第一章 工程材料的力学性能
工程材料的性能
布氏硬度操作
(3)表示方法 表示方法 例如: 例如: 120HBS10/1000/30 (4)特点: )特点: (5)适用范围:铸铁、 适用范围:铸铁、 适用范围 铸钢、 铸钢、非铁金属材 料及热 处理后钢材 毛坯或半成品. 毛坯或半成品
2.洛氏硬度(HR) 2.洛氏硬度(HR) 洛氏硬度 (1)测试原理 测试原理: (1)测试原理: (2)表示方法 表示方法: (2)表示方法: 硬度标尺:HRA、 硬度标尺:HRA、 HRB、 HRB、HRC C标尺最常用 特点: (3)特点: (4)适用范围 适用范围: (4)适用范围: 在批量的成品或半 成品质量检验中广泛 使用. 使用.
KⅠ≥KⅠc时 裂纹就会扩展而导致低应力脆断, 当 KⅠ≥KⅠc时,裂纹就会扩展而导致低应力脆断,此 式称为K判据。 式称为K判据。
K 2 ac = 1C ) ( Yσ
Y a
1.3 材料在动载荷作用下的力 学性能
动载荷是指突加的、冲击性的, 动载荷是指突加的、冲击性的,大小和方向随 时间而变化的载荷。 时间而变化的载荷。 材料在动载荷作用下的力学 性能,包括冲击韧度和疲劳强度。 性能,包括冲击韧度和疲劳强度。
屈服点σ 和屈服强度σ (3) 屈服点σs和屈服强度σ0.2 抗拉强度σ (4) 抗拉强度σb
(5) 塑性 断后伸长率δ 1)断后伸长率δ 100% [(L δ=[(L1-L0)/L0]×100% 注意: 注意: δ和δ5的区别
2)断面收缩率ψ 断面收缩率ψ ψ=[(S0-S1)/S0]×100% 100%
1.布氏硬度(HB) 1.布氏硬度(HB) 布氏硬度 (1)测试原理 用一直径为D 测试原理: (1)测试原理:用一直径为D的 钢球或硬质合金球, 钢球或硬质合金球,以相应的试验 力压入试样表面,保持一定时间后, 力压入试样表面,保持一定时间后, 卸除试验力, 卸除试验力,在试样表面得到一直 径为d的压痕, 径为d的压痕,用试验力除以压痕 表面积所得的值即为布氏硬度值, 表面积所得的值即为布氏硬度值, HB表示 表示。 用HB表示。 计算公式: 计算公式:
工程材料力学性能
工程材料力学性能工程材料力学性能第一章、金属在单向静拉伸载荷下的力学性能一、名词解释?弹性比功又称弹性比能、应变比能,表示金属材料吸收弹性变形功的功能。
一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
?循环韧性:金属材料在交变载荷(震动)下吸收不可逆变形功的能力,称为金属的循环韧性,也叫金属的内耗。
?包申格效应:金属材料经过预先加载产生多少塑性变形(残余应力为1%~4%),卸载后再同向加载,规定残余伸长应力(弹性极限或屈服强度)增加;反向加载,规定残余伸长应力降低(特别是弹性极限在反向加载时几乎降低到零)的现象,称为包申格效应。
?塑性:指金属材料断裂前发生塑性变形(不可逆永久变形)的能力。
金属材料断裂前所产生的塑性变形由均匀塑性变形和集中塑性变形两部分构成。
?韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力,或指材料抵抗裂纹扩展的能力。
?脆性:脆性相对于塑性而言,一般指材料未发生塑性变形而断裂的趋势。
?解理面:因解理断裂与大理石断裂类似,故称此种晶体学平面为解理面。
?解理刻面:实际的解理断裂断口是由许多大致相当于晶粒大小的解理面集合而成的,这种大致以晶粒大小为单位的解理面称为解理刻面。
?解理台阶:解理裂纹与螺型位错相交而形成的具有一定高度的台阶称为解理台阶。
?河流花样解理台阶沿裂纹前段滑动而相互汇合,同号台阶相互汇合长大。
当汇合台阶高度足够大时,便成为了河流花样。
?穿晶断裂与沿晶断裂:多晶体金属断裂时,裂纹扩展的路径可能是不同的。
裂纹穿过晶内的断裂为穿晶断裂;裂纹沿晶界扩展的断裂为沿晶断裂。
穿晶断裂和沿晶断裂有时候可以同时发生。
二、下列力学性能指标的的意义?E(G):弹性模量,表示的是材料在弹性范围内应力和应变之比;?σr:规定残余伸长应力,表示试样卸除拉伸力后,其标距部分的残余伸长达到规定的原始标距百分比时的应力;常用σ0.2表示材料的规定残余延伸率为0.2%时的应力,称为屈服强度;σs:屈服点,表示呈屈服现象的金属材料拉伸时,试样在外力不断增加(保持恒定)仍能继续伸长时的应力称为屈服点。
工程材料的分类与性能
Fe 7.86
250~ 1539 330 16 25~ 0.84 55 70~ 85 65
Ti 4.51
250~ 1660 300 3 50~ 0.17 70 76~ 88 100
Pb 11.34
18 327 7 45 — 90 4
钢材硬度换算
HRC≈2HRA-104 (HRC=20~60) HB≈10HRC (HRC=20~60)
HB≈2HRB
钢材强度、硬度换算 σb≈3.4HB (HB=125~175) σb≈3.6HB (HB>175)
四、冲击韧度
是指材料抵抗冲击载荷作用 而不破坏的能力。
指标为冲击韧
性值a k(通过冲
金属和退火、正火钢等。
HRC用于测量中等硬度材料,如调 质钢、淬火钢等。 洛氏硬度的优点:操作简便,压痕
小,适用范围广。
缺点:测量结果分散度大。
洛氏硬度压痕
维氏硬度
维氏硬度试验原理
维氏硬度压痕
维氏硬度计
