出发的时间x(分)之间的函数图象.(注:小明和妈妈始终在同一条笔直的公路上行走,图象上A、C、D、F四点在一条直线上)(1)求线段OB及线段AF的函数表达式;(2)求C点的坐标及线段BC的函数表达式;(3)当x为时,小明与妈妈相距1500米;(4)求点D坐标,并说明点D的实际意义.6.如图1,已知直线AC:y=﹣x+b1和直线AB:y=kx+b2交于x轴上一点A,且分别交y轴于点C、点B,且OB=2OC=4.(1)求k的值;=9时,在线段AC上取一点F,使(2)如图1,点D是直线AB上一点,且在x轴上方,当S△ACD得CF=FA,点M,N分别为x轴、轴上的动点,连接NF,将△CNF沿NF翻折至△C′NF,求MD+MC′的最小值;(3)如图2,H,P分别为射线AC,AO上的动点,连接PH,PC是否存在这样的点P,使得△PCH 为等腰三角形,△PHA为直角三角形同时成立.请直接写出满足条件的点P坐标.7.如图1,已知直线AC的解析式为y=﹣x+b,直线BC的解析式为y=kx﹣2(k≠0),且△BOC的面积为6.(1)求k和b的值;(2)如图1,将直线AC绕A点逆时针旋转90°得到直线AD,点D在y轴上,若点M为x轴上的一个动点,点N为直线AD上的一个动点,当DM+MN+NB的值最小时,求此时点M的坐标及DM+MN+NB 的最小值;(3)如图2,将△AOD沿着直线AC平移得到△A′O′D′,A′D′与x轴交于点P,连接A′D、DP,当△DA′P是等腰三角形时,求此时P点坐标.8.如图,在平面直角坐标系中,直线BC:y=x+交x轴于点B,点A在x轴正半轴上,OC为△ABC的中线,C的坐标为(m,)(1)求线段CO的长;(2)点D在OC的延长线上,连接AD,点E为AD的中点,连接CE,设点D的横坐标为t,△CDE 的面积为S,求S与t的函数解析式;(3)在(2)的条件下,点F为射线BC上一点,连接DB、DF,且∠FDB=∠OBD,CE=,求此时S值及点F坐标.9.在平面直角坐标系xOy中,直线l1:y=k1x+6与x轴、y轴分别交于A、B两点,且OB=OA,直线l2:y=k2x+b经过点C(,1),与x轴、y轴、直线AB分别交于点E、F、D三点.(1)求直线l1的解析式;(2)如图1,连接CB,当CD⊥AB时,求点D的坐标和△BCD的面积;(3)如图2,当点D在直线AB上运动时,在坐标轴上是否存在点Q,使△QCD是以CD为底边的等腰直角三角形?若存在,请直接写出点Q的坐标,若不存在,请说明理由.10.如图,直线y=﹣x+1和直线y=x﹣2相交于点P,分别与y轴交于A、B两点.(1)求点P的坐标;(2)求△ABP的面积;(3)M、N分别是直线y=﹣x+1和y=x﹣2上的两个动点,且MN∥y轴,若MN=5,直接写出M、N 两点的坐标.11.如图,直线l与x轴、y轴分别交于点A(3,0)、点B(0,2),以线段AB为直角边在第一象限内作等腰直角三角形ABC,∠BAC=90°,点P(1,a)为坐标系中的一个动点.(1)请直接写出直线l的表达式;(2)求出△ABC的面积;(3)当△ABC与△ABP面积相等时,求实数a的值.12.定义:在平面直角坐标系中,对于任意两点A(a,b),B(c,d),若点T(x,y)满足x=,y=,那么称点T是点A和B的融合点.例如:M(﹣1,8),N(4,﹣2),则点T(1,2)是点M和N的融合点.如图,已知点D(3,0),点E是直线y=x+2上任意一点,点T(x,y)是点D 和E的融合点.(1)若点E的纵坐标是6,则点T的坐标为;(2)求点T(x,y)的纵坐标y与横坐标x的函数关系式:(3)若直线ET交x轴于点H,当△DTH为直角三角形时,求点E的坐标.13.如图1,在平面直角坐标系xOy中,直线y=kx+8分别交x轴,y轴于A、B两点,已知A点坐标(6,0),点C在直线AB上,横坐标为3,点D是x轴正半轴上的一个动点,连结CD,以CD为直角边在右侧构造一个等腰Rt△CDE,且∠CDE=90°.(1)求直线AB的解析式以及C点坐标;(2)设点D的横坐标为m,试用含m的代数式表示点E的坐标;(3)如图2,连结OC,OE,请直接写出使得△OCE周长最小时,点E的坐标.14.如图,在平面直角坐标系中,直线AB经过点A(,)和B(2,0),且与y轴交于点D,直线OC与AB交于点C,且点C的横坐标为.(1)求直线AB的解析式;(2)连接OA,试判断△AOD的形状;(3)动点P从点C出发沿线段CO以每秒1个单位长度的速度向终点O运动,运动时间为t秒,同时动点Q从点O出发沿y轴的正半轴以相同的速度运动,当点Q到达点D时,P,Q同时停止运动.设PQ与OA交于点M,当t为何值时,△OPM为等腰三角形?求出所有满足条件的t值.15.在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y1=x交于点C.(1)当直线AB解析式为y2=﹣x+10时,如图1.①求点C的坐标;②根据图象求出当x满足什么条件时﹣x+10<x.(2)如图2,作∠AOC的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为9,且OA=6.P,Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值:若不存在,说明理由.参考答案1.解:(1)①设:OE=PE=a,则AE=8﹣a,AP=4,在Rt△AEP中,由勾股定理得:PE2=AE2+AP2,即a2=(8﹣a)2+16,解得:a=5,故点E(0,5),故答案为:(0,5);②过点F作FR⊥y轴于点R,折叠后点O落在P处,则点O、P关于直线EF对称,则OP⊥EF,∴∠EFR+∠FER=90°,而∠FER+∠AOP=90°,∴∠AOP=∠EFR,而∠OAP=∠FRE,RF=AO,∴△AOP≌△FRE(AAS),∴ER=AP=4,OR=EO﹣OR=5﹣4=1,故点F(8,1),将点E、F的坐标代入一次函数表达式:y=kx+b得:,解得:,故直线EF的表达式为:y=﹣x+5;(2)证明:∵PE=OE,∴∠EOP=∠EPO.又∵∠EPH=∠EOC=90°,∴∠EPH﹣∠EPO=∠EOC﹣∠EOP.即∠POC=∠OPH.又∵AB∥OC,∴∠APO=∠POC.∴∠APO=∠OPH;(3)解:如图,过O作OQ⊥PH,垂足为Q.由(1)知∠APO=∠OPH,在△AOP和△QOP中,∠APO=∠OPH,∠A=∠OQP,OP=OP,∴△AOP≌△QOP(AAS).∴AP=QP,AO=OQ.又∵AO=OC,∴OC=OQ.又∵∠C=∠OQH=90°,OH=OH,∴△OCH≌△OQH(SAS).∴CH=QH.∴△PHB的周长=PB+BH+PH=AP+PB+BH+HC=AB+CB=16;故答案为:16.2.解:(1)∵将线段BO绕着点B逆时针旋转90°得到线段BC,∴OB=BC,∠OBC=90°,∵CD⊥x轴于点D,∴∠CDO=90°,∵∠BOD=90°,∴四边形OBCD为正方形,∵四边形OBCD的面积为36.∴OB=6,∵直线y=2x+b与y轴交于点B,∴b=6,∴直线AB的解析式为y=2x+6;(2)∵直线y=2x+6与x轴交于点A,∴A(﹣3,0),如图1,过点B作BL⊥CP,垂足为L,交CD于点M,∵BH=BC,∴CL=HL,∵BL⊥CP,EF⊥CP,∴BM∥EF,∴CM=ME,∵∠CBM+∠BMC=∠BMC+∠MCL=90°∴∠CBM=∠PCD,∵∠BCM=∠PDC,BC=CD,∴△BCM≌△CDP(ASA),∴CM=PD,∴PD=CM=ME=6﹣t,∴CE=2CM=2(6﹣t),∵AD=OA+OD=9,∴S===﹣9t+54(0≤t≤6);(3)设PD=a,如图2,∵BF∥CD,BM∥EF,∴四边形BFEM是平行四边形,∴BF=EM=PD=a,连接FP,设FK与OH交于A',∴∠OFP=45°,∵∠FOP+∠FHP=180°,∴F、O、P、H四点共圆,∴∠OFP=∠OHP=45°,∴∠OHF=45°,∵FK⊥OH,∴∠FA'H=90°,∴∠EFK=45°,如图3,过点E作ER⊥EF交射线FK于点R,∴△EFR为等腰直角三角形,∴EF=ER,过点F作FG⊥CD于点G,过点R作x轴的平行线交y轴于点Q,交CD的延长线于点N,连接KE、∴∠RNE=∠FGE=90°,∠FEG=∠ERN,∴△EFG≌△REN(AAS),∴EN=FG,EG=RN=PD=a,∵CG=BF=a,GE=a,∴DN=CE=2a=OQ,OF=a+b,∵PD=PK=a,OD=CD=2a+b,∴OK=b,∵OK∥QR,∴,即,∴b(3a+b)=(a+b)2,∴a=b,∴3a=6,∴a=2,∴P(4,0).3.解:(1)两车的速度为:300÷5=60km/h,a=60×(7﹣5)=120,b=7﹣5=2,AB两地的距离是:300+120=420,故答案为:120,2,420;(2)设线段PM所表示的y与x之间的函数表达式是y=kx+b,,得,即线段PM所表示的y与x之间的函数表达式是y=﹣60x+300;设线段MN所表示的y与x之间的函数表达式是y=mx+n,,得,即线段MN所表示的y与x之间的函数表达式是y=60x﹣300;(3)设DE对应的函数解析式为y=cx+d,,得,即DE对应的函数解析式为y=﹣60x+120,设EF对应的函数解析式为y=ex+f,,得,即EF对应的函数解析式为y=60x﹣120,设甲、乙两车距离车站C的路程之和为skm,当0≤x≤2时,s=(﹣60x+300)+(﹣60x+120)=﹣120x+420,则当x=2时,s取得最小值,此时s=180,当2<x≤5时,s=(﹣60x+300)+(60x﹣120)=180,当5≤x≤7时,s=(60x﹣300)+(60x﹣120)=120x﹣420,则当x=5时,s取得最小值,此时s=180,由上可得,行驶时间x满足2≤x≤5时,甲、乙两车距离车站C的路程之和最小.4.解:(1)将点E(m,)代入直线AB的解析式y=﹣x+5,解得m=,∴点E的坐标为(,),OB:OC=5:4,OB=5,∴OC=4,∴点C坐标为(﹣4,0),将点E(,),点C(﹣4,0),代入直线CD的解析式y=kx+b中,解得所以直线CD解析式为y=x+2.(2)当y=0时,﹣x+5=0,解得x=8,所以A点坐标为(8,0),∵直线CD向下平移一定的距离,平移后的直线经过A点,且与y轴交于点,∴设直线AF的解析式为y=x+d,把A(8,0)代入得d=﹣4,所以直线AF 的解析式为y =x ﹣4. 所以点F 的坐标为(0,﹣4). 如图,作EG ⊥x 轴于点G , 所以四边形AEDF 的面积为: S 梯形ODEG +S △AEG +S △AOF =(2+)×+××(8﹣)+4×8=32.答:四边形AEDF 的面积为32. 5.解:(1)设OB 的函数表达式为y =kx , 30k =3000,得k =100,即线段OB 的函数表达式为y =100x (0≤x ≤30); 点F 的横坐标为:3000÷50=60, 则点F 的坐标为(60,0),设直线AF 的函数表达式为:y =k 1x +b 1,,得,即直线AF 的函数表达式为y =﹣50x +3000; (2)当x =45时,y =﹣50×45+3000=750, 即点C 的坐标为(45,750), 设线段BC 的函数表达式为y =k 2x +b 2,,得,即线段BC 的函数表达式是y =﹣150x +7500(30≤x ≤45);(3)当小明与妈妈相距1500米时,﹣50x +3000﹣100x =1500或100x ﹣(﹣50x +3000)=1500或(﹣150x +7500)﹣(﹣50x +3000)=1500, 解得:x =10或x =30,∴当x 为10或30时,小明与妈妈相距1500米. 故答案为:10或30;(4)∵750÷250=3(分钟),45+3=48, ∴点E 的坐标为(48,0)∴直线ED 的函数表达式y =250(x ﹣48)=250x ﹣12000, ∵AF 对应的函数解析式为y =﹣50x +3000, ∴,得,∴点D 的坐标为(50,500),实际意义:小明将在50分钟时离家500米的地方将伞送到妈妈手里. 6.解:(1)OB =2OC =4,则点B 、C 的坐标分别为:(0,﹣4)、(0,2),将点C 的坐标代入AC :y =﹣x +b 1并解得: AC 的表达式为:y =﹣x +2,令y =0,则x =6,故点A (6,0),将点B 、A 的坐标代入y =kx +b 2得:,解得:,故直线AB 的表达式为:y =x ﹣4,即k =;(2)由点B 、C 的坐标得,BC =6,S △ACD =S △BCD ﹣S △BCA =×BC ×(x D ﹣x A )=×6(x D ﹣6)=9,解得:x D =9, 当x =9时,y =x ﹣4=2,故点D (9,2);CF =FA ,即CF =AC ==,过点F 作FH ⊥y 轴于点H ,由直线AC的表达式知,∠OCA=60°,则HF=CF sin60°==,CH=,故点F(,),作点D关于x轴的对称点D′(9,﹣2),连接C′D′,当D′、C′、F三点共线时,MD+MC′最小,MD+MC′最小值为D′F﹣F′C′=D′F﹣CF=﹣=﹣;(3)由直线AC的表达式知,∠CAO=30°,AC==4;①当∠PHA=90°时,则△PHC为等腰直角三角形,设HP=CH=a,则AP=2HP,HA==a,AC=CH+HA=a a=4,解得:a=6﹣2,AP=2a=12﹣4,则AP=6﹣(12﹣4)=4﹣6,故点P(4﹣6,0);②当∠CPH=90°时,则CPH为等腰三角形,则HP=CP,设HP=CP=a,则在Rt△PHA中,HA=2HP=2a,∵∠CPH=90°,∴HP∥OC,则,即=,解得:a=,PA==a=4,故点P(2,0);综上,点P的坐标为:(2,0)或(4﹣6,0).7.解:(1)直线BC的解析式为y=kx﹣2,则点C(0,﹣2),将点C的坐标代入y=﹣x+b得:﹣2=b,解得:b=﹣2,故直线AC的表达式为:y=﹣x﹣2;△BOC的面积=OB•CO=2×OB=6,解得:OB=6,故点B(6,0),将点B的坐标代入y=kx﹣2得:0=6k﹣2,解得:k=;故k=,b=﹣2;(2)将直线AC绕A点逆时针旋转90°得到直线AD,则点D(0,2),由点A、D的坐标得,直线AD的表达式为:y=x+2;过点B作点B关于直线AD的对称点B′,连接B′C交AD于点N,交x轴于点M,则点M、N为所求点,点C是点D关于x轴的对称点,则MC=MD,而NB=NB′,故DM+MN+NB=MC+MN+NB′=B′C为最小,直线AD的倾斜角为45°,BB′⊥AC,则AB=AB′=8,直线AB′与AD的夹角也为45°,故直线AB′⊥AB,故点B′(﹣2,8),由点B′、C的坐标得,直线B′C的表达式为:y=﹣5x﹣2,令y=0,即﹣5x﹣2=0,解得:x=﹣,故点M(﹣,0),DM+MN+NB最小值为B′C==2;(3)设△AOD沿着直线AC向右平移m个单位,向下平移m个单位得到△A′O′D′,则点A′(m ﹣2,﹣m),设直线A′D′的表达式为:y=x+b′,将点A′的坐标代入上式得:﹣m=m﹣2+b′,解得:b′=2﹣2m,则直线A′D′的表达式为:y=x+2﹣2m,令y=0,则x=2m﹣2,故点P(2m﹣2,0),而点A′(m﹣2,﹣m),点D(0,2),则A′P2=2m2,A′D2=(m﹣2)2+(﹣m﹣2)2=2m2+8,PD2=(2m﹣2)2+4;当A′P=A′D时,2m2=2m2+8,解得:方程无解;当A′P=PD时,同理可得:m=2;当A′D=PD时,同理可得:m=0(舍去)或4,综上,点P(2,0)或(6,0).8.解:(1)∵直线BC:y=x+交x轴于点B,∴点B坐标(﹣8,0),∵C的坐标为(m,)∴=x+,∴m=﹣,∴点C坐标为(﹣,)∴CO==5;(2)如图,∵OC为△ABC的中线,∴BO=AO=8,∴S=×8×=10,△ACO∵点C坐标为(﹣,),点O坐标(0,0)∴直线CO解析式为:y=﹣x,∴点D (t ,﹣t ),∴S △AOD =×8×(﹣t )=﹣4t ,∴S △ACD =S △AOD ﹣S △AOC =﹣4t ﹣10,∵点E 为AD 的中点, ∴S =S △ACD =﹣2t ﹣5;(3)∵点D (t ,﹣t ),点A (8,0),点E 是AD 中点,∴点E 坐标(,﹣t ),∵CE =,∴(﹣﹣)2+(+t )2=13,∴t 1=﹣6,t 2=﹣8, ∴点D (﹣6,)或(﹣8,8), 当t 1=﹣6时,则点D (﹣6,),S =﹣2×(﹣6)﹣5=7,延长DF 交x 轴于点H ,设点H (x ,0) ∵∠FDB =∠OBD , ∴DH =BH , ∴x +8=∴x =20, ∴点H (20,0),设直线DH 的解析式为:y =kx +b , ∴∴∴直线DH的解析式为:y=﹣x+,∴x+=﹣x+,∴x=,∴点F(,),当t2=﹣8,点D(﹣8,8),S=﹣2×(﹣8)﹣5=11,∵点D(﹣8,8),点B(﹣8,0),∴∠DBO=90°,∵∠FDB=∠OBD=90°,∴DF∥BO,∴点F的纵坐标为8,∴8=x+,∴x=,∴点F(,8).综上所述:点F坐标为(,)或(,8).9.解:(1)y=k1x+6,当x=0时,y=6,∴OB=6,∵OB=OA,∴OA=2,∴A(﹣2,0),把A(﹣2,0)代入:y=k1x+6中得:﹣2k1+6=0,k1=,∴直线l1的解析式为:y=x+6;(2)如图1,过C作CH⊥x轴于H,∵C(,1),∴OH=,CH=1,Rt△ABO中,AB==4,∴AB=2OA,∴∠OBA=30°,∠OAB=60°,∵CD⊥AB,∴∠ADE=90°,∴∠AED=30°,∴EH=,∴OE=OH+EH=2,∴E(2,0),把E(2,0)和C(,1)代入y=k2x+b中得:,解得:,∴直线l2:y=﹣x+2,∴F(0,2)即BF=6﹣2=4,则,解得,∴D(﹣,3),∴S=BF(x C﹣x D)==4;△BCD(3)分四种情况:①当Q在y轴的正半轴上时,如图2,过D作DM⊥y轴于M,过C作CN⊥y轴于N,∵△QCD是以CD为底边的等腰直角三角形,∴∠CQD=90°,CQ=DQ,∴∠DMQ=∠CNQ=90°,∴∠MDQ=∠CQN,∴△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=,设D(m,m+6)(m<0),则Q(0,﹣m+1),∴OQ=QN+ON=OM+QM,即﹣m+1=m+6+,m==1﹣2,∴Q(0,2);②当Q在x轴的负半轴上时,如图3,过D作DM⊥x轴于M,过C作CN⊥x轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=1,设D(m,m+6)(m<0),则Q(m+1,0),∴OQ=QN﹣ON=OM﹣QM,即m+6﹣=﹣m﹣1,m=5﹣4,∴Q(6﹣4,0);③当Q在x轴的负半轴上时,如图4,过D作DM⊥x轴于M,过C作CN⊥x轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=1,设D(m,m+6)(m<0),则Q(m﹣1,0),∴OQ=QN﹣ON=OM+QM,即﹣m﹣6﹣=﹣m+1,m=﹣4﹣5,∴Q(﹣4﹣6,0);④当Q在y轴的负半轴上时,如图5,过D作DM⊥y轴于M,过C作CN⊥y轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=,设D(m,m+6)(m<0),则Q(0,m+1),∴OQ=QN﹣ON=OM+QM,即﹣m﹣6+=﹣m﹣1,m=﹣2﹣1,∴Q(0,﹣2);综上,存在点Q,使△QCD是以CD为底边的等腰直角三角形,点Q的坐标是(0,±2)或(6﹣4,0)或(﹣4﹣6,0).10.解:(1)∵直线y=﹣x+1和直线y=x﹣2相交于点P∴,解之得:,∴P点坐标为:,(2)∵直线y=﹣x+1和直线y=x﹣2分别交y轴于A、B两点∴A(0,1),B(0,﹣2),∴AB=3,由(1)知P∴S △ABP ==;(3)设M (m ,﹣m +1),则N (m ,m ﹣2), ∵MN =5,∴|﹣m +1﹣(m ﹣2)|=5, 解得m =﹣1或m =4,∴M (4,﹣3),N (4,2)或M (﹣1,2),N (﹣1,﹣3). 11.解:(1)将点A 、B 的坐标代入一次函数表达式:y =kx +b 得:,解得:,故直线l 的表达式为:;(2)在Rt △ABC 中,由勾股定理得:AB 2=OA 2+OB 2=32+22=13 ∵△ABC 为等腰直角三角形, ∴S △ABC =AB 2=;(3)连接BP ,PO ,PA ,则: ①若点P 在第一象限时,如图1:∵S △ABO =3,S △APO =a ,S △BOP =1, ∴S △ABP =S △BOP +S △APO ﹣S △ABO =,即,解得;②若点P 在第四象限时,如图2:∵S △ABO =3,S △APO =﹣a ,S △BOP =1, ∴S △ABP =S △BOP +S △APO ﹣S △ABO =,即,解得a =﹣3;故:当△ABC 与△ABP 面积相等时,实数a 的值为或﹣3.12.解:(1)∵点E 是直线y =x +2上一点,点E 的纵坐标是6, ∴x +2=6, 解得,x =4,∴点E 的坐标是(4,6),∵点T (x ,y )是点D 和E 的融合点, ∴x ==,y ==2,∴点T 的坐标为(,2), 故答案为:(,2);(2)设点E 的坐标为(a ,a +2), ∵点T (x ,y )是点D 和E 的融合点, ∴x =,y =,解得,a =3x ﹣3,a =3y ﹣2, ∴3x ﹣3=3y ﹣2, 整理得,y =x ﹣;(3)设点E 的坐标为(a ,a +2),则点T的坐标为(,),当∠THD=90°时,点E与点T的横坐标相同,∴=a,解得,a=,此时点E的坐标为(,),当∠TDH=90°时,点T与点D的横坐标相同,∴=3,解得,a=6,此时点E的坐标为(6,8),当∠DTH=90°时,该情况不存在,综上所述,当△DTH为直角三角形时,点E的坐标为(,)或(6,8).13.解:(1)把A(6,0)代入y=kx+8中,得6k+8=0,解得:,∴,把x=3代入,得y=4,∴C(3,4);(2)作CF⊥x轴于点F,EG⊥x轴于点G,∵△CDE是等腰直角三角形,∴CD=DE,∠CDE=90°,∴∠CDF=90°﹣∠EDG=∠DEG,且∠CFD=∠DGE=90°,∴△CDF≌△DEG(AAS)∴CF=DG=4,DF=EG=3﹣m,∴OG=4+m,∴E(4+m,m﹣3);(3)点E(4+m,m﹣3),则点E在直线l:y=x﹣7上,设:直线l交y轴于点H(0,﹣7),过点O作直线l的对称点O′,∵直线l的倾斜角为45°,则HO′∥x轴,则点O′(7,﹣7),连接CO′交直线l于点E′,则点E′为所求点,OC是常数,△OCE周长=OC+CE+OE=OC+OE′+CE′=OC+CE′+O′E′=OC+CO′为最小,由点C、O′的坐标得,直线CO′的表达式为:y=﹣x+联立,解得:,故:.14.解:(1)将点A、B的坐标代入一次函数表达式:y=kx+b得:,解得:,故直线AB的表达式为:y=﹣x+2;(2)直线AB的表达式为:y=﹣x+2,则点D(0,2),由点A、B、D的坐标得:AD2=1,AO2=3,DO2=4,故DO2=OA2+AD2,故△AOD为直角三角形;(3)直线AB的表达式为:y=﹣x+2,故点C(,1),则OC=2,则直线AB的倾斜角为30°,即∠DBO=30°,则∠ODA=60°,则∠DOA=30°故点C(,1),则OC=2,则点C是AB的中点,故∠COB=∠DBO=30°,则∠AOC=30°,∠DOC=60°,OQ=CP=t,则OP=OC﹣PC=2﹣t,①当OP=OM时,如图1,则∠OMP=∠MPO=(180°﹣∠AOC)=75°,故∠OQP=45°,过点P作PH⊥y轴于点H,则OH=OP=(2﹣t),由勾股定理得:PH=(2﹣t)=QH,OQ=QH+OH=(2﹣t)+(2﹣t)=t,解得:t=;②当MO=MP时,如图2,则∠MPO=∠MOP=30°,而∠QOP=60°,∴∠OQP=90°,故OQ=OP,即t=(2﹣t),解得:t=;③当PO=PM时,则∠OMP=∠MOP=30°,而∠MOQ=30°,故这种情况不存在;综上,t=或.15.解:(1)①由題意,,解得:,所以C(4,4).②观察图象可知x>4时,直线AB位于直线OC的下方,即x>4时,﹣x+10<x.(2)由题意,在OC上截取OM=OP,连结MQ,∵ON平分∠AOC,∴∠AOQ=∠COQ,又OQ=OQ.∴△POQ≌△MOQ(SAS),∴PQ=MQ,∴AQ+PQ=AQ+MQ,当A、Q、M在同一直銭上,且AM⊥OC吋,AQ+MQ最小,即AQ+PQ存在最小値;∴AB⊥ON,∴∠AEO=∠CEO,∴△AEO≌△CEO(ASA),∴OC=OA=6,∵△OAC的面积为9,∴OC•AM=9,∴AM=3,∴AQ+PQ存在最小值,最小值为3.。
【中考数学压轴题专题突破41】一次函数综合问题(1)
【中考压轴题专题突破41】一次函数综合问题(1)1.在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y1=x 交于点C.(1)当直线AB解析式为y2=﹣x+10时,如图1.①求点C的坐标;②根据图象求出当x满足什么条件时﹣x+10<x.(2)如图2,作∠AOC的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为9,且OA=6.P,Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值:若不存在,说明理由.2.如图,在平面直角坐标系中,直线y=2x+6与x轴交于点A,与y轴交于点B,过点B 的直线交x轴于点C,且AB=BC.(1)求直线BC的解析式;(2)点P为线段AB上一点,点Q为线段BC延长线上一点,且AP=CQ,设点Q横坐标为m,求点P的坐标(用含m的式子表示,不要求写出自变量m的取值范围);(3)在(2)的条件下,点M在y轴负半轴上,且MP=MQ,若∠BQM=45°,求直线PQ的解析式.3.如图1,在平面直角坐标系中,OB=10,F是y轴正半轴上一点.(1)若OF=2,求直线BF的解析式;(2)设OF=t,△OBF的面积为s,求s与t的函数关系(直接写出自变量t的取值范围);(3)如图3,在(2)的条件下,过点B作BA⊥x轴,点C在x轴上,OF=OC,连接AC,CD⊥直线BF于点D,∠ACB=2∠CBD,AC=13,OF=OC,AC.BD交于点E,求此时t的值.4.在平面直角坐标系xOy中,直线l1:y=k1x+6与x轴、y轴分别交于A、B两点,且OB =OA,直线l2:y=k2x+b经过点C(,1),与x轴、y轴、直线AB分别交于点E、F、D三点.(1)求直线l1的解析式;(2)如图1,连接CB,当CD⊥AB时,求点D的坐标和△BCD的面积;(3)如图2,当点D在直线AB上运动时,在坐标轴上是否存在点Q,使△QCD是以CD为底边的等腰直角三角形?若存在,请直接写出点Q的坐标,若不存在,请说明理由.5.对于两个一次函数y1=k1x+b1和y2=k2x+b2(其中k1、k2、b1,b2均为常数且k1、k2均不为0),任取一个自变量x,当x<0时,y=y12+y2;当x≥0时,y=y12﹣y2,我们称这样的函数为函数y1=k1x+b1和y2=k2x+b2的“组合函数”.例如:y1=x﹣1和y2=x+1的“组合函数“为y=(1)已知一次函数y1=x﹣1和y2=4x﹣1.①求一次函数y1=x﹣1和y2=4x﹣1的“组合函数”所对应的函数表达式.②一次函数y1=x﹣1和y2=4x﹣1的“组合函数”的函数值y随x的增大而减小时,x的取值范围是.③当﹣4≤x≤4时,该“组合函数”的函数值y的取值范围是.(2)记一次函数y1=x﹣n(n>0)和y2=4nx+n2(其中n为常数)的“组合函数”的图象为G.①当n=1时,若直线y=a(a为常数)与图象G有三个不同的交点时,记三个交点的横坐标分别为x1、x2、x3(x1<x2<x3),求x1+x2+x3的取值范围.②在平面直角坐标系中,正方形ABCD的对称中心与原点重合,顶点A的坐标为(2,2),点B在第二象限.图象G与正方形ABCD的边恰好有两个公共点时,直接写出n的取值范围.6.如图,点O是平面直角坐标系的原点,直线y=kx+3交x轴于点A,交y轴于点B,OA =OB.(1)求k的值;(2)点P为第一象限内线段AB上方一点,点P的坐标为(t,),连接P A,PB,设△P AB的面积为S,求S关于t的函数关系式;(3)在(2)的条件下,在PB上方取一点C,连接BC,PC,使∠BCP=90°,且BC =PC.点D在线段AP上,且横坐标为,连接OC,CD,当∠OCD=45°时,求点P 的坐标.【中考压轴题专题突破41】一次函数综合问题(1)参考答案与试题解析1.解:(1)①由題意,,解得:,所以C(4,4).②观察图象可知x>4时,直线AB位于直线OC的下方,即x>4时,﹣x+10<x.(2)由题意,在OC上截取OM=OP,连结MQ,∵ON平分∠AOC,∴∠AOQ=∠COQ,又OQ=OQ.∴△POQ≌△MOQ(SAS),∴PQ=MQ,∴AQ+PQ=AQ+MQ,当A、Q、M在同一直銭上,且AM⊥OC吋,AQ+MQ最小,即AQ+PQ存在最小値;∴AB⊥ON,∴∠AEO=∠CEO,∴△AEO≌△CEO(ASA),∴OC=OA=6,∵△OAC的面积为9,∴OC•AM=9,∴AM=3,∴AQ+PQ存在最小值,最小值为3.2.解:(1)∵直线y=2x+6与x轴交于点A,与y轴交于点B,∴点B(0,6),点A(﹣3,0)∴AO=3,BO=6,∴AO=CO=3,∴点C(3,0),设直线BC解析式为:y=kx+b,则,解得:∴直线BC解析式为:y=﹣2x+6;(2)如图1,过点P作PG⊥AC于点G,过点Q作HQ⊥AC于点H,∵点Q横坐标为m,∴点Q(m,﹣2m+6),∵AB=CB,∴∠BAC=∠BCA=∠CHQ,∠PGA=∠QHC=90°,AP=CQ,∴△PGA≌△QHC(AAS),∴PG=HQ=2m﹣6,故点P的纵坐标为:2m﹣6,直线AB的表达式为:y=2x+6,即2m﹣6=2x+6,解得:x=m﹣6,故点P(m﹣6,2m﹣6);(3)如图2,连接AM,CM,过点P作PE⊥AC,∴BO是AC的垂直平分线,∴AM=CM,且AP=CQ,PM=MQ,∴△APM≌△CQM(SSS)∴∠P AM=∠MCQ,∠BQM=∠APM=45°,∵AM=CM,AB=BC,BM=BM,∴△ABM≌△CBM(SSS)∴∠BAM=∠BCM,∴∠BCM=∠MCQ,且∠BCM+∠MCQ=180°,∴∠BCM=∠MCQ=∠P AM=90°,且∠APM=45°,∴∠APM=∠AMP=45°,∴AP=AM,∵∠P AO+∠MAO=90°,∠MAO+∠AMO=90°,∴∠P AO=∠AMO,且∠PEA=∠AOM=90°,AM=AP,∴△APE≌△MAO(AAS)∴AE=OM,PE=AO=3,∴2m﹣6=3,∴m=,∴Q(,﹣3),P(﹣,3)设直线PQ的解析式为:y=ax+c,∴,解得:∴直线PQ的解析式为:y=﹣x+.3.