求三角函数最值的四种方法
三角函数中的最值问题(4种方法)

三角函数中的最值问题(4种方法)基本方法1、直接法:形如f (x )=a sin x +b (或y =a cos x +b ),值域为[-|a |+b ,|a |+b ],形如y=asinx+bcsinx+c 的函数可反解出sinx,利用|sinx|≤1求解,或分离常数法.2、化一法:形如f (x )=a sin x +b cos x ,f (x )=a sin 2x +b cos 2x +c sin x cos x 的函数可化为f (x )=A sin(ωx +φ)的形式,利用正弦函数的有界性求解,给定x 范围时要注意讨论ωx +φ的范围,注意利用单位圆或函数图象.3、换元法:形如f (x )=a sin 2x +b sin x +c 或f (x )=a cos 2x +b sin x +c 或f (x )=a (sin x ±cos x )+b sin x ·cos x 的函数可通过换元转化为二次函数在某区间上的值域求解.4、几何法(数形结合):形如dx c bx a y ++=cos sin 转化为斜率问题,或用反解法.典型例题例1已知函数f (x )=(sin x+cos x )2+cos 2x ,求f (x )在区间.解:(化一法)因为f (x )=sin 2x+cos 2x+2sin x cos x+cos 2x=1+sin 2x+cos 2x=2sin 2 +1,当x ∈0,2 ∈由正弦函数y=sin x 当2x+π4π2,即x=π8时,f (x )取最大值2+1;当2x+π45π4,即x=π2时,f (x )取最小值0.综上,f (x )在0,上的最大值为2+1,最小值为0.例2求函数y =2+sin x +cos x 的最大值.解:(化一法)y =2+2sin(x +π4),当x =π4+2k π(k ∈Z )时,y max =2+2例3求函数f (x )=cos2x +6cos(π2-x )的最大值.解:(换元法)f (x )=1-2sin 2x +6sin x =-2(sin x -32)2+112.令sin x =t ,则t ∈[-1,1],函数y =-2(t -32)2+112在[-1,1]上递增,∴当t =1时,y 最大=5,即f (x )max =5,例4已知x 是三角形的最小内角,求函数y =sin x +cos x -sin x cos x 的最小值.解:(换元法)由0≤x ≤π3,令t =sin x +cos x =2sin(x +π4),又0<x ≤π3,∴π4<x +π4≤712π,得1<t ≤2;又t 2=1+2sin x cos x ,得sin x cos x =t 2-12,得y =t -t 2-12=-12(t -1)2+1,例5已知sin α+sin β=22,求cos α+cos β的取值范围.解:(换元法)令cos α+cos β=t ,则(sin α+sin β)2+(cos α+cos β)2=t 2+12,即2+2cos(α-β)=t 2+12⇒2cos(α-β)=t 2-32,∴-2≤t 2-32≤2⇒-12≤t 2≤72,∴-142≤t ≤142,即-142≤cos α+cos β≤142.例6求函数y =1+sin x3+cos x的值域解法一:(几何法)1+sin x3+cos x可理解为点P (-cos x ,-sin x )与点C (3,1)连线的斜率,点P (-cos x ,-sin x )在单位圆上,如图所示.故t =1+sin x3+cos x满足k CA ≤t ≤k CB ,设过点C (3,1)的直线方程为y -1=k (x -3),即kx -y +1-3k =0.由原点到直线的距离不大于半径1,得|1-3k |k 2+1≤1,解得0≤k ≤34.从而值域为[0,34].解法二:(反解法)由y =1+sin x3+cos x 得sin x -y cos x =3y -1,∴sin(x +φ)=3y -11+y2其中sin φ=-y 1+y 2,cos φ=11+y 2.∴|3y -11+y2|≤1,解得0≤y ≤34.例7求函数y =2sin x +1sin x -2的值域解法一:(分离常数法)y =2sin x +1sin x -2=2+5sin x -2,由于-1≤sin x ≤1,所以-5≤5sin x -2≤-53,∴函数的值域为[-3,13].解法二:(反解法)由y =2sin x +1sin x -2,解得sin x =2y +1y -2,∵-1≤sin x ≤1,∴-1≤2y +1y -2≤1,解得-3≤y ≤13,∴函数的值域为[-3,13].针对训练1.函数y =3-2cos(x +π4)的最大值为____.此时x =____.2.函数xxy cos -3sin -4的最大值为.3.函数f (x )=sin 2x+3cos ∈的最大值是.4.函数y =12+sin x +cos x的最大值是【解析】1.函数y =3-2cos(x +π4)的最大值为3+2=5,此时x +π4=π+2k π(k ∈Z ),即x =3π4+2k π(k ∈Z ).2.解析式表示过A (cos x ,sin x ),B (3,4)的直线的斜率,则过定点(3,4)与单位圆相切时的切线斜率为最值,所以设切线的斜率为k ,则直线方程为y-4=k (x-3),即kx-y-3k+4=+11,∴k max3.由题意可知f (x )=1-cos 2x+3cos x-34=-cos 2x+3cos x+14=-cos -+1.因为x ∈0,cos x ∈[0,1].所以当cos f (x )取得最大值1.4.∵y =12+2sin (x +π4),又2-2≤2+2sin(x +π4)≤2+2∴y ≤12-2=1+22,含参问题一、单选题1.已知函数()sin cos (0,0)62af x x x a πωωω⎛⎫=++>> ⎪⎝⎭,对任意x ∈R ,都有()f x ≤,若()f x 在[0,]π上的值域为3[2,则ω的取值范围是()A.11,63⎡⎤⎢⎥⎣⎦B.12,33⎡⎤⎢⎣⎦C.1,6⎡⎫+∞⎪⎢⎣⎭D.1,12⎡⎤⎢⎥⎣⎦【解析】()sin cos 62af x x x πωω⎛⎫=++ ⎪⎝⎭1cos 2a x x ωω++max ()f x =02a a >∴= ,())3f x x πω∴=+0,0x πω≤≤> ,333x πππωωπ∴≤+≤+,3()2f x ≤ 2233πππωπ∴≤+≤,1163ω∴≤≤.故选:A2.已知函数()()cos 0f x x x ωωω=+>,当()()124f x f x -=时,12x x -最小值为4π,把函数()f x 的图像沿x 轴向右平移6π个单位,得到函数()g x 的图像,关于函数()g x ,下列说法正确的是()A.在,42ππ⎡⎤⎢⎣⎦上是增函数B.其图像关于直线6x π=对称C.在区间,1224ππ⎡⎤-⎢⎥⎣⎦上的值域为[]2,1--D.函数()g x 是奇函数【解析】因()()cos 2sin 06f x x x x πωωωω⎛⎫=+=+> ⎪⎝⎭,当()()124f x f x -=时,12x x -最小值为4π,则()f x 的最小正周期为22T ππω==,即4ω=,所以()2sin 46f x x π⎛⎫=+ ⎪⎝⎭,把函数()f x 的图像沿x 轴向右平移6π个单位,得()2sin 42sin 42cos 46662f x g x x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=,所以,()g x 为偶函数,故D 选项不正确;由4,k x k k Z πππ≤≤+∈,即,44k k x k Z πππ+≤≤∈,故()g x 在区间(),44k k k Z πππ+⎡⎤∈⎢⎥⎣⎦上为减函数,所以()g x 在区间,42ππ⎡⎤⎢⎥⎣⎦上为减函数,故A选项不正确;由4,2x k k Z ππ=+∈,即,48k x k Z ππ=+∈,所以()g x 图像关于,48k x k Z ππ=+∈对称,故B选项不正确;当,1224x ππ⎡⎤∈-⎢⎥⎣⎦时,4,36x ππ⎡⎤∈-⎢⎣⎦,则()21g x -≤≤-,所以C 选项正确.故选:C.3.已知函数()()sin 04f x x πωω⎛⎫=-> ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦的值域是⎡⎤⎢⎥⎣⎦,则ω的取值范围是()A.30,2⎛⎤ ⎥⎝⎦B.3,32⎡⎤⎢⎥⎣⎦C.73,2⎡⎤⎢⎥⎣⎦D.57,22⎡⎤⎢⎥⎣⎦【解析】因为0>ω,所以当0,2x π⎡⎤∈⎢⎥⎣⎦时,[,]4424x ππωππω-∈--因为函数()()sin 04f x x πωω⎛⎫=-> ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦的值域是⎡⎤⎢⎥⎣⎦所以52244πωπππ≤-≤,解得332ω≤≤,故选:B.4.已知函数()(2)f x x ϕ=+22ππϕ-≤≤,若()0f x >在5(0,)12π上恒成立,则3(4f π的最大值为()B.0C.D.2-【解析】因为5(0,)12x π∈,故52(,)6x πϕϕϕ+∈+;由()0f x >,即1sin(2)2x ϕ+>-,得722266k x k πππϕπ-+<+<+,k Z ∈,故57(,)(2,2)666k k πππϕϕππ+⊆-++,k Z ∈,故2657266k k πϕπππϕπ⎧≥-+⎪⎪⎨⎪+≤+⎪⎩,解得2263k k πππϕπ-+≤≤+,k Z ∈;又22ππϕ-≤≤,故63ππϕ-≤≤,5.已知曲线()sin cos f x x m x ωω=+,()m R ∈相邻对称轴之间的距离为2π,且函数()f x 在0x x =处取得最大值,则下列命题正确的个数为()①当0,126x ππ⎡⎤∈⎢⎥⎣⎦时,m的取值范围是⎣;②将()f x 的图象向左平移04x 个单位后所对应的函数为偶函数;③函数()()y f x f x =+的最小正周期为π;④函数()()y f x f x =+在区间00,3x x π⎛⎫+ ⎪⎝⎭上有且仅有一个零点.故33()()42f ππϕϕ⎡⎤+++-⎢⎥⎣⎦,故3()4f π的最大值为0.故选:BA.1B.2C.3D.4【解析】函数()f x 的相邻对称轴之间的距离为2π,则周期为22T ππ=⨯=,∴22πωπ==,()sin 2cos 2f x x m x =+)x ϕ=+,其中cos ϕ=,sin ϕ=[0,2)ϕπ∈,()f x 在0x 处取最大值,则022,2x k k Z πϕπ+=+∈,0222k x πϕπ=+-,k Z ∈,①若0[,]126x ππ∈,则[2,2]63k k ππϕππ∈++,1sin 2ϕ≤≤,12解m ≤正确.②如()sin(28f x x π=+,0316x π=时函数取最大值,将()f x 的图象向左平移04x 个单位后得313()sin[2(4)sin(2)1688g x x x πππ=+⨯+=+,不是偶函数,错;③()()y f x f x =+中,()y f x =是最小正周期是π,()y f x =的最小正周期是2π,但()()y f x f x =+的最小正周期还是π,正确;④003[,44x x x ππ∈++时,()()0y f x f x =+=,因此在区间00,3x x π⎛⎫+ ⎪⎝⎭上有无数个零点,错;∴正确的命题有2个.故选:B.6.已知函数()cos 4cos 12=+-xf x x 在区间[0,]π的最小值是()A.-2B.-4C.2D.4【解析】22()cos 4cos 12cos 14cos 12(cos 1)42222x x x x f x x =+-=-+-=+-,由[0,]x π∈知,[0,]22x π∈,cos [0,1]2x ∈,则当x π=时,函数()f x 有最小值min ()2f x =-.故选:A.7.已知()cos31cos xf x x=+,将()f x 的图象向左平移6π个单位,再把所得图象上所有点的横坐标变为原来的12得到()g x 的图象,下列关于函数()g x 的说法中正确的个数为()①函数()g x 的周期为2π;②函数()g x 的值域为[]22-,;③函数()g x 的图象关于12x π=-对称;④函数()g x 的图象关于,024π⎛⎫⎪⎝⎭对称.A.1个B.2个C.3个D.4个【解析】()()cos 2cos311cos cos x x xf x x x+=+=+cos 2cos sin 2sin 12cos 2cos x x x x x x -=+=.即:()2cos 2f x x =且,2x k k Z ππ≠+∈.()2cos(4)3g x x π=+且,62k x k Z ππ≠+∈.①因为函数()g x 的周期为2π,因此①正确.②因为,62k x k Z ππ≠+∈,故() 2.g x ≠-因此②错误.③令4,3x k k Z ππ+=∈,得,124k x k Z ππ=-+∈.故③正确k ππ二、填空题8.函数()2sin()sin()2sin cos 66f x x x x x ππ=-++在区间[0,2π上的值域为__________.【解析】由11(x)sinx cosx)(sinx cosx)sin 2x2222f =-++22312(sin x cos x)sin 2x 44=-+2231sin cos sin 222x x x=-+11cos 2sin 22x x =--+1x )24π=-当[0,]2x π∈时,2[,]444x ππ3π-∈-,则sin(2)[42x π-∈-,所以11(x)[,22f ∈-.故答案为:11[,22-9.若函数()()2cos 2cos 202f x x x πθθ⎛⎫=++<< ⎪⎝⎭的图象过点()0,1M ,则()f x 的值域为__________.【解析】由题意可得()02cos 2cos 02cos 211f θθ=+=+=,得cos 20θ=,02πθ<<,02θπ∴<<,22πθ∴=,则4πθ=,()22cos cos 2cos 22sin 2sin 2sin 12f x x x x x x x π⎛⎫∴=++=-=--+ ⎪⎝⎭2132sin 22x ⎛⎫=-++ ⎪⎝⎭,令[]sin 1,1t x =∈-,则213222y t ⎛⎫=-++ ⎪⎝⎭.当12t =-时,该函数取最大值,即max 32y =,当1t =时,该函数取最小值,即min 3y =-.因此,函数()y f x =的值域为33,2⎡⎤-⎢⎥⎣⎦.故答案为:33,2⎡⎤-⎢⎥⎣⎦.10.函数32()sin 3cos ,32f x x x x ππ⎛⎫⎡⎤=+∈- ⎪⎢⎥⎣⎦⎝⎭的值域为_________.【解析】由题意,可得()3232ππf x sin x 3cos x sin x 3sin x 3,x ,,32⎡⎤=+=-+∈-⎢⎥⎣⎦,令t sinx =,t ⎡⎤∈⎢⎥⎣⎦,即()32g t t 3t 3=-+,t ⎡⎤∈⎢⎥⎣⎦,则()()2g't 3t 6t 3t t 2=-=-,当t 0<<时,()g't 0>,当0t 1<<时,()g't 0>,即()y g t =在⎡⎤⎢⎥⎣⎦为增函数,在[]0,1为减函数,又g ⎛=⎝⎭()g 03=,()g 11=,故函数的值域为:⎤⎥⎣⎦.11.(2019·广东高三月考(文))函数()cos 2|sin |f x x x =+的值域为______.【解析】2219()cos 2|sin |12|sin ||sin |2|sin |48f x x x x x x ⎛⎫=+=-+=--+ ⎪⎝⎭,所以当1sin 4x =时,()f x 取到最大值98,当sin 1x =时,()f x 取到最小值0,所以()f x 的值域为90,8⎡⎤⎢⎥⎣⎦故答案为:90,8⎡⎤⎢⎥⎣⎦。
求三角函数最值的四种方法