维氏硬度用符号HV表示,符号前的数字为硬度值,后面的数 字按顺序分别表示载荷值及载荷保持时间。 根据载荷范围不同,规定了三种测定方法—维氏硬度试验 、
aC
第三节 工程材料的其他性能
物理性能 —— 密度、熔点、导热性、导电性、热膨胀性、磁性。
一些金属的物理性能及机械性能
元素符号 Al Al 2.70 80~ 660 110 60 32~ 2.09 40 70~ 90 20 Cu Mg Ni Fe Ti Pb Sn
元素符号 密度,kg/m3×103
说明: ① 用面缩率表示塑性比伸长率更接近真实变形。 ② 直径d0 相同时,l0,。只有当l0/d0 为常数
材料的力学行为和性能
(2)钢的淬透性 1)淬透性的概念 淬透性是在规定条件下,决定钢材有效淬硬层深度 和硬度分布的特性,它是钢材本身固有的属性,也 是钢重要的热处理工艺性能之一。钢的淬透性主要 取决于马氏体的临界冷却速度。凡是增加过冷奥氏 体的稳定性,减小马氏体临界冷却速度的因素,都 可以提高钢的淬透性。
钢淬火后能够达到的最高硬度叫钢的淬硬性, 它主要决定于M的碳含量。
3.钢的淬火 (1)淬火工艺 将钢加热到相变温度以上(亚共析钢为Ac3 以上30 ℃~50 ℃;共析钢和过共析钢为Ac1 以上30 ℃~50 ℃),保温一定时间后快速 冷却以获得马氏体组织的热处理工艺称为淬 火。 常用的冷却介质是水和油。 常用的淬火方法有单介质淬火,双介质淬火, 分级淬火和等温淬火等。
洛氏硬度
硬度标尺:HRA、HRB、HRC。其中 C标尺最常 用 。 在批量的成品或半成品质量检验中广泛使用.
维氏硬度 表示方法: 如:640HV30/20 测量精度高、范围广, 但比较麻烦,主要用于 研究工作。
注: 各硬度值之间大致有以下关系: 布氏硬度值在200-600范围内, HBW≈10HRC; 布氏硬度值小于450HBS, HBW≈HV
二、材料的静态力学性能
1、拉伸试验及材料的强度与塑性
左图为拉伸试验机
下图为拉伸试验过 程中试样的变形及 断裂。
由上图可知:在拉伸载荷作用下,试样的变形 分为三个阶段:弹性变形阶段;塑性变形阶段; 断裂阶段。在拉伸试验过程中,可测定的主要 力学性能指标有: 屈服强度σ s,抗拉强度σb ,弹性模量E, 断后伸长率δ 和断面收缩率Ψ 。
2、硬
度
硬度是指材料抵抗其他硬物体压入其表面 的能力。 布什硬度(HBW)
F 2F HBW S D(D D 2 d 2)
第1章 工程 材料的种类和力学性能
传统的无机非金属材料 之一:陶瓷
陶瓷按其概念和用途不同 ,可分为两大类,即普通陶瓷 和特种陶瓷。
根据陶瓷坯体结构及其基 本物理性能的差异,陶瓷制品 可分为陶器和瓷器。
陶瓷制品
陶瓷发动机
• 普通陶瓷即传统陶瓷,是指以粘土为主要原料与其它天然矿物原料经过 粉碎混练、成型、煅烧等过程而制成的各种制品。包括日用陶瓷、卫生 陶瓷、建筑陶瓷、化工陶瓷、电瓷以及其它工业用陶瓷。
材料的强度、塑性指标是通过拉伸实验 测定的。
应力 σ=F/S0
σ (N /m2) ;
F —作用力,(N) S0—试样原始截面 积(m2)。
剪应力τ=F/SO
材料单位面积上的内力称为应力(Pa),以
σ表示。
应变ε(%) ⊿L—试样标距部分伸长量,(mm);
L0 —试样标距部分长度(mm)。ε=⊿L/L0
根据用途不同,特种玻璃分为防辐射玻璃、激光玻璃、 生物玻璃、多孔玻璃、非线性光学玻璃和光纤玻璃等。
传统的无机非金属材料 之三:水泥
水泥是指加入适量水 后可成塑性浆体,既能在 空气中硬化又能在水中硬 化,并能够将砂、石等材 料牢固地胶结在一起的细 粉状水硬性材料。
水泥的种类很多,按其用途和性能可分为: 通用水泥、专用水泥和特性水泥三大类;按其所 含的主要水硬性矿物,水泥又可分为硅酸盐水泥 、铝酸盐水泥、硫铝酸盐水泥、氟铝酸盐水泥以 及以工业废渣和地方材料为主要组分的水泥。目 前水泥品种已达一百多种。
l lO
ll lO
lO lO
l
100lO% lO
100%
剪应变 γ 剪模量 G
a h
tan
且有 G
• 弹性变形 形①的弹外性力变撤形除:后当,产变生形变随σ 即消失。
工程材料力学性能(束德林)-第三版-课后题答案
工程材料力学性能课后题答案第三版(束德林)第一章单向静拉伸力学性能1、解释下列名词。
(1)弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
(2)滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
(3)循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
(4)包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
(5)解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。
(6)塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
脆性:指材料在外力作用下(如拉伸、冲击等)仅产生很小的变形即断裂破坏的性质。
韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