解:(1)∵OB=10,OF=2,∴B(﹣10,0),F(0,2),设直线BF的解析式为y=kx+b,∵直线y=kx+b经过点B(﹣10,0),F(0,2),∴,解得:,∴直线BF的解析式为y=x+2;(2)△OBF的面积为S==5t(t>0);(3)如图,延长AB至点R,使BR=AB,连接CR,延长CD交y轴于点T,过点T,作TM∥x轴交BA的延长线于点M,过点T作TK⊥CR交RC的延长线于点K,连接RT,∵AB⊥BC,AB=BR,∴BC垂直平分AR,∴AC=CR=13,∴∠ACB=∠RCB,设∠CBD=α,则∠ACB=2α,∵BD⊥CD,∴∠BDC=90°,∴∠BCD=90°﹣α,∵∠ACB=∠RCB=2α,∴∠ACK=180°﹣4α,∴∠KCT=∠BCK﹣∠BCD=∠BCA+∠ACK﹣∠BCD=90°﹣α,∴∠KCT=∠BCD,∵TK⊥KR,OT⊥OC,∴OT=TK,∵TC=TC,∴Rt△OTC≌Rt△KTC(HL),∴OC=CK=TK=t,∵OF=OC,∠BOF=∠TOC,∠FBO=∠OTC,∴△BOF≌△TOC(AAS),∴OB=OT=10,∴TK=10,∵∠ABO+∠BOT=90°+90°=180°.∴MB∥OT,∵MT∥OB,∴四边形OBMT为平行四边形,∵OB=OT,∠BOT=90°.∴四边形OBMT为正方形,∴MB=MT=OT=10,∴MT=TK,∵RT=RT,∴Rt△RMT≌Rt△RTK(HL),∴RK=RM=CR+CK=13+t,∴BR=RM﹣MB=3+t,∵BC=OB+OC=10+t,在Rt△BRC中,BR2+BC2=RC2,∴(3+t)2+(10+t)2=132,解得:t=2(t=﹣15舍去).∴t的值为2.4.解:(1)y=k1x+6,当x=0时,y=6,∴OB=6,∵OB=OA,∴OA=2,∴A(﹣2,0),把A(﹣2,0)代入:y=k1x+6中得:﹣2k1+6=0,k1=,∴直线l1的解析式为:y=x+6;(2)如图1,过C作CH⊥x轴于H,∵C(,1),∴OH=,CH=1,Rt△ABO中,AB==4,∴AB=2OA,∴∠OBA=30°,∠OAB=60°,∵CD⊥AB,∴∠ADE=90°,∴∠AED=30°,∴EH=,∴OE=OH+EH=2,∴E(2,0),把E(2,0)和C(,1)代入y=k2x+b中得:,解得:,∴直线l2:y=﹣x+2,∴F(0,2)即BF=6﹣2=4,则,解得,∴D(﹣,3),∴S△BCD=BF(x C﹣x D)==4;(3)分四种情况:①当Q在y轴的正半轴上时,如图2,过D作DM⊥y轴于M,过C作CN⊥y轴于N,∵△QCD是以CD为底边的等腰直角三角形,∴∠CQD=90°,CQ=DQ,∴∠DMQ=∠CNQ=90°,∴∠MDQ=∠CQN,∴△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=,设D(m,m+6)(m<0),则Q(0,﹣m+1),∴OQ=QN+ON=OM+QM,即﹣m+1=m+6+,m==1﹣2,∴Q(0,2);②当Q在x轴的负半轴上时,如图3,过D作DM⊥x轴于M,过C作CN⊥x轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=1,设D(m,m+6)(m<0),则Q(m+1,0),∴OQ=QN﹣ON=OM﹣QM,即m+6﹣=﹣m﹣1,m=5﹣4,∴Q(6﹣4,0);③当Q在x轴的负半轴上时,如图4,过D作DM⊥x轴于M,过C作CN⊥x轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=1,设D(m,m+6)(m<0),则Q(m﹣1,0),∴OQ=QN﹣ON=OM+QM,即﹣m﹣6﹣=﹣m+1,m=﹣4﹣5,∴Q(﹣4﹣6,0);④当Q在y轴的负半轴上时,如图5,过D作DM⊥y轴于M,过C作CN⊥y轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=,设D(m,m+6)(m<0),则Q(0,m+1),∴OQ=QN﹣ON=OM+QM,即﹣m﹣6+=﹣m﹣1,m=﹣2﹣1,∴Q(0,﹣2);综上,存在点Q,使△QCD是以CD为底边的等腰直角三角形,点Q的坐标是(0,±2)或(6﹣4,0)或(﹣4﹣6,0).5.解:(1)①当x≥0时,y=y12﹣y2,=(x﹣1)2﹣(4x﹣1)=x2﹣6x+2,当x<0时,y=y12+y2=,=(x﹣1)2+(4x﹣1)=x2+2x,∴y=②∵当x≥0时,函数解析式为:y=x2﹣6x+2,∴当0≤x≤3时,y随x的增大而减小.当x<0时,函数解析式为:y=x2+2x,∴x≤﹣1时,y随x的增大而减小.故答案为:x≤﹣1或0≤x≤3;③∵当﹣4≤x<0时,函数解析式为:y=x2+2x,∴﹣1≤y≤8,当0≤x≤4时,函数解析式为:y=x2﹣6x+2,∴﹣7≤y≤2,∴当﹣4≤x≤4时,﹣7≤y≤8;故答案为:﹣7≤y≤8;(2)①当n=1时,y1=x﹣1,y2=4x+1,∴组合函数为:y=∵直线y=a(a为常数)与图象G有三个不同的交点,∴1<a<2,∴当x2﹣6x=1时,x=3+,x=3﹣(舍去),当x2﹣6x=2时,x=3+,x=3﹣(舍去),∵x1+x2=﹣2,∴1+<x1+x2+x3<1+;②∵一次函数y1=x﹣n(n>0)和y2=4nx+n2,∴组合函数y=若y=x2﹣6nx(x>0)的顶点在正方形ABCD内时,∴﹣9n2>﹣2,0<3n<2,∴n2<,且0<n<,∴0<n<,此时y=x2+2nx+2n2与正方形ABCD的边也有1个交点,∴0<n<符合题意;若y=x2﹣6nx(x>0)的顶点不在正方形ABCD内部时,且与正方形ABCD的边有一个交点,∴22﹣6×n×2<﹣2,∴n>即y=x2+2nx+2n2与正方形ABCD的边有一个交点,∴2n2≤2∴n≤1,∴<n≤1;若y=x2+2nx+2n2的顶点在正方形ABCD的AB边上时,图象G与正方形ABCD的边恰好有两个公共点,∴n2=2,∴n=,综上所述:当0<n<或<n≤1或n=时,图象G与正方形ABCD的边恰好有两个公共点.6.解:(1)∵直线y=kx+3交y轴于点B,∴点B坐标(0,3),∴OB=3,∵OA=OB=3,∴点A(3,0),∴0=3k+3,∴k=﹣1;(2)如图1,过点P作PQ⊥OA,交AB于点Q,由(1)知,AB的解析式为:y=﹣x+3,∵点P的坐标为(t,),∴Q点的坐标为(t,﹣t+3),∴PQ=t+,∵,∴;(3)如图2,过点P作PM⊥OA于M,过点D作DN⊥OA于N,过点O作OH⊥OC,交CD的延长线于点H,连接AH,∵∠OCD=45°,∴∠OCH=∠OHC=45°,∴OC=OH,∵∠AOB=∠COH=90°,∴∠BOC=∠AOH,在△OBC和△OAH中,,∴△OBC≌△OAH(SAS),∴BC=AH,∠OCB=∠OHA,∵BC=CP,∴AH=PC,∵∠BCP=90°,∠OCD=45°,∴∠PCD=45°﹣∠OCB,∵∠AHD=45°﹣∠OHA,∴∠PCD=∠AHD,在△PCD和△AHD中,,∴△PCD≌△AHD(AAS),∴PD=P A,∵PM∥DN,∴MN=AN,∵D的横坐标为,点P的坐标为(t,),∴M(t,0),N(,0),∴﹣t=3﹣,∴t=,∴P(,).。
2020年中考数学压轴题专项训练:一次函数的综合(含答案)
2020年数学中考压轴题专项训练:一次函数的综合1如图,在平面内,点Q为线段AB上任意一点,对于该平面内任意的点P,若满足PQ小于等于AB,则称点P为线段AB的“限距点”(1)在平面直角坐标系Xoy中,若点A (- 1, 0), B( 1, 0).①在的点C(0, 2), D(- 2, - 2), E(0,-一 -:)中,是线段AB的“限距点”的是E②点P是直线y = x+'上一点,若点P是线段AB的“限距点”,请求出点P横坐标3 3X P的取值范围.存在线段AB的“限距点”,请直接写出t的取值范围Λ Q B∙∙∙ C不是线段AB的“限距点”;当D(-2, - 2)时,D到AB的最短距离2, T AB= 2 ,∙D不是线段AB的“限距点”;当E (0,--;)时,E到AB的最短距离「: , T AB= 2 ,∙E是线段AB的“限距点”;故答案为E;②如图:以(1 , 0)为圆心,2为半径做圆,以(-两圆与直线(2)如图,以A (t , 1)为圆心,2为半径做圆,以B (t, - 1两圆与直线(2)在平面直角坐标系XOy 中,若点A (t , 1), B (t, - 1).若直线y=解:(1)①当C (0, 2)时, C到AB的最短距离2, T AB= 2 ,1 , 0)为圆心,2为半径做圆,为圆心,2为半径做圆,上y=b"χ+±i的交点为P22.如图,已知过点 B (1, 0)的直线I i 与直线l 2: y = 2x +4相交于点 P ( - 1, a ), I i 与y 轴交于点 C, I 2与X 轴交于点 A(1) 求a 的值及直线I i 的解析式.(2) 求四边形PAoC 勺面积.(3) 在X 轴上方有一动直线平行于 X 轴,分别与I i ,丨2交于点M N 且点M 在点N 的右 侧,X轴上是否存在点 Q 使厶MN(为等腰直角三角形?若存在,请直接写出满足条件的点Q 的坐标;若不存在,请说明理由.解:(1)τ y = 2x +4 过点 P (- 1,a ),.∙. a= 2,•••直线 I 1 过点 B (1,0)和点 P (- 1,2),设线段BP 所表示的函数表达式 y = kx +b 并解得: 函数的表达式y =- x +1;(2) 过点P 作PEIOA 于点E,作PF ⊥y 轴交y 轴于点F ,Il 5(3) 如图,M( 1 - a ,a ),点 N^~,小,HI a -4l-⅛-∙∙∙ MN= NQ 则3.在平面直角坐标系中,直线 I 仁y =- 2x +6与坐标轴交于 A, B 两点,直线12: y = kx +2(k > 0)与坐标轴交于点 C, D,直线∣1,丨2与相交于点 E(1) 当k = 2时,求两条直线与 X 轴围成的厶BDB 的面积;(2) 点P (a, b )在直线12: y Q kx +2 (k > 0)上,且点 P 在第二象限.当四边形 OBEC23的面积为=时.① 求k 的值;② 若m= a+b ,求m 的取值范围.%C\ .r 3\ X O B \ k X备丿 胭解:(1)τ直线l I : y =- 2x +6与坐标轴交于 A B 两点,.∙.当 Xy= O 时,得 X = 3,当 X = 0 时,y = 6;综上,点Q 的坐标为:(-匸,0)或(- 0)或( ,0) •③当 MQ NQ 寸,*∙∙∙ A (O, 6) B (3, 0);当k = 2 时,直线12: y= 2x+2 ( k≠ 0),∙ C (0, 2), D(- 1, 0)I' y=-2x÷6' K=I解F 得,,[y=2x+2 ,y=4∙ E (1, 4),•••△ BDE的面积=丄× 4× 4= 8.2(2)①连接OE设E ( n,- 2n+6),T S 四边形OBEe= S A EO+S^EOB∙—x 2× n+二× 3 ×(- 2n+6 )=二,2解得n=—,•E⅛,和14把点E 的人y= kx+2 中,丁 = p^k+2 ,解得k= 4.②T直线y= 4k+2交X轴于D,•D(-「O),τ P (a, b)在第二象限,在线段CD上,1 C∙- —V a v 0 ,•b= 4a+2 ,•m= a+b= 5a+2 ,1 C•- --v mv 2.(2)函数y =--x +b 的图象与X 轴交于点D,点E 从点D 出发沿DA 方向,以每秒2个单 位长度匀速运动到点 A (到A 停止运动).设点E 的运动时间为t 秒.①当△ ACE 的面积为12时,求t 的值;②在点E 运动过程中,是否存在 t 的值,使△ ACE 为直角三角形?若存在,直接写出t 的值;若不存在,请说明理由.解:(1)∙.∙点 C(- 2, m 在直线 y =- x +2上,.∙. m =-(- 2) +2= 2+2 = 4, •••点 C( - 2, 4), ∙.∙函数y =二χ+b 的图象过点 C (- 2, 4),--×(- 2) +b ,得 b =即m 的值是4, b 的值是一一;(2)①T 函数y =- x +2的图象与X 轴,y 轴分别交于点 A , B ,•点 A (2, 0),点 B (0 , 2),T 函数y = -χ+丄的图象与X 轴交于点D•点D 的坐标为(-14 , 0),∙∙∙ AD= 16,由题意可得,DE= 2t ,则AE= 16-2t ,y =- x +2的图象与X 轴,y 轴分别交于点 A , B,与函y=-3t+2,得≈--2f 1 14V=— XH - I g 3I l y=4则点C的坐标为(-2, 4),∙∙∙△ ACE的面积为12,∙QA盘)X 4 12•• : =12,解得,t = 5即当△ ACE的面积为12时,t的值是5;②当t = 4或t = 6时,△ ACE是直角三角形,理由:当∠ ACE= 90° 时,ACLCE •/点A (2, 0),点B( 0 , 2),点C(- 2 , 4),点D(- 14, 0), •OA= OB AC= 4 J ,∙∠BAO 45° , ∙∠CAE= 45° ,∙∠CEA= 45° ,•CA= CE= ,∙AE= 8 , ∙∙∙AE= 16- 2t ,•8 = 16- 2t ,解得,t =4;当∠ CEA 90° 时,T AC= 4 .「, ∠ CAE= 45•AE= 4 ,∙∙∙AE= 16- 2t , • 4 = 16- 2t ,解得,t =6;由上可得,当t = 4或t = 6时,△ ACE是直角三角形.5•如图1已知线段 AB 与点P ,若在线段 AB 上存在点 Q 满足P(≤ AB 则称点P 为线段(1)如图2,在平面直角坐标系 xθy (2)中,若点 A (- 1, 0), B( 1, 0)① 在 C(0, 2) 2, D(- 2, - 2), -√3) 中,是线段AB 的“限距点”的是C, E ; ② 点P 是直线y = x +1上一点,若点P 是线段AB 的“限距点”,请求出点P 横坐标XP 的取 值范围.围. 解:(1)①T 点 A (- 1, 0), B (1, 0),∙∙∙ AB= 2,T 点C 到线段AB 的最短距离是 2≤AB∙点C 是线段AB 的“限距点”,T 点D 到线段AB 的最短距离=j ∙f 「八2= ∏>AB∙点D 不是线段AB 的“限距点”(2)在平面直角坐标系XOy 中,点 A( t , 1), B(t , - 1),直线y =半沙2近与X 轴 交于点M 与y 轴交于点N 若线段MN 上存在线段AB 的“限距点”,请求出t 的取值范AB 的“限距•••点E到线段AB的最短距离是_ [≤ AB•••点E是线段AB的“限距点”,故答案为:C, E;②•••点A (- 1, 0), B (1, 0)•点P为线段AB的“限距点”的范围是平行于AB且到AB距离为2两条线段」和以点A, 点B为圆心,2为半径的两个半圆围成的封闭式图形,如图所示:如图3,直线y= x+1与该封闭式图形的交点为M N•点M坐标(1, 2)设点N (X, x+1)•( x+1) 2+ (x+1 - 0) 2= 4•X =- 1 - "< /•匚iy ¥AV F MOA V E MN•••点P 横坐标X P 的取值范围为;(2)•••直线y = ^^工卜趴卮与X 轴交于点 M 与y 轴交于点N•点 N (0, 2 品,点 M(— 6, 0)如图3,线段AB 的“限距点”的范围所形成的图形与线段MN 交于点M•••点M 是线段AB 的“限距点”,∙∙∙- 6-t = 2,∙ t = - 8,若线段AB 的“限距点”的范围所形成的图形与线段 MN 相切于点F ,延长BA '交MNF E,∙∙∙ t的取值范围为-8≤ t ≤ -:- 2.6.如图(1),在平面直角坐标系中,直线y =-2 x+4交坐标轴于A、B两点,过点C( - 4,(2)确定直线CD解析式,求出点D坐标;(3)如图2,点M是线段CE上一动点(不与点C E重合),0N⊥Oh交AB于点N,连接MN①点M移动过程中,线段OM与ON数量关系是否不变,并证明;②当△ OMr面积最小时,求点M的坐标和厶OM面积.4 、一解:(1)τ直线y ----- x+4交坐标轴于A B两点,d∙当y= 0 时,X= 3,当X = 0 时,y = 4,∙点A的坐标为(3, 0),点B的坐标为(0, 4),∙OA= 3;故答案为:(0, 4), 3;(2 )•••过点C (- 4, 0)作CD交AB于D,交y轴于点已且厶CO B^ BOA∙OC= 4 , OC= OB OE= OA•••点A (3 , 0),∙OA= 3 ,∙OE= 3 ,•点E的坐标为(0, 3),设过点C (- 4 , 0),点E ( 0 , 3)的直线解析式为y = kx+b ,.∙.直线CE 的解析式为y = x +3,4即直线CD 的解析式为y = x +3,4 12■■-,2?(3)①线段OM 与ON 数量关系是Oh =ON 保持不变,证明:•••△ CO B^ BoA∙∙∙ OE= OA ∠ OEI =∠ OAN ∙∙∙∠ Bo =90°, ONLOMl∙∠ MO = ∠ BOA= 90°,∙∠ MO +∠ EO =∠ EON ∠ NOA∙∠ MO = ∠ NOA在厶 MO^ NOA 中,r ZMOE=ZNOA〈OE=OA ,LZOEK=ZOAN •••△ IMO B △ NOA( SAS ,• OM= ON即线段OMl 与ON 数量关系是OM= ON 保持不变;②由①知OM= ON•当OM ,∙∙∙OC= 4 , OE= 3, ∠ COE= 90° , ∙∙∙CE= 5 ,•••当OML CE 时,OM 取得最小值,f-⅛+b=0 lb=3 ,得即点D 的坐标为 12 25 84 25); ∙∙∙ OML ON• △ OM 面积OH-ONOK 2 2 212 v 2 亍 当AOM 取得最小值时,设此时点M 的坐标为(a ,二a +3),4解得,a =-∙τa+3=故 A (4, 0);当 X = 0 时,y =— 3, 故 B (0,- 3);2 ^ 2 恥5 4×3 2 _ 2 解得,OMk125 7225^,⅛+3)Ξ 12_.S•••△OM 面积取得最小值是: •点M 的坐标为__ ), 由上可得,当△36 48 OMN 面积最小时,点 M 的坐标是(=ς?,石孑)和厶OMN 面积 25 ' 25积是 72 7.如图,一次函数「V 的图象分别与X 轴、y 轴交于点A B ,以线段AB 为边在第四象限内作等腰直角厶 ABC 且∠ BAC= 90°.(1)试写出点A B 的坐标:A ( 4 , 0 ) , B ( 0 , - 3 );(2)求点C 的坐标;解得:X = 4,故答案为:(4, 0), (0,- 3);(2)过点C作CDL X轴,垂足为点D,∙∙∙∠ BAC= 90°,∙∙∙∠OAB∠ DAC= 90 ° ,又∙∙∙∠DCA∠ DAC= 90°,∙∠ACD=∠ OAB在厶AOBm CDA中r ZBOA=ZATC•Z0A&=ZACDl AB=AC•••△ AOB^△ CDA( AAS,•AD= OB= 3, CD= OA= 4,•OD= 7,• C ( 7,- 4);(3)设直线BC的函数表达式为y = kx+b 把B (0,- 3), C (乙-4)代入上式:解之得:* 7 ,,b=~3•直线BC的函数表达式为y =今鼻-3・&如图1所示,在A、B两地之间有汽车站C站,客车由A地驶往C站,货车由B地驶往A 地.两车同时出发,匀速行驶.图2是客车、货车离C站的路程yι, y2 (千米)与行驶时间X (小时)之间的函数关系图象.圉I ≡2(1)填空:A, B两地相距600千米;货车的速度是40千米/时;(2)求三小时后,货车离C站的路程y2与行驶时间X之间的函数表达式;(3)试求客车与货两车何时相距40千米?解:(1)由函数图象可得, A B两地相距:480+120 = 600 ( k∏),货车的速度是:120 ÷ 3 = 40 ( km(h)∙故答案为:600; 40 ;(2)y= 40 (X- 3) = 40x - 120 (X> 3);(3)分两种情况:①相遇前:80x+40x = 600 - 4014解之得X = -y…(8分)②相遇后:80x+40x = 600+40解之得X =千综上所述:当行驶时间为学小时或二小时,两车相遇40千米.9.如图1,在平面直角坐标系XOy中,点A (2, 0),点B( - 4, 3).(1)求直线AB的函数表达式;(2)点P是线段AB上的一点,当S∖AO P S^ AOB=2: 3时,求点P的坐标;(3)如图2,在(2)的条;件下,将线段AB绕点A顺时针旋转120°,点B落在点C处,连结CP求厶APC的面积,并直接写出点C的坐标.图1 解:(1)设直线AB 的函数表达式为•/点 A (2,0),点 B (- 4, 3),.卩沙bo V ⅛+b=3,1 解得:* ■ L b = I•••直线AB 的函数表达式为 y =-—x +1;(2)过B 作BEl X 轴于E ,过P 作PDL X 轴于D,• PD// BE• S ^AO P S ^ AO = 2 :AP 2 AB 3,•点 B (- 4, 3),• BE= 3,• PD// BE• △ APDo ^ ABEPD PD 2 BE3 3,• PD= 2,当 y = 2 时,X =- 2,• P (- 2, 2);A Xy = . kx +b ,(3)点A (2, 0)、点B (- 4, 3),点P (- 2, 2),则AP= 2 U AB= CA= 3 匚,过点P作HPL AC交AC的延长线于点H,△ APC的面积=二:ACX PH=--× 3. □× . 口 =二•;2 二2设点C (X, y),则PC= P H+H C= 15+( i. ,+3 :■) 2= 95 =( x+2) 2+ (y - 2) 2…①,CA= 45 =( X - 2) 2+y2…②,联立①②并解得:X y=∙..,故点1). 〜10.如图,平面直角坐标系中,直线AB y = kx+3 ( k≠ 0)交X轴于点A (4, 0),交y轴正半轴于点B,过点C( 0, 2)作y轴的垂线CD交AB于点E,点P从E出发,沿着射线ED 向右运动,设PE= n.(1)求直线AB的表达式;(2)当厶ABP为等腰三角形时,求n的值;(3)若以点P为直角顶点,PB为直角边在直线CD的上方作等腰Rt △ BPM试问随着点P的运动,点M是否也在直线上运动?如果在直线上运动,求出该直线的解析式;如果不在直线上运动,请说明理由.解:将点A 的坐标代入直线 AB y = kx +3并解得:k =-丁, 故AB 的表达式为:y =-工x +3;4而点A B 坐标分别为:(4, 0)、(0, 3),当AP= AB 时,同理可得: n = _ +「(不合题意值已舍去);当AB= BP 时,同理可得: n =-—+2「;⅞-)(3)在直线上,理由:如图,过点M 作MDL CD 于点H,∙∙∙∠ CPB=∠ MPH BP= PM ∠ MH =∠ PCB= 90°∙∙∙ MH △^^ PCB( AAS ,故点M 在直线y = x +1上.11.小聪和小慧去某风景区游览,两人在景点古刹处碰面,相约一起去游览景点飞瀑, 骑自行车先行出发,小慧乘电动车出发,途径草甸游玩后,再乘电动’车去飞瀑,人同时到达飞瀑.图中线段 OA 和折线B- C- D- A 表示小聪、小慧离古刹的路程(2)当 y = 2 时,X = ,故点E (■ ,2),则点 P (n +二,2),≡ A P =(壬+n - 4) 2+4 ; BP =( n2+1, AB = 25, 当 AP = BP 时,(2+ n - 4) +4=( n +")2+1,解得:n =-二6BC=1 = PH7故点M( n +—,n+∙10小聪 结果两y (米)O,∠ BPG ∠ MP = 90°,则 CP= MHb n与小聪的骑行时间X (分)的函数关系的图象,根据图中所给信息,解答下列问题:(1) 小聪的速度是多少米/分?从古刹到飞瀑的路程是多少米? (2) 当小慧第一次与小聪相遇时,小慧离草甸还有多少米? (3) 在电动车行驶速度不变的条件下,求小慧在草甸游玩的时间.U≡0.αrι解: (1) Y 小职-禺厂丄创(米/分).古刹到飞瀑的路程=180 × 50= 9000 (米).答:小聪的速度是180米/分,从古刹到飞瀑的路程是 9000米;10k+b=0.∙. Y = 450x - 4500当 X = 20, Y = 45004500 - 3000= 1500 米 答:小慧与小聪第一次相遇时,离草甸还有1500米.(3) 9000- 4500= 4500 (米) 4500 ÷ 450 = 10 (分钟). 50- 10- 10 - 10= 20 (分钟) 答:20分钟.12.对于平面直角坐标系 XOY 中,已知点 A (- 2, 0)和点B(3, 0),线段AB 和线段AB 外的一点P,给出如下定义:若 45°≤∠ APB≡ 90 °时,则称点 P 为线段AB 的可视点, 且当PA= PB 时,称点P 为线段AB 的正可视点. (1)①如图1 ,在点P 1(3, 6), P 2 (- 2, - 5) ,P 3 (2,2)(2)设 Y = kx +b , 解得⅛=450 Ib='450C则k-⅛-3000中,线段AB的可视点是P2,2-4Γ备用團解:(1)①如图1,以AB 为直径作圆 G 贝U 点P 在圆上,则∠ APB= 90°,若点P 在圆内, 则∠ APB>90°,5 — 4 —*-C/ Fr■ - **■■■ *-I70 G 1b_ Ib r ・.■-3-D—■以C (勺",女)为圆心,AC 为半径作圆,在点 P 优弧如B 上时,∠ APB= 45° ,点P 在优 弧」内,圆G 外时,45°v∠ AP 欢90°;,-—)为圆心,AD 为半径作圆,在点 P 优弧TE 上时,∠ APB= 45°,点P 在优弧」■内,圆G 外时,45°v∠ APB≤ 90°;②若点P 在y 轴正半轴上,写出一个满足条件的点 P 的坐标: P( 0,3)(答案不唯一)(2)在直线y = x +b 上存在线段 AB 的可视点,求 b 的取值范围;(3)在直线y =- x +m 上存在线段 AB 的正可视点,直接写出 m 的取值范围.Ai ■ i 占 id 斗亠3亠2 -1 O3-2-10-1-4Γ•••点P ( 3, 6), P2 (- 2,- 5), P (2, 2)∙∙∙ P I C=^4〉M= AC 则点P i在圆C外,则∠ ARB< 45°,■: ■■:P2D= ' = AC 则点P2在圆D上,则∠ APB= 45 ° ,2RG=層=BG 点P a在圆G上,则∠ APB= 90°,∙线段AB的可视点是P2, P a,故答案为:B, P a;②由图1可得,点P的坐标:P(0, 3)(答案不唯一,纵坐标y范围:∣l≤ y p≤ 6).(2)如图2,设直线y=x+b与圆C相切于点H交X轴于点N连接BH∙∙∙∠ HN=∠ HBN= 45° ,∙NH= BH ∠ NH= 90°,且NH是切线,∙BH是直径,∙BH= 5,∙BN= 10 ,∙ON= 7 ,∙点N ( - 7 , 0)∙0 =- 7+b , ∙b= 7 ,当直线y = x+b与圆D相切同理可求:b =- 88≤ b ≤ 7(3)如图3,作AB 的中垂线,交Θ C 于点Q 交Θ D 于点 W--⅛,, Xg.亠 ・■■T 直线y =- x +m 上存在线段 AB 的正可视点,.线段CC 和线段DWt 的点为线段 AB 的正可视点.别代入解析式可得:匕的函数关系如图所示:(2) 求甲、乙两车相遇后y 与X 之间的函数关系式,并写出相应的自变量 X 的取值范围.T 点 CL-,=-),点 D (-^-5√2 2.m = 3, m = .m 的取值范围:^√+3,m =-2,m =-—.「- X.二冷._ 或]13.已知 A 、B 两地之间有一条 270千米的公路, 甲、乙两车同时出发,甲车以每小时 60千米/时的速度沿此公路从 A 地匀速开往B 地, 乙车从B 地沿此公路匀速开往A 地, 两车分别到达目的地后停止甲、乙两车相距的路程y (千米)与甲车的行驶时间X (时) 之间(1)乙年的速度为75 千米/时,a = 3.6 ,b =4.5 ;⅛41),点Q),点÷ 2= 75千米/时,故答案为:75; 3.6 ; 4.5 ;(2) 60× 3.6 = 216 (千米),故A (2, O), B( 3.6 , 216) , C (4.5 , 270) 当2 V x≤ 3.6时,设y = k1x+b1,根据题意得:2k1+b 1=06k1+b1^21⅛解得∙∙∙ y = 135x - 270 (2 V x≤ 3.6 );当 3.6 V X≤ 4.5 时,设y= k2x+b2,贝U3.6k2+b Ξ=2164,解得∙当3.6 V X≤ 4.5 时,y = 60x,r135χ-270(2<x<3.6)y(60讥£代κj≤4∙5)14.已知:在平面直角坐标系中,直线x+4与X轴交于点A,与y轴交于点B,点C是X轴正半轴上一点,AB= AC 连接BC(1)如图1 ,求直线BC解析式;(2)如图2,点P Q分别是线段AB BC上的点,且AF=J BQ连接PQ若点Q的横坐标为t , △ BPC 的面积为S ,求S 关于t 的函数关系式,并写出自变量取值范围; (3) 如图3,在(2)的条件下,点 E 是线段OA 上一点,连接 BE 将厶ABE 沿BE 翻折, 使翻折后的点 A 落在y 轴上的点H 处,点F 在y 轴上点H 上方EH= FH 连接EF 并延长交BC 于点G 若B 'AR 连接PE 连接P G 交BE 于点「求BT 长.≡1鈕解:(1)由已知可得 A (- 3 , 0), B(0, 4),∙∙∙ OA= 3, OB= 4,∙∙∙ A B=常丁吐;CF 丛=•二 I = 5,∙∙∙ AB= AC∙ AC= 5,∙C ( 2, 0), 设BC 的直线解析式为 y = kx +b , 将点B 与点C 代入,得(O-Ξk+b U=b , r ⅛=-2∙ BC 的直线解析式为 y =- 2x +4;(2)过点Q 作MQ y 轴,与y 轴交于点 M 过点Q 作QEL AB 过点C 作CF ⊥ABS34图2τ Q 点横坐标是t ,∙°∙ MQ= t ,T Ma OC…典厶/5∙ BQ= ∏t ,∙.∙ AP = BQ∙ AP= F ,T AA 5,∙ PB- 5 -凤.∣t ,在等腰三角形 ABC 中, AC= AB= 5, BC= 2 一二,1 11V--ABX CF=T-ACX OB∙ CF = OB^ 4, T EQ/ CFES -√5t•— L ∙ EQ= 2t ,∙ S =丄 L-×( 5- Γt )=-.匸—t (0≤ t ≤ 2); (3)如图3,8CH≡3EH)23 占 八3 4)BG=54E 、0O E =丄OiAE =( 4 - AE ) 2+12•••将厶ABE 沿BE 翻折,使翻折后的点 A 落在y 轴上的点H 处,∙∙∙ AH= AB= 5,∙∙∙ OH= BH- ∙∙∙ EH =O+H,∙点 E (- -二,∙点 F (0,4 3∙∙∙ EH= FH= ⅛ ∙直线EF 解析式为y=—x+—, 直线BE 的解析式为: y = 3x +4,∙ X ∙- 2x +4= ―X• X =- 1,•点 T (- 1, 1)• B T =:厂 Iuj . T J = '115.如图,在平面直角坐标系中,点A (4, 0)、点B (0, 4),过原点的直线l 交直线AB 于点P * X\P 丿(1 )∠ BAQ 的度数为 45 °,△ AoB 的面积为 8(2) 当直线l 的解析式为y = 3X 时,求△ AOP 勺面积;1(3) 当时,求直线I 的解析式. Li AEOF J解:(1)τ点 A (4, 0)、点 B (0, 4),• OA= OB∙∙∙∠ AO = 90°,• △ AOB 是等腰直角三角形,∙∙∙ BG=主丄AP ∙∙∙ AP= 1, •••点 P (- 12 4 T ,百 •直线PG 的解析式为:•/ BAO= 45°,A AOB的面积=f-× 4 × 4= 8;故答案为:45, 8;(2)设直线AB 的解析式为:y = kx +b ,•••直线AB 的解析式为:y =- x +4, •••直线l 的解析式为y =3x ,解苗得Dl• P (1, 3),• △ AoP 勺面积=⅛× 4× 3= 6;(3)如图,过 P 作 PC ⊥OA 于 C, 贝y PC// OB S AAOP^ABOFAP- LPB = 3PAL •屈=1?∙∙∙ PC// OBPC AC PA OB OA AB'• PC= 1, AC= 1, ∙ OC= 3, • P (3,1), .∙.∙=直线I 的解析式为y =二χ∙把点A (4, 0)、点B(0, 4)代入得 '4fc+b=0 L b =4 解得: t b=4。