求三角函数最值的四种方法求解三角函数最值问题的基本途径与其他函数最值问题相同,一方面要利用三角函数的特殊性质,例如有界性,另一方面要将问题转化为我们熟悉的函数的最值问题。
以下介绍几种常见的求解三角函数最值的策略。
1.配方转化策略对于能够化为形如y = a sin x + b sin x + c或y = a cos x +b cos x + c的三角函数最值问题,可以将其看作是sin x或cosx的二次函数最值问题,常常利用配方转化策略来解决。
例如,对于函数y = 5 sin x + cos 2x的最值问题,可以将其转化为y = -2 sin x + 5 sin x + 1,然后利用sin x的范围[-1.1]求得最小值为-6,最大值为4.2.有界转化策略对于能够通过变形化为形如y = A sin(ωx + φ)等形式的三角函数,可以利用其有界性来求解最值。
这是常用的求解三角函数最值问题的策略之一。
3.单调性转化策略借助函数单调性是求解函数最值问题常用的一种转化策略。
对于三角函数来说,常常是先化为y = A sin(ωx + φ) + k的形式,然后利用三角函数的单调性求解。
4.导数法对于一些较为复杂的三角函数最值问题,可以利用导数法求解。
通过对函数求导,找到其临界点,然后比较临界点和函数在端点处的取值,即可求得函数的最值。
在求解三角函数最值问题时,需要注意将三角函数准确变形为sin x或cos x的二次函数的形式,正确配方,并把握sinx或cos x的范围,以防止出错。
1,即y=−x+2设点P的坐标为(x,y),则y−0=y−yPx−2=x−xP解得xP=cosx,yP=sinx代入直线方程得y=−(cosx−2)+2=4−cosx所以y的最小值为3,当x=π/2时取到最小值。
答案]3。
如何求三角函数的最值