(7)解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为 b 的台阶。
(8)河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。
是解理台阶的一种标志。
(9)解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。
(10)穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。
沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。
(11)韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变。
2、说明下列力学性能指标的意义。
答:(1)E(G)分别为拉伸杨氏模量和切边模量,统称为弹性模量表示产生 100%弹性变所需的应力。
(2)σr 规定残余伸长应力,试样卸除拉伸力后,其标距部分的残余伸长达到规定的原始标距百分比时的应力。
第一章工程材料的力学性能
第二节 材料的硬度 一、布氏硬度HBW 补充说明: (1)硬度超过HB650的材料,不能做布氏硬度试验,这是因为
所采用的压头,会产生过大的弹性变形,甚至永久变形,影 响实验结果的准确性,这时应改用洛氏和维氏硬度试验。 (2)每个试样至少试验3次。试验时应保证两相邻压痕中心的 距离不小于压痕平均直径的4倍,对于较软的金属则不得小于 6倍。压痕中心距试样边缘的距离不得小于压痕直径的2.5倍, 对于软金属则不得小于3倍
可用硬度试验机测定,常用的硬度指标有布氏硬度 HBW、 洛氏硬度(HRA、HRB、HRC等)和维氏硬度HV
第二节 材料的硬度 一、布氏硬度HBW (一)试验原理
布氏硬度试验规范
3 8
第二节 材料的硬度 一、布氏硬度HBW (二)应用范围
布氏硬度主要用于组织不均匀的锻钢和铸铁的硬度 测试,锻钢和灰铸铁的布氏硬度与拉伸试验有着较好的对 应关系。布氏硬度试验还可用于有色金属和软钢,采用小 直径球压头可以测量小尺寸和较薄材料。布氏硬度计多用 于原材料和半成品的检测,由于压痕较大,一般不用于成 品检测。
最大力伸长率(Agt):最大 力时原始标距的伸长与原 始标距之比的百分率。
最大力非比例伸长率(Ag)
二、拉伸曲线所确定的力学性能指标及意义
断后收缩率(Z):断裂后试样横截面积的最大缩减量与原始横截面 各之比的百分率。
第二节 材料的硬度
材料抵抗其他硬物压入其表面的能力称为硬度,它 是衡 量材料软硬程序的力学性能指标。
洛氏硬度计
第二节 材料的硬度 二、洛氏硬度HR (一)实验原理
第二节 材料的硬度 二、洛氏硬度HR (二)应用范围(共15个标尺) 示例:60HRBW
机械工程材料练习题参考答案
机械工程材料练习题参考答案第一章工程材料的力学性能2.有一钢试样,其直径为10mm,标距长度为50mm,当拉伸力达到18840N时试样产生屈服现象;拉伸力加至36110N时,试样产生颈缩现象,然后被拉断;拉断后标距长度为73mm,断裂处直径为6.7mm,求试样的屈服强度、抗拉强度、伸长率和断面收缩率。
解:由题中条件及计算公式得σs =Fs/So=18840/(3.14*102/4)=240(N/mm2)σb=Fb/So=36110/(3.14*102/4)=460(N/mm2)δ=(L1-L0)/L0×100%=(73-50)/50=46%ψ=(S0-S1)/S0×100%={(3.14*102/4)- (3.14*6.72/4)}/(3.14*102/4)=(100-44.89)/100=55.11%答:试样的Re=240(N/mm2)、Rm=460(N/mm2)、δ=46%、ψ=55.11%。
4.有一碳钢制支架刚性不足,有人要用热处理强化方法;有人要另选合金钢;有人要改变零件的截面形状来解决。
哪种方法合理?为什么?(参见教材第6页)第二章工程材料的基本知识第一部分金属的晶体结构与纯金属的结晶1.常见的金属晶体结构有哪几种?α-Fe 、γ- Fe 、Al 、Cu 、Ni 、Pb 、Cr 、V 、Mg、Zn 各属何种晶体结构,分别指出其配位数、致密度、晶胞原子数、晶胞原子半径。
(参见第二章第一节)2.配位数和致密度可以用来说明哪些问题?答:用来说明晶体中原子排列的紧密程度。
晶体中配位数和致密度越大,则晶体中原子排列越紧密。
3.晶面指数和晶向指数有什么不同?答:晶向是指晶格中各种原子列的位向,用晶向指数来表示,形式为[]uvw;晶面是指晶格中不同方位上的原子面,用晶面指数来表示,形式为() hkl。
4.为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性?答:因为单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性。
束德林主编工程材料力学性能第三版 第1章
图1-21 冰糖状断口 (SEM)
(三) 纯剪切断裂与微孔聚集型断裂、解理断裂
(1)剪切断裂 剪切断裂是金属材料在切应力作用下,沿滑移面分离而造成的滑移面分离
断裂,其中又分纯剪切断裂和微孔聚集型断裂。
(2)解理断裂 解理断裂是金属材料在一定条件下(如低温),当外加正应力达到--定数值后,