中考数学压轴题提升训练一次函数与反比例函数综合题含解析
一次函数与反比例函数综合题【例1】。
如图,直线l:y=ax+b交x轴于点A(3,0),交y于第一象限的点P,点P的轴于点B(0,-3),交反比例函数y kx横坐标为4.的解析式;(1)求反比例函数y kx(2)过点P作直线l的垂线l1,交反比例函数y k的图象于x点C,求△OPC的面积.【答案】见解析。
【解析】解:(1)∵y=ax+b交x轴于点A(3,0),交y轴于点B(0,-3),∴3a+b=0,b=-3,解得:a=1,即l1的解析式为:y=x-3,当x=4时,y=1,即P(4,1),将P点坐标代入y k得:k=4,x;即反比函数的解析式为:y4x(2)设直线l1与x轴、y轴分别交于点E,D,∵OA=OB=3,∴∠OAB=∠OBA=45°,∵l⊥l1,∴∠DPB=90°,∴∠ODP=45°,设直线l1的解析式为:y=-x+b,将点P(4,1)代入得:b=5,联立:y=-x+5,y4x,解得:x=1,y=4或x=4,y=1,即C(1,4),∴S△OPC=S△ODE-S△OCD-S△OPE=12×5×5-12×5×1-12×5×1=152.【变式1—1】.如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A,C分别在坐标轴上,点B的坐标为(4,2),直线y=–12x+3交AB,BC于点M,N,反比例函数kyx的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P在x轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.【答案】见解析.【解析】解:(1)∵B(4,2),四边形OABC为矩形,∴OA=BC=2,在y=–12x+3中,y=2时,x=2,即M(2,2),将M(2,2)代入kyx=得:k=4,∴反比例函数的解析式为:4yx=.(2)在4yx=中,当x=4时,y=1,即CN=1,∵S四边形BMON=S矩形OABC-S△AOM-S△CON=4×2-12×2×2-12×4×1=4,∴S△OPM=4,即12·OP·OA=4,∵OA=2,∴OP=4,∴点P 的坐标为(4,0)或(-4,0)。
中考数学重难点专题12 一次函数与几何综合问题(学生版)
中考数学复习重难点与压轴题型专项突围训练(全国通用版)专题12一次函数与几何综合问题【典型例题】1.(2022·四川成都·九年级期末)如图,在平面直角坐标系中,点A,B分别在x轴,y轴正半轴上,AO=2BO,点C(3,0)(A点在C点的左侧),连接AB,过点A作AB的垂线,过点C作x轴的垂线,两条垂线交于点D,已知△ABO△△DAC,直线BD交x轴于点E.(1)求直线AD的解析式;(2)直线AD有一点F,设点F的横坐标为t,若△ACF与△ADE相似,求t的值;(3)如图2,在直线AD上找一点G,直线BD上找一点P,直线CD上找一点Q,使得四边形AQPG是菱形,求出G点的坐标.【专题训练】一、选择题1.(2022·山东龙口·七年级期末)对于函数y=-3x+1,下列结论正确的是()A.它的图象必经过点(1,3)B.y的值随x值的增大而增大C.当x>0时,y<0D.它的图象与x轴的交点坐标为(13,0)2.(2022·江苏溧阳·八年级期末)如图,直线122y x=-+与x轴、y轴交于A、B两点,在y轴上有一点C(0,4),动点M从A点发以每秒1个单位的速度沿x轴向左移动.当动到△COM与△AOB全等时,移的时间t是()A.2B.4C.2或4D.2或63.(2022·陕西·辋川乡初级中学八年级期末)数学课上,老师提出问题:“一次函数的图象经过点A(3,2),B(-1,-6),由此可求得哪些结论?”小明思考后求得下列4个结论:①该函数表达式为y=2x-4;②该一次函数的函数值随自变量的增大而增大:③点P(2a,4a-4)在该函数图象上;④直线AB与坐标轴围成的三角形的面积为8.其中错误的结论是()A.1个B.2个C.3个D.4个4.(2022·江苏启东·八年级期末)如图,在平面直角坐标系中,O为原点,点A,C,E的坐标分别为(0,4),(8,0),(8,2),点P,Q是OC边上的两个动点,且PQ=2,要使四边形APQE的周长最小,则点P的坐标为()A.(2,0)B.(3,0)C.(4,0)D.(5,0)二、填空题5.(2022·江苏滨湖·八年级期末)如图,直线y=﹣43x+8与坐标轴分别交于A、B两点,P是AB的中点,则OP的长为_____.6.(2021·山东济阳·八年级期中)如图,一次函数y =x +2的图像与坐标轴分别交于A ,B 两点,点P ,C 分别是线段AB ,OB 上的点,且△OPC =45°,PC =PO ,则点P 的坐标为______.7.(2021·湖北阳新·模拟预测)如图,直线AB 的解析式为y =﹣x +b 分别与x ,y 轴交于A ,B 两点,点A的坐标为(3,0),过点B 的直线交x 轴负半轴于点C ,且31OB OC ::,在x 轴上方存在点D ,使以点A ,B ,D 为顶点的三角形与△ABC 全等,则点D 的坐标为_____.8.(2022·山东龙口·七年级期末)正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图所示放置,点A 1,A 2,A 3,和点C 1,C 2,C 3,…,分别在直线y =kx +b (k >0)和x 轴上,已知点B 1,B 2,B 3,B 4的坐标分别为(1,1),(3,2),(7,4),(15,8),则Bn 的坐标为_____三、解答题9.(2022·江苏海州·八年级期末)已知直线l 1经过点A (3,2)和点B (0,5),直线l 2:y =2x ﹣4经过点A 且与y 轴相交于点C .(1)求直线l 1的函数表达式;(2)已知点M 在直线l 1上,过点M 作MN //y 轴,交直线l 2于点N .若MN =6,请求出点M 的横坐标.10.(2022·广西·桂林市雁山中学九年级期末)如图,已知一次函数y=kx+b的图象与x轴,y轴分别相交于A,B两点,且与反比例函数y=mx在第一象限的图象交于点C,CD垂直于x轴,垂足为D.如果OA=OB=OD=1,求:(1)点A、B、C的坐标;(2)这个反比例函数的表达式;(3)这个一次函数的表达式.11.(2022·江苏溧阳·八年级期末)如图,在平面直角坐标系中长方形AOBC的顶点A、B坐标分别为(0,8)、(10,0),点D是BC上一点,将△ACD沿直线AD翻折,使得点C落在OB上的点E处,点F是直线AD 与x轴的交点,连接CF.(1)点C坐标为____________;(2)求直线AD的函数表达式_______________________;(3)点P是直线AD上的一点,当△CFP是直角三角形时,请你直接写出点P的坐标.。
中考数学总复习《一次函数》专项提升练习题(附答案)
中考数学总复习《一次函数》专项提升练习题(附答案)学校:___________班级:___________姓名:___________考号:___________命题点1一次函数的图象与性质 1(2022株洲)在平面直角坐标系中,一次函数y=5x+1的图象与y 轴的交点的坐标为( )A.(0,-1)B.(-15,0) C.(15,0) D.(0,1) 2(2022凉山州)一次函数y=3x+b (b ≥0)的图象一定不经过 ( )A.第一象限B.第二象限C.第三象限 D .第四象限3(2022广安)在平面直角坐标系中,将函数y=3x+2的图象向下平移3个单位长度,所得的函数的解析式是( )A.y=3x+5B.y=3x-5C.y=3x+1D.y=3x-1 4(2022邵阳)在直角坐标系中,已知点A (32,m ),点B (√72,n )是直线y=kx+b (k<0)上的两点,则m ,n 的大小关系是( )A .m<nB .m>nC .m ≥nD .m ≤n5(2022抚顺)如图,在同一平面直角坐标系中,一次函数y=k 1x+b 1与y=k 2x+b 2的图象分别为直线l 1和直线l 2,下列结论正确的是( )A.k 1·k 2<0B.k 1+k 2<0C.b 1-b 2<0D.b 1·b 2<06(2022河南)请写出一个y 随x 的增大而增大的一次函数的表达式: . 7(2022德阳)如图,已知点A (-2,3),B (2,1),直线y=kx+k 经过点P (-1,0).试探究:直线与线段AB 有交点时k 的变化情况,猜想k 的取值范围是 .8(2022北京)在平面直角坐标系xOy 中,函数y=kx+b (k ≠0)的图象过点(4,3),(-2,0),且与y 轴交于点A.(1)求该函数的解析式及点A 的坐标;(2)当x>0时,对于x 的每一个值,函数y=x+n 的值大于函数y=kx+b (k ≠0)的值,直接写出n 的取值范围.命题点2一次函数与方程、不等式结合9(2022陕西)在同一平面直角坐标系中,直线y=-x+4与y=2x+m 相交于点P (3,n ),则关于x ,y 的方程组{x +y -4=0,2x -y +m =0的解为 ( )A.{x =−1,y =5B.{x =1,y =3C.{x =3,y =1D.{x =9,y =−5 10(2022鄂州)数形结合是解决数学问题常用的思想方法.如图,一次函数y=kx+b (k ,b 为常数,且k<0)的图象与直线y=13x 都经过点A (3,1),当kx+b<13x 时,根据图象可知,x 的取值范围是( )A.x>3B.x<3C.x<1D.x>111(2021嘉兴)已知点P (a ,b )在直线y=-3x-4上,且2a-5b ≤0,则下列不等式一定成立的是( )A.a b ≤52B.a b ≥52C.b a ≥25D.b a ≤25命题点3一次函数的实际应用 角度1行程问题12(2021陕西)在一次机器“猫”抓机器“鼠”的展演测试中,“鼠”先从起点出发,1 min 后,“猫”从同一起点出发去追“鼠”,抓住“鼠”并稍作停留后,“猫”抓着“鼠”沿原路返回.“鼠”“猫”距起点的距离y (m)与时间x (min)之间的关系如图所示.(1)在“猫”追“鼠”的过程中,“猫”的平均速度与“鼠”的平均速度的差是m/min;(2)求AB的函数表达式;(3)求“猫”从起点出发到返回至起点所用的时间.13(2022湖州)某校组织学生从学校出发,乘坐大巴前往基地进行研学活动.大巴出发1小时后,学校因事派人乘坐轿车沿相同路线追赶.已知大巴行驶的速度是40千米/时,轿车行驶的速度是60千米/时.(1)轿车出发后多少小时追上大巴?此时,两车与学校相距多少千米?(2)如图,图中OB,AB分别表示大巴、轿车离开学校的路程s(千米)与大巴行驶的时间t(小时)的函数关系的图象.试求点B的坐标和AB所在直线的解析式.(3)假设大巴出发a小时后轿车出发追赶,轿车行驶了1.5小时追上大巴,求a的值.角度2方案选取问题14(2021宁波)某通讯公司就手机流量套餐推出三种方案,如下表:A方案B方案C方案每月基本费用/元20 56 266每月免费使用流1 024 m无限量/兆超出后每兆收费/n n元A,B,C三种方案每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系如图所示.(1)请直接写出m,n的值.(2)在A方案中,当每月使用的流量不少于1 024兆时,求每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系式.(3)在这三种方案中,当每月使用的流量超过多少兆时,选择C方案最划算?角度3最值问题15(2022云南)某学校要购买甲、乙两种消毒液,用于预防新型冠状病毒.若购买9桶甲消毒液和6桶乙消毒液,则一共需要615元;若购买8桶甲消毒液和12桶乙消毒液,则一共需要780元.(1)每桶甲消毒液、每桶乙消毒液的价格分别是多少元?(2)若该校计划购买甲、乙两种消毒液共30桶,其中购买甲消毒液a桶,且甲消毒液的数量至少比乙消毒液的数量多5桶,又不超过乙消毒液的数量的2倍,怎样购买,才能使总费用W最少?并求出最少费用.16(2022福建)在学校开展“劳动创造美好生活”主题系列活动中,八年级(1)班负责校园某绿化角的设计、种植与养护.同学们约定每人养护一盆绿植,计划购买绿萝和吊兰两种绿植共46盆,且绿萝盆数不少于吊兰盆数的2倍.已知绿萝每盆9元,吊兰每盆6元.(1)采购组计划将预算经费390元全部用于购买绿萝和吊兰, 问可购买绿萝和吊兰分别多少盆.(2)规划组认为有比390元更省钱的购买方案,请求出购买两种绿植总费用的最小值.17(2022南充)南充市被誉为中国绸都,本地某电商销售真丝衬衣和真丝围巾两种商品,它们的进价和售价如下表.用15 000元可购进真丝衬衣50件和真丝围巾25件.(利润=售价-进价)种类真丝衬衣真丝围巾进价/(元/件) a80售价/(元/件) 300 100(1)求真丝衬衣进价a的值.(2)若该电商计划购进真丝衬衣和真丝围巾两种商品共300件,据市场销售分析,真丝围巾进货件数不低于真丝衬衣件数的2倍.如何进货才能使本次销售获得的利润最大?最大利润是多少元?(3)按(2)中最大利润方案进货与销售,在实际销售过程中,当真丝围巾销量达到一半时,为促销并保证销售利润不低于原来最大利润的90%,衬衣售价不变,余下围巾降价销售,每件最多降价多少元?角度4其他问题18(2022哈尔滨)一辆汽车油箱中剩余的油量y(L)与已行驶的路程x(km)的对应关系如图所示,如果这辆汽车每千米的耗油量相同,当油箱中剩余的油量为35 L时,那么该汽车已行驶的路程为()A.150 kmB.165 kmC.125 kmD.350 km19(2022吉林)李强用甲、乙两种具有恒温功能的热水壶同时加热相同质量的水,甲壶比乙壶加热速度快,在一段时间内,水温y(℃)与加热时间x(s)之间近似满足一次函数关系,根据记录的数据,画函数图象如图所示.(1)加热前水温是℃.(2)求乙壶中水温y关于加热时间x的函数解析式.(3)当甲壶中水温刚达到80 ℃时,乙壶中水温是℃.20(2022绍兴)一个深为6米的水池积存着少量水,现在打开水阀进水,下表记录了2小时内5个时刻的水位高度,其中x表示进水用时(单位:时),y表示水位高度(单位:米).x0 0.5 1 1.5 2y 1 1.5 2 2.5 3为了描述水池水位高度与进水用时的关系,现有以下三种函数模型供选(k≠0).择:y=kx+b(k≠0),y=ax2+bx+c(a≠0),y=kx(1)在平面直角坐标系中描出表中数据对应的点,再选出最符合实际的函数模型,求出相应的函数表达式,并画出这个函数的图象.(2)当水位高度达到5米时,求进水用时x.命题点4一次函数与几何知识的综合21(2022泸州)如图,在平面直角坐标系xOy 中,矩形OABC 的顶点B 的坐标为(10,4),四边形ABEF 是菱形,且tan ∠ABE=43.若直线l 把矩形OABC 和菱形ABEF 组成的图形的面积分成相等的两部分,则直线l 的解析式为( )A.y=3xB.y=-34x+152 C.y=-2x+11 D .y=-2x+1222(2021扬州)如图,一次函数y=x+√2的图象与x 轴、y 轴分别交于点A ,B ,把直线AB 绕点B 顺时针旋转30°交x 轴于点C ,则线段AC 长为( )A .√6+√2B .3√2C .2+√3D .√3+√223(2021成都)如图,在平面直角坐标系xOy 中,直线y=√33x+2√33与☉O 相交于A ,B 两点,且点A 在x 轴上,则弦AB 的长为 .分类训练7 一次函数1.D 【解析】 当x=0时,y=5x+1=1,故该一次函数图象与y 轴的交点坐标为(0,1).2.D3.D4.A 【解析】 对于一次函数y=kx+b ,∵k<0,∴y 随x 的增大而减小.又∵32>√72,∴m<n.5.D 【解析】 由题图可得k 1>k 2>0,b 1>0>b 2,∴k 1·k 2>0,k 1+k 2>0,b 1-b 2>0,b 1·b 2<0,故选D .6.y=2x+3(答案不唯一)7.k ≤-3或k ≥13 【解析】 当直线y=kx+k 经过点A (-2,3)时,-2k+k=3,解得k=-3;当直线y=kx+k 经过点B (2,1)时,2k+k=1,解得k=13.分析可知,当直线与线段AB 有交点时,k ≤-3或k ≥13.8.【参考答案】 (1)把(4,3),(-2,0)分别代入y=kx+b 得{4k +b =3,-2k +b =0,解得{k =12,b =1,∴该函数的解析式为y=12x+1. 对于y=12x+1,当x=0时,y=1∴A (0,1). (2)n ≥1.解法提示:函数y=12x+1的图象如图所示,易知当直线y=x+n 与y 轴的交点与点A 重合或在点A 上方时符合题意,故n ≥1.9.C 【解析】 把(3,n )代入y=-x+4,可知n=1,故关于x ,y 的方程组{x +y -4=0,2x -y +m =0的解为{x =3,y =1.故选C .10.A11.D 【解析】 ∵点P (a ,b )在直线y=-3x-4上,∴-3a-4=b.又∵2a-5b ≤0,∴2a-5(-3a-4)≤0,解得a ≤-2017.易得a=b+4-3,∴b ≥-817.易知当b=0时,ab 无意义,故A,B 错误.∵2a-5b ≤0,∴2a -5b a≥0,即2-5·b a≥0,∴b a ≤25.故选D .12.【参考答案】 (1)1解法提示:由题图可知,“鼠”的平均速度为30÷6=5(m/min) “猫”的平均速度为30÷(6-1)=6(m/min)故“猫”的平均速度与“鼠”的平均速度的差是6-5=1(m/min).(2)设AB 的函数表达式为y=kx+b (k ≠0),则{30=7k +b ,18=10k +b ,解得{k =−4,b =58,∴y=-4x+58.(3)令y=0,则-4x+58=0,∴x=14.5. 14.5-1=13.5(min)∴“猫”从起点出发到返回至起点所用的时间为13.5 min .13.【参考答案】 (1)设轿车行驶的时间为x 小时,则大巴行驶的时间为(x+1)小时. 根据题意,得60x=40(x+1) 解得x=2则60x=60×2=120.答:轿车出发2小时后追上大巴,此时两车与学校相距120千米. (2)∵轿车追上大巴时,大巴行驶了3小时∴点B 的坐标是(3,120).由题意,得点A 的坐标为(1,0).设AB 所在直线的解析式为s=kt+b则{3k +b =120,k +b =0,解得{k =60,b =−60,∴AB 所在直线的解析式为s=60t-60.(3)由题意,得40(a+1.5)=60×1.5解得a=34 ∴a 的值为34.14.【参考答案】 (1)m=3 072,n=0.3.(2)设函数关系式为y=kx+b (k ≠0)把(1 024,20),(1 144,56)代入y=kx+b得{20=1024k +b ,56=1144k +b ,解得{k =0.3,b =−287.2, ∴y 关于x 的函数表达式为y=0.3x-287.2(x ≥1 024).(注:x 的取值范围对考生不作要求)(3)3 072+(266-56)÷0.3=3 772(兆).由题中图象得,当每月使用的流量超过3 772兆时,选择C 方案最划算.15.【参考答案】 (1)设每桶甲消毒液的价格为x 元,每桶乙消毒液的价格为y 元根据题意,得{9x +6y =615,8x +12y =780,解得{x =45,y =35.答:每桶甲消毒液、每桶乙消毒液的价格分别是45元、35元.(2)由题意,得W=45a+35(30-a )=10a+1 050. 根据题意,得{a ≥30−a +5,a ≤2(30−a ),解得17.5≤a ≤20 ∴a 的取值范围是17.5≤a ≤20,且a 是正整数.∵10>0,∴W 随a 的增大而增大∴当a=18时,W 的值最小,最小值为1 230此时30-a=12.答:当购买甲消毒液18桶、乙消毒液12桶时,总费用最少,最少费用是1 230元.16.【参考答案】 (1)设购买绿萝x 盆,吊兰y 盆.根据题意,得{x +y =46,9x +6y =390,解得{x =38,y =8.因为38>2×8,所以答案符合题意.答:可购买绿萝38盆,吊兰8盆.(2)设购买绿萝m盆,吊兰(46-m)盆,购买两种绿植的总费用为W元则W=9m+6(46-m)=3m+276.根据题意,得m≥2(46-m),解得m≥923.因为3>0,所以W随m的增大而增大.又m为整数,所以m取最小值31时,W的值最小.当m=31时,W=3×31+276=369.答:购买两种绿植总费用的最小值为369元.17.【参考答案】(1)根据题意,得50a+25×80=15 000.解得a=260.(2)设购进真丝衬衣x件,销售利润为y元,则购进真丝围巾(300-x)件.根据题意得y=(300-260)x+(100-80)(300-x)化简得y=20x+6 000.∵300-x≥2x,x≥0,∴0≤x≤100.∵20>0,∴y随x的增大而增大∴当x=100时,y有最大值,为20×100+6 000=8 000.故购进真丝衬衣100件,真丝围巾200件时,获得的利润最大,最大利润为8 000元.(3)设余下围巾每件降价m元,根据题意得100×40+100×20+100×(20-m)≥8 000×90%解得m≤8故余下围巾每件最多降价8元.18.A【解析】设y与x的函数关系式为y=kx+b,将(0,50),(500,0)分别代入,得{b=50,500k+b=0,解得{b=50,k=−110,故y=-110x+50.当y=35时,-110x+50=35,解得x=150.故选A.一题多解500÷50=10(km/L),故该汽车每行驶10 km耗油1 L.由题可知汽车已耗油50-35=15(L),故该汽车已行驶的路程为15×10=150(km).19.【参考答案】(1)20(2)由甲壶比乙壶加热速度快,可知乙壶中水温y关于加热时间x的函数图象经过点(0,20),(160,80).设乙壶中水温y关于加热时间x的函数解析式为y=kx+b将(0,20),(160,80)分别代入得{b =20,160k +b =80,解得{k =38,b =20,故乙壶中水温y 关于加热时间x 的函数解析式为y=38x+20.(3)65解法提示:由甲壶中水温y 关于加热时间x 的函数图象经过点(0,20),(80,60) 易求得甲壶中水温y 关于加热时间x 的函数解析式为y=12x+20.令12x+20=80,解得x=120 将x=120代入y=38x+20中,得y=38×120+20=65.故当甲壶中水温刚达到80 ℃时,乙壶中水温是65 ℃.20. 【参考答案】 (1)画图略.选择y=kx+b ,将(0,1),(1,2)代入得{b =1,k +b =2,解得{k =1,b =1, ∴y=x+1(0≤x ≤5).(2)当y=5时,x+1=5∴x=4.答:当水位高度达到5米时,进水用时x 为4小时.21.D 【解析】 连接OB ,AC 交于点M ,连接AE ,BF 交于点N ,则直线MN 为符合条件的直线l ,如图.∵四边形OABC 是矩形,∴OM=BM.∵点B 的坐标为(10,4),∴M (5,2),AB=10,BC=4.∵四边形ABEF 为菱形,∴BE=AB=10.过点E 作EG ⊥AB 于点G.在Rt △BEG 中,∵tan ∠ABE=43,∴EG BG =43.设EG=4k ,则BG=3k ,∴BE=√EG 2+BG 2=5k ,∴5k=10,∴k=2,∴EG=8,BG=6,∴AG=4,∴E (4,12).又∵A (0,4),点N 为AE 的中点,∴N (2,8).设直线l 的解析式为y=ax+b ,则{5a +b =2,2a +b =8,解得{a =−2,b =12,∴直线l 的解析式为y=-2x+12.22.A 【解析】 当x=0时,y=√2;当y=0时,x=-√2.∴A (-√2,0),B (0,√2),∴OA=OB ,∴△OAB 为等腰直角三角形,∴∠ABO=∠BAO=45°,AB=√(√2)2+(√2)2=2.如图(1),过点C 作CD ⊥AB ,垂足为点D ,∵∠CAD=∠OAB=45°,∴△ACD 为等腰直角三角形.设CD=AD=m ,∴AC=√AD 2+CD 2=√2m.由旋转可知∠ABC=30°,∴BC=2CD=2m.在Rt △BCO 中,BC 2=OC 2+OB 2,即(2m )2=(√2+√2m )2+(√2)2,解得m=1+√3(负值不合题意,已舍去),∴AC=√2m=√2(√3+1)=√6+√2.故选A .图(1) 一题多解当x=0时,y=√2.当y=0时,x=-√2.∴A (-√2,0),B (0,√2),∴OA=OB ,∴△OAB 为等腰直角三角形,∴∠ABO=∠BAO=45°.由旋转可知,∠ABC=30°,∴∠BCO=15°.如图(2),作线段BC 的垂直平分线,交OC 于点E ,连接BE ,则BE =CE ,∴∠EBC=∠ECB=15°,∴∠BEO=30°,∴BE=2BO=2√2,OE=√3OB=√6,∴AC=CE+OE-OA=2√2+√6-√2=√6+√2.图(2)23.2√3 【解析】 如图,设☉O 与x 轴的另一个交点为点C ,AB 交y 轴于点D ,连接BC.对于y=√33x+2√33,当x=0时,y=2√33,当y=0时,x=-2,∴A (-2,0),D (0,2√33),∴AC=4,tan ∠OAD=OD OA =2√332=√33,∴∠OAD=30°.∵AC 为☉O 的直径,∴∠ABC=90°,∴AB=AC cos 30°=4×√32=2√3.。
2020年九年级数学典型中考压轴题综合专项训练:一次函数(含答案)