如何求三角函数的最值要求三角函数的最值,我们需要首先了解三角函数的性质和特点。
三角函数是以弧度为单位的周期函数,在每一个周期内有最大值和最小值,且最大值和最小值可以通过特定的计算方法求得。
在本文中,我们将针对正弦函数和余弦函数进行详细的讨论。
正弦函数的定义为:$y = \sin(x)$,其中x为实数,y为函数值。
1.弧度与角度的关系由于三角函数是以弧度为单位的周期函数,我们需要将角度转换为弧度来进行计算。
角度和弧度之间的关系可以通过以下公式表示:2.正弦函数的周期性正弦函数是一个周期函数,它的周期为$2\pi$,即在一圈的范围内,函数值会重复。
对于正弦函数来说,它的最大值和最小值是常数。
最大值为1,最小值为-1、在一个周期内,最大值出现在弧度值为$\frac{\pi}{2}$,最小值出现在弧度值为$\frac{3\pi}{2}$。
余弦函数的定义为:$y = \cos(x)$,其中x为实数,y为函数值。
1.余弦函数的周期性余弦函数也是一个周期函数,它的周期为$2\pi$。
余弦函数的最大值和最小值也是常数。
最大值为1,最小值为-1、在一个周期内,最大值出现在弧度值为0和$2\pi$,最小值出现在弧度值为$\pi$。
通过上述讨论,我们可以得出求解三角函数最值的一般方法:1.确定三角函数的周期;2.利用周期性,寻找函数值重复的范围;3.在每一个重复范围内计算函数的最值。
例如,我们求正弦函数$y=\sin(x)$的最值:1. 正弦函数的周期为$2\pi$;2. 在范围$[0, 2\pi]$内,正弦函数的最大值为1,最小值为-1;3. 在范围$[2\pi, 4\pi]$内,正弦函数的最大值为1,最小值为-1;...以此类推。
同样地,我们求余弦函数$y=\cos(x)$的最值:1. 余弦函数的周期为$2\pi$;2. 在范围$[0, 2\pi]$内,余弦函数的最大值为1,最小值为-1;3. 在范围$[2\pi, 4\pi]$内,余弦函数的最大值为1,最小值为-1;...以此类推。
三角函数求最值五种题型

三角函数求最值五种题型一、最值问题的一般解法:求解三角函数的最值问题可以分为以下五种题型:基本最大、基本最小、最大最小(上下界)、最大、最小。
1.基本最大:即求函数的最大值,通常通过对函数进行求导并令导数为零来求得。
这种情况下,需求导数在给定区间内的零点,并进行极值判断来确定最值。
2.基本最小:与基本最大相反,求函数的最小值,同样需要对函数进行求导并求导数为零,进行极值判断来确定最值。
3.最大最小(上下界):在给定区间内求函数的最大最小值,需将区间的端点以及函数的驻点和不可导点的值进行比较,以确定最大最小值。
4.最大:在给定区间内寻找函数的最大值。
可以通过对函数进行求导来确定驻点和不可导点,并与区间的端点进行比较,以确定最大值。
5.最小:在给定区间内寻找函数的最小值。
同样可以通过求导来确定驻点和不可导点,并与区间的端点进行比较,以确定最小值。
二、详细解答五种题型:以下是对上述五种题型的详细解答:1.基本最大:Example 1: 求函数f(x) = sin(x)的最大值。
解:首先求得导数f'(x) = cos(x),令cos(x) = 0,解得x = π/2 + kπ,其中k为整数。
然后对于x = π/2 + kπ,求得对应的函数值f(x) = sin(π/2 +kπ) = (-1)^k,即奇数项取最大值为1,偶数项取最小值为-1所以函数f(x) = sin(x)的最大值为12.基本最小:Example 2: 求函数f(x) = cos(x)的最小值。
解:同样求导得到f'(x) = -sin(x),令-sin(x) = 0,解得x = kπ,其中k为整数。
然后对于x = kπ,求得对应的函数值f(x) = cos(kπ) = (-1)^k,即奇数项取最小值为-1,偶数项取最大值为1所以函数f(x) = cos(x)的最小值为-13.最大最小(上下界):Example 3: 在区间[0, 2π]内,求函数f(x) = 2sin(x) + cos(x)的最大最小值。
高三数学三角函数的最值问题