五、缩颈现象和抗拉强度
(一)缩颈的意义 (二)缩颈判据 (三)确定缩颈点及颈部应力的修正 (四)抗拉强度
(三)确定缩颈点及颈部应力的修正
' zh
(1
zh
2R ) ln(1
a
)
a
2R
' zh
' zh
——修正后的真实应力
zh ——颈部轴向真实应力
R ——颈部轮廓线曲率半径
a ——颈部最小截面半径
一、断裂的类型 (一) 韧性断裂与脆性断裂 (二) 穿晶断裂与沿晶断裂 (三) 纯剪切断裂与微孔聚集型断裂与解理断裂
(一)韧性断裂与脆性断裂
韧性断裂是金属材料断裂前产 生明显宏观塑性变形的断裂,这种 断裂有一个缓慢的撕裂过程,在裂 纹扩展过程中不断地消耗能量。
中、低强度钢的光滑圆柱试样 在室温下的静拉伸断裂是典型的韧 性断裂,其宏观断口呈杯锥形,由 纤维区、放射区和剪切唇三个区域 组成,即所谓的断口特征三要素。
冶金质量的好坏,故可用以评定材料质量。 金属材料的塑性常与其强度性能有关。
七、屈强比
材料屈强比值的大小,反映了材料均匀塑形变形的能力和应 变硬化性能,对材料冷成型加工具有重要意义。
八、静力韧度
韧度是度量材料韧性的力学性能指标,其中又分静力韧度、冲击韧度和断裂 韧度。
结构设计原理-第一章-材料的力学性能-习题及答案
结构设计原理-第一章-材料的力学性能-习题及答案结构设计原理-第一章-材料的力学性能-习题及答案第一章材料的力学性能一、填空题1、钢筋混凝土及预应力混凝土中所用的钢筋可分为两类:有明显屈服点的钢筋和无明显屈服点的钢筋,通常分别称它们为____________和。
2、对无明显屈服点的钢筋,通常取相当于残余应变为时的应力作为假定的屈服点,即。
3、碳素钢可分为、和。
随着含碳量的增加,钢筋的强度、塑性。
在低碳钢中加入少量锰、硅、钛、铬等合金元素,变成为。
4、钢筋混凝土结构对钢筋性能的要求主要是、、、。
5、钢筋和混凝土是不同的材料,两者能够共同工作是因为、、6、光面钢筋的粘结力由、、三个部分组成。
7、钢筋在混凝土中应有足够的锚固长度,钢筋的强度越、直径越、混凝土强度越,则钢筋的锚固长度就越长。
8、混凝土的极限压应变包括和两部分。
部分越大,表明变形能力越,越好。
9、混凝土的延性随强度等级的提高而。
同一强度等级的混凝土,随着加荷速度的减小,延性有所,最大压应力值随加荷速度的减小而。
10、钢筋混凝土轴心受压构件,混凝土收缩,则混凝土的应力,钢筋的应力。
11、混凝土轴心受拉构件,混凝土徐变,则混凝土的应力,钢筋的应力。
12、混凝土轴心受拉构件,混凝土收缩,则混凝土的应力,钢筋的应力。
二、判断题1、混凝土强度等级是由一组立方体试块抗压后的平均强度确定的。
2、采用边长为100mm的非标准立方体试块做抗压试验时,其换算系数是0.95。
3、混凝土双向受压时强度比其单向受压时强度降低。
4、线性徐变是指徐变与荷载持续时间之间为线性关系。
5、对无明显屈服点的钢筋,设计时其强度标准值取值依据是条件屈服强度。
6、强度与应力的概念完全一样。
7、含碳量越高的钢筋,屈服台阶越短、伸长率越小、塑性性能越差。
8、钢筋应力应变曲线下降段的应力是此阶段拉力除以实际颈缩的断面积。
9、有明显流幅钢筋的屈服强度是以屈服下限为依据的。
10、钢筋极限应变值与屈服点所对应的应变值之差反映了钢筋的延性。
工程材料学-材料的力学性能培训课件
1. 布氏硬度( Brinell-hardness )
布氏硬度计
用于测定硬度不高的 金属材料。主要有铸 铁、有色金属、低合 金结构钢、结构调质 钢等。
1. 布氏硬度( Brinell-hardness )
测定原理:
用一定大小的载荷P,把直 径为D的淬火钢球压入被测金 属的表面,保持一定的时间后 卸除载荷,用金属压痕的表面 积,除载荷所得的商值即为布 氏硬度值。
比强度 30~37 23~36 90~111
3. 塑性指标:
塑性变形: 不可恢复的永久变形。塑性是表征材料断
裂前具有塑性变形的能力。
断后伸长率δ(δ5、δ10):
断后试样标距伸长量与原始标距之比的百分率,
即: LK L0 100%
L0
δ < 2 ~ 5% 属脆性材科
δ≈ 5 ~ 10% 属韧性材料
1.2.1 拉伸试验
3.均匀塑形变形阶段(曲线de段)
在此阶段中,试样的一部分产生塑性变形,虽 然这一部分截面减小,使此处承受负荷能力下 降。但由于变形强化的作用而阻止塑性变形在 此处继续发展,使变形推移到试样的其它部位。 这样、变形和强化交替进行,就使试样各部位 产生了宏观上均匀的塑性变形。曲线上的d点是 屈服阶段结束点也是加工硬化开始点。
1.2.1 拉伸试验
1.弹性变形阶段(曲线ob段)
在弹性变形阶段内的oa段,试样的伸长与外力 成正比例直线关系,即每增加一定外力,就对 应一定的伸长量,因此,oa段也称为线弹性变 形阶段。一旦外力超过曲线上的a点时,正比例 关系就破坏了。而该点对应的外力Fp称为比例 变形的极限外力。ab段为弹性变形的非线性阶 段,此阶段很短,一般不容易观察到。
1. 弹性指标:
工程材料的力学性能
练习题二
某工厂买回一批材料(要求: бs≥230MPa;бb≥410MPa;δ5≥23%; ψ≥50%).做短试样(l0=5d0;d 0=10mm)拉伸试验,结果如下: Fs=19KN,Fb=34.5KN;l1=63.1mm; d1=6.3mm;问买回的材料合格吗?