2020年九年级数学典型中考压轴题综合专项训练:一次函数一.选择题(共10小题)1.如图,直线y=﹣x+2与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转60°后得到△AO′B′,则点B′的坐标是()A.(4,2)B.(2,4)C.(,3)D.(2+2,2)2.如图,△ABC顶点坐标分别为A(1,0)、B(4,0)、C(1,4),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()A.4B.8C.D.163.如图,一次函数y=﹣x+3的图象分别与x轴、y轴交于点A、B,以线段AB为边在第一象限内作等腰Rt△ABC,∠BAC=90°.则过B、C两点直线的解析式为()A.y=x+3B.y=x+3C.y=x+3D.y=x+34.如图,在平面直角坐标系xOy中,菱形ABCD的顶点A的坐标为(2,0),点B的坐标为(0,1),点C在第一象限,对角线BD与x轴平行.直线y=x+4与x轴、y轴分别交于点E,F.将菱形ABCD沿x轴向左平移k个单位,当点C落在△EOF的内部时(不包括三角形的边),k的值可能是()A.2B.3C.4D.55.如图,点B,C分别在直线y=2x和直线y=kx上,A,D是x轴上两点,若四边形ABCD 是长方形,且AB:AD=1:2,则k的值是()A.B.C.D.6.如图,在平面直角坐标系中,点C的坐标为(0,4),动点A以每秒1个单位长的速度,从点O出发沿x轴的正方向运动,M是线段AC的中点.将线段AM以点A为中心,沿顺时针方向旋转90°,得到线段AB.过点B作x轴的垂线,垂足为E,过点C作y轴的垂线,交直线BE于点D,运动时间为t秒.当S△BCD=时,t的值为()A.2或2+3B.2或2+3C.3或3+5D.3或3+57.八个边长为1的正方形如图摆放在平面直角坐标系中,经过P点的一条直线l将这八个正方形分成面积相等的两部分,则该直线l的解析式为()A.y=x+B.y=x+C.y=x+D.y=x+8.如图,点M(﹣3,4),点P从O点出发,沿射线OM方向1个单位/秒匀速运动,运动的过程中以P为对称中心,O为一个顶点作正方形OABC,当正方形面积为128时,点A 坐标是()A.(,)B.(,11)C.(2,2)D.(,)9.如图,直线AB:y=﹣x+9交y轴于A,交x轴于B,x轴上一点C(﹣1,0),D为y 轴上一动点,把线段BD绕B点逆时针旋转120°得到线段BE,连接CE,CD,则当CE 长度最小时,线段CD的长为()A.B.C.2D.510.如图,直角坐标系xOy中,A(0,5),直线x=﹣5与x轴交于点D,直线y=﹣x﹣与x轴及直线x=﹣5分别交于点C,E,点B,E关于x轴对称,连接AB.①C(﹣13,0),E(﹣5,﹣3);②直线AB的解析式为:y=x+5;③设面积的和S=S△CDE+S四边形ABDO,则S=32;④在求面积的和S=S△CDE+S四边形ABDO时,琪琪有个想法:“将△CDE沿x轴翻折到△CDB的位置,而△CDB与四边形ABDO拼接后可看成△AOC,即S=S△CDE+S四边形ABDO =S△AOC”.其中正确的结论个数是()A.1个B.2个C.3个D.4个二.填空题(共10小题)11.已知平面直角坐标系中,O为坐标原点,点A坐标为(0,8),点B坐标为(4,0),点E是直线y=x+4上的一个动点,若∠EAB=∠ABO,则点E的坐标为.12.如图,点M是直线y=2x+3上的动点,过点M作MN垂直于x轴于点N,y轴上是否存在点P,使△MNP为等腰直角三角形,请写出符合条件的点P的坐标.13.如图,一次函数y=﹣x+1的图象与x轴,y轴分别交于点A,B,点C在y轴的正半轴上,且OC=3.在直线AB上有一点P,若满足∠CPB>∠ACB,则点P横坐标x的取值范围是.14.如图,在平面直角坐标系中,四边形ABCO是正方形,点B的坐标为(4,4),直线y =mx﹣2恰好把正方形ABCO的面积分成相等的两部分,则m=.15.如图,平面直角坐标系中,已知点P(2,2),C为y轴正半轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线OP交于点A,且BD=4AD,直线CD与直线OP交于点Q,则点Q的坐标为.16.如图,在平面直角坐标系中,点A的坐标是(0,2),点B的坐标是(2,0),连结AB,点P是线段AB上的一个动点(包括两端点),直线y=﹣x上有一动点Q,连结OP,PQ,已知△OPQ的面积为,则点Q的坐标为.17.如图,点A、B的坐标分别为(0,2),(3,4),点P为x轴上的一点,若点B关于直线AP的对称点B′恰好落在x轴上,则点P的坐标为.18.平面直角坐标系中,直线y=﹣x﹣1与x轴和y轴分别交于B、C两点,与直线x=4交于点D,直线x=4与x轴交于点A,点M(3,0),点E为直线x=4上一动点,点F 为直线y=﹣x﹣1上一动点,ME+EF最小值为,此时点F的坐标为.19.如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,以PC为边做等腰直角三角形PCD,∠CPD=90°,PC=PD,过点D作线段AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,且BD=2AD,连接CD,直线CD与直线y=x交于点Q,则Q点的坐标是.20.如图,将一块等腰直角三角板ABC放置在平面直角坐标系中,∠ACB=90°,AC=BC,点A在y轴的正半轴上,点C在x轴的负半轴上,点B在第二象限,AC所在直线的函数表达式是y=2x+4,若保持AC的长不变,当点A在y轴的正半轴滑动,点C随之在x 轴的负半轴上滑动,则在滑动过程中,点B与原点O的最大距离是.三.解答题(共10小题)21.如图,直线l与x轴、y轴分别交于点A(3,0)、点B(0,2),以线段AB为直角边在第一象限内作等腰直角三角形ABC,∠BAC=90°,点P(1,a)为坐标系中的一个动点.(1)请直接写出直线l的表达式;(2)求出△ABC的面积;(3)当△ABC与△ABP面积相等时,求实数a的值.22.如图,在平面直角坐标系中,直线AB分别交x轴、y轴于点A(a,0)点,B(0,b),且a、b满足a2﹣4a+4+|2a﹣b|=0,点P在直线AB的左侧,且∠APB=45°.(1)求a、b的值;(2)若点P在x轴上,求点P的坐标;(3)若△ABP为直角三角形,求点P的坐标.23.在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y1=x 交于点C.(1)当直线AB解析式为y2=﹣x+10时,如图1.①求点C的坐标;②根据图象求出当x满足什么条件时﹣x+10<x.(2)如图2,作∠AOC的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为9,且OA=6.P,Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值:若不存在,说明理由.24.如图1,已知直线y=2x+4与y轴,x轴分别交于A,B两点,以B为直角顶点在第二象限作等腰Rt△ABC(1)求点C的坐标,并求出直线AC的关系式;(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证BE=DE;(3)如图3,在(1)的条件下,直线AC交x轴于点M,P(﹣,a)是线段BC上一点,在x轴上是否存在一点N,使△BPN面积等于△BCM面积的一半?若存在,请求出点N的坐标;若不存在,请说明理由.25.如图(a),直线l1:y=kx+b经过点A、B,OA=OB=3,直线12:y=x﹣2交y轴于点C,且与直线l1交于点D,连接OD.(1)求直线11的表达式;(2)求△OCD的面积;(3)如图(b),点P是直线11上的一动点;连接CP交线段OD于点E,当△COE与△DEP的面积相等时,求点P的坐标.26.如图,在平面直角坐标系中,直线y=﹣x+8与x轴和y轴分别交于点B和点C,与直线OA相交于点A(3,4).(1)求点B和点C的坐标;(2)求△OAC的面积;(3)在线段OA或射线AC上是否存在点M,使△OMC的面积是△OAC的面积的?若存在,求出点M的坐标,若不存在,说明理由;(4)若点N是线段OC上一点,若将△BCN沿直线BN折叠,点C恰好落在x轴负半轴上的点D处,求BN所在直线的函数关系式.27.如图,直线y=kx+b与x轴,y轴分别交于点A,点B,点A的坐标为(﹣2,0),且2OA=OB.(1)求直线AB解析式;(2)如图,将△AOB向右平移6个单位长度,得到△A1O1B1,求线段OB1的长;(3)求(2)中△AOB扫过的面积.28.定义:在平面直角坐标系中,对于任意两点A(a,b),B(c,d),若点T(x,y)满足x=,y=,那么称点T是点A和B的融合点.例如:M(﹣1,8),N(4,﹣2),则点T(1,2)是点M和N的融合点.如图,已知点D(3,0),点E是直线y =x+2上任意一点,点T(x,y)是点D和E的融合点.(1)若点E的纵坐标是6,则点T的坐标为;(2)求点T(x,y)的纵坐标y与横坐标x的函数关系式:(3)若直线ET交x轴于点H,当△DTH为直角三角形时,求点E的坐标.29.如图1,在平面直角坐标系xOy中,直线y=kx+8分别交x轴,y轴于A、B两点,已知A点坐标(6,0),点C在直线AB上,横坐标为3,点D是x轴正半轴上的一个动点,连结CD,以CD为直角边在右侧构造一个等腰Rt△CDE,且∠CDE=90°.(1)求直线AB的解析式以及C点坐标;(2)设点D的横坐标为m,试用含m的代数式表示点E的坐标;(3)如图2,连结OC,OE,请直接写出使得△OCE周长最小时,点E的坐标.30.在平面直角坐标系xOy中,直线l1:y=k1x+6与x轴、y轴分别交于A、B两点,且OB =OA,直线l2:y=k2x+b经过点C(,1),与x轴、y轴、直线AB分别交于点E、F、D三点.(1)求直线l1的解析式;(2)如图1,连接CB,当CD⊥AB时,求点D的坐标和△BCD的面积;(3)如图2,当点D在直线AB上运动时,在坐标轴上是否存在点Q,使△QCD是以CD为底边的等腰直角三角形?若存在,请直接写出点Q的坐标,若不存在,请说明理由.参考答案一.选择题(共10小题)1.【解答】解:在y=﹣x+2中令x=0,解得:y=2;令y=0,解得:x=2.则OA=2,OB=2.∴在直角△ABO中,AB==4,∠BAO=30°,又∵∠BAB′=60°,∴∠OAB′=90°,∴B′的坐标是(2,4).故选:B.2.【解答】解:如图所示,当△ABC向右平移到△DEF位置时,四边形BCFE为平行四边形,C点与F点重合,此时C在直线y=2x﹣6上,∵C(1,4),∴FD=CA=4,将y=4代入y=2x﹣6中得:x=5,即OD=5,∵A(1,0),即OA=1,∴AD=CF=OD﹣OA=5﹣1=4,则线段BC扫过的面积S=S平行四边形BCFE=CF•FD=16.故选:D.3.【解答】解:∵一次函数y=﹣x+3中,令x=0得:y=3;令y=0,解得x=4,∴B的坐标是(0,3),A的坐标是(4,0).如图,作CD⊥x轴于点D.∵∠BAC=90°,∴∠OAB+∠CAD=90°,又∵∠CAD+∠ACD=90°,∴∠ACD=∠BAO.在△ABO与△CAD中,,∴△ABO≌△CAD(AAS),∴OB=AD=3,OA=CD=4,OD=OA+AD=7.则C的坐标是(7,4).设直线BC的解析式是y=kx+b,根据题意得:,解得,∴直线BC的解析式是y=x+3.故选:A.4.【解答】解:连接AC,BD,交于点Q,过C作y轴垂线,交y轴于点M,交直线EF于点N,如图所示,∵菱形ABCD的顶点A的坐标为(2,0),点B的坐标为(0,1),点C在第一象限,对角线BD与x轴平行,∴CQ=AQ=1,CM=2,即AC=2AQ=2,∴C(2,2),当C与M重合时,k=CM=2;当C与N重合时,把y=2代入y=x+4中得:x=﹣2,即k=CN=CM+MN=4,∴当点C落在△EOF的内部时(不包括三角形的边),k的范围为2<k<4,则k的值可能是3,故选:B.5.【解答】解:设长方形的AB边的长为a,则BC边的长度为2a,B点的纵坐标是a,把点B的纵坐标代入直线y=2x的解析式得:x=,则点B的坐标为(,a),点C的坐标为(+2a,a),把点C的坐标代入y=kx中得,a=k(+2a),解得:k=.故选:B.6.【解答】解:根据题意得:∠BAC=90°,∴∠CAO+∠BAE=90°,∵BE⊥x轴,∴∠AEB=90°=∠AOC,∴∠ABE+∠BAE=90°,∴∠CAO=∠ABE.∴△CAO∽△ABE.∴=,∵M是AC的中点,AB=AM,∴CA=2AB,∴=,∴BE=t,AE=2.分两种情况:①当0<t<8时,如图1所示:S=CD•BD=(2+t)(4﹣)=解得:t1=t2=3.②当t>8时,如图2所示,S=CD•BD=(2+t)(﹣4)=.解得:t1=3+5,t2=3﹣5(不合题意,舍去).综上所述:当t=3或3+5时,S=;故选:D.7.【解答】解:直线l和八个正方形的最上面交点为P,过P作PB⊥OB于B,过P作PC ⊥OC于C,∵正方形的边长为1,∴OB=3,∵经过P点的一条直线l将这八个正方形分成面积相等的两部分,∴三角形ABP面积是8÷2+1=5,∴BP•AB=5,∴AB=2.5,∴OA=3﹣2.5=0.5,由此可知直线l经过(0,0.5),(4,3)设直线方程为y=kx+b,则,解得.∴直线l解析式为y=x+.故选:A.8.【解答】解:作AD⊥x轴于D,CE⊥x轴于E,设直线OM的解析式为y=kx,直线AC的解析式为y=k′x+b,∵点M(﹣3,4),∴4=﹣3k,∴k=﹣,∵四边形ABCO是正方形,∴直线AC⊥直线OM,∴k′为,∵四边形ABCO是正方形,∴OA=OC,∠AOC=90°,∴∠AOD+∠COE=90°,∵∠AOD+∠OAD=90°∴∠COE=∠OAD,在△COE和△OAD中,∴△COE≌△OAD(AAS),∴CE=OD,OE=AD,设A(a,b),则C(﹣b,a),设直线AC的解析式为y=mx+n,∴解得m=,∴=,整理得,b=7a,∵正方形面积为128,∴OA2=128,在RT△AOD中,AD2+OD2=OA2,即(7a)2+a2=128,解得,a=,∴b=7a=7×=,∴A(,),故选:D.9.【解答】解:如图,设D(0,m).由题意:B(5,0).在BD的下方作等边三角形△BDQ,延长DQ到M,使得QM=DQ,连接BM,DE,DE 交BQ于点N,作MH⊥x轴于H.∵△BDQ是等边三角形,∴∠DQB=∠DBQ=60°,∵QM=BQ,∴∠QMB=∠QBM,∵∠DQB=∠QMB+∠BQM,∴∠QMB=∠QBM=30°,∴∠DBM=90°,∴BM=BD,∵∠DBO+∠ODB=90°,∠DBO+∠MBH=90°,∴∠MBH=∠BDO,∵∠DOB=∠MHB=90°,∴△DOB∽△BHM,∴===,∵OD=m,OB=5,∴BH=m,MH=5,∴M(5﹣m,﹣5),∵MQ=DQ,∴Q(,),∵∠DBE=120°,∴∠DBN=∠EBN=60°,∴DE⊥BQ,DN=NE,QN=BN,∴N(,),E(,),∴CE2=()2+()2=m2﹣6m+91,∴当m=﹣=3时,CE的值最小,此时D(0,3),∴CD==2,故选:C.10.【解答】解:∵在直线y=﹣x﹣中,令y=0,则有0=﹣x﹣,∴x=﹣13,∴C(﹣13,0),令x=﹣5,则有y=﹣×(﹣5)﹣=﹣3,∴E(﹣5,﹣3),故①正确;∵点B,E关于x轴对称,∴B(﹣5,3),∵A(0,5),∴设直线AB的解析式为y=kx+5,∴﹣5k+5=3,∴k=,∴直线AB的解析式为y=x+5.故②错误;由①知,E(﹣5,﹣3),∴DE=3,∵C(﹣13,0),∴CD=﹣5﹣(﹣13)=8,∴S△CDE=CD×DE=12,由题意知,OA=5,OD=5,BD=3,∴S四边形ABDO=(BD+OA)×OD=20,∴S=S△CDE+S四边形ABDO=12+20=32,故③正确;④由③知,S=32,在△AOC中,OA=5,OC=13,∴S△AOC=OA×OC=32.5,∴S△CDE+S四边形ABDO=12+20≠S△AOC.故④错误.综上所述,正确的结论有2个.故选:B.二.填空题(共10小题)11.【解答】解:当点E在y轴右侧时,如图1,连接AE,∵∠EAB=∠ABO,∴AE∥OB,∵A(0,8),∴E点纵坐标为8,又E点在直线y=x+4上,把y=8代入可求得x=4,∴E点坐标为(4,8);当点E在y轴左侧时,过A、E作直线交x轴于点C,如图2,设E点坐标为(a,a+4),设直线AE的解析式为y=kx+b,把A、E坐标代入可得,解得,∴直线AE的解析式为y=x+8,令y=0可得x+8=0,解得x=,∴C点坐标为(,0),∴AC2=OC2+OA2,即AC2=()2+82,∵B(4,0),∴BC2=(4﹣)2=()2﹣+16,∵∠EAB=∠ABO,∴AC=BC,∴AC2=BC2,即()2+82=()2﹣+16,解得a=﹣12,则a+4=﹣8,∴E点坐标为(﹣12,﹣8).方法二:设C(m,0),∵∠ACB=∠CBA,∴AC=BC,∴(4﹣m)2=m2+82,解得m=﹣6,∴直线AE的解析式为y=x+8,由,解得.∴E(﹣12,﹣8).综上可知,E点坐标为(4,8)或(﹣12,﹣8).故答案为:(4,8)或(﹣12,﹣8).12.【解答】解:当M运动到(﹣1,1)时,ON=1,MN=1,∵MN⊥x轴,所以由ON=MN可知,(0,0)和(0,1)就是符合条件的两个P点;又∵当M运动到第三象限时,要MN=MP,且PM⊥MN,设点M(x,2x+3),则有﹣x=﹣(2x+3),解得x=﹣3,所以点P坐标为(0,﹣3).如若MN为斜边时,则∠ONP=45°,所以ON=OP,设点M(x,2x+3),则有﹣x=﹣(2x+3),化简得﹣2x=﹣2x﹣3,这方程无解,所以这时不存在符合条件的P点;又∵当点M′在第二象限,M′N′为斜边时,这时N′P=M′P,∠M′N′P=45°,设点M′(x,2x+3),则OP=ON′,而OP=M′N′,∴有﹣x=(2x+3),解得x=﹣,这时点P的坐标为(0,).综上,符合条件的点P坐标是(0,0),(0,),(0,﹣3),(0,1).故答案为:(0,0),(0,1),(0,),(0,﹣3).13.【解答】解:如图所示:过点P1作P1E⊥x轴于点E,∵一次函数y=﹣x+1的图象与x轴,y轴分别交于点A,B,点C在y轴的正半轴上,且OC=3,∴AO=BO=1,则BC=2,AC=,AB=,当∠CP1B=∠ACB时,又∵∠CAB=∠CAP1,∴△CAB∽△P1AC,∴=,则=,解得:AP1=5,则AE=P1E=5,故P1(﹣4,5),当∠CPB>∠ACB时,则点P横坐标x满足:﹣4<x,同理可得:当∠CP2B=∠ACB时,又∵∠ABC=∠P2BC,∴△CAB∽△P2CB,∴=,则=,解得:BP2=2,可得P2(2,﹣1),故当∠CPB>∠ACB时,则点P横坐标x满足:2>x,综上所述:﹣4<x<2且x≠0.故答案为:﹣4<x<2且x≠0.14.【解答】解:∵直线y=mx﹣2恰好把正方形ABCO的面积分成相等的两部分∴直线必经过正方形的中心∵点B的坐标为(4,4)∴中心为(2,2),代入直线中得:2=2m﹣2,m=215.【解答】解:过点P作PE⊥OC于E,EP的延长线交AB于F.∵AB⊥OB,∴∠OBF=∠EOB=∠FEO=90°,∴四边形EOBF是矩形,∵P(2,2),∴OE=PE=BF=2,∵∠CPD=90°,∴∠CPE+∠DPF=90°,∠ECP+∠CPE=90°,∴∠ECP=∠DPF,在△CPE和△PDF中,,∴△CPE≌△PDF(AAS),∴DF=PE=2,∴BD=BF+DF=4,∵BD=4AD,∴AD=1,AB=OB=5,∴CE=PF=3,∴D(5,4),C(0,5),设直线CD的解析式为y=kx+b则有,解得,∴直线CD的解析式为y=﹣x+5,由解得,∴点Q的坐标为(,).故答案为(,).16.【解答】解:方法一:∵点Q在直线y=﹣x上,∴设点Q的坐标为(m,﹣m).∵点A的坐标是(0,2),点B的坐标是(2,0),∴△AOB为等腰直角三角形,点O(0,0)到AB的距离h=OA=.设直线AB的解析式为y=kx+b,∵点A(0,2),点B(2,0)在直线AB上,∴有,解得.即直线AB的解析式为y=﹣x+2,∵直线y=﹣x+2与y=﹣x平行,∴点P到底OQ的距离为(平行线间距离处处相等).∵△OPQ的面积S△OPQ=OQ•h=OQ=,∴OQ=2.由两点间的距离公式可知OQ==2,解得:m=±,∴点Q的坐标为(,﹣)或(﹣,).故答案为:(,﹣)或(﹣,).方法二:当P点与A重合时,则△OPQ底OP为2,∵△OPQ的面积为,∴△OPQ的高为,即点Q的横坐标为﹣,∵点Q在直线y=﹣x上,∴点Q的坐标为(﹣,);当P点与B重合时,同理可求出点Q的坐标为(,﹣).综上即可得出点Q的坐标为(,﹣)或(﹣,).17.【解答】方法一:解:设直线AB的解析式为:y=kx+b,把A(0,2),B(3,4)代入得:,解得:k=,b=2,∴直线AB的解析式为:y=x+2;∵点B与B′关于直线AP对称,设B′坐标为(a,0)∴线段BB′的中点坐标为(,2)∵线段BB′的中点在直线AP上,且A点坐标为(0,2)∴A点为线段BB′的中点,即A、B、B′三点共线∴AP⊥AB,∴设直线AP的解析式为:y=﹣x+c,把点A(0,2)代入得:c=2,∴直线AP的解析式为:y=﹣x+2,当y=0时,﹣x+2=0,解得:x=,∴点P的坐标为:();故答案为:().方法二:解:如图,连接AB、AB′∵A(0,2),B(3,4)∴AB==∵点B与B′关于直线AP对称∴AB′=AB=,在Rt△AOB′中,B′O==3∴B′点坐标为(﹣3,0)设直线BB′方程为y=kx+b将B(3,4),B′(﹣3,0)代入得:,解得k=,b=2∴直线BB′的解析式为:y=x+2,∴直线AP的解析式为:y=﹣x+2,当y AP=0时,﹣x+2=0,解得:x=,∴点P的坐标为:();故答案为:().18.【解答】解:①如图,作M点关于直线x=4的对称点M′,然后作M′F⊥直线y=﹣x﹣1于F,交直线x =4于E,此时ME+EF有最小值,最小值为M′F;∵y=﹣x﹣1与x轴和y轴分别交于B、C两点,令x=0,可得y=﹣1,令y=0,可得x=﹣2,∴B(﹣2,0),C(0,﹣1),∴OB=2,OC=1,∴BC==,∵M(3,0),∴M′(5,0),∴BM′=5+2=7,∵M′F⊥直线BC,∴∠BFM′=90°=∠BOC,∵∠OBC=∠FBM′∴△BOC∽△BFM′,∴,即,解得:M′F=,∴ME+EF的最小值为;②∵直线M′F与直线y=﹣x﹣1互相垂直,∴直线M′F与直线y=﹣x﹣1的k互为负倒数,∴设直线M′F的关系式为:y=2x+b,将M′(5,0),代入y=2x+b,可得:b=﹣10,∴直线M′F的关系式为:y=2x﹣10,将直线y=2x﹣10与直线y=﹣x﹣1联立方程组得:,解得:,∴点F的坐标为(,﹣).故答案为:;(,﹣).19.【解答】解:解:过P作MN⊥y轴,交y轴于M,交AB于N,过D作DH⊥y轴,交y轴于H,∠CMP=∠DNP=∠CPD=90°,∴∠MCP+∠CPM=90°,∠MPC+∠DPN=90°,∴∠MCP=∠DPN,∵P(1,1),∴OM=BN=1,PM=1,在△MCP和△NPD中,∴△MCP≌△NPD(AAS),∴DN=PM,PN=CM,∵BD=2AD,∴设AD=a,BD=2a,∵P(1,1),∴BN=2a﹣1,则2a﹣1=1,∴a=1,即BD=2.∵直线y=x,∴AB=OB=3,∴点D(3,2)∴PC=PD===,在Rt△MCP中,由勾股定理得:CM===2,则C的坐标是(0,3),设直线CD的解析式是y=kx+3,把D(3,2)代入得:k=﹣,即直线CD的解析式是y=﹣x+3,∴组成方程组解得:∴点Q(,),故答案为:(,).20.【解答】解:当x=0时,y=2x+4=4,∴A(0,4);当y=2x+4=0时,x=﹣2,∴C(﹣2,0).∴OA=4,OC=2,∴AC==2.如图所示.过点B作BD⊥x轴于点D.∵∠ACO+∠ACB+∠BCD=180°,∠ACO+∠CAO=90°,∠ACB=90°,∴∠CAO=∠BCD.在△AOC和△CDB中,,∴△AOC≌△CDB(AAS),∴CD=AO=4,DB=OC=2,OD=OC+CD=6,∴点B的坐标为(﹣6,2).如图所示.取AC的中点E,连接BE,OE,OB,∵∠AOC=90°,AC=2,∴OE=CE=AC=,∵BC⊥AC,BC=2,∴BE==5,若点O,E,B不在一条直线上,则OB<OE+BE=5+.若点O,E,B在一条直线上,则OB=OE+BE=5+,∴当O,E,B三点在一条直线上时,OB取得最大值,最大值为5+,故答案为:5+.三.解答题(共10小题)21.【解答】解:(1)将点A、B的坐标代入一次函数表达式:y=kx+b得:,解得:,故直线l的表达式为:;(2)在Rt△ABC中,由勾股定理得:AB2=OA2+OB2=32+22=13∵△ABC为等腰直角三角形,∴S△ABC=AB2=;(3)连接BP,PO,P A,则:①若点P在第一象限时,如图1:∵S△ABO=3,S△APO=a,S△BOP=1,∴S△ABP=S△BOP+S△APO﹣S△ABO=,即,解得;②若点P在第四象限时,如图2:∵S△ABO=3,S△APO=﹣a,S△BOP=1,∴S△ABP=S△BOP+S△APO﹣S△ABO=,即,解得a=﹣3;故:当△ABC与△ABP面积相等时,实数a的值为或﹣3.22.【解答】解:(1)∵a2﹣4a+4+|2a+b|=0,∴(a﹣2)2+|2a+b|=0,∴a=2,b=4.(2)由(1)知,b=4,∴B(0,4).∴OB=4.∵点P在直线AB的左侧,且在x轴上,∠APB=45°∴OP=OB=4,∴B(4,0).(3)由(1)知a=﹣2,b=4,∴A(2,0),B(0,4)∴OA=2,OB=4,∵△ABP是直角三角形,且∠APB=45°,∴只有∠ABP=90°或∠BAP=90°,如图,①当∠ABP=90°时,∵∠BAP=45°,∴∠APB=∠BAP=45°.∴AB=PB.过点P作PC⊥OB于C,∴∠BPC+∠CBP=90°,∵∠CBP+∠ABO=90°,∴∠ABO=∠BPC.在△AOB和△BCP中,∠AOB=∠BCP=90°,∠ABO=∠BPC,AB=PB,∴△AOB≌△BCP(AAS).∴PC=OB=4,BC=OA=2.∴OC=OB﹣BC=2.∴P(﹣4,2).②当∠BAP=90°时,过点P'作P'D⊥OA于D,同①的方法得,△ADP'≌△BOA(AAS).∴DP'=OA=2,AD=OB=4.∴OD=AD﹣OA=2.∴P'(﹣2,2)).即:满足条件的点P(﹣4,2)或(﹣2,﹣2).23.【解答】解:(1)①由題意,,解得:,所以C(4,4).②观察图象可知x>4时,直线AB位于直线OC的下方,即x>4时,﹣x+10<x.(2)由题意,在OC上截取OM=OP,连结MQ,∵ON平分∠AOC,∴∠AOQ=∠COQ,又OQ=OQ.∴△POQ≌△MOQ(SAS),∴PQ=MQ,∴AQ+PQ=AQ+MQ,当A、Q、M在同一直銭上,且AM⊥OC吋,AQ+MQ最小,即AQ+PQ存在最小値;∴AB⊥ON,∴∠AEO=∠CEO,∴△AEO≌△CEO(ASA),∴OC=OA=6,∵△OAC的面积为9,∴OC•AM=9,∴AM=3,∴AQ+PQ存在最小值,最小值为3.24.【解答】解:(1)如图1,作CQ⊥x轴,垂足为Q,∵∠OBA+∠OAB=90°,∠OBA+∠QBC=90°,∴∠OAB=∠QBC,又∵AB=BC,∠AOB=∠Q=90°,∴△ABO≌△BCQ(AAS),∴BQ=AO=4,OQ=BQ+BO=6,CQ=OB=2,∴C(﹣6,2),由A(0,4),C(﹣6,2)可知,直线AC:y=x+4;(2)如图2,作CH⊥x轴于H,DF⊥x轴于F,DG⊥y轴于G,∵AC=AD,AB⊥CB,∴BC=BD,∴△BCH≌△BDF(AAS),∴BF=BH=4,∴OF=OB=2,∴DG=OB,∴△BOE≌△DGE(AAS),∴BE=DE;(3)如图3,直线BC:y=﹣x﹣1,P(﹣,k)是线段BC上一点,∴P(﹣,),由y=x+4知M(﹣12,0),∴BM=10,则S△BCM=10.设点N(n,0),则BN=|n+2|,假设存在点N使直线PN平分△BCM的面积,则BN•y C=×10,n=或﹣,故点N的坐标为:(,0)或(﹣,0).25.【解答】解:(1)OA=OB=3,则点A、B的坐标分别为:(3,0)、(0,3),将点A、B的坐标代入一次函数表达式:y=kx+b得:,解得:,故直线11的表达式为:y=﹣x+3…①;(2)联立l1、l2的表达式得:,解得:,故点D(2,1);△OCD的面积=×OA•y D=3×1=;(3)△COE与△DEP的面积相等,则S△CDO=S△CDE+S△OCE=S△PED+S△CED=S△PCD,则点P、O到CD的距离相等,故OP所在的直线与CD平行,则直线OP的表达式为:y=x…②,联立①②并解得:x=,则点P(,).26.【解答】解:(1)设y=0,则x=6;设点x=0,则y=6,故点B的坐标为(6,0),点C的坐标为(0,8);(2)S△OAC=×CO×x A=×8×3=12;(3)存在点M使S△OMC=S△OAC,设M的坐标为(x,y);OA的解析式是y=mx,则3m=4,解得:,则直线OA的解析式是:,∵当S△OMC=S△OAC时,即,又∵OC=8,∴,当M在线段OA上时,x>0,所以时,y=1,则M的坐标是;当M在射线上时,则y=7,则M的坐标是;则y=9,则M的坐标是,综上所述:M的坐标是:或或;(4)在Rt△OBC中,∠COB=90°,OB=6,OC=8,∴,∵△BCN沿直线BN折叠后,所得三角形为△BDN,∴CN=DN,BD=BC=10,∴OD=4在Rt△ODN中,设ON=x,则DN=8﹣x,∴42+x2=(8﹣x)2∴x=3,故点N(0,3),设直线AM的解析式为y=kx+b(k≠0)代入A(6,0),N(0,3)得:,解得,∴直线AM的解析式为.27.【解答】解:(1)∵点A的坐标为(﹣2,0),∴OA=2,∵OB=2OA=4,∴B(0,4),把A(﹣2,0)和B(0,4)代入y=kx+b中得:,解得:,∴直线AB解析式为:y=2x+4;(2)∵∠AOB=90°,∴∠AO1B1=90°,由平移得:OO1=6,O1B1=OB=4,由勾股定理得:OB1==2,即线段OB1的长是2;(3)△AOB扫过的面积=+4×6=28.28.【解答】解:(1)∵点E是直线y=x+2上一点,点E的纵坐标是6,∴x+2=6,解得,x=4,∴点E的坐标是(4,6),∵点T(x,y)是点D和E的融合点,∴x==,y==2,∴点T的坐标为(,2),故答案为:(,2);(2)设点E的坐标为(a,a+2),∵点T(x,y)是点D和E的融合点,∴x=,y=,解得,a=3x﹣3,a=3y﹣2,∴3x﹣3=3y﹣2,整理得,y=x﹣;(3)设点E的坐标为(a,a+2),则点T的坐标为(,),当∠THD=90°时,点E与点T的横坐标相同,∴=a,解得,a=,此时点E的坐标为(,),当∠TDH=90°时,点T与点D的横坐标相同,∴=3,解得,a=6,此时点E的坐标为(6,8),当∠DTH=90°时,该情况不存在,综上所述,当△DTH为直角三角形时,点E的坐标为(,)或(6,8).29.【解答】解:(1)把A(6,0)代入y=kx+8中,得6k+8=0,解得:,∴,把x=3代入,得y=4,∴C(3,4);(2)作CF⊥x轴于点F,EG⊥x轴于点G,∵△CDE是等腰直角三角形,∴CD=DE,∠CDE=90°,∴∠CDF=90°﹣∠EDG=∠DEG,且∠CFD=∠DGE=90°,∴△CDF≌△DEG(AAS)∴CF=DG=4,DF=EG=3﹣m,∴OG=4+m,∴E(4+m,m﹣3);(3)点E(4+m,m﹣3),则点E在直线l:y=x﹣7上,设:直线l交y轴于点H(0,﹣7),过点O作直线l的对称点O′,∵直线l的倾斜角为45°,则HO′∥x轴,则点O′(7,﹣7),连接CO′交直线l于点E′,则点E′为所求点,OC是常数,△OCE周长=OC+CE+OE=OC+OE′+CE′=OC+CE′+O′E′=OC+CO′为最小,由点C、O′的坐标得,直线CO′的表达式为:y=﹣x+联立,解得:,故:.30.【解答】解:(1)y=k1x+6,当x=0时,y=6,∴OB=6,∵OB=OA,∴OA=2,∴A(﹣2,0),把A(﹣2,0)代入:y=k1x+6中得:﹣2k1+6=0,k1=,∴直线l1的解析式为:y=x+6;(2)如图1,过C作CH⊥x轴于H,∵C(,1),∴OH=,CH=1,Rt△ABO中,AB==4,∴AB=2OA,∴∠OBA=30°,∠OAB=60°,∵CD⊥AB,∴∠ADE=90°,∴∠AED=30°,∴EH=,∴OE=OH+EH=2,∴E(2,0),把E(2,0)和C(,1)代入y=k2x+b中得:,解得:,∴直线l2:y=﹣x+2,∴F(0,2)即BF=6﹣2=4,则,解得,∴D(﹣,3),∴S△BCD=BF(x C﹣x D)==4;(3)分四种情况:①当Q在y轴的正半轴上时,如图2,过D作DM⊥y轴于M,过C作CN⊥y轴于N,∵△QCD是以CD为底边的等腰直角三角形,∴∠CQD=90°,CQ=DQ,∴∠DMQ=∠CNQ=90°,∴∠MDQ=∠CQN,∴△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=,设D(m,m+6)(m<0),则Q(0,﹣m+1),∴OQ=QN+ON=OM+QM,即﹣m+1=m+6+,m==1﹣2,∴Q(0,2);②当Q在x轴的负半轴上时,如图3,过D作DM⊥x轴于M,过C作CN⊥x轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=1,设D(m,m+6)(m<0),则Q(m+1,0),∴OQ=QN﹣ON=OM﹣QM,即m+6﹣=﹣m﹣1,m=5﹣4,∴Q(6﹣4,0);③当Q在x轴的负半轴上时,如图4,过D作DM⊥x轴于M,过C作CN⊥x轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=1,设D(m,m+6)(m<0),则Q(m﹣1,0),∴OQ=QN﹣ON=OM+QM,即﹣m﹣6﹣=﹣m+1,m=﹣4﹣5,∴Q(﹣4﹣6,0);④当Q在y轴的负半轴上时,如图5,过D作DM⊥y轴于M,过C作CN⊥y轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=,设D(m,m+6)(m<0),则Q(0,m+1),∴OQ=QN﹣ON=OM+QM,即﹣m﹣6+=﹣m﹣1,m=﹣2﹣1,∴Q(0,﹣2);综上,存在点Q,使△QCD是以CD为底边的等腰直角三角形,点Q的坐标是(0,±2)或(6﹣4,0)或(﹣4﹣6,0).。
中考数学压轴题专项训练一次函数含解析
2021年中考数学压轴题专项训练《一次函数》1.甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与行驶时间x(小时)之间的函数关系如图所示,已知甲对应的函数关系式为y=60x,根据图象提供的信息,解决下列问题:(1)求乙离开A城的距离y与x的关系式;(2)求乙出发后几小时追上甲车?解:(1)设乙对应的函数关系式为y=kx+b将点(4,300),(1,0)代入y=kx+b得:解得:,∴乙对应的函数关系式y=100x﹣100;(2)易得甲车对应的函数解析式为y=60x,联立,解得:,2。