;网络招生管理系统 网络招生管理系统 ;
炼器至尊,九品下の实力,凭借手中奇异の宝物,实力居然能比九品上! 风月君主从不参与各大势力の纷争,就算风月大陆各大世家明争暗斗,他都很少管.只要不触犯他订下の几条规矩就没事,一心钻研炼器,所以他炼器の水平已经达到一些极其高深の水平.或许他没有魂帝那么天马行空 变taiの思维,但是他盛在痴迷,一些君主痴迷一件事情数十万年进百万年,不间断の研究,谁也不知道他の水平已经达到什么高度了… 而期间噬大人透露の一些信息,也让白重炙对这个老好人,感官更加好了.恶魔降临之时,一直很少出关の风月君主第一站了出来,开始召集各君主,甚至派 人去了不少秘境请那几位老东西出山.在众位君主忙着清理各自大陆阴煞涧の不咋大的部分恶魔时,他就放言,如果星辰海の恶魔不立即镇压,神界将会迎来历史上第三次灭世大浩劫! 结果…各路巅峰强者,刚准备去风月大陆汇集の时候,妖智开始暴动了! 第一波浩劫来临,就在昨日风 云君主再次传讯了,今日妖月升起之前,不管各大陆の妖智击杀の情况如何,必须去风月潭集合商议对策,否则事情将不可挽回! 所以噬大人给白重炙两天の时候,白重炙听完之后一阵唏嘘.对风月君主の高尚品质很是钦佩,这种人平时不显山不露水,关键の时候却毅然挺身而出,为人类种 族の延续而奋战,这才是真正の大英雄. 三人没过多久就瞬移去了神恩大陆,距离妖月升起の时候还有一些,所以三人并没有多急,而是在神恩大陆充当了一回救火队员.神恩大陆那位自称嫣然女主の君主,虽然是神界唯一一位修魂者君主,当然此刻变成了唯二了,不过白重炙拿点魂技在嫣 然君主面前不值一提.但是毕竟她只是一人,神恩大陆情况很不妙,所以噬大人三人の到来,嫣然君主无比の感激和振奋. 白重炙休息了一不咋大的会,刚刚缓解了一些の精神压力.在神恩大陆战斗了数个数个时辰之后,再次差点灵魂奔溃了. 三位巅峰强者の加入,神恩大陆の妖智攻击在妖 月就要升起之前,终于稳定了下来.四人立即开始传送去风月大陆.白重炙苍白の脸色,让基德和噬大人一阵无奈,但是噬大人却依旧没有打算将他那半吊子空间之力の运用方法,传授给白重炙,只是模糊给他说了一句: "空间之力你呀可以当做另类の神力,本源之力你呀可以当成你呀手中 最锋利の武器,至于法则玄奥,你呀可以当做无比精妙の招式.三种结合起来,你呀の攻击力才会最大化,也能让你呀战斗の更加轻松,利用最少の空间之力,照成更大の攻击力…具体の自己去研究,俺和基德以前没有教你呀运用方法,以后也不会教你呀!" 白重炙虚弱の点了点头,虽然不明 白噬大人为何这么做,但是他知道噬大人不会害他,这就够了! 嫣然君主很少说话,幸运子和夜妖娆差不多,很冷,是这种天然の冷.不过看到白重炙如此样子,虽然没有半句客气感激の话,但是望向白重炙の眸子,已经不再那么冰冷了! 风月潭在风月城外,景色很美,漫山遍野の暗紫色不 咋大的花,高耸入云の古树下,一些深潭边,一座古朴の城堡静静伫立,这就是风月君主の居住地! 白重炙四人来の时候,风月君主亲自前来迎接,白重炙一看果然和基德述说の一模一样,一些老实の不咋大的老头般.丢到炽火城街道内,估计没有人会看第二眼. 风月君主亲自将四人迎进了 古堡内,大殿内有人,有四人.白重炙只认识一些,天启君主莫尚煌,一如既往の大嗓门,爽然性格,亲热笑容.还有三人,有两名仙风道骨の老头,气质飘然,她们几人进来,两人只是淡淡の一笑,点了点头. 白重炙の目光却一下被坐在主位の一些女子吸引住了,如果不是她们进来,那个女子眸 子转动了一下,白重炙肯定会认为这是一具冰雕,一具绝美の冰雕. 冰雪女王出岛了! 并且坐在了风月古堡の主位,似乎她是主人一样.并且所有人包括风月君主都没有半点不满,似乎那是天经地义の事情般. 冰雪女王很冷,甚至噬大人朝她点头,她都没有动一下.宛如一座冰山一样,似乎 对大殿内の这么多君主熟视无睹.偏偏众人感觉还很应该,也习以为常.这场面在白重炙看起来,无比の怪异. 但是,接下来却发生了一幕让所有君主都无比惊恐の事情,就连噬大人都微微错愕の微微张开了不咋大的口,嫣然女主一直很冷の眸子,却亮了起来. 因为冰雪女王,眸子转动の时 候,扫在白重炙身体の时候,停了下来.而后…居然笑了,她居然朝白重炙笑了!虽然笑の很勉强,笑の很冷!但是她这一笑,带给场中这几位神界最巅峰强者の感觉,却比神界浩劫来の更加震撼. 本书来自 聘熟 当前 第壹0叁壹章 灵魂又出事了… 众人落座,莫尚煌是个急幸运子,第一些 开口了:"诸位,星辰海の局势刻不容缓,时候拖延一刻,恶魔就会不断の从空间裂缝中降临.神界の天地元气中の恶魔气息就会越来越浓郁.现在是妖智暴动,估计半年之后再不镇压下去,下次暴动将会是…神界所有の低级练家子.并且,星辰海の空间裂缝被恶魔の控制之下,会变得越来越 大,越来越稳定.不用三个月,绝对能产生能降临恶魔君主の超级大裂缝.恶魔君主の强横不用多说,只要恶魔君主一降临,恐怕到时候神界の一半低级练家子,会瞬间魔化!浩劫啊,有可能灭世の大浩劫啊!" 文章阅读 笑是一件很简单の事情,婴儿在几个月の时候就会笑.看书 有人笑の很温和,不温不火の,比如白重炙,有人笑の儒雅,比如基德.有人笑得很放荡,比如莫尚煌.还有人笑の很…恐怖,比如眼前这位气质上比嫣然君主更甚一筹の冰雪女王. 因为在场中人,包括已经活了近千万年の风月君主,都没有见过冰雪女王…笑过!这位实力深不可测の女王,拥 有这女神般の气质,让无数男人看一眼,就心甘情愿就趴在脚上tian她の脚趾头女人.在场の人见过她不少次,每人都去冰雪岛拜见过她.风月君主见过他次数最多,有几十次,嫣然女主也见过她无数次. 但是…她一直宛如一座冰雕般,将身体包裹在极北之地の寒气之中.能正眼看你呀一眼 已经算是破天荒了,今日,她居然笑了!为一些第一次见面の男人笑了!为一些在场中实力垫底の不咋大的男人笑了! 风月君主最为震惊,他了解这位邻居,心比天高,实力强横,十个他都不是对手.他与世无争の幸运子很受冰雪女王待见,两人一直处の很好.基本来说能算朋友了,也一起 聊过不少次,不过今日他彻底被吓到了. 他想起神界一句古老の传言——当哪天冰女女王笑了,这个世界将会颤抖为之颤抖了! 所有人将目光投向了面色苍白の白重炙,虽然白重炙是神界历史上最为年轻の君主,第一怪才.但是他并没有帅得让人为之惭愧の容颜,也没有宛如开锋の利剑 般让人凛冽の气质.温和の笑容,淡淡の从容让人感觉宛如一些邻家の不咋大的弟弟般. 众人无比疑惑起来,嫣然君主若有所思の望着白重炙,噬大人眼中精光一闪,朝前踏出一步,眸子内闪过一丝警惕. 白重炙有些莫名其妙,不知道为何这个女神对他笑了笑,众人却如此大惊不咋大的怪? 他从来不认为自己身体上有一股王霸之气,虎躯一震,所有の女子都对他趴开那洁白の大腿.所以他朝冰雪女王微微一笑,而后在一边の蝉木椅子上坐了下来. 冰雪女王宛如冰山上の莲花盛开の一笑后,再次成为了一座冰雕.众人也就心思复杂の各自坐了下去,开始闭目眼神或者相互传音 交谈起来. 白重炙没有去看任何一人,而是闭目静坐起来,他不是装十三,而是精神太疲惫了,需要好好静修恢复. 同时他也开始内视身体起来.闭关了六百年,他出关之后就一直在战斗,此刻完全松懈下来,才有想起身体の状况起来. 闭关六百年他成就斐然,成功感悟了一些高级玄奥空间 压迫,如果这消息传出去の话,神界肯定又是一片哗然,要知道雷震如此天赋,第四个高级玄奥都感悟了三千年.法则实力已经成为了六品破仙の实力,原本准备一鼓作气继续参悟下一些高级玄奥の时候,妖姬把他叫醒了. 一查探! 结果,他差点又吓得跳了起来! 身体没事!脑袋也没事, 脑袋内の几个灵魂海洋…又出事了! 灵魂海洋上空の本源之力内の雷电依旧在不停の朝下方劈下,本源之力没有什么变幻,雷电依旧老样子,宛如一条条白色怒龙在本源之力和灵魂海洋内来回游走.灵魂海洋本来是几个褐色の海绵般の物体,宛如两瓣核桃仁般,但是此刻颜色却不对了,土 褐色变成了土黄色,并且似乎…变不咋大的了? 绝对变不咋大的了!并且,不咋大的了整整几多之一! 白重炙迅速做下了判断!而后他几个灵魂海洋开始微微颤抖起来,他恐慌起来.娘希匹の…他这六百年时候,几乎都在灵魂静寂第五层内.他虽然在闭关,但是妖姬却很准时の每隔五年, 施展她の绝世大杀招"观音坐莲"帮助他进入灵魂静寂状态! 按理来说,灵魂静寂第五层下,他の灵魂海洋会不断の扩展,虽然灵魂到达神帝境之后,进展有些缓慢.但是六百年时候,灵魂海洋扩展一倍还是没有问题,现在却马勒戈壁の变不咋大的了?还变色了? 白重炙强忍着内心の恐惧,开 始一边又一边の检查起来,一遍又一遍,最终发现似除了灵魂变不咋大的了,变色了,并没有其他の变化,也没有不良の反应.那座连接几个灵魂の桥梁虽然变得更加闪亮了,那条刚刚冒出头の黑线,也没有继续延伸の趋势… 不对! 突然,白重炙眼睛猛然睁开,将场中の诸位君主弄得一愣一 愣の,但是白重炙利马又闭上了眼睛,内心却又惊愕起来,但是这次除了惊还有喜! 灵魂海洋变不咋大的了?好像灵魂强度…变强了?还不是强了一点两点?灵魂强度不是灵魂海洋越大,就越强吗?难道自己の感觉错了? 白重炙有种当场释放一些魂技,检验一下灵魂强度の冲动.最后没敢贻 笑大方,他沉吟了片刻,最后打算,这次事情完了之后,找美丽の嫣然君主聊一聊.当然并不是谈人生理想,而是谈一谈修魂者の问题. 这位神界最强の修魂者,有这个资格为他传道解惑,当然她会不会倾囊相授就不得而知了. 虽然白重炙很想在继续检查起来,并且细细研究一下.但是随着古 堡外の空间一阵抖动,几道身影の出现,白重炙不得不打断了自己の沉思. 南岭君主血夜君主隐世君主,还有一位宛如远古蛮族般有着古铜色皮肤の巨汉走了进来.场中の所有人都睁开了眼睛,冰雪女王の眸子再次转动了一次,还轻微の点了点头,当然不是为南岭君主,而是对着那个巨汉. "这是神界极南那座神界最高青山の主人,他习惯别人称呼他青山大人!实力…和冰雪女王一样,深不可测!" 基德の传音让白重炙,眼睛微微缩了缩.今日看来神界の大部分巅峰强者都聚
十一种类型的三角函数最值问题(附题目详解)

十一种类型的三角函数最值问题1.利用三角函数的有界性求最值利用正弦函数、余弦正数的有界性:∣sinx ∣≤1,∣cosx ∣≤1,可求形如y=Asin(ωx+φ),y=Acos(Asin(ωx+φ)(A ≠0, φ≠0)的函数最值.例:已知函数y=12 cos 2x+32 sinxcosx+1,x ∈R,当函数y 取得最大值时,求自变量x 的集合.2.反函数法 例:求函数1cos 21cos 2-+=x x y 的值域[分析] 此为dx c bx a y -+=cos cos 型的三角函数求最值问题,分子、分母的三角函数同名、同角,先用反解法,再用三角函数的有界性去解。
3.配方法—---转化为二次函数求最值例:求函数y=f(x)=cos 22x-3cos2x+1的最值.4.引入辅助角法y=asinx+bcosx 型处理方法:引入辅助角ϕ ,化为y=22b a +sin (x+ϕ),利用函数()1sin ≤+ϕx 即可求解。
Y=asin 2x+bsinxcosx+mcos 2x+n 型亦可以化为此类。
例:已知函数()R x x x x y ∈+⋅+=1cos sin 23cos 212当函数y 取得最大值时,求自变量x 的集合。
[分析] 此类问题为x c x x b x a y 22cos cos sin sin +⋅+=的三角函数求最值问题,它可通过降次化简整理为x b x a y cos sin +=型求解。
5. 利用数形结合 例: 求函数y xx=+s in c o s 2的最值。
解:6、换元法例:若0<x<2π,求函数y=(1+1sinx )(1+1cosx )的最小值.7. 利用函数在区间内的单调性8. 例: 已知()π,0∈x ,求函数xx y sin 2sin +=的最小值。
[分析] 此题为xax sin sin +型三角函数求最值问题,当sinx>0,a>1,不能用均值不等式求最值,适合用函数在区间内的单调性来求解。
求三角函数最值的四种常用解题方法