时间。如:120HBS10/1000/30表示直径为10mm的钢球 在1000kgf(9.807kN)载荷作用下保持30s测得的布氏 硬度值为120。
布氏硬度的优点:测量误差小,数据稳定。 缺点:压痕大,不能用于太薄件、成品件及比压头 还硬的材料。
适于测量退火、正火、调质钢,铸铁及有色金属的硬度。
2.洛氏硬度:
延伸率 延伸率与试样尺寸有关;δ5、δ10 (L0=5d,10d)
思考:同一材料δ5 > δ10?
断面收缩率
> 时,无颈缩,为脆性材料表征;
拉
< 时,有颈缩,为塑性材料表征。
伸 试
样
的
颈
缩
现
象
断裂后
练习题一
拉力试样的原标距长度为50mm,直径为10mm,经拉力试 验后,将已断裂的试样对接起来测量,若最后的标距长度为 71mm,颈缩区的最小直径为4.9mm,试求该材料的伸长率 和断面收缩率的值?
介质)下,承受各种外加载荷(拉伸、压缩、 弯曲、扭转、冲击、交变应力等)时所表现出 的力学特征。
指标 : 弹性 、刚度、强度、塑性 、 硬度、冲击韧
性 、断裂韧度和疲劳强度等。
《工程材料力学性能》课后答案
《工程材料力学性能》课后答案第一章材料单向静拉伸载荷下的力学性能滞弹性:在外加载荷作用下,应变落后于应力现象。
静力韧度:材料在静拉伸时单位体积材科从变形到断裂所消耗的功。
弹性极限:试样加载后再卸裁,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。
比例极限:应力—应变曲线上符合线性关系的最高应力包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限ζP)或屈服强度(ζS)增加;反向加载时弹性极限(ζP)或屈服强度(ζS)降低的现象。
解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。
晶体学平面--解理面,一般是低指数,表面能低的晶面。
解理面:在解理断裂中具有低指数,表面能低的晶体学平面。
韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征由纤维状转变为结晶状)。
静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。
是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。
(1)应力状态软性系数—材料最大切应力与最大正应力的比值,记为α。
(2)缺口效应——缺口材料在静载荷作用下,缺口截面上的应力状态发生的变化。
(3)缺口敏感度——金属材料的缺口敏感性指标,用缺口试样的抗拉强度与等截面尺寸光滑试样的抗拉强度的比值表示。
(4)布氏硬度——用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。
(5)洛氏硬度——采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度。
(6)维氏硬度——以两相对面夹角为136。
的金刚石四棱锥作压头,采用单位面积所承受的试验力计算而得的硬度。
(7)努氏硬度——采用两个对面角不等的四棱锥金刚石压头,由试验力除以压痕投影面积得到的硬度。
(8)肖氏硬度——采动载荷试验法,根据重锤回跳高度表证的金属硬度。
(9)里氏硬度——采动载荷试验法,根据重锤回跳速度表证的金属硬度。
工程材料的力学性能
第一章工程材料的力学性能本章要点:力学性能是指材料在外力作用时表现出来的性能。
力学性能包括强度、塑性、硬度、韧性及疲劳强度等。
硬度值可以间接地反映材料的强度、塑性和韧性以及材料在化学成分、金相组织和热处理工艺上的差异,因而硬度试验在工程上应用十分广泛。
生产中常用的硬度试验是布氏硬度、洛氏硬度和维氏硬度。
熟悉和掌握工程材料力学性能的重要性:在机械设备及工具的设计、制造中选用工程材料时,大多以力学性能为主要依据。
一、载荷的概念:材料在加工及使用过程中所受的外力。
载荷分类:1.根据作用性质不同分静载荷:静载荷是指大小不变或变动很慢的载荷;冲击载荷:冲击载荷是指突然增加的载荷;疲劳载荷:疲劳载荷是指所经受的周期性或非周期性的动载荷也称循环载荷。
2.根据载荷作用方式不同分为拉伸载荷、压缩载荷、弯曲载荷、剪切载荷和扭转载荷等,如图1-1所示。