5﹣1=1.5(小时),∴乙车出发后1。
5小时追上甲车.2.如图①所示,甲、乙两车从A地出发,沿相同路线前往同一目的地,途中经过B地.甲车先出发,当甲车到达B地时,乙车开始出发.当乙车到达B地时,甲车与B地相距km设甲、乙两车与B地之间的距离为,y1(km),y2(km),乙车行驶的时间为x(h),y1,y2与x的函数关系如图②所示.(1)A,B两地之间的距离为20km;(2)当x为何值时,甲、乙两车相距5km?解:(1)A,B两地之间的距离为20km.故答案为:20;(2)乙车的速度为:20÷=120(km/h),甲车的速度为:=100(km/h),甲比乙早出发的时间为:20÷100=0.2(h),相遇前:(20+100x)﹣120x=5,解得x=0。
75;相遇后:120x﹣(20+100x)=5,解得x=1.25;答:当x为0.75或1.25时,甲、乙两车相距5km.3.在平面直角坐标系中,直线y=x+2与x轴,y轴分别交于点A,B,点D的坐标为(0,3),点E是线段AB上的一点,以DE 为腰在第二象限内作等腰直角△DEF,∠EDF=90°.(1)请直接写出点A,B的坐标:A(﹣2,0),B(0,2);(2)设点F的坐标为(a,b),连接FB并延长交x轴于点G,求点G的坐标.解:(1)∵直线y=x+2与x轴,y轴分别交于点A,B,∴点A(﹣2,0),点B(0,2)故答案为:(﹣2,0),(0,2)(2)如图,过点F作FM⊥y轴,过点E作EN⊥y轴,∴∠FMD=∠EDF=90°∴∠FDM+∠DFM=90°,∠FDM+∠EDN=90°,∴∠DFM=∠EDN,且FD=DE,∠FMD=∠END=90°,∴△DFM≌△EDN(AAS)∴EN=DM,FM=BN,∵点F的坐标为(a,b),∴FM=DN=﹣a,DM=b﹣3,∴点E坐标(﹣b+3,3+a),∵点E是线段AB上的一点,∴3+a=﹣b+3+2∴a+b=2,∴点F(a,2﹣a)设直线BF的解析式为y=kx+2,∴2﹣a=ka+2∴k=﹣1,∴直线BF的解析式为y=﹣x+2,∴点G(2,0)4.某学校甲、乙两名同学去爱国主义教育基地参观,该基地与学校相距2400米.甲从学校步行去基地,出发5分钟后乙再出发,乙从学校骑自行车到基地.乙骑行到一半时,发现有东西忘带,立即返回,拿好东西之后再从学校出发.在骑行过程中,乙的速度保持不变,最后甲、乙两人同时到达基地.已知,乙骑行的总时间是甲步行时间的.设甲步行的时间为x (分),图中线段OA表示甲离开学校的路程y(米)与x(分)的函数关系的图象.图中折线B﹣C﹣D和线段EA表示乙离开学校的路程y(米)与x(分)的函数关系的图象.根据图中所给的信息,解答下列问题:(1)甲步行的速度和乙骑行的速度;(2)甲出发多少时间后,甲、乙两人第二次相遇?(3)若s(米)表示甲、乙两人之间的距离,当15≤x≤30时,求s(米)关于x(分)的函数关系式.解:(1)由题意得:(米/分),=240(米/分);(2)由题意可得:C(10,1200),D(15,0),A(30,2400),设线段CD的解析式为:y=kx+b,则,解得∴线段CD的解析式为:y=﹣240x+3600,易知线段OA的解析式为:y=80x,根据题意得240x+3600=80x,解得:x=,∴甲出发分后,甲、乙两人第二次相遇;(3)∵E(20,0),A(30,2400),设线段EA的解析式为:y=mx+n,,解得,∴线段EA的解析式为:y=240x﹣4800,∴当15≤x≤20时,s=y OA﹣0=80x,当20<x≤30时,s=y OA﹣y EA=80x﹣(240x﹣4800)=﹣160x+4800,∴.5.对于给定的△ABC,我们给出如下定义:若点M是边BC上的一个定点,且以M为圆心的半圆上的所有点都在△ABC的内部或边上,则称这样的半圆为BC边上的点M关于△ABC的内半圆,并将半径最大的内半圆称为点M 关于△ABC的最大内半圆.若点M是边BC上的一个动点(M不与B,C重合),则在所有的点M关于△ABC的最大内半圆中,将半径最大的内半圆称为BC关于△ABC的内半圆.(1)在Rt△ABC中,∠BAC=90°,AB=AC=2,①如图1,点D在边BC上,且CD=1,直接写出点D关于△ABC的最大内半圆的半径长;②如图2,画出BC关于△ABC的内半圆,并直接写出它的半径长;(2)在平面直角坐标系xOy中,点E的坐标为(3,0),点P 在直线y=x上运动(P不与O重合),将OE关于△OEP的内半圆半径记为R,当≤R≤1时,求点P的横坐标t的取值范围.解:(1)①如图1,过D作DE⊥AC于E,∵Rt△ABC中,∠BAC=90°,AB=AC=2,∴∠C=∠B=45°,∵CD=1,∴BD=2﹣1>CD,∴D到AC的距离小于到AB的距离,∵△DEC是等腰直角三角形,∴DE=,即点D关于△ABC的最大内半圆的半径长是;②当D为BC的中点时,BC关于△ABC的内半圆为⊙D,如图2,∴BD=BC=,同理可得:BC关于△ABC的内半圆半径DE=1.(2)过点E作EF⊥OE,与直线y=x交于点F,设点M是OE 上的动点,i)当点P在线段OF上运动时(P不与O重合),OE关于△OEP 的内半圆是以M为圆心,分别与OP,PE相切的半圆,如图3,连接PM,∵直线OF:y=x∴∠FOE=30°由(1)可知:当M为线段中点时,存在OE关于△OEP的内半圆,∴当R=时,如图3,DM=,此时PM⊥x轴,P的横坐标t=OM=;如图4,当P与F重合时,M在∠EFO的角平分线上,⊙M分别与OF,FE相切,此时R=1,P的横坐标t=OE=3;∴当≤R≤1时,t的取值范围是≤t≤3.ii)当点P在OF的延长线上运动时,OE关于△OEP的内半圆是以M为圆心,经过点E且与OP相切的半圆,如图5.∴当R=1 时,t的取值范围是t≥3.iii)当点P在OF的反向延长上运动时(P不与O重合),OE关于△OEP的内半圆是以M为圆心,经过点O且与EP相切的半圆,如图6.∵∠FOE=∠OPE+∠OEP=30°,∴∠OEP<30°,∴OM<1,当R=时,如图6,过P作PA⊥x轴于A,N是切点,连接MN,MN⊥PE,此时OM=MN=,ME=3﹣=,∴EN===,Rt△OPA中,∠POA=30°,OA=﹣t,∴PA=﹣t,∵∠ENM=∠EAP=90°,∠MEN=∠AEP,∴△EMN∽△EPA,∴,即=解得:t=﹣,∴当≤R<1时,t的取值范围是t≤﹣.综上,点P在直线y=x上运动时(P不与O重合),当≤R ≤1时,t的取值范围是t≤﹣或t≥.6.已知,一次函数y=﹣x+6的图象与x轴、y轴分别交于点A、点B,与直线y=x相交于点C.过点B作x轴的平行线l.点P是直线l上的一个动点.(1)求点A,点B的坐标.(2)若S△AOC=S△BCP,求点P的坐标.(3)若点E是直线y=x上的一个动点,当△APE是以AP为直角边的等腰直角三角形时,求点E的坐标.解:(1)一次函数y=﹣x+6的图象与x轴、y轴分别交于点A、点B,则点A、B的坐标分别为:(8,0)、(0,6);(2)联立y=﹣x+6、y=x并解得:x=3,故点C(3,),S△AOC=8×=15=S△BCP=BP×(yP﹣yC)=BP×(6﹣),解得:BP=,故点P(,6)或(﹣,6)(3)设点E(m,m)、点P(n,6);①当∠EPA=90°时,如左图,∵∠MEP+∠MPE=90°,∠MPE+∠NPA=90°,∴∠MEP=∠NPA,AP=PE,∵△EMP≌△PNA(AAS),则ME=PN=6,MP=AN,即|m﹣n|=6,m﹣6=8﹣n,解得:m=或16,故点E(,)或(14,);②当∠EAP=90°时,如右图,同理可得:△AMP≌△ANE(AAS),故MP=EN,AM=AN=6,即m=n﹣8,|8﹣m|=6,解得:m=2或14,故点E(2,)或(16,20);上,E(,)或(14,)或;(2,)或(16,20).7.如图,A,B是直线y=x+4与坐标轴的交点,直线y=﹣2x+b 过点B,与x轴交于点C.(1)求A,B,C三点的坐标;(2)当点D是AB的中点时,在x轴上找一点E,使ED+EB 的和最小,画出点E的位置,并求E点的坐标.(3)若点D是折线A﹣B﹣C上一动点,是否存在点D,使AACD 为直角三角形,若存在,直接写出D点的坐标;若不存在,请说明理由.解:(1)在y=x+4中,令x=0,得y=4,令y=0,得x=﹣4,∴A(﹣4,0),B(0,4).把B(0,4)代入,y=﹣2x+b,得b=4∴直线BC为:y=﹣2x+4.在y=﹣2x+4中,令y=0,得x=2,∴C点的坐标为(2,0);(2)如图点E为所求点D是AB的中点,A(﹣4,0),B(0,4).∴D(﹣2,2).点B关于x轴的对称点B1的坐标为(0,﹣4).设直线DB1的解析式为y=kx+b.把D(﹣2,2),B1(0,﹣4)代入一次函数表达式并解得:故该直线方程为:y=﹣3x﹣4.令y=0,得E点的坐标为.(3)存在,D点的坐标为(﹣1,3)或.①当点D在AB上时,由OA=OB=4得到:∠BAC=45°,由等腰直角三角形求得D点的坐标为(﹣1,3);②当点D在BC上时,如图,设AD交y轴于点F.在△AOF与△BOC中,∠FAO=∠CBO,∠AOF=∠BOD,AO=BO,∴△AOF≌△BOC(ASA).∴OF=OC=2,∴点F的坐标为(0,2),易得直线AD的解析式为,与y=﹣2x+4组成方程组并解得:x=,∴交点D的坐标为.8.(1)模型建立:如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.求证:△BEC≌△CDA;(2)模型应用:①如图2,一次函数y=﹣2x+4的图象分别与x轴、y轴交于点A、B,以线段AB为腰在第一象限内作等腰直角三角形ABC,则C点的坐标为C(4,6)或C(6,2)(直接写出结果)②如图3,在△ABC和△DCE中,CA=CB,CD=CE,∠CAB=∠CED=45°,连接BD、AE,作CM⊥AE于M点,延长MC与BD 交于点N,求证:N是BD的中点.解:(1)∵AD⊥ED,BE⊥ED,∴∠D=∠E=90°,∠ACD=∠CAD=90°,∵∠ACB=90°,∴∠ACD=∠BCE=90°,∴∠BCE=∠CAD,在△BEC和△CDA中,∴△BEC≌△CDA(AAS);(2)①根据题意可得点C的坐标为C(4,6)或C(6,2);故答案为:C(4,6)或C(6,2);②如图,作BP⊥MN交MN的延长线于P,作DQ⊥MN于Q∵∠BCP+∠BCA=∠CAM+∠AMC,∵∠BCA=∠AMC,∴∠BCP=∠CAM,在△CBP与△ACM中,,∴△CBP≌△ACM(AAS),∴MC=BP,同理,CM=DQ,∴DQ=BP在△BPN与△DQN中,,∵△BPN≌△DQN(AAS),∴BN=ND,∴N是BD的中点.9.如图,在平面直角坐标系xOy中,直线l:y=﹣x+4与x轴、y轴分别相交于B、A两点,点C是AB的中点,点E、F分别为线段AB、OB上的动点,将△BEF沿EF折叠,使点B的对称点D恰好落在线段OA上(不与端点重合).连接OC分别交DE、DF于点M、N,连接FM.(1)求tan∠ABO的值;(2)试判断DE与FM的位置关系,并加以证明;(3)若MD=MN,求点D的坐标.解:(1)直线l:y=﹣x+4与x轴、y轴分别相交于B、A两点,则点A、B的坐标分别为:(0,4)、(3,0);tan∠ABO===tanα;(2)DE与FM的位置关系为相互垂直,理由:点C是AB的中点,则∠COB=∠CBO=∠EDF=α,∠ONF=∠DNM,∴∠DMN=∠DFO,∴O、F、M、D四点共圆,∴∠DMF+∠DOF=180°,∴∠DOF=90°,即:DE⊥FM;(3)MD=MN,∴∠MDN=∠MND=α,而∠COB=α,∠DNM=∠ONF=α,即△OCF为以ON为底,底角为α的等腰三角形,则tan∠NFO===tanβ,则cosβ=(证明见备注);设OF=m,则DF=FB=3﹣m,cos∠DFO=cosβ=,解得:m=,OD2=DF2﹣OF2=(3﹣m)2﹣m2=;则OD=,故点D(0,).备注:如下图,过点N作HN⊥OF于点H,tanα=,则sinα=,作FM⊥ON 于点M,设FN=OF=5a,则FN=4a,则ON=6a,同理可得:NH=,tan∠NFO===tanβ,则cosβ=.10.如图,直线l1:y=x+与y轴的交点为A,直线l1与直线l2:y=kx的交点M的坐标为M(3,a).(1)求a和k的值;(2)直接写出关于x的不等式x+<kx的解集;(3)若点B在x轴上,MB=MA,直接写出点B的坐标.解:(1)∵直线l1与直线l2的交点为M(3,a),∴M(3,a)在直线y=x+上,也在直线y=kx上,∴a=×3+=3,∴M(3,3),∴3=3k,解得k=1;(2)不等式x+<kx的解集为x>3;(3)作MN⊥x轴于N,∵直线l1:y=x+与y轴的交点为A,∴A(0,),∵M(3,3),∴AM2=(3﹣0)2+(3﹣)2=,∵MN=3,MB=MA,∴BN==,∴B(,0)或B(,0).11.如图,长方形OBCD的OB边在x轴上,OD在y轴上,把OBC 沿OC折叠得到OCE,OE与CD交于点F.(1)求证:OF=CF;(2)若OD=4,OB=8,写出OE所在直线的解析式.解:(1)∵四边形OBCD为矩形,∴DO=BC,∠OBC=∠ODC.由翻折的性质可知∠E=∠OBC,CE=BC,∴OD=CE,∠E=∠ODC.在△ODF和△CEF中,∴△ODF≌△CEF(AAS),∴OF=CF.(2)∵OF=CF.设DF=x,则OF=CF=8﹣x.在Rt△ODF中,OD=4,根据勾股定理得,OD2+DF2=OF2,∴42+x2=(8﹣x)2,解得x=3,∴F(3,4),设直线OE的解析式为y=kx,把F(3,4)代入得4=3k,解得k=,∴OE所在直线的解析式y=x.12.如图,在平面直角坐标系中,直线y=﹣x+m过点A(5,﹣2)且分别与x轴、y轴交于点B、C,过点A画AD∥x轴,交y轴于点D.(1)求点B、C的坐标;(2)在线段AD上存在点P,使BP+CP最小,求点P的坐标.解:(1)∵y=﹣x+m过点A(5,﹣2),∴﹣2=﹣5+m,∴m=3,∴y=﹣x+3,令y=0,∴x=3,∴B(3,0),令x=0,∴y=3,∴C(0,3);(2)过C作直线AD对称点Q,可得Q(0,﹣7),连结BQ,交AD与点P可得直线BQ:,令y′=﹣2,∴,∴.13.如图,直线l1的函数表达式为y=3x﹣2,且直线l1与x轴交于点D.直线l2与x轴交于点A,且经过点B(4,1),直线l1与l2交于点C(m,3).(1)求点D和点C的坐标;(2)求直线l2的函数表达式;(3)利用函数图象写出关于x,y的二元一次方程组的解.解:(1)在y=3x﹣2中令y=0,即3x﹣2=0 解得x=,∴D(,0),∵点C(m,3)在直线y=3x﹣2上,∴3m﹣2=3,∴m=,∴C(,3);(2)设直线l2的函数表达式为Y=KX+B(K≠0),由题意得:,解得:,∴y=﹣x+;(3)由图可知,二元一次方程组的解为.14.如图,在平面直角坐标系中,一次函数y=kx+b的图象与x 轴交于点A(﹣3,0),与y轴交于点B,且与正比例函数y=x 的图象交点为C(m,4).(1)求一次函数y=kx+b的解析式;(2)求△BOC的面积;(3)若点D在第二象限,△DAB为等腰直角三角形,则点D 的坐标为(﹣2,5)或(﹣5,3)或(,).解:(1)∵点C在正比例函数图象上,∴m=4,解得:m=3,∵点C(3,4)、A(﹣3,0)在一次函数图象上,∴代入一次函数解析式可得,解这个方程组得,∴一次函数的解析式为y=x+2;(2)在中,令x=0,解得y=2,∴B(0,2)∴S△BOC=×2×3=3;(3)过点D1作D1E⊥y轴于点E,过点D2作D2F⊥x轴于点F,如图,∵点D在第二象限,△DAB是以AB为直角边的等腰直角三角形,∴AB=BD2,∵∠D1BE+∠ABO=90°,∠ABO+∠BAO=90°,∴∠BAO=∠EBD1,∵在△BED1和△AOB中,∴△BED1≌△AOB(AAS),∴BE=AO=3,D1E=BO=2,即可得出点D的坐标为(﹣2,5);同理可得出:△AFD2≌△AOB,∴FA=BO=2,D2F=AO=3,∴点D的坐标为(﹣5,3),∵∠D1AB=∠D2BA=45°,∴∠AD3B=90°,∴D3(,),综上可知点D的坐标为(﹣2,5)或(﹣5,3)或(,).故答案为:(﹣2,5)或(﹣5,3)或(,).15.如图1中的三种情况所示,对于平面内的点M,点N,点P,如果将线段PM绕点P顺时针旋转90°能得到线段PN,就称点N是点M关于点P的“正矩点”.(1)在如图2所示的平面直角坐标系xOy中,已知S(﹣3,1),P (1,3),Q(﹣1,﹣3),M(﹣2,4).①在点P,点Q中,点P是点S关于原点O的“正矩点";②在S,P,Q,M这四点中选择合适的三点,使得这三点满足:点S是点P关于点M的“正矩点",写出一种情况即可;(2)在平面直角坐标系xOy中,直线y=kx+3(k<0)与x轴交于点A,与y轴交于点B,点A关于点B的“正矩点”记为点C,坐标为C(x c,y c).①当点A在x轴的正半轴上且OA小于3时,求点C的横坐标x c的值;②若点C的纵坐标y c满足﹣1<y c≤2,直接写出相应的k的取值范围.解:(1)①在点P,点Q中,点S绕点O顺时针旋转90°能得到线段OP,故S关于点O的“正矩点”为点P,故答案为点P;②点S是点P关于点M的“正矩点”(答案不唯一);故答案为:S,P,M;(2)①如图1,作CE⊥x轴于点E,作CF⊥y轴于点F,∠BFC=∠AOB=90°,点B(0,3),点A(﹣,0),∵∠ABO+∠CBO=90°,∠CBO+∠BCF=90°,∴∠BCF=∠ABO,BC=BA,∴△BCF≌△AOB(AAS),∴FC=OB=3,故点C的坐标为:(﹣3,3+),即点C的横坐标x c的值为﹣3;②点C(﹣3,3+),如图2,﹣1<y c≤2,即:﹣1<3+≤2,则﹣3≤k.。
中考数学复习一次函数与反比例函数压轴题专项练习
中考数学复习一次函数与反比例函数压轴题专项练习1、如图,一次函数的图象与x轴,y轴分别相交于A,B两点,且与反比例函数y=的图象在第二象限交与点C,如果点A为的坐标为(2,0),B是AC的中点.(1)求点C的坐标;(2)求一次函数的解析式.2、如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于A(2,﹣1),B(,n)两点,直线y=2与y轴交于点C.(1)求一次函数与反比例函数的解析式;(2)求△ABC的面积.3、如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=(x>0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC,求反比例函数和一次函数的表达式.4、如图所示,反比例函数y=4x的图象与一次函数y=kx-3的图象在第一象限内相交于点A (4,m).(1)求m的值及一次函数的解析式;(2)若直线x =2与反比例和一次函数的图象分别交于点B 、C ,求线段BC 的长.5、如图,在平面直角坐标系x0y 中,一次函数y=kx+b(k≠0)的图象与反比例函数()0my m x=≠的图象交于二、四象限内的A 、B 两点,与x 轴交于C 点,点B 的坐标为(6,n )。
线段OA=5,E 为x 轴上一点,且sin ∠AOE=45。
(1)求该反比例函数和一次函数的解析式; (2)求△AOC 的面积。
6、如图,已知反比例函数y=的图象与直线y=﹣x+b 都经过点A (1,4),且该直线与x 轴的交点为B .(1)求反比例函数和直线的解析式;(2)求△AOB的面积.7、如图,直线y=2x+3与y轴交于A点,与反比例函数y=(x>0)的图象交于点B,过点B作BC⊥x轴于点C,且C点的坐标为(1,0).(1)求反比例函数的解析式;(2)点D(a,1)是反比例函数y=(x>0)图象上的点,在x轴上是否存在点P,使得PB+PD最小?若存在,求出点P的坐标;若不存在,请说明理由.8、如图,在平面直角坐标系中,O 为原点,直线AB 分别与x 轴、y 轴交于B 和A ,与反比例函数的图象交于C 、D ,CE ⊥x 轴于点E ,tan ∠ABO =,OB =4,OE =2.(1)求直线AB 和反比例函数的解析式; (2)求△OCD 的面积.9、如图,在C ∆AB 中,C C A =B ,x AB ⊥轴,垂足为A .反比例函数ky x=(0x >)的图像经过点C ,交AB 于点D .已知4AB =,5C 2B =.(1)若4OA =,求k 的值;(2)连接C O ,若D C B =B ,求C O 的长.10、如图,已知矩形OABC的一个顶点B的坐标是(4,2),反比例函数y=(x >0)的图象经过矩形的对称中心E,且与边BC交于点D.(1)求反比例函数的解析式和点D的坐标;(2)若过点D的直线y=mx+n将矩形OABC的面积分成3:5的两部分,求此直线的解析式.11、如图,已知矩形OABC中,OA=2,AB=4,双曲线(k>0)与矩形两边AB、BC分别交于E、F。
2021年中考九年级数学第一轮强化训练:一次函数 压轴题专题复习(无答案)
2021年中考九年级数学第一轮强化训练:一次函数压轴题专题复习1、如图,一次函数y=x+3的函数图象与x轴,y轴分别交于点A,B.(1)若点P(﹣2,m)为第三象限内一个动点,请问△OPB的面积会变化吗?若不变,请求出面积;若变化,请说明理由.(2)在(1)的条件下,试用含m的代数式表示四边形APOB的面积;若△APB的面积是6,求m的值.2、如图,在平面直角坐标系中,直线l的解析式为y=﹣x,直线l2与l1交于点A(a,﹣a)与y轴交于点B(0,b),其中a,b满足(a+2)2+=0(1)求直线l2的解析式;(2)若在第二象限中有一点P(m,5)使得S△AOP=S△AOB,请求出点P的坐标;(3)已知直线y=2x﹣2分别交x轴、y轴于E、F两点,M、N分别是直线l1、l2上的动点,请直接写出能使E、F、M、N四点构成平行四边形的点M的坐标.3、如图所示平面直角坐标系中,矩形OABC的顶点B的坐标为(4,8),若一次函数y=kx+2的图象平分矩形OABC的面积.(1)求一次函数的解析式.(2)求(1)中一次函数与矩形的交点坐标.(3)设点D(﹣1,0),在一次函数图象上求一点P,使△ADP为直角三角形,求点P坐标.4、如图,直线y=﹣2x+2与x轴、y轴分别交于A、B两点,将△OAB绕点O逆时针方向旋转90°后得到△OCD.(1)填空:点C的坐标是(,),点D的坐标是(,);(2)设直线CD与AB交于点M,求线段BM的长;(3)在y轴上是否存在点P,使得△BMP是等腰三角形?若存在,请求出所有满足条件的点P的坐标;若不存在,请说明理由.5、如图,直线和x轴、y轴的交点分别为B、C,点A的坐标是(﹣2,0).(1)试说明△ABC是等腰三角形;(2)动点M从A出发沿x轴向点B运动,同时动点N从点B出发沿线段BC向点C运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M运动t秒时,△MON的面积为S.①求S与t的函数关系式;②设点M在线段OB上运动时,是否存在S=4的情形?若存在,求出对应的t值;若不存在请说明理由;③在运动过程中,当△MON为直角三角形时,求t的值.6、如图,在平面直角坐标系中,一次函数y=kx+b的图象与y轴的正半轴交于点A,与x 轴交于点B(﹣2,0),△ABO的面积为2.动点P从点B出发,以每秒1个单位长度的速度在射线BO上运动,动点Q从O出发,沿x轴的正半轴与点P同时以相同的速度运动,过P 作PM⊥X轴交直线AB于M.(1)求直线AB的解析式.(2)当点P在线段OB上运动时,设△MPQ的面积为S,点P运动的时间为t秒,求S与t 的函数关系式(直接写出自变量的取值范围).(3)过点Q作QN⊥x轴交直线AB于N,在运动过程中(P不与B重合),是否存在某一时刻t(秒),使△MNQ是等腰三角形?若存在,求出时间t值.7、如图,在平面直角坐标系中,函数y=2x+12的图象分别交x轴,y轴于A,B两点过点A 的直线交y轴正半轴于点M,且点M为线段OB的中点.(1)求直线AM的函数解析式.(2)试在直线AM上找一点P,使得S△ABP=S△AOB,请直接写出点P的坐标.(3)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A,B,M,H为顶点的四边形是等腰梯形?若存在,请直接写出点H的坐标;若不存在,请说明理由.8、、如图,直线l1的解析表达式为:y=3x﹣3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求△ADC的面积;(2)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,则点P的坐标为;(3)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A、D、C、H 为顶点的四边形是平行四边形?若存在,请直接写出点H的坐标;若不存在,请说明理由.9、如图,直线l1:y=﹣x+b分别与x轴、y轴交于A、B两点,与直线l2:y=kx﹣6交于点C(4,2).(1)求A点坐标及k,b的值;(2)在直线BC上有一点E,过点E作y轴的平行线交直线l2于点F,设点E的横坐标为m,当m为何值时,以O、B、E、F为顶点的四边形是平行四边形;(3)若点P为x轴上一点,在坐标系中是否存在一点Q,使得P、Q、A、B四个点能构成一个菱形?若存在,求出所有符合条件的Q的坐标;若不存在,请说明理由.10、如图,在平面直角坐标系xOy中,已知直线l1:y=x与直线l2:y=﹣x+6相交于点M,直线l2与x轴相交于点N.(1)求M,N的坐标.(2)矩形ABCD中,已知AB=1,BC=2,边AB在x轴上,矩形ABCD沿x轴自左向右以每秒1个单位长度的速度移动,设矩形ABCD与△OMN的重叠部分的面积为S,移动的时间为t (从点B与点O重合时开始计时,到点A与点N重合时计时开始结束).直接写出S与自变量t之间的函数关系式(不需要给出解答过程).(3)在(2)的条件下,当t为何值时,S的值最大?并求出最大值.11、已知直线l1:y=﹣x+b与x轴交于点A,直线l2:y=x﹣与x轴交于点B,直线l1、l2交于点C,且C点的横坐标为1.(1)如图1,过点A作x轴的垂线,若点P(x,2)为垂线上的一个点,Q是y轴上一动点,若S△CPQ=5,求此时点Q的坐标;(2)若P在过A作x轴的垂线上,点Q为y轴上的一个动点,当CP+PQ+QA的值最小时,求此时P的坐标;(3)如图2,点E的坐标为(﹣2,0),将直线l1绕点C旋转,使旋转后的直线l3刚好过点E,过点C作平行于x轴的直线l4,点M、N分别为直线l3、l4上的两个动点,是否存在点M、N,使得△BMN是以M点为直角顶点的等腰直角三角形?若存在,求出N点的坐标;若不存在,请说明理由.12、如图,直线y=kx+b与x轴和y轴交于A、B两点,AB=4,∠BAO=45°.(1)如图1,求直线AB的解析式.(2)如图1,直线y=2x﹣2交x轴于点E.且P为该直线在直线AB上方一动点,当△PAB 的面积等于10时,将线段PE沿着x轴平移得到线段P1E1,连接OP1.求OP1+P1E1+的最小值.(3)如图2,在(2)问的条件下,若直线y=2x﹣2与y轴的交点是C,连接CE1,得到△OCE1,将△OCE1绕着原点O逆时针旋转α°(0<α<180),旋转过程中直线OC与直线AB 交于点M,直线CE1与直线AB交于点N,当△CMN为等腰三角形时,直接写出α的值.13、已知直线y=﹣x+6与x轴,y轴分别相交于点A,B,将∠OBA对折,使点O的对应点E落在直线AB上,折痕交x轴于点C.(1)求点C的坐标和直线BC的函数表达式;(2)若已知x轴上有一点D(4,0),点M为直线AB上一点,点N为直线BC上一点,是否存在这样的点M、N,使得以点A、D、M、N为顶点的四边形是平行四边形?若存在,求出点M的坐标:若不存在,说明理由;(3)已知y轴上有点P(0,2),点Q为直线BC上一点,点K为直线y=﹣x上一点,是否存在合适的点Q,K,使得PQ+KQ最小?若存在,求出PQ+KQ的最小值以及此时K点的坐标;若不存在,请说明理由.14、如图1.在平面直角坐标系中,四边形OBCD是正方形,D(0,3),点E是OB延长线上一点,M是线段OB上一动点(不包括O、B),作MN⊥DM,交∠CBE的平分线于点N.(1)①直接写出点C的坐标:②求证:MD=MN;(2)如图2,若M(2,0),在OD上找一点P,使四边形MNCP是平行四边形,求直线PN的解析式;(3)如图,连接DN交BC于F,连接FM,下列两个结论:①FM的长为定值:②MN平分∠FMB,其中只有一个正确,选择并证明.15、在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|.例如:点P1(1,2),点P2(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q交点).(1)已知点A(﹣,0),B为y轴上的一个动点,①若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标;②直接写出点A与点B的“非常距离”的最小值;(2)已知C是直线y=x+3上的一个动点,①如图2,点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;11/ 11。
沪科版九年级数学中考复习:一次函数的综合应用压轴题(含答案)