求三角函数最值的四种常用解题方法
求三角函数最值的常用解题方法
一.使用配方法求解三角函数的最值
例1.已知函数的最大值为1,求的值
解:
结论:将三角函数转化为二次函数也是求最值的通法之一,应当注意,整理成
时,要考虑的取值及的条件,才能正确求出最值。
二.使用化一法求解三角函数的最值
例2.求函数的值域。
分析:降幂后发现式中出现了和,这时再化成一个角的三角函数便可求得。
—1—
解:
结论:化一法由“化一次”、“化一名”、“化一角”三部分组成,其中“化一次”使用到降幂公式、“化一名”使用到推导公式、“化一角”使用到倍角公式及三角函数的和差公式等,因此需要大家熟练掌握相关公式并灵活运用。
三.使用基本不等式法求解三角函数的最值
例3.求函数的值域
—2—
解:
解:
四.使用换元法求解三角函数的最值
例4.求函数的最值。
分析:解此题的途径是用逆求将函数式变形,用y表示与x有关的三角函数,利用三角函数的有界性求最值。
解:
—3—。
三角函数最值问题(典型题型)

三角函数最值问题求解三角函数最值问题不仅需要用到三角函数的定义域、值域、单调性、图象以及三角函数的恒等变形,还经常涉及到函数、不等式、方程以及几何计算等众多知识.这类问题往往概念性较强,具有一定的综合性和灵活性,下面结合例子给出几种求最值的方法,供大家学习时参考。
1、利用三角函数的单调性求最值例1:求函数x x x x x f 44sin cos sin 2cos )(-⋅-= ⎢⎣⎡⎥⎦⎤∈2,0πx 的最值 解:x x x x x x x x f 2sin 2cos 2sin )sin )(cos sin (cos )(2222-=--+=45424,20ππππ≤+≤∴≤≤x x ,由余弦函数的单调性及图像知: 当442ππ=+x , 即0=x 时 ,)42cos(π+x 取最大值22; 当ππ=+42x ,即83π=x 时,)42cos(π+x 取最小值-1; 故2)(,1)(min max -==x f x f方法评析:本题虽然含有的三角函数的项的次数不尽相同,但最终能通过变形变为形如θθcos sin b a +的形式,再用辅助角公式)sin(cos sin 22ϕθθθ++=+b a b a 化为标准形式结合三角函数的单调性加以解决,这是一种最常见的求最值的方法。
2、利用三角函数的有界性或数形结合求最值例2:求1cos 2sin --=x x y 的最小值 解:(方法一)由1cos 2sin --=x x y 得:y x y x -=-2cos sin ,y x y -=-+∴2)sin(12ϕ 即212)sin(y yx +-=-ϕ,故11212≤+-≤-y y ,解之得43≥y , 故y 的最小值为43 方法评析:通过变形,借助三角函数的有界性求函数最值是一种很常见的方法,一般在分式型且对自变量无特殊限制条件下使用。
(方法二)设),(),sin ,(cos 21M x x P ,则1cos 2sin --=x x y 表示单位圆上的动点P 与平面内定点M 连线的斜率,当斜率存在时,设过P 、M 两点的直线方程为)1(2-=-x k y ,由距离公式得1122=+-k k ,解之得43=k ,结合图形可知函数的最小值为43。
初中数学 如何求解三角函数的最大值和最小值

初中数学如何求解三角函数的最大值和最小值
要求解三角函数的最大值和最小值,我们可以使用代数方法或图像法。
下面将分别介绍这两种方法:
1. 代数方法:
代数方法是通过代数运算来求解三角函数的最大值和最小值。
具体步骤如下:
-确定函数的定义域:首先,我们需要确定求解最大值和最小值的函数的定义域。
这可以通过观察函数图像或根据函数的周期性来确定。
-求导数:对三角函数进行求导,得到导函数。
-解导函数的方程:将导函数等于零,得到一个方程,求解这个方程可以得到驻点(导数为0的点)。
-计算函数值:将驻点和定义域的边界代入原函数,计算函数在这些点的值。
-比较函数值:比较函数值,找到最大值和最小值。
2. 图像法:
图像法是通过观察三角函数的图像来求解最大值和最小值。
具体步骤如下:
-绘制函数图像:使用数学绘图工具或在线图形绘制工具绘制三角函数的图像。
这样可以直观地观察函数的最大值和最小值。
-观察特点:观察图像,找到函数的极值点(最大值和最小值)。
这些点通常出现在函数的波峰和波谷处。
-确定最大值和最小值:根据函数的周期性和对称性,我们可以确定所有的最大值和最小值。
总结:
通过代数方法或图像法,我们可以求解三角函数的最大值和最小值。
代数方法适用于通过求导数和解方程来求解最大值和最小值,而图像法适用于通过观察图像来确定最大值和最小值。
在实际应用中,根据具体情况选择合适的方法,或结合两种方法进行求解,可以更准确地找到三角函数的最大值和最小值。
三角函数最值类型大全

最值的基本类型有:(1)y=asinx+b (或y=acosx+b )型,利用()1cos 1sin ≤≤x x 或,即可求解,此时必须注意字母a 的符号对最值的影响。
(2)y=asinx+bcosx 型,引入辅助角ϕ,化为y=22b a +sin (x+ϕ),利用函数()1sin ≤+ϕx 即可求解。
Y=asin 2x+bsinxcosx+mcos 2x+n 型亦可以化为此类。
(3)y=asin 2x+bsinx+c (或y=acos 2x+bcosx+c ),型,可令t=sinx (t=cosx ),-1≤t ≤1,化归为闭区间上二次函数的最值问题。
(4)Y=d x c b x a ++sin sin (或y=dx b x a ++cos cos )型,解出sinx (或cosx ),利用()1cos 1sin ≤≤x x 或去解;或用分离常数的方法去解决。
(5)y=d x c b x a ++cos sin (y=d x c b x a ++sin cos )型,可化归为sin (x+ϕ)g (y )去处理;或用万能公式换元后用判别式去处理;当a=c 时,还可利用数形结合的方法去处理上。
(6)对于含有sinx±cosx,sinxcosx 的函数的最值问题,常用的方法是令sinx±cosx=t,2≤t ,将sinxcosx转化为t 的函数关系式,从而化为二次函数的最值问题。
1、已知函数()2cos (sin cos )1f x x x x x =-+∈R ,. (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,上的最小值和最大值. 2、设函数()f x =·a b ,其中向量(cos2)m x =,a ,(1sin 21)x =+,b ,x ∈R ,且()y f x =的图象经过点π24⎛⎫ ⎪⎝⎭,.(Ⅰ)求实数m 的值;(Ⅱ)求函数()f x 的最小值及此时x 值的集合.3、函数22cos sin 2y x x =+的最小值是_____________________ .4、设函数2()sin()2cos 1468x x f x πππ=--+. (Ⅰ)求()f x 的最小正周期.(Ⅱ)若函数()y g x =与()y f x =的图像关于直线1x =对称,求当4[0,]3x ∈时()y g x =的最大值. 5、设02x π⎛⎫∈ ⎪⎝⎭,,则函数22sin 1sin 2x y x +=的最小值为 . 6、函数f(x)=3sin x +sin(π2+x)的最大值是7、已知函数2()cos f x x x =-,对于ππ22⎡⎤-⎢⎥⎣⎦,上的任意12x x ,,有如下条件:①12x x >; ②2212x x >; ③12x x >.其中能使12()()f x f x >恒成立的条件序号是 . 8、已知函数2()sin cos cos 2.222x x x f x =+- (Ⅰ)将函数()f x 化简成))2,0[,0,0()sin(πϕωϕω∈>>++A B x A 的形式,并指出()f x 的周期; (Ⅱ)求函数17()[,]12f x ππ在上的最大值和最小值 9、已知函数117(),()cos (sin )sin (cos ),(,).112t f t g x x f x x f x x t ππ-==⋅+⋅∈+ (Ⅰ)将函数()g x 化简成sin()A x B ωϕ++(0A >,0ω>,[0,2)ϕπ∈)的形式;(Ⅱ)求函数()g x 的值域.10、已知函数2()2sin cos 23sin 3444x x x f x =-+. (Ⅰ)求函数()f x 的最小正周期及最值; (Ⅱ)令π()3g x f x ⎛⎫=+ ⎪⎝⎭,判断函数()g x 的奇偶性,并说明理由. 11、已知函数2π()sin3sin sin 2f x x x x ωωω⎛⎫=++ ⎪⎝⎭(0ω>)的最小正周期为π. (Ⅰ)求ω的值; (Ⅱ)求函数()f x 在区间2π03⎡⎤⎢⎥⎣⎦,上的取值范围. 12、已知函数()cos(2)2sin()sin()344f x x x x πππ=-+-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程(Ⅱ)求函数()f x 在区间[,]122ππ-上的值域 13、求函数2474sin cos 4cos 4cos y x x x x =-+-的最大值与最小值。
三角函数的最值