二、变形的概念:材料受不同载荷作用而发生的几何形状和尺寸的变化。
变形的分类:弹性变形塑性变形内力为材料受外力作用后,为保持其不变形,在材料内部作用着与外力相对抗的力。
应力为单位截面积上的内力。
材料受拉伸载荷或压缩载荷作用时,其横截面积上的应力(按下式计算:F 式中SF——外力N;S——横截面积m2;σ——应力Pa,应力单位是Pa,1Pa=1N/m2。
当面积用mm2时,则应力可用MPa为单位。
1MPa1N/mm2=106Pa §1.1 静载荷条件下材料的力学性能一、强度材料抵抗塑性变形或断裂的能力称为强度,强度大小通常用应力来表示。
根据载荷作用方式不同,强度可分为抗拉强度σb、抗压强度σbc、抗弯强度σbb、抗剪强度τb和抗扭强度τt等五种。
一般情况下多以抗拉强度作为判别材料强度高低的指标。
抗拉强度是通过拉伸试验测定的。
拉伸试验的方法是用静拉力对标准试样进行轴向拉伸,同时连续测量力和相应的伸长,直至断裂。
根据测得的数据,即可求出有关的力学性能。
下面把试验作一简单介绍:1拉伸试样拉伸试样的形状一般有圆形和矩形两类。
1-1 工程材料的力学性能
e
0.2%l0
Δl
承受静载时的力学性能.4
3)塑性:材料断裂前具有塑性变形的能力。 l1 l0 延伸率: 100% l0 F0 F 断面收缩率: = 100% F0
δ↑、ψ↑,材料塑性好,可进行锻造、冲压、 轧制,安全性好,无突然断裂。
承受静载时的力学性能.5
一、常用材料的力学性能指标
1、承受静载荷作用时的力学性能
Pb Ps Pe E S B K F1
拉伸力P/N
σ=P/F0 ε=Δl / l0
P
l1 拉断后试样 F0 P l0 标准试样
O
伸长量Δl/mm
图1-1 低碳钢的P-Δl曲线
低碳钢的σ-ε曲线
(1)应力—应变曲线
ζ s p ζb ζs ζe ζp b k
第一章 工程材料导论
主要内容: 金属材料微观结构、宏观力学性能、 相图与钢的热处理、常用钢铁材料
§1 工程材料的力学性能
力学性能:是设计、制造机械零件最重要的指标, 指金属在外加载荷作用下或载荷与环境因素联合作 用下表现的特性。 材料受外力一般出现弹性变形、弹-塑性变形和断裂 三个阶段,根据载荷性质(如拉伸、压缩、冲击等) 及所接触环境因素的不同,表现出来的力学性能指 标也不同。 常用力学性能判据:强度、塑性、硬度、韧性和疲 劳强度。
承受静载时的力学性能.7
2)洛氏硬度HR: 原理:120°金刚石锥体或φ1.588淬火钢球 初载10kg h1 主载 h2 1 1 3 3 卸载回弹 h3 2 2 压痕深度 h=h3-h1 HR=k-h/0.002
h3 h1 h2
承受静载时的力学性能.8
硬度 HRA 压头 金刚石 载荷(kg) 测量范围 60 70~88 适用材料 硬质合金,表面淬火、渗碳钢
工程材料第一章--金属材料的力学性能
数值越大,表明材料的断裂韧性越好!
压痕法
试样表面抛光成镜面,在显微硬度仪上,以10Kg负 载在抛光表面用硬度计的锥形金刚石压头产生一压 痕,这样在压痕的四个顶点就产生了预制裂纹。根 据压痕载荷P和压痕裂纹扩展长度C计算出断裂韧性 数值(KIC)。
第一章 金属材料的力学性能
机械零部件在使用过程中一般不允许发生塑性变形,所以 屈服强度是零件设计时的主要依据,也是评定材料强度的 重要指标之一
(三)抗拉强度
表明试样被拉断前所能承载的最大应力
σb= Fb / A0
Fb :试样在破断前所承受的最大载荷
➢ 表示塑性材料抵抗大量均匀塑性变形的能力,也 表示材料抵抗断裂的强度,即断裂强度。
若F 确定,硬度值只与压痕投影的两对角线的平均长 度d有关,d越大,HV越小。
维氏硬度值一般只写数值。 硬度值+硬度符号+试验力大小(kgf)及试验力保持时 间(10-15s不标注)
提问
640HV30的具体意义?
表示在30kgf的试验载荷作用下,保持10-15s时 测得的维氏硬度值为640。
640HV30/20的具体意义?
布氏硬度值单位为N/mm2,但一般只写数值。 硬度值+硬度符号+球体直径+试验力大小及试验力保持 时间(10-15s不标注)
提问
170HBW10/1000/30的具体意义?
表示用直径10mm的硬质合金球,在9807 N(1000 kgf) 的试验载荷作用下,保持30s时测得的布氏硬度值为170。
530HBW5/750的具体意义?