沪科版九年级数学中考复习:一次函数的综合应用压轴题(含答案)1.甲、乙两家商场平时以同样价格出售相同的商品.新冠疫情期间,为了减少库存,甲、乙两家商场打折促销.甲商场所有商品按9折出售,乙商场对一次购物中超过100元后的价格部分打8折.(1) 以x(元)表示商品原价,y(元)表示实际购物金额,分别就两家商场的让利方式写出y关于x的函数解析式;(2) 新冠疫情期间如何选择这两家商场去购物更省钱?2.某水果市场销售一种香蕉.甲店的香蕉价格为4元/千克;乙店的香蕉价格为5元/千克,若一次购买6千克以上,超过6千克部分的价格打7折.(1) 设购买香蕉x千克,付款金额为y元,分别就两店的付款金额写出y关于x的函数解析式.(2) 到哪家店购买香蕉更省钱?请说明理由.3. 某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1) 如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?(2) 若购买乙种奖品的件数不超过甲种奖品件数的3倍,如何购买甲、乙两种奖品,使得总花费最少?4. 随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,则今年的销售总额将比去年减少10%.(1) 求A型自行车去年每辆售价多少元.(2) 该车行今年计划新进一批A型自行车和新款B型自行车共60辆,且B 型自行车的进货数量不超过A型自行车数量的两倍.已知A型自行车和B型自行车的进货价格分别为1 500元和1 800元,计划B型自行车的销售价格为2 400元,应如何组织进货才能使这批自行车销售获利最多?5. 有一块矩形地块ABCD,AB=20米,BC=30米.为美观,拟种植不同的花卉,如图所示,将矩形ABCD分割成四个等腰梯形及一个矩形,其中梯形的高相等,均为x米.现决定在等腰梯形AEHD和BCGF中种植甲种花卉;在等腰梯形ABFE 和CDHG中种植乙种花卉;在矩形EFGH中种植丙种花卉.甲、乙、丙三种花卉的种植成本分别为20元/米2、60元/米2、40元/米2,设三种花卉的种植总成本为y元.(1) 当x=5时,求种植总成本y;(2) 求种植总成本y与x的函数解析式,并写出自变量x的取值范围;(3) 若甲、乙两种花卉的种植面积之差不超过120平方米,求三种花卉的最低种植总成本.6. 众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A地和B地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如下表:现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往A地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.(1) 这20辆货车中,大货车、小货车各有多少辆?(2) 求y与x的函数解析式,并直接写出x的取值范围.(3) 若运往A地的物资不少于140吨,求总运费y的最小值7. 为了抗击新冠疫情,某市甲、乙两厂积极生产了某种防疫物资共500吨,乙厂的生产量比甲厂的2倍少100吨.这批防疫物资将运往A地240吨,B地260吨,运费如下表(单位:元/吨).(1) 求甲、乙两厂各生产了这批防疫物资多少吨.(2) 设这批物资从乙厂运往A地x吨,全部运往A,B两地的总运费为y元.求y与x之间的函数解析式,并设计使总运费最少的调运方案.(3) 当每吨运费均降低m元(0<m≤15且m为整数)时,按(2)中设计的调运方案运输,总运费不超过5 200元.求m的最小值.8. 推进农村土地集约式管理,提高土地的使用效率是新农村建设的一项重要举措.某村在小城镇建设中集约了2 400亩土地,计划对其进行平整.经投标,由甲、乙两个工程队来完成平整任务.甲工程队每天可平整土地45亩,乙工程队每天可平整土地30亩.已知乙工程队每天的工程费比甲工程队少500元,当甲工程队所需工程费为12 000元,乙工程队所需工程费为9 000元时,两工程队工作天数刚好相同.(1) 甲、乙两个工程队每天各需工程费多少元?(2) 现由甲、乙两个工程队共同参与土地平整,已知两个工程队工作天数均为正整数,且所有土地刚好平整完,总费用不超过110 000元.①甲、乙两工程队分别工作的天数共有多少种可能?②写出其中费用最少的一种方案,并求出最少费用.9. 天水市某商店准备购进A,B两种商品,A种商品每件的进价比B种商品每件的进价贵20元,用2 000元购进A种商品和用1 200元购进B种商品的数量相同.商店将A种商品每件的售价定为80元,B种商品每件的售价定为45元.(1) A种商品每件的进价和B种商品每件的进价各是多少元?(2) 商店计划用不超过1 560元的资金购进A,B两种商品共40件,其中A 种商品的数量不低于B种商品数量的一半,该商店有几种进货方案?(3) “五一”期间,商店开展优惠促销活动,决定对每件A种商品售价优惠m(10<m<20)元,B种商品售价不变,在(2)的条件下,请设计出m的不同取值范围内,销售这40件商品获得总利润最大的进货方案.10. 倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某机器人公司研发出A型和B型两款垃圾分拣机器人,已知2台A型机器人和5台B 型机器人同时工作2 h共分拣垃圾3.6吨,3台A型机器人和2台B型机器人同时工作5 h共分拣垃圾8吨.(1) 1台A型机器人和1台B型机器人每小时各分拣垃圾多少吨?(2) 某垃圾处理厂计划向机器人公司购进一批A型和B型垃圾分拣机器人,这批机器人每小时一共能分拣垃圾20吨.设购买A型机器人a台(10≤a≤45),B 型机器人b台,请用含a的代数式表示b.(3) 机器人公司的报价如下表:在(2)的条件下,设购买总费用为w万元,问如何购买使得总费用w最少?请说明理由.11. 甲、乙两地的路程为290 km,一辆汽车早上8:00从甲地出发,匀速向乙地行驶,途中休息一段时间后,按原速继续前进,当离甲地路程为240 km时接到通知,要求中午12:00准时到达乙地.设汽车出发x h后离甲地的路程为y km,如图,折线OCDE表示接到通知前y与x之间的函数关系.(1) 根据图象可知,休息前汽车行驶的速度为______km/h.(2) 求线段DE所表示的y与x之间的函数解析式.(3) 接到通知后,汽车仍按原速行驶能否准时到达?请说明理由.12. “低碳生活,绿色出行”是一种环保、健康的生活方式,小丽从甲地匀速步行前往乙地,同时,小明从乙地沿同一路线匀速步行前往甲地,两人之间的距离y(m)与步行时间x(min)之间的函数关系如图中折线段AB-BC-CD所示.(1) 小丽与小明出发________min相遇.(2) 在步行过程中,若小明先到达甲地.①求小丽和小明步行的速度;②计算出点C的坐标,并解释点C的实际意义.13. 某商店代理销售一种水果,六月份的销售利润y(元)与销售量x(千克)之间函数关系的图象如图中折线所示.请你根据图象及这种水果的相关销售记录提供的信息,解答下面的问题:(1) 截止到6月9日,该商店销售这种水果一共获利多少元?(2) 求图象中线段BC所在直线对应的函数解析式.14. 受新冠肺炎疫情影响,一水果种植专业户有大量成熟水果无法出售.“一方有难,八方支援”,某水果经销商主动从该种植专业户购进甲、乙两种水果进行销售.专业户为了感谢经销商的援助,对甲种水果的出售价格根据购买量给予优惠,对乙种水果按25元/千克的价格出售.设经销商购进甲种水果x千克,付款y元,y与x之间的函数关系如图所示.(1) 直接写出当0≤x≤50和x>50时,y与x之间的函数解析式.(2) 若经销商计划一次性购进甲、乙两种水果共100千克,且甲种水果不少于40千克,但又不超过60千克.如何分配甲、乙两种水果的购进量,才能使经销商付款总金额w(元)最少?(3) 若甲、乙两种水果的销售价格分别为40元/千克和36元/千克.经销商按(2)中甲、乙两种水果购进量的分配比例购进两种水果共a千克,且销售完a 千克水果获得的利润不少于1 650元,求a的最小值.答案1.甲、乙两家商场平时以同样价格出售相同的商品.新冠疫情期间,为了减少库存,甲、乙两家商场打折促销.甲商场所有商品按9折出售,乙商场对一次购物中超过100元后的价格部分打8折.(1) 以x(元)表示商品原价,y(元)表示实际购物金额,分别就两家商场的让利方式写出y关于x的函数解析式;(2) 新冠疫情期间如何选择这两家商场去购物更省钱?解:(1) 由题意,得y甲=0.9x;当0<x≤100时,y乙=x,当x>100时,y乙=100+(x-100)×0.8=0.8x+20,∴y乙={x(0<x≤100),0.8x+20(x>100)(2) 当0<x≤100时,0.9x<x,即y甲<y乙,此时选择甲商场购物更省钱;当x>100时:若0.9x<0.8x+20,即100<x<200时,y甲<y乙,此时选择甲商场购物更省钱;若0.9x=0.8x+20,即x=200时,y甲=y乙,此时在两家商场购物花费一样;若0.9x>0.8x+200,即x>200时,y甲>y乙,此时选择乙商场购物更省钱.综上所述,当0<x<200时,选择甲商场购物更省钱;当x=200时,在两家商场购物花费一样;当x>200时,选择乙商场购物更省钱2.某水果市场销售一种香蕉.甲店的香蕉价格为4元/千克;乙店的香蕉价格为5元/千克,若一次购买6千克以上,超过6千克部分的价格打7折.(1) 设购买香蕉x千克,付款金额为y元,分别就两店的付款金额写出y关于x的函数解析式.(2) 到哪家店购买香蕉更省钱?请说明理由.解:(1) y甲=4x;当0<x≤6时,y乙=5x,当x>6时,y乙=5×6+5×70%(x-6)=3.5x+9,∴y乙={5x(0<x≤6),3.5x+9(x>6)(2) 当0<x≤6时,4x<5x,即y甲<y乙,此时到甲店购买香蕉更省钱;当x>6时:①若4x<3.5x+9,即6<x<18时,y甲<y乙,此时到甲店购买香蕉更省钱;②若4x=3.5x+9,即x=18时,y甲=y乙,此时到甲店、乙店购买香蕉的费用相同;③若4x>3.5x+9,即x>18时,y甲>y乙,此时到乙店购买香蕉更省钱.综上所述,当0<x<18时,到乙店购买香蕉更省钱;当x=18时,到甲店、乙店购买香蕉的费用相同;当x>18时,到乙店购买香蕉更省钱3. 某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1) 如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?(2) 若购买乙种奖品的件数不超过甲种奖品件数的3倍,如何购买甲、乙两种奖品,使得总花费最少?解:(1) 设甲种奖品购买了x件,则乙种奖品购买了(30-x)件.根据题意,得30x +20(30-x)=800,解得x=20,此时30-x=10.答:甲种奖品购买了20件,乙种奖品购买了10件(2) 设甲种奖品购买了y件,乙种奖品购买了(30-y)件.设购买两种奖品的总费用为w 元,则w =30y +20(30-y)=10y +600.根据题意,得 30-y ≤3y ,解得y ≥7.5.在w =10y +600中,∵ 10>0,∴ w 随y 的增大而增大.∴ y =8时,w 有最小值,此时30-y =22,w 最小=10×8+600=680.答:当购买甲种奖品8件、乙种奖品22件时,总花费最少,最少费用为680元4. 随着人们“节能环保,绿色出行”意识的增强,越来越 多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A 型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,则今年的销售总额将比去年减少10%.(1) 求A 型自行车去年每辆售价多少元.(2) 该车行今年计划新进一批A 型自行车和新款B 型自行车共60辆,且B 型自行车的进货数量不超过A 型自行车数量的两倍.已知A 型自行车和B 型自行车的进货价格分别为1 500元和1 800元,计划B 型自行车的销售价格为2 400元,应如何组织进货才能使这批自行车销售获利最多?解:(1) 设去年A 型自行车每辆售价x 元,则今年售价每辆为(x -200)元.由题意,得80 000x =80 000(1−10%)x−200,解得x =2 000.经检验,x =2 000是原方程的根,且符合题意.答:去年A 型自行车每辆售价为2 000元(2) 设今年新进A 型自行车a 辆,则新进B 型自行车(60-a)辆,获利y 元.由题意,得y =(2 000-200-1 500)a +(2 400-1 800)(60-a)=-300a +36 000.∵ B 型自行车的进货数量不超过A 型自行车数量的两倍,∴ 60-a ≤2a ,解得a ≥20.在y =-300a +36 000中,∵ k =-300<0,∴ y 随a 的增大而减小.∴ 当a =20时,y 有最大值,此时60-a =40.答:当新进A 型自行车20辆,B 型自行车40辆时,这批自行车销售获利最多5. 有一块矩形地块ABCD ,AB =20米,BC =30米.为美观,拟种植不同的花卉,如图所示,将矩形ABCD 分割成四个等腰梯形及一个矩形,其中梯形的高相等,均为x 米.现决定在等腰梯形AEHD 和BCGF 中种植甲种花卉;在等腰梯形ABFE 和CDHG 中种植乙种花卉;在矩形EFGH 中种植丙种花卉.甲、乙、丙三种花卉的种植成本分别为20元/米2、60元/米2、40元/米2,设三种花卉的种植总成本为y 元.(1) 当x =5时,求种植总成本y ;(2) 求种植总成本y 与x 的函数解析式,并写出自变量x 的取值范围;(3) 若甲、乙两种花卉的种植面积之差不超过120平方米,求三种花卉的最低种植总成本.解:(1) 当x =5时,EF =20-2x =10米,EH =30-2x =20米,∴ y =2×12(EH +AD)x ×20+2×12(GH +CD)x ×60+EF ·EH ×40=(20+30)×5×20+(10+20)×5×60+20×10×40=22 000(元)(2) ∵ EF =(20-2x)米,EH =(30-2x)米,∴ y =2×12(30+30-2x)x ×20+2×12(20+20-2x)x ×60+(30-2x)(20-2x)×40=-400x +24 000(0<x <10)(3) S 甲=2×12(EH +AD)×x =(30-2x +30)x =-2x 2+60x ,同理S 乙=-2x 2+40x.∵ 甲、乙两种花卉的种植面积之差不超过120平方米,∴ -2x 2+60x -(-2x 2+40x)≤120,解得x ≤6.∴ 0<x ≤6.在y =-400x +24 000中,∵ -400<0,∴ y 随x 的增大而减小.∴ 当x =6时,y 的最小值为21 600.答:三种花卉的最低种植总成本为21 600元6. 众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A 地和B 地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如下表:现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往A 地,其余前往B 地,设前往A 地的大货车有x 辆,这20辆货车的总运费为y 元.(1) 这20辆货车中,大货车、小货车各有多少辆?(2) 求y 与x 的函数解析式,并直接写出x 的取值范围.(3) 若运往A 地的物资不少于140吨,求总运费y 的最小值解:(1) 设大货车有m 辆,则小货车有(20-m)辆.根据题意,得15m +10(20-m)=260,解得m =12,此时20-m =8.答:大货车、小货车分别有12辆、8辆(2) ∵ 到A 地的大货车有x 辆,∴ 到A 地的小货车有(10-x)辆,到B 地的大货车有(12-x)辆,到B 地的小货车有(x -2)辆.∴ y =900x +500(10-x)+1 000(12-x)+700(x -2)=100x +15 600,其中2≤x ≤10(3) 根据题意,得运往A 地的物资共有[15x +10(10-x)]吨,∴ 15x +10(10-x)≥140,解得x ≥8.∴ 8≤x ≤10.在y =100x +15 600中,∵ 100>0,∴ y 随x 的增大而增大.∴ 当x =8时,y 有最小值,此时y 最小=100×8+15 600=16 400.答:总运费y 的最小值为16 400元7. 为了抗击新冠疫情,某市甲、乙两厂积极生产了某种防疫物资共500吨,乙厂的生产量比甲厂的2倍少100吨.这批防疫物资将运往A 地240吨,B 地260吨,运费如下表(单位:元/吨).(1) 求甲、乙两厂各生产了这批防疫物资多少吨.(2) 设这批物资从乙厂运往A 地x 吨,全部运往A ,B 两地的总运费为 y 元.求y 与x 之间的函数解析式,并设计使总运费最少的调运方案.(3) 当每吨运费均降低m 元(0<m ≤15且m 为整数)时,按(2)中设计的调运方案运输,总运费不超过5 200元.求m 的最小值.解:(1) 设这批防疫物资甲厂生产了a 吨,乙厂生产了b 吨.根据题意,得{a +b =500,2a −b =100,解得{a =200,b =300.答:这批防疫物资甲厂生产了200吨,乙厂生产了300吨(2) 根据题意,得y =20(240-x)+25[260-(300-x)]+15x +24(300-x)=-4x +11 000.∵ { x ≥0,240−x ≥0,300−x ≥0,x −40≥0,解得40≤x ≤240.在 y =-4x +11 000中,∵ -4<0,∴ y 随x 的增大而减小.∴ 当x =240时,可以使总运费最少,此时调运方案为甲厂的200吨物资全部运往B 地,乙厂运往A 地240吨,运往B 地60吨(3) 根据题意和(2)的解答,得y =-4x +11 000-500m.当x =240时,y 最小=-4×240+11 000-500m =10 040-500m ,∴ 10 040-500m ≤5 200,解得m ≥9.68.∵ 0<m ≤15且m 为整数,∴ m 的最小值为108. 推进农村土地集约式管理,提高土地的使用效率是新农村建设的一项重要举措.某村在小城镇建设中集约了2 400亩土地,计划对其进行平整.经投标,由甲、乙两个工程队来完成平整任务.甲工程队每天可平整土地45亩,乙工程队每天可平整土地30亩.已知乙工程队每天的工程费比甲工程队少500元,当甲工程队所需工程费为12 000元,乙工程队所需工程费为9 000元时,两工程队工作天数刚好相同.(1) 甲、乙两个工程队每天各需工程费多少元?(2) 现由甲、乙两个工程队共同参与土地平整,已知两个工程队工作天数均为正整数,且所有土地刚好平整完,总费用不超过110 000元.① 甲、乙两工程队分别工作的天数共有多少种可能?② 写出其中费用最少的一种方案,并求出最少费用.解:(1) 设甲工程队每天需工程费x 元,则乙工程队每天需工程费(x -500)元.由题意,得12 000x =9 000x−500,解得x =2 000. 经检验,x = 2 000是原方程的解,且符合题意,则x -500=1 500.答:甲工程队每天需工程费2 000元,乙工程队每天需工程费1 500元(2) ① 设甲工程队平整m 天,乙工程队平整n 天.由题意,得45m +30n =2 400①,且2 000m +1 500n ≤110 000②.由①,得n =80-1.5m ③,把③代入②,得2 000m +1 500(80-1.5m)≤110 000,解得m ≥40.∵ n >0,∴ 80-1.5m >0,解得m <5313.∴ 40≤m <5313. ∵ m ,n 是正整数,∴ m =40,n =20或m =42,n =17或m =44,n =14或m =46,n =11或m =48,n =8或m =50,n =5或m =52,n =2.∴ 甲、乙两工程队分别工作的天数共有7种可能② 总费用w =2 000m +1 500(80-1.5m)=-250m +120 000.∵-250<0,∴ w 随m 的增大而减小.∴ 当m =52时,w 有最小值,此时n =2,w 最小=-250×52+120 000=107 000.答:费用最少的方案为甲工程队平整52天,乙工程队平整2天,最少费用为107 000元9. 天水市某商店准备购进A ,B 两种商品,A 种商品每件的进价比B 种商品每件的进价贵20元,用2 000元购进A 种商品和用1 200元购进B 种商品的数量相同.商店将A 种商品每件的售价定为80元,B 种商品每件的售价定为45元.(1) A 种商品每件的进价和B 种商品每件的进价各是多少元?(2) 商店计划用不超过1 560元的资金购进A ,B 两种商品共40件,其中A 种商品的数量不低于B 种商品数量的一半,该商店有几种进货方案?(3) “五一”期间,商店开展优惠促销活动,决定对每件A 种商品售价优惠m(10<m <20)元,B 种商品售价不变,在(2)的条件下,请设计出m 的不同取值范围内,销售这40件商品获得总利润最大的进货方案.解:(1) 设A 种商品每件的进价是x 元,则B 种商品每件的进价是(x -20)元.由题意,得2 000x =1 200x−20,解得x =50. 经检验,x =50是原方程的解,且符合题意,此时x -20=30.答:A 种商品每件的进价是50元,B 种商品每件的进价是30元(2) 设购进A 种商品a 件,则购进B 种商品(40-a)件.由题意,得{50a +30(40−a )≤1 560,a ≥12(40−a ),解得403≤a ≤18.∵ a 为正整数,∴ a =14,15,16,17,18.∴ 该商店共有5种进货方案(3) 设销售A ,B 两种商品共获利y 元.由题意,得y =(80-50-m)a +(45-30)(40-a)=(15-m)a +600.① 当10<m <15时,15-m >0,y 随a 的增大而增大,∴ 当a =18时,获利最大,即方案为购进18件A 种商品,22件B 种商品;② 当m =15时,15-m =0, y 与a 的值无关,即第(2)问中所有进货方案获利相同;③ 当15<m <20时,15-m <0,y 随a 的增大而减小,∴ 当a =14时,获利最大,即方案为购进14件A 种商品,26件B 种商品10. 倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某机器人公司研发出A 型和B 型两款垃圾分拣机器人,已知2台A 型机器人和5台B 型机器人同时工作2 h 共分拣垃圾3.6吨,3台A 型机器人和2台B 型机器人同时工作5 h 共分拣垃圾8吨.(1) 1台A型机器人和1台B型机器人每小时各分拣垃圾多少吨?(2) 某垃圾处理厂计划向机器人公司购进一批A型和B型垃圾分拣机器人,这批机器人每小时一共能分拣垃圾20吨.设购买A型机器人a台(10≤a≤45),B 型机器人b台,请用含a的代数式表示b.(3) 机器人公司的报价如下表:在(2)的条件下,设购买总费用为w万元,问如何购买使得总费用w最少?请说明理由.解:(1) 设1台A型机器人和1台B型机器人每小时各分拣垃圾x吨和y吨.由题意,得{(2x+5y)×2=3.6,(3x+2y)×5=8,解得{x=0.4,y=0.2.答:1台A型机器人和1台B型机器人每小时各分拣垃圾0.4吨和0.2吨(2) 由题意,得0.4a+0.2b=20,∴b=100-2a(10≤a≤45)(3) 选购A型机器人35台,B型机器人30台时,总费用w最少理由:①当10≤a<30时,40<b≤80,∴w=20×a+0.8×12(100-2a)=0.8a +960.∵0.8>0,∴当a=10时,w有最小值,w最小=968;②当30≤a≤35时,30≤b≤40,∴w=0.9×20a+0.8×12(100-2a)=-1.2a+960.∵-1.2<0,∴当a=35时,w有最小值,w最小=918;③当35<a≤45时,10≤b<30,∴w=0.9×20a+12(100-2a)=-6a+1 200.∵-6<0,∴当a=45时,w有最小值,w最小=930.∵918<930<968,∴选购A型机器人35台,B型机器人30台时,总费用w最少,此时需要918万元.11. 甲、乙两地的路程为290 km,一辆汽车早上8:00从甲地出发,匀速向乙地行驶,途中休息一段时间后,按原速继续前进,当离甲地路程为240 km时接到通知,要求中午12:00准时到达乙地.设汽车出发x h后离甲地的路程为y km,如图,折线OCDE表示接到通知前y与x之间的函数关系.(1) 根据图象可知,休息前汽车行驶的速度为______km/h.(2) 求线段DE所表示的y与x之间的函数解析式.(3) 接到通知后,汽车仍按原速行驶能否准时到达?请说明理由.解:(1)80(2) 休息后按原速继续前进行驶的时间为(240-80)÷80=2(h),∴点E的坐标为(3.5,240).设线段DE所表示的y与x之间的函数解析式为y=kx+b(1.5≤x≤3.5),则{1.5k+b=80,3.5k+b=240,解得{k=80,b=−40,∴线段DE所表示的y与x之间的函数解析式为y=80x-40(1.5≤x≤3.5) (3) 不能理由:接到通知后,汽车仍按原速行驶,则全程所需时间为290÷80+0.5=4.125(h).∵12:00-8:00=4(h),4<4.125,∴接到通知后,汽车仍按原速行驶不能准时到达.12. )“低碳生活,绿色出行”是一种环保、健康的生活方式,小丽从甲地匀速步行前往乙地,同时,小明从乙地沿同一路线匀速步行前往甲地,两人之间的距离y(m)与步行时间x(min)之间的函数关系如图中折线段AB-BC-CD所示.(1) 小丽与小明出发________min相遇.(2) 在步行过程中,若小明先到达甲地.①求小丽和小明步行的速度;②计算出点C的坐标,并解释点C的实际意义.解:(1)30(2) ①设小丽步行的速度为V1 m/min,小明步行的速度为V2 m/min,且V2>V1,则{30V1+30V2=5400,(67.5−30)V1=30V2,解得{V1=80,V2=100.答:小丽步行的速度为80 m/min,小明步行的速度为100 m/min②解法一:设点C的坐标为(x,y),则(100+80)(x-30)+80(67.5-x)=5 400,解得x=54,y=(100+80)×(54-30)=4 320. ∴点C的坐标为(54,4 320).解法二:5 400÷100=54(min),54×80=4 320(m),∴点C的坐标为(54,4 320).点C的实际意义:两人出发54 min时,小明到达甲地,此时两人相距4 320 m13. 某商店代理销售一种水果,六月份的销售利润y(元)与销售量x(千克)之间函数关系的图象如图中折线所示.请你根据图象及这种水果的相关销售记录提供的信息,解答下面的问题:(1) 截止到6月9日,该商店销售这种水果一共获利多少元?(2) 求图象中线段BC 所在直线对应的函数解析式.解:(1) 200×(10-8)=400(元).答:截止到6月9日,该商店销售这种水果一共获利400元(2) 设点B 的坐标为(a ,400).根据题意,得(10-8)×(600-a)+(10-8.5)×200=1 200-400,解得a =350,∴ 点B 的坐标为(350,400).设线段BC 所在直线对应的函数解析式为y =kx +b ,则{350k +b =400,800k +b =1 200,解得{k =169,b =−2 0009,∴ 线段BC 所在直线对应的函数解析式为y =169x -2 000914. 受新冠肺炎疫情影响,一水果种植专业户有大量成熟水果无法出售.“一方有难,八方支援”,某水果经销商主动从该种植专业户购进甲、乙两种水果进行销售.专业户为了感谢经销商的援助,对甲种水果的出售价格根据购买量给予优惠,对乙种水果按 25元/千克的价格出售.设经销商购进甲种水果x 千克,付款y 元,y 与x 之间的函数关系 如图所示.(1) 直接写出当0≤x ≤50和x >50时,y 与x 之间的函数解析式.(2) 若经销商计划一次性购进甲、乙两种水果共 100千克,且甲种水果不少于40千克,但又不超过60千克.如何分配甲、乙两种水果的购进量,才能使经销商付款总金额w(元)最少?(3) 若甲、乙两种水果的销售价格分别为40元/千克和36元/千克.经销商按(2)中甲、乙两种水果购进量的分配比例购进两种水果共a 千克,且销售完a 千克水果获得的利润不 少于1 650元,求a 的最小值.解:(1) 当0≤x ≤50时,设y =tx ,根据题意,得50t =1 500,解得t =30,∴ y =30x ;当x >50时,设y =kx +b ,根据题意,得{50k +b =1 500,70k +b =1 980,解得{k =24,b =300,∴ y =24x +300.∴ y ={30x (0≤x ≤50),24x +300(x >50)(2) 设购进甲种水果a 千克,则购进乙种水果(100-a)千克,且40≤a ≤60.① 当40≤a ≤50时,w =30a +25(100-a)=5a +2 500.∵ 5>0,∴ w 随a 的增大而增大.∴ 当a =40 时,w 最小=2 700. ② 当50<a ≤60时,w =24a +300+25(100-a)=-a +2 800.∵ -1<0,∴ w 随a 的增大而减小.∴ 当a =60时,w 最小=2 740.∵ 2 740>2 700,∴ 当a =40时,付款总金额最少,最少付款总金额为2 700元.此时购进乙种水果100-40=60(千克).答:购进甲种水果40千克,购进乙种水果60千克,才能使经销商付款总金额w(元)最少(3) 由(2)可设购进甲种水果为25a 千克,购进乙种水果为35a 千克.当0≤25a ≤50,即0≤a ≤125时,由题意,得25a ×(40-30)+35a ×(36-25)≥1 650,解得a ≥8 25053.∵ 8 25053>125,与0≤a ≤125矛盾,舍去.当25a >50,即a >125时,由题意,得25a ×40-(24×25a +300)+35a ×(36-25)≥1 650,解得a ≥150.∵ 150>125,∴ 这种情况符合题意.∴ a 的最小值为150。
2020年中考数学一次函数压轴题训练(含答案)