三角函数的最值三角函数是比较重要的数学主题,它可以帮助我们更好地理解几何概念以及图形的变化。
而三角函数的最值,则是三角函数的一个重要概念,有助于我们更好地绘制三角函数图像、分析三角函数的图形特征,以及求解信息等等。
一、解析三角函数的最值三角函数的最值是指三角函数y=f(x)在给定的区间[a,b]内,f(x)的最大值和最小值。
特别的,当取区间[a,b]为全实数集时,最大值和最小值将不再存在。
例如,sin(x)在实数集内,其最大值为1,最小值为-1;而cos(x)在实数集内,其最大值为1,最小值也为1。
二、三角函数最值的求解方法(1)偏导数法若需求解f(x)在给定的区间[a,b]内的最值,可以先对函数求偏导,考察偏导数是否在区间内取得最值,若有则求该点的函数值,并记录其最小值或最大值;若无,则求取函数在该区间的定点的值,作为函数的最值。
(2)判别式法一般的,令f(x)=0,求获函数的根,然后计算函数的二阶导数,若f(x)>0,则根为极小值点,若f(x)<0,则根为极大值点。
(3)几何解法由几何图像解三角函数最值,在找到函数图像上的极大值极小值时,可以从两个方面考虑,一是寻找函数最大最小值点,另一种方法是求解两个函数的比值f(x)/g(x),在给定区间[a,b]内找到两个函数比值最大最小点。
三、典型例题(1)求函数f(x)=x2-2x+1[-1,1]上的最大值和最小值解:f(x)=2x-2=0,得x=1当x=-1,f(-1)=0;x=1,f(1)=2所以函数y=f(x)在[-1,1]上的最大值为2,最小值为0(2)求函数f(x)=sin2x[0,π/2]上的最大值和最小值解:f(x)=2cos2x,得cos2x=0,得x=π/4当x=0,f(0)=0;当x=π/4,f(π/4)=1所以函数y=f(x)在[0,π/2]上的最大值为1,最小值为0四、总结本文介绍了三角函数的最值的概念,并介绍了常用的求解最值的方法,以及常见的例题。
三角函数最值问题的十种常见解法

三角函数最值问题的十种常见解法解法一:利用图像性质求解利用三角函数的图像性质,首先将函数图像画出来,观察函数在指定区间上的最大值和最小值所对应的点的坐标。
解法二:使用导数求解通过对三角函数进行求导,然后将导数等于零进行求解,可以得到函数的关键点,进而通过函数的变化趋势确定最值。
解法三:使用平均值不等式求解根据平均值不等式的性质,可以得到三角函数的最值。
例如,对于正弦函数sin(x),可以利用平均值不等式得到最值。
解法四:使用二次函数的性质求解将三角函数转化为二次函数的形式,然后利用二次函数的性质求解最值。
例如,可以将正弦函数sin(x)转化为二次函数的形式。
解法五:使用三角函数的周期性质求解三角函数的周期性质可以帮助我们确定最值所在的区间。
通过观察函数的周期性质,可以得到函数的最大值和最小值。
解法六:使用三角函数的反函数求解利用三角函数的反函数,可以将问题转化为求解反函数的最值问题。
通过对反函数的最值进行求解,可以得到原函数的最值。
解法七:使用三角函数的恒等式求解利用三角函数的恒等式,可以将复杂的三角函数转化为简单的形式,进而求解最值问题。
例如,可以利用和差公式将三角函数的角度转化为相对简单的形式。
解法八:使用三角函数的基本关系求解利用三角函数的基本关系,可以将复杂的三角函数转化为简单的形式,进而求解最值问题。
例如,可以利用正切函数和余切函数的基本关系求解最值。
解法九:使用三角函数的积分求解通过对三角函数进行积分,可以得到函数的积分表达式,并通过积分表达式求解最值。
例如,可以通过对正弦函数进行积分得到函数的积分表达式。
解法十:使用泰勒级数展开求解利用泰勒级数展开,可以将三角函数转化为幂级数形式,进而求解最值问题。
通过计算前几项幂级数的和,可以得到函数的近似值,并进一步求解最值。
求极限的方法三角函数公式

求极限的方法三角函数公式极限是微积分中的一个重要概念,用于描述函数在特定点附近的性质。
对于一个函数f(x),如果x趋近于一些值a时,f(x)的极限存在,那么我们可以用一些方法来求这个极限值。
三角函数是常见的函数类型之一,下面介绍一些常用的方法来求解三角函数极限。
1.基本极限对于常见的一些基本三角函数的极限值,我们可以直接利用它们的定义来求解。
例如:- lim(sin x / x) = 1,当x趋近于0时- lim(tan x / x) = 1,当x趋近于0时- lim(1 - cos x) / x^2 = 1/2,当x趋近于0时这些基本的三角函数极限是非常有用的,可以帮助我们在求解其他复杂的极限时做一些基本的转化和变形。
2.三角函数的性质三角函数有一些基本的性质,我们可以利用这些性质来求解一些较为复杂的三角函数极限。
例如,利用奇偶性可以帮助我们求解一些关于正弦函数和余弦函数的极限值。
- sin(-x) = -sin(x)- cos(-x) = cos(x)利用这些性质,我们可以将一个复杂的极限问题转化为一个已知的极限问题。
3.三角函数的和差化积公式三角函数的和差化积公式可以帮助我们将复杂的三角函数极限转化为一个或多个已知的极限问题。
例如,sin(A ± B)和cos(A ± B)的表达式可以通过和差化积公式进行转化。
通过这种转化,我们可以将一个复杂的三角函数极限转化为已知的极限问题,进而求解其极限值。
4.夹逼准则夹逼准则是求解极限的重要方法之一,也是在处理三角函数极限时经常使用的技巧。
夹逼准则基于一个简单的原理:如果一个函数f(x)处处小于另一个函数g(x),而g(x)处处小于另一个函数h(x),并且f(x)和h(x)的极限都等于L,则g(x)的极限也等于L。
利用夹逼准则,我们可以通过构造一个上界和下界函数来求解一个复杂的三角函数极限。
这些是常见的用于求解三角函数极限的方法。
三角函数的最值求法总结

三角函数的最值(值域)一. 可化为 y=Asin (ωx+φ)+B 的三角函数 *关键:运用辅助角公式例1. 求下列函数的最值(1)f (x) = sin x +3cos x解:f (x) =2 ( 21sin x +23cos x ) =2 sin (x+3π) ∴f (x)max =2,f (x) min = -2如:加上条件 x ∈[-6,2ππ ] 解:―2π≤ x ≤6π , -6π≤ x +3π≤2π ∴ -21≤ sin (x +3π) ≤ 1 ∴ f (x) max = 2, f (x)min =-1.(2) f (x) =21sin 2x +23sin x cos x +1 解:f (x) =21.22cos 1x -+43sin2x+1=-45)62sin(21452sin 432cos 41+-=++πx x x 当sin(2x -)6π=1时,f(x)max =474521=+ 当sin(2x -)6π=-1时,f(x)min =-434521=+二、形如y=at 2+bt+c 二次函数的最值 *关键:换元例1. 求下列函数的最值(1) y = cos 2x +cos x -2解:y = (cosx+49)21- 令t =cosx , t ∈[-1,1]y = (t+)212-49 当t=-21即cosx=-21时,y min =-49 当t=1即cosx=1时,y max =0(2) y =sin x cos x + sin x + cos x解:令t =sin x +cos x , t ∈[-2,2],sinx cosx =212-t y = 212-t + t =21( t+1)2-1 ∴当t =-1时,y min =-1当t=2时 y max =2122+三. 形如y=d x c b x a ++sin sin ( y =)cos cos dx c b x a ++ *关键:用y 表示cosx (sinx )例1.y =2cos 1cos 3++x x 解:y cosx +2y =3cosx+1(y -3) cosx = 1-2y∵y ≠3 ( 提问:为什么?) ∴cosx =321--y y ∵x cos ≤1,321--y y ≤1 ∴-2≤y ≤34,即y min =-2,y max =34 另解:y =2cos 532cos 5)2(cos 3+-=+-+x x x ∵-1≤cosx ≤1, 1≤cosx+2≤3,-2≤3-2cos 5+x ≤34∴y max =34, y min =-2思考:y =xx cos 2sin 3 的最值 小结:1. 三角恒等式的灵活应用2. 掌握三角函数求最值的几种常用方法。
高中数学解题方法系列:三角函数最值问题的10种方法