➢ 抗拉强度是零件设计时的重要依据,也是评定金 属材料的强度重要指标之一。
工程材料力学性能
第一章单向静拉伸力学性能1. 弹性比功:金属材料吸收弹性变形功的能力。
2 .滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性。
3 .包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
4. 解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。
5. 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?答:主要决定于原子本性和晶格类型。
合金化、热处理、冷塑性变形等对弹性模量影响较小,所以它是一个对组织不敏感的力学性能指标。
5. 解理断裂;金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂。
6. 决定金属屈服强度的因素有哪些?答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。
外在因素:温度、应变速率和应力状态。
7. 剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。
8. 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些?答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。
上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。
9. 试述多晶体金属产生明显屈服的条件,并解释bcc金属及其合金与fee金属及其合金屈服行为不同的原因。
10. 试举出几种能显著强化金属而又不降低其塑性的方法。
答:固溶强化、形变硬化、细晶强化11. 断裂强度S c与抗拉强度S b有何区别?12. 裂纹扩展受哪些因素支配?答:裂纹形核前均需有塑性变形;位错运动受阻,在一定条件下便会形成裂纹。
工程材料 第一章 材料的性能及应用意义
HR = (0.2 - △h) / 0.002 (mm),
其中 △h = h1 - h0
一、力学性能
§1.2 材料的使用性能
一、力学性能
§1.2 材料的使用性能
一、力学性能
§1.2 材料的使用性能
洛氏硬度计
一、力学性能
3. 维氏硬度(HV) GB4342 -1984
(1)金刚石正四棱锥压头,精确 操作复杂,适用于科学研究。 (2)压力可选5~120Kg间的特定 值,适用各种硬度值的测量。 (3)压痕小,可测表面硬化层。
冲击吸收功AK
1 2
3
TK
温度T
三种不同冷脆倾向的材料
1—面心立方晶格的金属 2—中、低强度体心立方晶格的金属 3—高强度材料
一、力学性能
§1.2 材料的使用性能
冲击吸收功的测定
一、力学性能
不同材料的冲击抗力:
§1.2 材料的使用性能
冲击能量A
A'
A" N'
K 1
2
N"
冲击破断次数 lgN
1—高强度低韧性材料 2—低强度高韧性材料
§1.2 材料的使用性能
一、力学性能
§1.2 材料的使用性能
一、力学性能
§1.2 材料的使用性能
(六)韧性——材料在塑性变形和断裂的全过程中吸收能量的能 力,它是材料强度和塑性的综合表现。
韧性不足可用脆性来表达。 韧性高低决定是韧性断裂,还是脆性断裂。
一、力学性能
§1.2 材料的使用性能
1. 冲击韧度 Ak ——材料抵抗冲击载荷的能力
二、物理性能
§1.2 材料的使用性能
(一)密度 (二)热学性能:熔点、热容、热膨胀、热传导等。 (三)电学性能:电阻率、电阻温度系数、介电性。 (四)磁学性能:磁导率、饱和磁化强度和磁矫顽力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章金属材料的力学性能
学习目的和要求:
学习目的在于了解工程材料力学性能的物理意义,熟悉金属主要的力学性能指标,以便在设计机械时,根据零件的技术要求选用材料,或在编制金属加工工艺时参考。
学完本章后,要求在掌握概念的基础上,熟悉有关术语、符号意义及应用场合,并了解测定方法。
学习重点:
1、掌握强度、塑性、韧性、硬度的概念、物理意义及应
用;
2、掌握布氏硬度和洛氏硬度的优缺点及应用场合。
学习难点:
1、疲劳强度和断裂韧性的概念及应用。
§1-1 材料的强度与塑性
材料的力学(机械)性能,是指材料受不同外力时所表现出来的特性,这种特性是机器安全运转的保证。
所以机械性能是设计机械时强度计算和选用材料的基本依据,是评价材料质量和工艺强化水平的重要参数。
常用的机械性能指标,都是在特定条件下用规定的测试方法获得的,因为与实用工作状况不尽相同,所以选用数据时应考虑安全系数。
一、弹性与刚度
1、弹性:材料在外力作用下产生变形,当外力去掉
后能恢复其原来形状的性能。
2、弹性极限(σe ):材料承受最大弹性变形时的应力。
3、刚度:材料在外力作用下抵抗弹性变形的能力。
指标
为弹性模量
4、弹性模量(E ):应力与应变的比值,物理意义是产
生单位弹性变形时所需应力的大小,表征材料产生弹性变形的难易程度。
弹性模量是材料最稳定的性能之一,其大小主要取决于材料的本性,随温度升高而逐渐降低,材料的强化手段(如热处理、冷热加工、合金化等)对弹性模量影响很小。
提高金属制品的刚度,可以通过更换金属材料、改变截面形状、增加横截面面积。
为什么弹簧还要进行热处理?弹簧进行热
处理的目的是什么?
二、强度
韧性材料拉伸曲线 脆性材料拉伸曲线
1、强度:材料在外力作用下抵抗永久变形(塑性变形)
和断裂的能力。
根据载荷的性质不同,有抗拉、抗弯、弯曲、剪切、扭转等几种强度。
2、常用强度指标:屈服强度(σS )、抗拉强度(σb )、
条件屈服强度(σ0.2)(对于在拉伸过程中屈服现象不明显的材料,规定以残余变形量为0.2%时的应力)、屈强比b s δδ(其值越高,材料强度的有效利用率越高;