2020年中考数学一次函数压轴题训练【名师精选全国真题,值得下载练习】1.建立模型:如图1,已知△ABC,AC=BC,∠C=90°,顶点C在直线l上(1)操作:过点A作AD⊥l于点D,过点B作BE⊥l于点E.求证:△CAD≌△BCE.(2)模型应用:①如图2,在直角坐标系中,直线l:y=3x+3与y轴交于点A,与x轴交于点B,将直线l绕着点A顺时针旋转45°得到直线m.求直线m的函数表达式.②如图3,在直角坐标系中,点B(4,3),作BA⊥y轴于点A,作BC⊥x轴于点C,P是直线BC上的一个动点,点Q(a,5a﹣2)位于第一象限内.问点A、P、Q能否构成以点Q为直角顶点的等腰直角三角形,若能,请求出此时a的值,若不能,请说明理由.2.如图,一次函数的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,4).(1)求m的值及l2的解析式;(2)若点D在x轴上,使得S△DOC=2S△BOC的值,请求出D点的坐标;(3)一次函数y=kx+1的图象为l3,且l1,l2,l3不能围成三角形,则k的值为.3.【模型建立】如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A 作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△BEC≌△CDA;【模型应用】①已知直线l1:y=x+4与x轴交于点A,与y轴交于点B,将直线l1绕着点A逆时针旋转45°至直线l2,如图2,求直线l2的函数表达式;②如图3,在平面直角坐标系中,点B(8,6),作BA⊥y轴于点A,作BC⊥x轴于点C,P是线段BC上的一个动点,点Q是直线y=2x﹣6上的动点且在第一象限内.问点A、P、Q能否构成以点Q为直角顶点的等腰直角三角形,若能,请直接写出此时点Q的坐标,若不能,请说明理由.4.如图①所示,甲、乙两车从A地出发,沿相同路线前往同一目的地,途中经过B地.甲车先出发,当甲车到达B地时,乙车开始出发.当乙车到达B地时,甲车与B地相距km设甲、乙两车与B地之间的距离为,y1(km),y2(km),乙车行驶的时间为x(h),y1,y2与x的函数关系如图②所示.(1)A,B两地之间的距离为km;(2)当x为何值时,甲、乙两车相距5km?5.已知,一次函数y=﹣x+6的图象与x轴、y轴分别交于点A、点B,与直线y=x 相交于点C.过点B作x轴的平行线l.点P是直线l上的一个动点.(1)求点A,点B的坐标.(2)若S△AOC=S△BCP,求点P的坐标.(3)若点E是直线y=x上的一个动点,当△APE是以AP为直角边的等腰直角三角形时,求点E的坐标.6.如图,A,B是直线y=x+4与坐标轴的交点,直线y=﹣2x+b过点B,与x轴交于点C.(1)求A,B,C三点的坐标;(2)当点D是AB的中点时,在x轴上找一点E,使ED+EB的和最小,画出点E 的位置,并求E点的坐标.(3)若点D是折线A﹣B﹣C上一动点,是否存在点D,使AACD为直角三角形,若存在,直接写出D点的坐标;若不存在,请说明理由.7.(1)模型建立:如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A 作AD⊥ED于D,过B作BE⊥ED于E.求证:△BEC≌△CDA;(2)模型应用:①如图2,一次函数y=﹣2x+4的图象分别与x轴、y轴交于点A、B,以线段AB为腰在第一象限内作等腰直角三角形ABC,则C点的坐标为(直接写出结果)②如图3,在△ABC和△DCE中,CA=CB,CD=CE,∠CAB=∠CED=45°,连接BD、AE,作CM⊥AE于M点,延长MC与BD交于点N,求证:N是BD的中点.8.水资源透支现象令人担忧,节约用水迫在眉睫.针对居民用水浪费现象,重庆市政府和环保组织进行了调查,并制定出相应的措施.(1)针对居民用水浪费现象,市政府将向每个家庭收取污水处理费,按每立方米1元收费.此外,市政府还将向市民收取自来水费,收费标准为:规定每个家庭每月的用水量不超过10立方米,则按每立方米2.5元收费;超过10立方米的部分,按每立方米3.2元收费.若我市某家庭某月用水量为x立方米,产生的污水量也为x立方米,则这个家庭在该月应缴纳的水费(包括污水处理费)W1为多少钱?(用含x的代数式表示)(2)在近期由市物价局举行的水价听证会上,有一代表提出一新的水价收费设想:不再收取污水处理费,每天6:00至22:00为用水高峰期,水价可定为每立方米4元;22:00至次日6:00为用水低谷期,水价可定为每立方米3.2元,若某家庭高低峰时期都有用水,且高峰期的用水量比低谷期多20%.设这个家庭这个月用水低谷。
中考数学专题练习 函数及一次函数(含解析)-人教版初中九年级全册数学试题
函数及一次函数一、选择题1.一次函数y=2x﹣3的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.P1(x1,y1),P2(x2,y2)是正比例函数y=﹣x图象上的两点,则下列判断正确的是()A.y1>y2B.y1<y2C.当x1<x2时,y1>y2D.当x1<x2时,y1<y23.一个水池接有甲,乙,丙三个水管,先打开甲,一段时间后再打开乙,水池注满水后关闭甲,同时打开丙,直到水池中的水排空.水池中的水量v(m3)与时间t(h)之间的函数关系如图,则关于三个水管每小时的水流量,下列判断正确的是()A.乙>甲B.丙>甲C.甲>乙D.丙>乙4.如图1,在直角梯形ABCD中,动点P从点B出发,沿BC,CD运动至点D停止.设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图2所示,则△BCD的面积是()A.3 B.4 C.5 D.65.如图,点G,D,C在直线a上,点E,F,A,B在直线b上,若a∥b,Rt△GEF从如图所示的位置出发,沿直线b向右匀速运动,直到EG与BC重合.运动过程中△GEF与矩形ABCD重合部分的面积(S)随时间(t)变化的图象大致是()A.B.C.D.6.已知整数x满足﹣5≤x≤5,y1=x+1,y2=﹣2x+4,对任意一个x,m都取y1,y2中的较小值,则m 的最大值是()A.1 B.2 C.24 D.﹣9二、填空题7.已知关于x,y的一次函数y=(m﹣1)x﹣2的图象经过平面直角坐标系中的第一、三、四象限,那么m的取值X围是.8.如图,正方形ABCD的边长为10,点E在CB的延长线上,EB=10,点P在边CD上运动(C,D两点除外),EP与AB相交于点F,若CP=x,四边形FBCP的面积为y,则y关于x的函数关系式是.9.如图,已知一次函数y=x+1的图象与反比例函数的图象在第一象限相交于点A,与x轴相交于点C,AB⊥x轴于点B,△AOB的面积为1,则AC的长为(保留根号).10.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置,点A1,A2,A3和点C1,C2,C3,…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B2014的坐标是.三、解答题11.由于国家重点扶持节能环保产业,某种节能产品的销售市场逐渐回暖,某经销商销售这种产品,年初与生产厂家签订了一份进货合同,约定一年内进价为0.1万元/台,并预付了5万元押金.他计划一年内要达到一定的销售量,且完成此销售量所用的进货总金额加上押金控制在不低于34万元,但不高于40万元.若一年内该产品的售价y(万元/台)与月次x(1≤x≤12且为整数)满足关系式:y=,一年后发现实际每月的销售量p(台)与月次x之间存在如图所示的变化趋势.(1)直接写出实际每月的销售量p(台)与月次x之间的函数关系式;(2)求前三个月中每月的实际销售利润w(万元)与月次x之间的函数关系式;(3)试判断全年哪一个月的售价最高,并指出最高售价;(4)请通过计算说明他这一年是否完成了年初计划的销售量.12.如图①是某公共汽车线路收支差额y(票价总收人减去运营成本)与乘客量x的函数图象.目前这条线路亏损,为了扭亏,有关部门举行提高票价的听证会.乘客代表认为:公交公司应节约能源,改善管理,降低运营成本,以此举实现扭亏.公交公司认为:运营成本难以下降,公司己尽力,提高票价才能扭亏.根据这两种意见,可以把图①分别改画成图②和图③,(1)说明图①中点A和点B的实际意义;(2)你认为图②和图③两个图象中,反映乘客意见的是,反映公交公司意见的是.(3)如果公交公司采用适当提高票价又减少成本的办法实现扭亏为赢,请你在图④中画出符合这种办法的y与x的大致函数关系图象.13.(12分)某车站客流量大,旅客往往需长时间排队等候购票.经调查统计发现,每天开始售票时,约有300名旅客排队等候购票,同时有新的旅客不断进入售票厅排队等候购票,新增购票人数y(人)与售票时间x(分)的函数关系如图①所示;每个售票窗口票数y(人)与售票时间x(分)的函数关系如图②所示.某天售票厅排队等候购票的人数y(人)与售票时间x(分)的函数关系如图③所示,已知售票的前a分钟开放了两个售票窗口.(1)求a的值;(2)求售票到第60分钟时,售票厅排队等候购票的旅客人数;(3)该车站在学习实践科学发展观的活动中,本着“以人为本,方便旅客”的宗旨,决定增设售票窗口.若要在开始售票后半小时内让所有排队购票的旅客都能购到票,以便后来到站的旅客能随到随购,请你帮助计算,至少需同时开放几个售票窗口?14.某公司装修需用A型板材240块、B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm的标准板材.一X标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(如图是裁法一的裁剪示意图)裁法一裁法二裁法三A型板材块数 1 2 0B型板材块数 2 m n设所购的标准板材全部裁完,其中按裁法一裁xX、按裁法二裁yX、按裁法三裁zX,且所裁出的A、B两种型号的板材刚好够用.(1)上表中,m=,n=;(2)分别求出y与x和z与x的函数关系式;(3)若用Q表示所购标准板材的X数,求Q与x的函数关系式,并指出当x取何值时Q最小,此时按三种裁法各裁标准板材多少X?15.如图,已知直线l1的解析式为y=3x+6,直线l1与x轴,y轴分别相交于A,B两点,直线l2经过B,C两点,点C的坐标为(8,0),又已知点P在x轴上从点A向点C移动,点Q在直线l2从点C向点B移动.点P,Q同时出发,且移动的速度都为每秒1个单位长度,设移动时间为t秒(1<t <10).(1)求直线l2的解析式;(2)设△PCQ的面积为S,请求出S关于t的函数关系式;(3)试探究:当t为何值时,△PCQ为等腰三角形?函数及一次函数参考答案与试题解析一、选择题1.一次函数y=2x﹣3的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】一次函数的图象.【分析】根据一次函数y=ax+b(a≠0)的a、b的符号判定该一次函数所经过的象限即可.【解答】解:∵一次函数y=2x﹣3的k=2>0,b=﹣3<0,∴一次函数y=2x﹣3经过第一、三、四象限,即一次函数y=2x﹣3不经过第二象限.故选:B.【点评】本题考查了一次函数的图象,即直线y=kx+b所在的位置与k、b的符号有直接的关系.k >0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.2.P1(x1,y1),P2(x2,y2)是正比例函数y=﹣x图象上的两点,则下列判断正确的是()A.y1>y2B.y1<y2C.当x1<x2时,y1>y2D.当x1<x2时,y1<y2【考点】正比例函数的性质.【分析】根据正比例函数图象的性质可知.【解答】解:根据k<0,得y随x的增大而减小.①当x1<x2时,y1>y2,②当x1>x2时,y1<y2.故选:C.【点评】熟练掌握正比例函数图象的性质,正比例函数图象是经过原点的一条直线.①当k>0时,图象经过一、三象限,y随x的增大而增大;②当k<0时,图象经过二、四象限,y随x的增大而减小.3.一个水池接有甲,乙,丙三个水管,先打开甲,一段时间后再打开乙,水池注满水后关闭甲,同时打开丙,直到水池中的水排空.水池中的水量v(m3)与时间t(h)之间的函数关系如图,则关于三个水管每小时的水流量,下列判断正确的是()A.乙>甲B.丙>甲C.甲>乙D.丙>乙【考点】函数的图象.【专题】压轴题.【分析】依题意,如图可知,先打开甲,一段时间后再打开乙,水池注满水后关闭甲,同时打开丙.按此关系可知甲的水流量大于乙.【解答】解:由题意可得,甲是注水管,乙、丙是排水管,由“先打开甲,一段时间后再打开乙,水池注满水后关闭甲”,可得,甲>乙,否则是不会注满水的.故选C.【点评】此题主要考查学生的读图获取信息的能力,要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.4.如图1,在直角梯形ABCD中,动点P从点B出发,沿BC,CD运动至点D停止.设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图2所示,则△BCD的面积是()A.3 B.4 C.5 D.6【考点】动点问题的函数图象.【专题】压轴题;动点型.【分析】正确理解函数图象横纵坐标表示的意义.【解答】解:动点P从直角梯形ABCD的直角顶点B出发,沿BC,CD的顺序运动,则△ABP面积y 在BC段随x的增大而增大;在CD段,△ABP的底边不变,高不变,因而面积y不变化.由图2可以得到:BC=2,CD=3,△BCD 的面积是=3.故选A.【点评】理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.5.如图,点G,D,C在直线a上,点E,F,A,B在直线b上,若a∥b,Rt△GEF从如图所示的位置出发,沿直线b向右匀速运动,直到EG与BC重合.运动过程中△GEF与矩形ABCD重合部分的面积(S)随时间(t)变化的图象大致是()A.B.C.D.【考点】动点问题的函数图象.【专题】压轴题;动点型;图表型.【分析】理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.【解答】解:根据题意可得:①F、A重合之前没有重叠面积,②F、A重叠之后到E与A重叠前,设AE=a,EF被重叠部分的长度为(t﹣a),则重叠部分面积为S=(t﹣a)•(t﹣a)tan∠EFG=(t﹣a)2tan∠EFG,∴是二次函数图象;③△EFG完全进入且F与B重合之前,重叠部分的面积是三角形的面积,不变,④F与B重合之后,重叠部分的面积等于S=S△EFG﹣(t﹣a)2tan∠EFG,符合二次函数图象,直至最后重叠部分的面积为0.综上所述,只有B选项图形符合.故选:B.【点评】本题考查动点问题的函数图象,学会分段讨论是解题的关键,需要构建函数解决问题,属于中考常考题型.6.已知整数x满足﹣5≤x≤5,y1=x+1,y2=﹣2x+4,对任意一个x,m都取y1,y2中的较小值,则m 的最大值是()A.1 B.2 C.24 D.﹣9【考点】一次函数与一元一次不等式.【专题】计算题;压轴题;数形结合.【分析】联立两个函数的解析式,可求得两函数的交点坐标为(1,2),在﹣5≤x≤5的X围内;由于m总取y1,y2中的较小值,且两个函数的图象一个y随x的增大而增大,另一个y随x的增大而减小;因此当m最大时,y1、y2的值最接近,即当x=1时,m的值最大,因此m的最大值为m=2.【解答】解:联立两函数的解析式,得:,解得;即两函数图象交点为(1,2),在﹣5≤x≤5的X围内;由于y1的函数值随x的增大而增大,y2的函数值随x的增大而减小;因此当x=1时,m值最大,即m=2.故选B.【点评】本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确的确定出x的值,是解答本题的关键.二、填空题7.已知关于x,y的一次函数y=(m﹣1)x﹣2的图象经过平面直角坐标系中的第一、三、四象限,那么m的取值X围是m>1 .【考点】一次函数图象与系数的关系.【专题】计算题.【分析】根据题意得m﹣1>0,然后解不等即可得到m的取值X围.【解答】解:∵y=(m﹣1)x﹣2的图象经过平面直角坐标系中的第一、三、四象限,∴m﹣1>0,∴m>1.故填空答案:m>1.【点评】此题主要考查了一次函数图象与系数的关系,要求学生能够根据k,b的符号正确判断直线所经过的象限.8.如图,正方形ABCD的边长为10,点E在CB的延长线上,EB=10,点P在边CD上运动(C,D两点除外),EP与AB相交于点F,若CP=x,四边形FBCP的面积为y,则y关于x的函数关系式是y=(0<x<10).【考点】三角形中位线定理;根据实际问题列一次函数关系式;梯形.【专题】压轴题;动点型.【分析】BF是△ECP的中位线,四边形FBCP为梯形,根据公式求解.【解答】解:∵正方形ABCD的边长为10,CP=x,EB=10∴BF是ECP的中位线,∴BF=CP=x∵AB∥CD∴四边形FBCP是梯形,S梯形FBCP=(BF+CP)•BC=•×10=即y=(0<x<10).故答案为:y=(0<x<10).【点评】本题很简单,只要熟知三角形的中位线定理及梯形的面积公式即可解答.9.如图,已知一次函数y=x+1的图象与反比例函数的图象在第一象限相交于点A,与x轴相交于点C,AB⊥x轴于点B,△AOB的面积为1,则AC的长为(保留根号).【考点】反比例函数与一次函数的交点问题;反比例函数系数k的几何意义;勾股定理.【专题】压轴题.【分析】由于△AOB的面积为1,根据反比例函数的比例系数k的几何意义可知k=2,解由y=x+1与联立起来的方程组,得出A点坐标,又易求点C的坐标,从而利用勾股定理求出AC的长.【解答】解:∵点A在反比例函数的图象上,AB⊥x轴于点B,△AOB的面积为1,∴k=2.解方程组,得,.∴A(1,2);在y=x+1中,令y=0,得x=﹣1.∴C(﹣1,0).∴AB=2,BC=2,∴AC==2.【点评】本题考查函数图象交点坐标的求法及反比例函数的比例系数k与其图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=|k|.10.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置,点A1,A2,A3和点C1,C2,C3,…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B2014的坐标是(22014﹣1,22013).【考点】一次函数图象上点的坐标特征;正方形的性质.【专题】规律型.【分析】首先求得直线的解析式,分别求得B1,B2,B3…的坐标,可以得到一定的规律,据此即可求解.【解答】解:∵B1的坐标为(1,1),点B2的坐标为(3,2),∴正方形A1B1C1O1边长为1,正方形A2B2C2C1边长为2,∴A1的坐标是(0,1),A2的坐标是:(1,2),代入y=kx+b得,解得:.则直线的解析式是:y=x+1.∵点B1的坐标为(1,1),点B2的坐标为(3,2),∴点B3的坐标为(7,4),…,∴Bn的横坐标是:2n﹣1,纵坐标是:2n﹣1.B n的坐标是(2n﹣1,2n﹣1)∴B2014的坐标是(22014﹣1,22013).故答案为:(22014﹣1,22013).【点评】此题考查的是一次函数图象上点的坐标特点及用待定系数法求函数解析式和坐标的变化规律,正确得到点的坐标的规律是解题的关键.三、解答题11.由于国家重点扶持节能环保产业,某种节能产品的销售市场逐渐回暖,某经销商销售这种产品,年初与生产厂家签订了一份进货合同,约定一年内进价为0.1万元/台,并预付了5万元押金.他计划一年内要达到一定的销售量,且完成此销售量所用的进货总金额加上押金控制在不低于34万元,但不高于40万元.若一年内该产品的售价y(万元/台)与月次x(1≤x≤12且为整数)满足关系式:y=,一年后发现实际每月的销售量p(台)与月次x之间存在如图所示的变化趋势.(1)直接写出实际每月的销售量p(台)与月次x之间的函数关系式;(2)求前三个月中每月的实际销售利润w(万元)与月次x之间的函数关系式;(3)试判断全年哪一个月的售价最高,并指出最高售价;(4)请通过计算说明他这一年是否完成了年初计划的销售量.【考点】二次函数的应用;一次函数的应用.【专题】压轴题.【分析】(1)要根据自变量的不同取值X围,运用待定系数法分段计算出p与x的函数关系式;(2)可根据实际销售利润=单件的利润×销售的数量,然后根据题目中给出的售价与月次的函数式以及(1)中销售量与月次的关系式,得出实际销售利润与月次的函数关系式;(3)要根据自变量的不同的取值X围分别进行讨论,然后找出最高售价;(4)可根据“完成此销售量所用的进货总金额加上押金控制在不低于34万元,但不高于40万元”作为判断依据来计算出它能否完成年初的销售计划.【解答】解:(1)由题意得:;+0.25﹣0.1)(﹣5x+40)=(x﹣3)(x﹣8)=即w与x间的函数关系式w=;(3)①当1≤x<+∴x=1时,y最大②当4≤x≤6时,y=0.1万元,保持不变③当6<x≤+∴x=12时,y最大×12+综合得:全年1月份售价最高,最高为0.2万元/台;(4)设全年计划销售量为a台,则:34≤+5≤40解得:290≤a≤350∵全年的实际销售量为:35+30+25+20+22+24+26+28+30+32+34+36=342(台)>290台∴这一年他完成了年初计划的销售量.【点评】本题是利用一次函数的有关知识解答实际应用题,由此看来一次函数是常用的解答实际问题的数学模型,是中考的常见题型.借助函数图象表达题目中的信息,读懂图象是关键.12.如图①是某公共汽车线路收支差额y(票价总收人减去运营成本)与乘客量x的函数图象.目前这条线路亏损,为了扭亏,有关部门举行提高票价的听证会.乘客代表认为:公交公司应节约能源,改善管理,降低运营成本,以此举实现扭亏.公交公司认为:运营成本难以下降,公司己尽力,提高票价才能扭亏.根据这两种意见,可以把图①分别改画成图②和图③,(1)说明图①中点A和点B的实际意义;(2)你认为图②和图③两个图象中,反映乘客意见的是 3 ,反映公交公司意见的是 2 .(3)如果公交公司采用适当提高票价又减少成本的办法实现扭亏为赢,请你在图④中画出符合这种办法的y与x的大致函数关系图象.【考点】一次函数的应用.【专题】压轴题.【分析】(1)读题看图两结合,从中获取信息做出判断.点A表示这条线路的运营成本为1万元;点B表示乘客数达1.5万人时,这条线路的收支达到平衡;(2)结合点的意义可知反映乘客意见的是③,反映公交公司意见的是②;(3)将图④中的射线AB绕点A逆时针适当旋转且向上平移即可得到符合题意的直线.【解答】解:(1)点A表示这条线路的运营成本为1万元;点B表示乘客数达1.5万人时,这条线路的收支达到平衡;(2)反映乘客意见的是图③;反映公交公司意见的是图②;(3)将图④中的射线AB绕点A逆时针适当旋转且向上平移.(平移距离和旋转角不可太大,点A 平移到x轴或其上方,不给分).【点评】本题有着浓厚的时代气息,题意与人们的日常出行密切相关,关键是能否正确理解题意,读取信息,作出正确解答.13.某车站客流量大,旅客往往需长时间排队等候购票.经调查统计发现,每天开始售票时,约有300名旅客排队等候购票,同时有新的旅客不断进入售票厅排队等候购票,新增购票人数y(人)与售票时间x(分)的函数关系如图①所示;每个售票窗口票数y(人)与售票时间x(分)的函数关系如图②所示.某天售票厅排队等候购票的人数y(人)与售票时间x(分)的函数关系如图③所示,已知售票的前a分钟开放了两个售票窗口.(1)求a的值;(2)求售票到第60分钟时,售票厅排队等候购票的旅客人数;(3)该车站在学习实践科学发展观的活动中,本着“以人为本,方便旅客”的宗旨,决定增设售票窗口.若要在开始售票后半小时内让所有排队购票的旅客都能购到票,以便后来到站的旅客能随到随购,请你帮助计算,至少需同时开放几个售票窗口?【考点】一次函数的应用.【专题】压轴题.【分析】这是个动态问题,比较复杂,需从新增人数和售出票数两个方面同时考虑.(1)a分钟新增4a人,两个窗口售出2×3aX票,此时窗口有240人,据此得方程求解;(2)运用待定系数法求直线解析式,求x=60时的函数值;(3)根据题意列不等式求解.【解答】解:(1)由图①②可知,每分钟新增购票人数4人,每个售票窗口每分钟售票3人,则:300+4×a﹣3×2×a=240解这个方程,得a=30.(2)设第30﹣78分钟时,售票厅排队等候购票的人数y与售票时间x的函数关系式y=kx+b,则30k+b=240;78k+b=0.解得k=﹣5,b=390.∴y=﹣5x+390.当x=60时,y=﹣5×60+390=90.因此,售票到第60分钟时,售票厅排队等候购票的旅客有90人.(3)设至少同时开放n个售票窗口,依题意得:300+30×4≤30×3×n解得n≥.因此至少同时开放5个售票窗口.【点评】本题是函数与实际问题的综合应用大题,要注意函数图象的运用及方程、不等式的联合运用.14.某公司装修需用A型板材240块、B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm的标准板材.一X标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(如图是裁法一的裁剪示意图)裁法一裁法二裁法三A型板材块数 1 2 0B型板材块数 2 m n设所购的标准板材全部裁完,其中按裁法一裁xX、按裁法二裁yX、按裁法三裁zX,且所裁出的A、B两种型号的板材刚好够用.(1)上表中,m= 0 ,n= 3 ;(2)分别求出y与x和z与x的函数关系式;(3)若用Q表示所购标准板材的X数,求Q与x的函数关系式,并指出当x取何值时Q最小,此时按三种裁法各裁标准板材多少X?【考点】多元一次方程组.【专题】压轴题.【分析】(1)按裁法二裁剪时,2块A型板材块的长为120cm,150﹣120=30,所以无法裁出B型板,按裁法三裁剪时,3块B型板材块的长为120cm,120<150,而4块块B型板材块的长为160cm>150所以无法裁出4块B型板;(2)由题意得:共需用A型板材240块、B型板材180块,又因为满足x+2y=240,2x+3z=180,然后整理即可求出解析式;(3)由题意,得Q=x+y+z=x+120﹣x+60﹣x和,[注:事实上,0≤x≤90且x是6的整数倍].由一次函数的性质可知,当x=90时,Q最小.此时按三种裁法分别裁90X、75X、0X.【解答】解:(1)按裁法二裁剪时,2块A型板材块的长为120cm,150﹣120=30,所以无法裁出B 型板,按裁法三裁剪时,3块B型板材块的长为120cm,120<150,而4块块B型板材块的长为160cm>150cm,所以无法裁出4块B型板;∴m=0,n=3;(2)由题意得:共需用A型板材240块、B型板材180块,又∵满足x+2y=240,2x+3z=180,∴整理即可求出解析式为:y=120﹣x,z=60﹣x;(3)由题意,得Q=x+y+z=x+120﹣x+60﹣x.整理,得Q=180﹣x.由题意,得解得x≤90.[注:事实上,0≤x≤90且x是6的整数倍]由一次函数的性质可知,当x=90时,Q最小.由(2)知,y=120﹣x=120﹣×90=75,z=60﹣x=60﹣×90=0;故此时按三种裁法分别裁90X、75X、0X.【点评】本题重点考查了一次函数图象和实际应用相结合的问题,在做题时要明确所裁出A型板材和B型板材的总长度不能超过150cm.15.如图,已知直线l1的解析式为y=3x+6,直线l1与x轴,y轴分别相交于A,B两点,直线l2经过B,C两点,点C的坐标为(8,0),又已知点P在x轴上从点A向点C移动,点Q在直线l2从点C向点B移动.点P,Q同时出发,且移动的速度都为每秒1个单位长度,设移动时间为t秒(1<t <10).(1)求直线l2的解析式;(2)设△PCQ的面积为S,请求出S关于t的函数关系式;(3)试探究:当t为何值时,△PCQ为等腰三角形?【考点】二次函数综合题;一次函数综合题.【专题】压轴题.【分析】(1)因为l1过点B,所以代入直线l1的解析式求得点B的坐标,又因为直线l2经过B,C 两点,所以将点B、C的坐标代入直线y=kx+b(k≠0),列方程组即可求得;(2)过Q作QD⊥x轴于D,则△CQD∽△CBO,得出,由题意,知OA=2,OB=6,OC=8,BC==10,得出,故QD=t,即可求得函数解析式;(3)要想使△PCQ为等腰三角形,需满足CP=CQ,或QC=QP,或PC=PQ.【解答】解:(1)由题意,知B(0,6),C(8,0),设直线l2的解析式为y=kx+b(k≠0),则,解得k=﹣,b=6,则l2的解析式为y=﹣x+6;(2)解法一:如图,过P作PD⊥l2于D,∵∠PDC=∠BOC=90°,∠DCP=∠OCB∴△PDC∽△BOC∴由题意,知OA=2,OB=6,OC=8∴BC==10,PC=10﹣t∴=,∴PD=(10﹣t)∴S△PCQ=CQ•PD=t•(10﹣t)=﹣t2+3t;解法二:如图,过Q作QD⊥x轴于D,∵∠QDC=∠BOC=90°,∠QCD=∠BCO∴△CQD∽△CBO∴由题意,知OA=2,OB=6,OC=8∴BC==10∴∴QD=t∴S△PCQ=PC•QD=(10﹣t)•t=﹣t2+3t;(3)∵PC=10﹣t,CQ=t,要想使△PCQ为等腰三角形,需满足CP=CQ,或QC=QP,或PC=PQ,∴当CP=CQ时,由题10﹣t=t,得t=5(秒);当QC=QP时, =,即=解得t=(秒);当PC=PQ时, =,即=,解得t=(秒);即t=5或或.【点评】此题考查了一次函数与三角形的综合知识,要注意待定系数法的应用,要注意数形结合思想的应用.。
宜昌市中考数学 易错压轴选择题精选:一次函数选择题专题练习(含答案)