高中数学解题方法系列:三角函数最值问题的10种方法三角函数是重要的数学运算工具,三角函数最值问题是三角函数中的基本内容,对三角函数的恒等变形能力及综合应用要求较高.解决三角函数最值这类问题的基本途径,一方面应充分利用三角函数自身的特殊性(如有界性等),另一方面还要注意将求解三角函数最值问题转化为求一些我们所熟知的函数(二次函数等)最值问题.下面介绍几种常见的求三角函数最值的方法:一.转化一次函数在三角函数中,正弦函数与余弦函数具有一个最基本也是最重要的特征——有界性,利用正弦函数与余弦函数的有界性是求解三角函数最值的最基本方法.例1.求函数2cos 1y x =-的值域[分析] 此为cos y a x b =+型的三角函数求最值问题, 设cos t x =,由三角函数的有界性得[1,1]t ∈-,则21[3,1]y t =-∈-二. 转化sin()y A x b ωϕ=++(辅助角法)观察三角函数名和角,先化简,使三角函数的名和角统一.例2.(2017年全国II 卷)求函数()2cos sin f x x x =+的最大值为.[分析] 此为sin cos y a x b x =+型的三角函数求最值问题,通过引入辅助角公式把三角函数化为sin()y A x B ωϕ=++的形式,再借助三角函数图象研究性质,解题时注意观察角、函数名、结构等特征.一般可利用|sin cos |a x b x +≤求最值.()f x ≤三. 转化二次函数(配方法)若函数表达式中只含有正弦函数或余弦函数,且它们次数是2时,一般就需要通过配方或换元将给定的函数化归为二次函数的最值问题来处理.例3. 求函数3cos 3sin 2+--=x x y 的最小值.[分析]利用22sin cos 1x x +=将原函数转化为2cos 3cos 2+-=x x y ,令cos t x =,则,23,112+-=≤≤-t t y t 配方,得41232-⎪⎭⎫ ⎝⎛-=t y , ∴≤≤-,11t Θ当t=1时,即cosx=1时,0min =y四. 引入参数转化(换元法)对于表达式中同时含有sinx+cosx ,与sinxcosx 的函数,运用关系式(),cos sin 21cos sin 2x x x x ±=± 一般都可采用换元法转化为t 的二次函数去求最值,但必须要注意换元后新变量的取值范围.例4. 求函数sin cos sin .cos y x x x x =++的最大值.[分析]解:令().cos sin 21cos sin 2x x x x +=+,设sin cos .t x x =+则[]()t t y t t x x +-=∴-∈-=21,2,221cos sin 22,其中[]2,2-∈t 当.221,14sin ,2max +=∴=⎪⎭⎫ ⎝⎛+=y x t π 五. 利用基本不等式法利用基本不等式求函数的最值,要合理的拆添项,凑常数,同时要注意等号成立的条件,否则会陷入误区.例5. 已知()π,0∈x ,求函数1sin 2sin y x x =+的最小值. [分析] 此题为xa x sin sin +型三角函数求最值问题,当sinx>0,a>1,不能用均值不等式求最值,适合用函数在区间内的单调性来求解.设()1sin ,01,2x t t y t t =<≤=+≥=2t =. 六.利用函数在区间内的单调性 例6.已知()π,0∈x ,求函数x x y sin 2sin +=的最小值. [分析] 此题为xa x sin sin +型三角函数求最值问题,当sinx>0,a>1,不能用均值不等式求最值,适合用函数在区间内的单调性来求解. 设()t t y t t x 1,10,sin +=≤<=,在(0,1)上为减函数,当t=1时,3min =y .七.转化部分分式例7.求函数1cos 21cos 2-+=x x y 的值域[分析] 此为dx c b x a y -+=cos cos 型的三角函数求最值问题,分子、分母的三角函数同名、同角,这类三角函数一般先化为部分分式,再利用三角函数的有界性去解.或者也可先用反解法,再用三角函数的有界性去解. 解法一:原函数变形为1cos ,1cos 221≤-+=x x y Θ,可直接得到:3≥y 或.31≤y 解法一:原函数变形为()()∴≤-+∴≤-+=,1121,1cos ,121cos y y x y y x Θ3≥y 或.31≤y 八. 数形结合由于1cos sin 22=+x x ,所以从图形考虑,点(cosx,sinx)在单位圆上,这样对一类既含有正弦函数,又含有余弦函数的三角函数的最值问题可考虑用几何方法求得. 例8. 求函数()π<<--=x xx y 0cos 2sin 的最小值. [分析] 法一:将表达式改写成,cos 2sin 0x x y --=y 可看成连接两点A(2,0)与点(cosx,sinx)的直线的斜率.由于点(cosx,sinx)的轨迹是单位圆的上半圆(如图),所以求y 的最小值就是在这个半圆上求一点,使得相应的直线斜率最小.设过点A 的切线与半圆相切与点B,则.0<≤y k AB 可求得.3365tan -==πAB k 所以y 的最小值为33-(此时3π=x ). 法二:该题也可利用关系式asinx+bcosx=()φ++x b a sin 22(即引入辅助角法)和有界性来求解.九. 判别式法例9.求函数22tan tan 1tan tan 1x x y x x -+=++的最值. [分析] 同一变量分子、分母最高次数齐次,常用判别式法和常数分离法.解:()()()()222tan tan 1tan tan 11tan 1tan 101,tan 0,x x y x x y x y x y y x x k k ππ-+=++∴-+++-=∴===∈1≠y 时此时一元二次方程总有实数解()()()().3310313,014122≤≤∴≤--∴≥--+=∆∴y y y y y 由y=3,tanx=-1,()3,4max =∈+=∴y z k k x ππ 由.31,4,1tan ,31min =+=∴==y k x x y ππ 十. 分类讨论法含参数的三角函数的值域问题,需要对参数进行讨论.例10.设()⎪⎭⎫ ⎝⎛≤≤--+-=20214sin cos 2πx a x a x x f ,用a 表示f(x)的最大值M(a). 解:().214sin sin 2+-+-=a x a x x f 令sinx=t,则,10≤≤t ()().21442214222+-+⎪⎭⎫ ⎝⎛--=+-+-==a a a t a at t x f t g (1) 当12≥a ,即()t g a ,2≥在[0,1]上递增, ()();21431-==a g a M (2) 当,120≤≤a 即20≤≤a 时,()t g 在[0,1]上先增后减,();214422+-=⎪⎭⎫ ⎝⎛=a a a g a M (3) 当,02≤a 即()t g a ,0≤在[0,1]上递减,()().4210a g a M -== ()⎪⎪⎪⎩⎪⎪⎪⎨⎧≤-≤≤+-≥-=∴0,42120,21442,21432a a a a a a a a M以上几种方法中又以配方法和辅助角法及利用三角函数的有界性解题最为常见.解决这类问题最关键的在于对三角函数的灵活应用及抓住题目关键和本质所在.挑战自我:1.求函数y=5sinx+cos2x 的最值2.已知函数()R x x x x y ∈+⋅+=1cos sin 23cos 212当函数y 取得最大值时,求自变量x 的集合.3.已知函数())cos (sin sin 2x x x x f +=,求函数f(x)的最小正周期和最大值.参考答案:1.[分 析] :观察三角函数名和角,其中一个为正弦,一个为余弦,角分别是单角和倍角,所以先化简,使三角函数的名和角达到统一. ()48331612,,221sin 683316812,,22,1sin ,1sin 183345sin 21sin 5sin 2sin 21sin 5max min 222=+⨯-=∈+=∴=-=+⨯-=∈-=-=∴≤≤-+⎪⎭⎫ ⎝⎛--=++-=-+=y z k k x x y z k k x x x x x x x x y ππππΘ 2.[分析] 此类问题为x c x x b x a y 22cos cos sin sin +⋅+=的三角函数求最值问题,它可通过降次化简整理为x b x a y cos sin +=型求解.解: ().47,6,2262,4562sin 21452sin 232cos 2121452sin 432cos 41122sin 2322cos 121max =∈+=∴+=+∴+⎪⎭⎫ ⎝⎛+=+⎪⎪⎭⎫ ⎝⎛+=++=+⋅++⋅=y z k k x k x x x x x x x x y ππππππ∴ f(x)的最小正周期为π,最大值为21+.3.[分析] 在本题的函数表达式中,既含有正弦函数,又有余弦函数,并且含有它们的二次式,故需设法通过降次化二次为一次式,再化为只含有正弦函数或余弦函数的表达式. 解:()⎪⎭⎫ ⎝⎛-+=+-=+=42212sin 2cos 1cos sin 2sin 22πx sn x x x x x x f。
专题 求三角函数的最值问题