但过高,塑性储备小,可靠性差,一般以0.75~0.80左右为宜)
机械零部件或构件在使用过程中一般不允许发生塑性变形,材料的屈服强度是评价材料承载能力的重要力学性能指标。
三、塑性
1、塑性:材料在外力作用下产生塑性(永久)变形而不
破坏的性能。
2、常用塑性指标:
延伸率(伸长率)(δ)%10000⨯-=l l l δ
δ10与δ5的区别
断面收缩率(ψ)%10000⨯-=S S S ψ
断面收缩率的数值不受试样尺寸的影响,用断面收缩率表示材料的塑性更能接近材料的真实应变。
断面收缩率和延伸率(伸长率)愈大,说明材料的塑性愈好。
材料的塑性好,在接受焊接及变形加工时容易保证质量,在服役中不会因超载而突然断裂,
较为安全。
但塑性过高,会限制材料强度水平的发挥,
所以设计机械零件时应使强度和塑性适当匹配,在提
高强度的同时,保证有足够的塑性储备,一般要求δ
在5~10%。
§1-2 材料的硬度
一、硬度:材料抵抗更硬的物体压入其表面的能力。
许多机械零件和工、模具,必须具有相当的硬度,才能保证使用性能和寿命。
编制切削和冷冲压工艺规程时,硬度是主要考虑的因素之一。
同时,因为硬度是机械性能的综合体现。
所以有些机械零件只对材料的性能提出硬度要求。
硬度试验无需专门试样,又不破坏工件,而且操作简单、迅速。
所以,在生产中广泛应用硬度指标。
一般情况下,材料的硬度越高,其耐磨性就越好。
材料的硬度与其的力学性能(如强度、耐磨性)和工艺性能(切削加工、可焊性)之间存在一定的对应关系。
二、硬度:材料对局部塑性变形的抵抗能力。
根据硬度试验的方法不同,可有多种硬度指标。
它们各有不同的优缺点和使用范围。
工业上常用的是压入法测定的硬度指标。
三、常用硬度指标:布氏硬度(HB)、洛氏硬度(HR)、维氏硬度(HV)
布氏硬度是在规定载荷下,采用压入钢球法测定的。
其主要优点是测量结果准确。
但由于压头为淬火钢球,为了防止钢球变形影响精度,故不能测HB>450的材料,主要用于
测试结构钢、铸铁、有色金属。
另外,由于压痕较大,也不适于测成品件及过薄的零件。
根据载荷与压头种类的匹配不同,可测出各种洛氏硬度值,常用的有三种:即HRC、HRB、HRA。
与布氏硬度法比较,洛氏硬度试验操作简单、迅速、压痕小,可直接读出硬度值,不会损坏零件表面,用于测量成品或半成品零件的硬度;但由于压痕很小,当金属材料组织不均匀时回影响测量精度,故常测3 5点后取其平均值。
维氏硬度试验与前两种硬度比较,有许多优点。
既不象布氏硬度试验时受载荷与压头直径比例关系的约束,所用载荷小,也不存在压头变形问题。
由于压痕清晰,采用对角线平均长度计算,精确可靠,硬度值误差小,测量精度高于布氏硬度和洛氏硬度。
同时,能测量从极软材料(HV10)到极硬材料(HV1000),而不需要更换标尺,还特别适于测量极薄件和渗碳层、渗氮层、电镀层等。
其不足之处是试验速度不如洛氏硬度试验高,故不宜用于大批量生产的常规试验。
§1-3 材料的冲击韧性
冲击韧性:材料抵抗冲击载Array荷而不破坏的能力。
由于冲击载荷的加载速度
大,使材料的塑性下降,脆性增
加,所以其破坏性比静载荷大。
根据冲击载荷能量的不同,分为
一次冲击韧性和小能量多次冲击抗力。
一、一次冲击韧性
在工程上,常用一次冲击弯曲试验测定的冲击值(αk )表示冲击韧性。
二、多次冲击韧性
多次冲击韧性是体现材料强度与塑性的综合指标。
当冲击能量高时,材料的多冲抗力主要取决于塑性;冲击能量低时,则主要取决于强度。
必须指出,一次冲击韧性值高,多次冲击韧性不一定好。
例如某厂生产的锻锤锤杆(45钢),原采用调质(HB227-238),αk 值很高,但在使用中常常早期折断;后改为淬火+中温回火(HRC40-45)改善了多次冲击韧性,大大提高了寿命。
这说明了机械零件的强度与塑性适当匹配的重要性。
§1-4 材料的疲劳强度
一、交变载荷:载荷的大小和方向随时间呈周期性的循环变
化。
二、疲劳断裂:材料在交变载荷作
用下发生的断裂现象。
三、疲劳强度:材料在无数次重复
或交变载荷作用下而不致引
起断裂的最大应力。
在实际生产中,提高疲劳强度的方法:
1、通过合理选材、细化晶粒、减少材料和零件的缺陷;
2、改善零件的结构设计,避免应力集中;
3、降低零件的表面粗糙度(提高零件的表面光洁度);
4
、对零件表面进行强化处理(喷丸处理、表面淬火、
化学热处理等)
§1-5 材料的断裂韧性
一、问题的提出
低应力脆断——断裂力学
二、应力场强度因子K I
前面所述的力学性能,都是
假定材料内部是完整、连续的,
但是实际上,内部不可避免的存
在各种缺陷(夹杂、气孔等),
由于缺陷的存在,使材料内部不
连续,这可看成材料的裂纹,在
裂纹尖端前沿有应力集中产生,形成一个裂纹尖端应力场。
表示应力场强度的参数——应力强度因子(K I ),其表达式为:πασ=I K
式中:σ——外加应力(MPa );
α——裂纹的半长(m )
三、断裂韧性
对于一个有裂纹的试样,在拉伸载荷作用下,当外力逐渐增大,或裂纹长度逐渐扩展时,应力强度因子也不断增大,当应力强度因子K I 增大到某一值时,就可使
裂纹前沿某一区域的内应力大到足以使材料产生分离,从而导致裂纹突然失稳扩展,即发生脆断。
这个应力强度因子的临界值,称为材料的断裂韧性,用K IC表示,它表明了材料有裂纹存在时抵抗脆性
断裂的能力。
当K I>K IC时,裂纹失稳扩展,发生脆断。
K I=K IC时,裂纹处于临界状态
K I<K IC时,裂纹扩展很慢或不扩展,不发生脆断。
K IC可通过实验测得,它是评价阻止裂纹失稳扩展能力的力学性能指标。
是材料的一种固有特性,与裂纹本身的大小、形状、外加应力等无关,而与材料本身的成分、热处理及加工工艺有关。
四、应用
断裂韧性是强度和韧性的综合体现。
1、探测出裂纹形状和尺寸,根据K IC,制定零件工作是
否安全K I≥K IC,失稳扩展。
2、已知内部裂纹2a,计算承受的最大应力。
3、已知载荷大小,计算不产生脆断所允许的内部宏观
裂纹的临界尺寸。