宜昌市中考数学易错压轴选择题精选:一次函数选择题专题练习(含答案)一、易错压轴选择题精选:一次函数选择题1.今天早晨上7点整,小华以50米/分的速度步行去上学,妈妈同时骑自行车向相反的方向去上班,10分钟时按到小华的电话,立即原速返回并前往学校,恰与小华同时到达学校他们离家的距离y(米)与时间x(分)间的函数关系如图所示,有如下的结论:①妈妈骑骑自行车的速度为250米/分;②小华家到学校的距离是1250米;③小华今早晨上学从家到学校的时间为25分钟:④在7点16分40秒时妈妈与小华在学校相遇.其中正确的结论有()A.1个B.2个C.3个D.4个2.已知直线y1=kx+1(k<0)与直线y2=mx(m>0)的交点坐标为(12,12m),则不等式组mx﹣2<kx+1<mx的解集为()A.x>12B.12<x<32C.x<32D.0<x<323.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC 扫过的面积为()A .4B .8C .16D .824.小明家、食堂、图书馆依次在同一条直线上,小明从家去食堂吃早餐,接着云图书馆读报,然后回家.如图反映了这个过程,小明离家的距离与时间之间的对应关系,下列说法错误的是( )A .小明从家到食堂用了8minB .小明家离食堂0.6km ,食堂离图书馆0.2km C .小明吃早餐用了30min ,读报用了17min D .小明从图书馆回家的平均速度为0.08km/min5.张师傅驾车从甲地到乙地、两地距500千米,汽车出发前油箱有25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶.已知油箱中剩余油量y (升)与行驶时间t (小时)之间的关系如图,以下四种说法:①加油前油箱中剩余油量y(升)与行驶时间t (小时)的外函数关系是825y t =-+;②途中加油21升;③汽车加油后还可行驶4小时;④汽车到达乙地时油箱中还余油6升.其中正确的个数是( )A .1个B .2个C .3个D .4个6.直线1:l y kx a =+如图所示,则下列关于直线2:2l y ax a =+的说法错误的是( )A .直线2l 一定经过点(2,0)-B .直线2l 经过第一、二、三象限C .直线2l 与坐标轴围成的三角形的面积为2D .直线2l 与直线3:2l y ax a =-+关于y 轴对称7.小元步行从家去火车站,走到 6 分钟时,以同样的速度回家取物品,然后从家乘出租车赶往火车站,结果比预计步行时间提前了3 分钟.小元离家路程S(米)与时间t(分钟)之间的函数图象如图,从家到火车站路程是( )A .1300 米B .1400 米C .1600 米D .1500 米8.一次函数y kx b =+的图象如图所示,则下列说法:①0kb >;②若点(2,)A m -与(3,)B n 都在直线y kx b =+上,则m n >;③当0x >时,y b >.其中正确的说法是( )A .①②B .①③C .②③D .①②③9.下列各图象中,y 不是..x 的函数的是( )A .B .C .D .10.若点()1,2A 和点()4,B m 在直线2y x n =-+上,则m 的值为 ( )A .8B .4C .-4D .不是唯一的11.如图1,点P 从△ABC 的顶点A 出发,沿A ﹣B ﹣C 匀速运动,到点C 停止运动.点P 运动时,线段AP 的长度y 与运动时间x 的函数关系如图2所示,其中D 为曲线部分的最低点,则△ABC 的面积是( )A .10B .12C .20D .24 12.已知一次函数y kx b =+,当31x -≤≤时,对应y 的取值范围是19y ≤≤,则k b ⋅的值为( )A .14B .6-C .6-或21D .6-或1413.若某正比例函数过(2,3)-,则关于此函数的叙述不.正确的是( ). A .函数值随自变量x 的增大而增大B .函数值随自变量x 的增大而减小C .函数图象关于原点对称D .函数图象过二、四象限14.如图,△ABC 的顶点坐标分别为A(1,0),B(4,0),C(1,4),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为( )A .4B .8C .2D .1615.一次函数y mx n =-+22()m n n -的结果是( )A .mB .m -C .2m n -D .2m n -16.两个一次函数1y ax b 与2y bx a ,它们在同一直角坐标系中的图象可能是( ) A . B .C .D .17.在平面直角坐标系中,将函数3y x =的图象向上平移6个单位长度,则平移后的图象与x 轴的交点坐标为( )A .(2,0)B .(-2,0)C .(6,0)D .(-6,0)18.如图1,已知在四边形ABCD 中,//AB CD ,=90B ∠︒,AC AD =,动点P 从点B 出发沿折线B →A →D →C 的方向以1个单位/秒的速度匀速运动,整个运动过程中,△BCP 的面积S 与运动时间t (秒)的函数关系如图2所示,则AD 的长为( )A .5B .34C .8D .2319.如图所示的计算程序中,y 与x 之间的函数关系所对应的图象应为( )A .B .C .D .20.如图是一次函数1y kx b =+与2y x a =+的图象,则不等式kx b x a ++<的解集是( )A .0x >B .0x <C .3x >D .3x <21.如图,过点1(1,0)A 作x 轴的垂线,交直线2y x =于点1B ;点2A 与点O 关于直线11A B 对称;过点2(2,0)A 作x 轴的垂线,交直线2y x =于点2B ;点3A 与点O 关于直线22A B 对称;过点3A 作x 轴的垂线,交直线2y x =于点3B ;按3B 此规律作下去,则点n B 的坐标为( )A .(2n ,2n-1)B .(12n -,2n )C .(2n+1,2n )D .(2n ,12n +) 22.将直线y=-2x 向上平移后得到直线AB ,直线AB 经过点(1,4),则直线AB 的函数表达式为( )A .y=2x+2B .y=2x-6C .y=-2x+3D .y=-2x+623.甲、乙两车从A 城出发匀速行驶至B 城.在整个行驶过程中,甲、乙两车离A 城的距离y (千米)与甲车行驶的时间t (小时)之间的函数关系如图所示.则下列结论:①,A B 两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,51544t =或 其中正确的结论有( )A .1个B .2个C .3个D .4个24.如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h 与注水时间t 之间的函数关系图象可能是( )A .B .C .D .25.一次函数y =kx -(2-b)的图像如图所示,则k 和b 的取值范围是( )A .k>0,b>2B .k>0,b<2C .k<0,b>2D .k<0,b<2 26.在一次函数y =kx +1中,若y 随x 的增大而增大,则它的图象不经过第( )象限A .四B .三C .二D .一 27.已知:一次函数1y kx =-的图像经过点A (1x ,1)和点B (2x ,-3)且1x <2x ,则它的图像大致是( ).A .B .C .D .28.如图①,点P 为矩形ABCD 边上一个动点,运动路线是A →B →C →D →A ,设点P 运动的路径长为x ,S △ABP =y ,图②是y 随x 变化的函数图象,则矩形对角线AC 的长是( )A .25B .6C .12D .2429.已知,y 与()1x -成正比例,且比例系数为2,则当6y =时,x 的值为( ) A .2 B .3 C .4 D .630.在平面直角坐标系中,解析式为31y x =+的直线a ,解析式为33y x =的直线b ,如图所示,直线a 交y 轴于点A ,以OA 为边作一个等边三角形OAB ∆,过点B 作y 轴的平行线交直线a 于点1A ,以1A B 为第二个等边三角形11A BB ∆,…顺次这样做下去,第2020个等边三角形的边长是( )A .20192B .20202C .4038D .4040【参考答案】***试卷处理标记,请不要删除一、易错压轴选择题精选:一次函数选择题1.C【分析】①由函数图象可以求出妈妈骑车的速度是250米/分;②设妈妈到家后追上小华的时间为x 分钟,就可以求出小华家到学校的距离; ③由②结论就可以求出小华到校的时间;④由③的结论就可以求出相遇的时间.【详解】解:①由题意,得妈妈骑车的速度为:2500÷10=250米/分;②设妈妈到家后追上小华的时间为x分钟,由题意,得250x=50(20+x),解得:x=5.∴小华家到学校的距离是:250×5=1250米.③小华今天早晨上学从家到学校的时间为1250÷50=25分钟,④由③可知在7点25分时妈妈与小华在学校相遇.∴正确的有:①②③共3个.故选:C.【点睛】本题考查了追击问题的数量关系的运用,路程÷速度=时间的关系的运用,解答时认真分析函数图象的意义是关键.2.B【分析】由mx﹣2<(m﹣2)x+1,即可得到x<32;由(m﹣2)x+1<mx,即可得到x>12,进而得出不等式组mx﹣2<kx+1<mx的解集为12<x<32.【详解】把(12,12m)代入y1=kx+1,可得1 2m=12k+1,解得k=m﹣2,∴y1=(m﹣2)x+1,令y3=mx﹣2,则当y3<y1时,mx﹣2<(m﹣2)x+1,解得x<32;当kx+1<mx时,(m﹣2)x+1<mx,解得x>12,∴不等式组mx﹣2<kx+1<mx的解集为12<x<32,故选B.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.3.C【解析】试题分析:∵点A、B的坐标分别为(1,0)、(4,0),∴AB=3,BC=5,∵∠CAB=90°,∴AC=4,∴点C的坐标为(1,4),当点C落在直线y=2x﹣6上时,∴令y=4,得到4=2x ﹣6,解得x=5,∴平移的距离为5﹣1=4,∴线段BC扫过的面积为4×4=16,故选C.考点:1.一次函数综合题;2.一次函数图象上点的坐标特征;3.平行四边形的性质;4.平移的性质.4.C【分析】根据题意,分析图象,结合简单计算,可以得到答案.【详解】解:根据图象可知:A. 小明从家到食堂用了8min,故A选项说法正确;B. 小明家离食堂0.6km,食堂离图书馆0.8-0.6=0.2(km),故B选项说法正确;C. 小明吃早餐用了25-8=17(min),读报用了58-28=30(min),故C选项错误;D. 小明从图书馆回家的平均速度为0.8÷(68-58=)0.08(km/min),故D选项正确.故选C.【点睛】本题考核知识点:函数的图形.重点:分析函数图象,得到相关信息,并进行简单运算. 5.C【分析】根据题意首先利用待定系数法求出函数解析式,进而利用图象求出耗油量以及行驶时间进行分析判断即可.【详解】解:①由题意得,图象过(0,25)(2,9),设加油前油箱中剩余油量y(升)与行驶时间t(小时)的函数关系是:y=kt+b,∴2529bk b⎧⎨⎩+==,解得825kb⎧⎨⎩-==,∴加油前油箱中剩余油量y(升)与行驶时间t(小时)的函数关系是:y=-8t+25,故①正确;②途中加油30-9=21(升),故②正确;③∵汽车耗油量为:(25-9)÷2=8升/小时,∴30÷8=3.75,∴汽车加油后还可行驶3.75小时,故③错误;④∵从甲地到乙地,两地相距500千米,加油前、后汽车都以100千米/小时的速度匀速行驶,∴需要:500÷100=5(小时)到达,∴汽车到达乙地时油箱中还余油30-8×(5-2)=6(升),故④正确;综上①②④正确.故选:C .【点睛】本题主要考查一函数应用以及待定系数法求一次函数解析式等知识,根据已知图象获取正确信息是解题的关键.6.C【分析】取2x =-,代入计算2y ax a =+求得y 值,可判断A ;由直线1l 可得到0a >,推出直线2l 所经过的象限,即可判断B ;求得直线2l 与坐标轴围成的面积,可判断C ;分别求得直线2l 和直线3l 与与坐标轴的交点坐标,即可判断D .【详解】A 、当2x =-时,220y a a =-+=,所以直线2l 一定经过点(-2,0),选项A 正确;B 、由直线1l 的图象知:0a >,则直线2l 经过第一、二、三象限,选项B 正确;C 、直线2l 与x 轴相交于点(-2,0),与y 轴相交于点(0,2a ),则直线2l 与坐标轴围成的三角形的面积为12222a a ⨯⨯=,选项C 错误,符合题意; D 、直线2l 与x 轴相交于点(-2,0),与y 轴相交于点(0,2a ),直线3l 与x 轴相交于点(2,0),与y 轴相交于点(0,2a ),而点(-2,0)与点(2,0)关于y 轴对称,则直线2l 与直线3l 关于y 轴对称,选项D 正确;故选:C .【点睛】本题主要考查了一次函数的图象和性质,一次函数的图象与坐标轴围成的三角形的面积,一次函数图象与几何变换,熟练掌握一次函数图象与性质是解题的关键.7.C【分析】根据图象求出小元步行的速度和出租车的速度,设家到火车站路程是x 米,然后根据题意,列一元一次方程即可.【详解】解:由图象可知:小元步行6分钟走了480米∴小元步行的速度为480÷6=80(米/分)∵以同样的速度回家取物品,∴小元回家也用了6分钟∴小元乘出租车(16-6-6)分钟走了1280米∴出租车的速度为1280÷(16-6-6)=320(米/分)设家到火车站路程是x 米 由题意可知:62380320x x -=⨯+ 解得:x=1600故选C .【点睛】 此题考查的是函数的图象和一元一次方程的应用,掌握函数图象的意义和实际问题中的等量关系是解决此题的关键.8.B【分析】由图象经过第一,二,三象限,可得k >0,b>0,可判断A ①,根据增减性,可判断②,由图象可直接判断③【详解】解:∵图象过第一,第二,第三象限,∴k >0,b>0,∴0kb >,①正确, y 随x 增大而增大,∵-2<3∴m <n ,②错误,又∵一次函数y kx b =+的图象与y 轴交于点(0,b ), 当0x >时,图像在第一象限,都在点(0,b )的上方,又是增函数,∴这部分图像的纵坐标y>b ,③正确,故①③正确故选:B .【点睛】本题考查一次函数图象上点的坐标特征,一次函数图象的性质,解题关键是灵活运用一次函数图象的性质.9.B【分析】对于自变量x 的每一个确定的值y 都有唯一的确定值与其对应,则y 是x 的函数,根据函数的定义解答即可.【详解】根据函数的定义,选项A 、C 、D 图象表示y 是x 的函数,B 图象中对于x 的一个值y 有两个值对应,故B 中y 不是x 的函数,故选:B .【点睛】此题考查函数的定义,函数图象,结合函数图象正确理解函数的定义是解题的关键. 10.C【分析】把点A的坐标代入直线解析式求出n的值,再把点B的坐标代入解析式即可求出m的值.【详解】解:∵点A(1,2)在直线y=-2x+n上,∴-2×1+n=2,解得n=4,∴直线的解析式为y=-2x+4,∵点B(4,m)在直线上,∴-2×4+4=m,解得:m=-4.故选C.【点睛】本题主要考查了一次函数图象上点的坐标特征,已知点在直线上,将点的坐标代入解析式是解决此题的关键.11.B【解析】过点A作AM⊥BC于点M,由题意可知当点P运动到点M时,AP最小,此时长为4,观察图象可知AB=AC=5,∴BM=22AB AM-=3,∴BC=2BM=6,∴S△ABC=1BC?AM2=12,故选B.【点睛】本题考查了动点问题的函数图象,根据已知和图象能确定出AB、AC的长,以及点P运动到与BC垂直时最短是解题的关键.12.D【分析】一次函数可能是增函数也可能是减函数,应分两种情况进行讨论,根据待定系数法求出解析式即可.【详解】解:由一次函数性质知,当k>0时,y随x的增大而增大,所以得319k bk b-+=⎧⎨+=⎩,解得27 kb=⎧⎨=⎩,即kb=14;当k<0时,y 随x 的增大而减小,所以得391k b k b -+=⎧⎨+=⎩, 解得23k b =-⎧⎨=⎩, 即kb=-6.∴k b ⋅的值为6-或14.故选D .【点睛】此题考查一次函数的性质,要注意根据一次函数图象的性质解答.13.A【详解】解:设正比例函数解析式(0)y kx k =≠,∵正比例函数过(2,3)-,∴32k -=, ∴32k =-, ∴正比例函数解析式为32y x =-, ∵302k =-<, ∴图象过二、四象限,函数值随自变量x 增大而减小,图象关于原点对称,∴四个选项中,只有A 选项中的不正确,其余三个选项中的结论都是正确的. 故选A .14.D【解析】试题解析:如图所示,当△ABC 向右平移到△DEF 位置时,四边形BCFE 为平行四边形,C 点与F 点重合,此时C 在直线y=2x-6上,∵C (1,4),∴FD=CA=4,将y=4代入y=2x-6中得:x=5,即OD=5,∵A (1,0),即OA=1,∴AD=CF=OD-OA=5-1=4,则线段BC 扫过的面积S=S 平行四边形BCFE =CF•FD=16.故选D .15.D【分析】根据题意可得﹣m <0,n <0,再进行化简即可.【详解】∵一次函数y =﹣mx +n 的图象经过第二、三、四象限,∴﹣m <0,n <0,即m >0,n <0,=|m ﹣n |+|n |=m ﹣n ﹣n=m ﹣2n ,故选D .【点睛】本题考查了二次根式的性质与化简以及一次函数的图象与系数的关系,熟练掌握一次函数的图象与性质是解题的关键.16.C【分析】根据函数图象判断a 、b 的符号,两个函数的图象符号相同即是正确,否则不正确.【详解】A 、若a>0,b<0,1y 符合,2y 不符合,故不符合题意;B 、若a>0,b>0,1y 符合,2y 不符合,故不符合题意;C 、若a>0,b<0,1y 符合,2y 符合,故符合题意;D 、若a<0,b>0,1y 符合,2y 不符合,故不符合题意;故选:C.【点睛】此题考查一次函数的性质,能根据一次函数的解析式y=kx+b 中k 、b 的符号判断函数图象所经过的象限,当k>0时函数图象过一、三象限,k<0时函数图象过二、四象限;当b>0时与y 轴正半轴相交,b<0时与y 轴负半轴相交.17.B【分析】先求出平移后的解析式,继而令y=0,可得关于x 的方程,解方程即可求得答案.【详解】根据函数图象平移规律,可知3y x =向上平移6个单位后得函数解析式应为36y x =+,此时与x 轴相交,则0y =,∴360x +=,即2x =-,∴点坐标为(-2,0),故选B.【点睛】本题考查了一次函数图象的平移,一次函数图象与坐标轴的交点坐标,先出平移后的解析式是解题的关键.18.B【分析】由题意可得当t =3时,点P 到达A 处,即AB =3,过点A 作AE ⊥CD 交CD 于点E ,则四边形ABCE 为矩形,根据等腰三角形的性质可求出CD 的长,当S =15时,点P 到达点D 处,进而可求出BC 的长,再根据勾股定理即可求出结果.【详解】解:当t =3时,点P 到达A 处,即AB =3;过点A 作AE ⊥CD 交CD 于点E ,则四边形ABCE 为矩形,∵AC =AD ,∴CD =2CE =2AB =6,当S =15时,点P 到达点D 处,则S =12CD •BC =12×6•BC =3×BC =15, ∴BC =5,由勾股定理得:AD =AC 223534+故选:B .【点睛】本题以动态的形式考查了矩形的判定和性质、勾股定理、函数的图象和等腰三角形的性质,具有一定的综合性,正确添加辅助线、读懂图象信息是解题的关键.19.A【分析】先求出一次函数的关系式,再根据函数图象与坐标轴的交点及函数图象的性质解答即可.【详解】解:由题意知,函数关系为一次函数y=-3x-6,由k=-3<0可知,y 随x 的增大而减小,且当x=0时,y=-6,当y=0时,x=-2.故选:A .本题考查学生对计算程序及函数性质的理解.根据计算程序可知此计算程序所反映的函数关系为一次函数y=-3x-6,然后根据一次函数的图象的性质求解.20.C【分析】根据函数图象可以直接判断本题的答案.【详解】解:结合图象,当3x >时,函数1y kx b =+在函数2y x a =+的下方,即不等式kx b x a ++<的解集是3x >;故选:C .【点睛】本题考查了一次函数与一元一次不等式:从函数图象的角度看,一元一次不等式的解集就是确定直线=+y kx b 在另一条直线(或者x 轴)上(或下)方部分所有点的横坐标的集合;这是数形结合的典型考查.21.B【分析】先根据题意求出点A 2的坐标,再根据点A 2的坐标求出B 2的坐标,以此类推总结规律便可求出点n B 的坐标.【详解】∵1(1,0)A∴11OA =∵过点1(1,0)A 作x 轴的垂线,交直线2y x =于点1B∴()11,2B∵2(2,0)A∴22OA =∵过点2(2,0)A 作x 轴的垂线,交直线2y x =于点2B∴()12,4B∵点3A 与点O 关于直线22A B 对称∴()()334,0,4,8A B以此类推便可求得点A n 的坐标为()12,0n -,点B n 的坐标为()12,2n n - 故答案为:B .【点睛】本题考查了坐标点的规律题,掌握坐标点的规律、轴对称的性质是解题的关键. 22.D设直线AB的解析式为y=kx+b,根据平移时k的值不变可得k=-2,把(1,4)代入即可求出b的值,即可得答案.【详解】设直线AB的解析式为y=kx+b,∵将直线y=-2x向上平移后得到直线AB,∴k=-2,∵直线AB经过点(1,4),∴-2+b=4,解得:b=6,∴直线AB的解析式为:y=-2x+6,故选:D.【点睛】本题考查了一次函数图象与几何变换,求直线平移后的解析式时要注意平移k值不变.23.B【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【详解】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且乙用时3小时,即比甲早到1小时,故①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(4,300)代入可得4300m nm n+=⎧⎨+=⎩,解得100100mn=⎧⎨=-⎩,∴y乙=100t-100,令y甲=y乙可得:60t=100t-100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,故③错误;令|y甲-y乙|=50,可得|60t-100t+100|=50,即|100-40t|=50,当100-40t=50时,可解得t=54,当100-40t=-50时,可解得t=154,令y甲=50,解得t=56,令y甲=250,解得t=256,∴当t=56时,y甲=50,此时乙还没出发,此时相距50千米,当t=256时,乙在B城,此时相距50千米,综上可知当t的值为54或154或56或256时,两车相距50千米,故④错误;综上可知正确的有①②共两个,故选:B.【点睛】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,学会构建一次函数,利用方程组求两个函数的交点坐标,属于中考常考题型.24.D【详解】开始一段时间内,乙不进行水,当甲的水到过连接处时,乙开始进水,此时水面开始上升,速度较快,水到达连接的地方,水面上升比较慢,最后水面持平后继续上升,故选D.25.B【分析】根据一次函数的图象经过一、三、四象限列出b的不等式,求出b及k的取值范围即可.【详解】∵一次函数y=kx-(2-b)的图象经过一、三、四象限,∴k>0,-(2-b)<0,解得b<2.故选B.【点睛】本题考查的是一次函数的性质,熟知一次函数的图象与系数的关系是解答此题的关键.26.A【分析】利用一次函数的性质得到k>0,则可判断直线y=kx+1经过第一、三象限,然后利用直线y=kx+1与y轴的交点为(0,1)可判断直线y=kx+1不经过第四象限.【详解】∵y=kx+1,y随x的增大而增大,∴k>0,∴直线y=kx+1经过第一、三象限,而直线y=kx+1与y轴的交点为(0,1),∴直线y=kx+1经过第一、二、三象限,不经过第四象限.故选A.【点睛】本题考查了一次函数的性质:对于一次函数y=kx+b,当k>0,y随x的增大而增大,函数从左到右上升;k <0,y 随x 的增大而减小,函数从左到右下降.27.B【分析】 结合题意,得12x k =,22x k-=;结合1x <2x ,根据不等式的性质,得k 0<;再结合1y kx =-与y 轴的交点,即可得到答案.【详解】∵一次函数1y kx =-的图像经过点A (1x ,1)和点B (2x ,-3)∴111kx =-,231kx -=- ∴12x k =,22x k-= ∵1x <2x ∴22k k-< ∴k 0< ∴选项A 和C 错误当0x =时,1y =-∴选项D 错误故选:B .【点睛】本题考查了一次函数、不等式的知识;解题的关键是熟练掌握一次函数图像和不等式的性质,从而完成求解.28.A【分析】根据题意易得AB+BC=6,当点P 运动到C 点时三角形ABP 的面积为4,故而可求出AB 、BC 的长,进而求出AC .【详解】解:由图像及题意可得:AB+BC=6,当点P 运动到C 点时三角形ABP 的面积为4,即1=42ABP S AB BC ⋅=,∴AB=2,BC=4,在Rt ABC 中,AC ==;故选A .【点睛】本题主要考查函数与几何,关键是根据图像得到动点的运动路程,然后利用勾股定理求解线段的长即可.29.C【分析】根据题意列出解析式,然后利用待定系数法求出y 与x 的解析式,取6y =时,求得x 的值即可.【详解】设()1y k x =-,由题意可知:2k =,∴函数关系式为:()21y x =-,当6y =时,()621x =-,解得:4x =,故选:C .【点睛】本题主要考查了待定系数法求函数解析式,关键是掌握待定系数法求函数解析式的方法. 30.A【分析】延长A 1B 交x 轴于D ,A 2B 1交x 轴于E ,根据等边三角形的性质得OA=OD ,A 1B=BB 1,A 2B 1=B 2B 1,直线OB 的解析式为33y x =,得出∠BOD=30°,由直线a :31y x =+得出第一个等边三角形边长为1,由30°角的性质得BD=12,由勾股定理得OD=32,把x=32代入y=3x+1求得A 1的纵坐标,即可求得第二个等边三角形的边长,…,按照此规律得到第三个、第四个等边三角形的边长,从而求得第2020个等边三角形的边长.【详解】解:延长A 1B 交x 轴于D ,A 2B 1交x 轴于E ,如图,∵△OAB 、△BA 1B 1、△B 1A 2B 2均为等边三角形,∴OA=OD ,A 1B=BB 1,A 2B 1=B 2B 1,∵直线OB 的解析式为y=33x , ∴∠BOD=30°,由直线a :3可知OA=1,∴OB=1,∴BD=12,∴把x+1得y=52,∴A1D=52,∴A1B=2,∴BB1=A1B=2,∴OB1=3,∴B1E=32,∴2,把得y=11 2,∴A2E=11 2,∴A2B1=4,同理得到A3B2=23,…,按照此规律得到第2020个等边三角形的边长为22019,故选A.【点睛】本题考查了图形类规律探究、一次函数图象上点的坐标特征、等边三角形的性质,含30°角的直角三角形的性质,以及勾股定理等知识,找出第n个等边三角形的边长为2n-1是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级中考数学一次函数压轴题专题练习
1、如图,直线l1:y=x+2与直线l2:y=kx+b相交于点(1,)
P m
(1)写出k、b满足的关系;
(2)如果直线l2:y=kx+b与两坐标轴围成一等腰直角三角形,试求直线l2的函数表达式;(3)在(2)的条件下,设直线?l与x轴相交于点A,点Q是x轴上一动点,求当APQ
是等腰三角形时的Q点的坐标.
2、如图,在平面直角坐标系中,直线l1:y=x+6与y轴交于点A,直线l2:y=kx+b与y
轴交于点B,与l1相交于C(﹣3,3),AO=2BO.
(1)求直线l2:y=kx+b的解析式;
(2)求△ABC的面积.
3、如图,已知直线11:21l y x =+与坐标轴交于A 、C 两点,直线22:2l y x =--与坐标轴交
于B 、D 两点,两直线的交点为P 点.
(1)求P 点的坐标;
(2)求APB ∆的面积;
(3)x 轴上存在点T ,使得ATP APB S S ∆∆=,求出此时点T 的坐标.
4、如图,已知直线y kx =+与x 轴、y 轴分别相交于点A 、
点B ,30BAO ∠=︒,若将AOB ∆沿直钱CD 折叠,使点A 与点B 重合,折痕CD 与x 轴交于点C ,与AB 交于点D .
(1)求k 的值;
(2)求点C 的坐标;
(3)求直线CD 的表达式.
5、如图,直线1l 的解析式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A 、B ,直
线1l 、2l 交于点C .
(1)求直线2l 的解析表达式;
(2)求ADC ∆的面积;
(3)在直线2l 上存在异于点C 的另一点P ,使得ADP ∆与ADC ∆的面积相等,请求出点P
的坐标.
6、如图,直线L :y =﹣x +2与x 轴、y 轴分别交于A 、B 两点,在y 轴上有一点C (0,4),动点M 从A 点以每秒1个单位的速度沿x 轴向左移动.
(1)求A 、B 两点的坐标;
(2)求△COM 的面积S 与M 的移动时间t 之间的函数关系式;
(3)当t 为何值时△COM ≌△AOB ,请直接写出此时t 值和M 点的坐标.
7、如图,点C 为y 轴正半轴上一点,点(2,2)P 在直线y x =上,PD PC =,且PD PC ⊥,过点D 作直线AB x ⊥轴于B ,直线AB 与直线y x =交于点A ,直线CD 与直线y x =交于点Q ,当CPA PDB ∠=∠时,求点Q 的坐标.
8、如图,一次函数y kx b =+的图象经过点A (2,6)-,与x 轴交于点B ,与正比例函数3y x =的图象交于点C ,点C 的横坐标为1.
(1)求AB 的函数表达式;
(2)若点D 在y 轴负半轴,且满足13
COD S ∆=BOC S ∆,求点D 的坐标.
9、如图,平面直角坐标系中,直线AB:y=﹣x+b交y轴于点A(0,1),交x轴于点B.过
点E(1,0)且垂直于x轴的直线DE交AB于点D,P是直线DE上一动点,且在点D 的上方,设P(1,n).
(1)求直线AB的解析式和点B的坐标;
(2)求△ABP的面积(用含n的代数式表示);
(3)当△ABP的面积为2时,以PB为边在第一象限作等腰直角三角形BPC,求出点C 的坐标.
10、如图,在平面直角坐标系xOy中,直线l1:y=kx+b与x轴交于点A(﹣6,0),与y 轴交于点B(0,4),与直线l2:y=x相交于点C.
(1)求直线l1的函数表达式;
(2)求△COB的面积;
(3)在x轴上是否存在一点P,使△POC是等腰三角形.若不存在,请说明理由;若存在,请直接写出点P的坐标.
11、如图,在平面直角坐标系中,直线l1:y=x与直线l2:y=kx+b相交于点A(a,3),
直线交l2交y轴于点B(0,﹣5)
(1)求直线l2的解析式;
(2)将△OAB沿直线l2翻折得到△CAB(其中点O的对应点为点C),求证AC∥OB;
(3)在直线BC下方以BC为边作等腰直角三角形BCP,直接写出点P的坐标.
12、如图,在平面直角坐标系xOy中,直线l1:y=x+2与x轴交于点A,直线l2:y=3x﹣6
与x轴交于点D,与l1相交于点C.
(1)求点D的坐标;
(2)在y轴上一点E,若S△ACE=S△ACD,求点E的坐标;
(3)直线l1上一点P(1,3),平面内一点F,若以A、P、F为顶点的三角形与△APD 全等,求点F的坐标.
13、如图,在平面直角坐标中,直角梯形OABC的边OC、OA分别在x轴、y轴上,//
AB OC,
-.
∠=︒,BC=C的坐标为(18,0)
BCO
AOC
90
∠=︒,45
(1)求点B的坐标;
(2)若直线DE交梯形对角线BO于点D,交y轴于点E,且4
∠=︒,求直
OE=,45
OFE
线DE的解析式;
(3)求点D的坐标.
14、如图,在平面直角坐标系中,过点(0,6)
A的直线AB与直线OC相交于点(2,4)
C动点P 沿路线O C B
→→运动.
(1)求直线AB的解析式;
(2)当OPB
∆的面积是OBC
∆的面积的1
4
时,求出这时点P的坐标;
(3)是否存在点P,使OBP
∆是直角三角形?若存在,直接写出点P的坐标,若不存在,请说明理由.
15、如图,一次函数
1
5
2
y x
=-+的图象
1
l分别与x轴,y轴交于A、B两点,正比例函数
的图象2l 与1l 交于点15(,)4
C m . (1)求m 的值及2l 的解析式;
(2)求得AOC BOC S S ∆∆-的值为 ;
(3)一次函数1y kx =+的图象为3l 且1l ,2l ,3l 可以围成三角形,直接写出k 的取值范围.
16、如图,在平面直角坐标系xOy 中,一次函数16y k x =+与x 轴、y 轴分别交于点A 、B 两点,与正比例函数2y k x =交于点(2,2)D
(1)求一次函数和正比例函数的表达式;
(2)若点P 为直线2y k x =上的一个动点(点P 不与点D 重合),点Q 在一次函数16
y k x =+的图象上,//PQ y 轴,当23PQ OA =时,求点p 的坐标.
和B0),且与y轴交
18、如图,在平面直角坐标系中,直线AB经过点A,3)
2
于点D,直线OC与AB交于点C,且点C
(1)求直线AB的解析式;
(2)连接OA,试判断AOD
∆的形状;
(3)动点P从点C出发沿线段CO以每秒1个单位长度的速度向终点O运动,运动时间为t 秒,同时动点Q从点O出发沿y轴的正半轴以相同的速度运动,当点Q到达点D时,P,Q 同时停止运动.设PQ与OA交于点M,当t为何值时,OPM
∆为等腰三角形?求出所有满足条件的t值.
11、在平面直角坐标系xOy 中,直线11:6l y k x =+与x 轴、y 轴分别交于A 、B 两点,且
OB ,直线22:l y k x b =+经过点C 1),与x 轴、y 轴、直线AB 分别交于点E 、F 、D 三点.
(1)求直线1l 的解析式;
(2)如图1,连接CB ,当CD AB ⊥时,求点D 的坐标和BCD ∆的面积;
(3)如图2,当点D 在直线AB 上运动时,在坐标轴上是否存在点Q ,使QCD ∆是以CD 为底边的等腰直角三角形?若存在,请直接写出点Q 的坐标,若不存在,请说明理由.。