专题 求三角函数的最值问题
专题突破:三角函数的最值问题是三角函数基础知识的综合应用,它往往与二次函数、三角函数图象、函数的单调性等知识联系在一起,有一定的综合性,在求解时既要注意正、余弦函数的有界性,又要注意灵活选用方法。
一.利用sin 1,cos 1x x #求三角函数的最值
例1. 求函数3sin 1sin 2
x y x -=+的最值。
二.利用换元法求最值
例2.
求函数sin cos sin cos y x x x x =++的最大值。
三.利用sin cos )(tan )b a x b x x a +=
+j j =其中来求最值 例3. 求函数sin 1cos 3
x y x -=-的最值。
四.利用给定区间的二次函数的性质求最值
例4.求函数223cos 4cos 1,,33y x x x 轾p p 犏=-+ 犏臌
的最大值与最小值。
五.形如22sin sin cos cos y a x b x x c x =++的函数的最值
例5.已知函数22()sin cos 2cos ,f x x x x x x R =+
+ ,求函数的最值。
六.给定区间的三角函数的最值 例6.已知函数()()2sin cos f x x x =p - ,(1)求()f x 的最小正周期;(2)求()f x 在区间
,62
轾p p 犏-犏臌上的最大值和最小值。
七.用几何法求三角函数的最值
例7.求函数2sin 2cos x y x -=-的最值。
例谈求三角函数最值的几种途径

解题宝典三角函数最值问题侧重于考查三角函数的公式、性质以及进行三角恒等变换的技巧.常见的命题形式是根据已知三角函数式、根据已知角的范围求三角函数的最值.此类问题的难度一般不大,在解题时需选择合适的方法,将三角函数式进行适当的变形、化简,利用三角函数、函数的有界性来求得最值.下面谈一谈求解三角函数最值问题的几种途径.一、利用三角函数的有界性有界性是三角函数的重要性质之一.一般地,当x ∈R 时,||sin x ≤1,||cos x ≤1.在解答三角函数最值问题时,需首先根据题意确定函数的定义域,然后利用诱导公式、二倍角公式、两角的和差公式等,通过三角恒等变换,将目标式进行变形,化简为只含一种函数名称、次数最低、角的个数最少的式子,便可根据三角函数的有界性和单调性求得各个单调区间上的最值,最后比较所得的最值即可解题.例1.求函数f ()x =3sin x -1sin x +2的最值.解:设y =f ()x =3sin x -1sin x +2,将其变形可得sin x =-1-2yy -3,因为||sin x ≤1,所以-1≤-1-2yy -3≤1,整理可得:-4≤y ≤23,因此f ()x 的最大值为23,最小值为-4.该函数式的分子、分母中均含有正弦函数式,较为复杂,于是可将y 看作参数,用y 表示sin x ,根据sin x 的有界性,建立关于y 的不等式,解该不等式即可求得y 的取值范围,求得函数的最值.运用该方法解题,需使化简后的式子为只含正弦函数、余弦函数、正切函数的式子,这样才能便于利用三角函数的性质求最值.二、利用二次函数的性质对于含有偶次幂的三角函数式,可利用诱导公式、二倍角公式、辅助角公式将其化简为关于sin x 、cos x 、tan x 的二次函数式,然后将其配方,根据二次函数式的性质来求三角函数式的最值.对于y =a 2x +bx +c (x ∈R )的二次函数式,当a <0时,函数图象的开口向下,函数有最大值;当a >0时,函数图象的开口向上,函数有最小值.例2.求函数f ()x =2cos 2x +sin 2x -4cos x 的最值.解:f ()x =2()2cos 2x -1+()1-cos 2x -4cos x=3cos 2x -4cos x -1=3æèöøcos x -232-73,当cos x ∈éëùû-1,23时,f ()x 单调递减;当cos x ∈éëùû23,1时,f ()x 单调递增;所以当cos x =-1时,f ()x 取最大值6;当cos x =23时,f ()x 取最小值-73.解答本题,需先利用二倍角公式以及同角的三角函数式sin 2x +cos 2x =1将函数式化简为关于cos x 的二次函数式,然后讨论二次函数的单调性,即可根据二次函数的单调性求得问题的答案.例3.求函数y =()sin x -2()cos x -2的最值.分析:函数式中含有sin x 、cos x ,较为复杂,于是联想到同角的三角函数式sin 2x +cos 2x =1,于是令sin x +cos x =t ,将目标式转化为关于t 的二次函数式,便可利用二次函数的单调性和有界性求解.解:y =()sin x -2()cos x -2=sin x cos x -2(sin x +cos x )+4,令sin x +cos x =t ,可得t ∈[]-2,2,sin x cos x =t 2-12,则y =sin x cos x -2(sin x +cos x )+4=t 22-2t +72=12()t -22+32,t ∈[]-2,2,当t ∈[]-2,2时,f ()x 单调递减;所以当t =-2时,y 取最大值92+22,当t =2时,y 取最小值92-22.在求较为复杂的三角函数最值问题时,可通过换元,构造二次函数式,将三角函数最值问题转化为二次函数最值问题,根据二次函数的性质来解题.在换元的过程中要注意确保定义域的等价性.可见,求解三角函数最值问题,需熟练掌握正弦、余弦、正切、二次函数的单调性和有界性,这样才能顺利求得最值.(作者单位:江苏省南通市海门证大中学)王海桥39Copyright 博看网 . All Rights Reserved.。
高中数学解题方法系列:三角函数最值问题的6种方法(按题型分类版)

高中数学解题方法系列:三角函数最值问题的 6 种方法(按题型分类版)三角函数的最值问题是三角函数基础知识的综合应用,近几年的高考题中经常出现。
其出现的形式,或者是在小题中单纯地考察三角函数的值域问题;或者是隐含在解答题中, 作为解决解答题所用的知识点之一;或者在解决某一问题时,应用三角函数有界性会使问题更易于解决(比如参数方程)。
题目给出的三角关系式往往比较复杂,进行化简后,再进行归纳,主要有以下几种类型。
掌握这几种类型后,几乎所有的三角函数最值问题都可以解决。
1.y=asinx+bcosx 型的函数特点是含有正余弦函数,并且是一次式。
解决此类问题的指导思想是把正、余弦函数转化为只有一种三角函数。
应用课本中现成的公式即可: y= tan φ= basin(x+φ ), 其中例 1 已知函数 f (x )=2cos x sin(x + π)-3 sin 2x +sin x cos x (1)求函数 f (x )的最小正周期; (2)求 f (x )的最小值及取得最小值时相应的 x 的值; (3)若当 x ∈[ π , 7π]时,f (x )的反函数为 f -1(x ),求 f --1(1)的值.12 12解:(1)f (x )=2cos x sin(x + π)- 3=2cos x (sin x cos π+cos x sin π)-sin 2x +sin x cos x sin 2x +sin x cos x 3 3=2sin x cos x + cos2x =2sin(2x + π)3∴f (x )的最小正周期 T =π (2)当 2x + π=2k π- π,即 x =k π- 5π (k ∈Z )时,f (x )取得最小值-2.3 2 12 (3)令 2sin(2x + π)=1,又 x ∈[ π, 7π],3 2 2 ∴2x + π∈[ π, 3π],∴2x + π= 5π,则3 3 2 3 6x = π,故 f --1(1)= π.4 42.y=asin 2x+bsinxcosx+cos 2x 型的函数。
三角函数最值问题的十种常见解法

三角函数最值问题的十种常见解法t=sinx+cosx,则y=t+sinx*cosx,利用关系式sinx*cosx≤1可得y≤t+1,而t的取值范围为[-√2,√2],当t=√2时,y取得最大值√2+1.五.利用导数法求极值对于一些复杂的三角函数最值问题,可以利用导数法求解.例如对于y=2sinx+3cosx+4sin2x,求其最大值.分析]解:y'=2cosx-3sinx+8cos2x,令y'=0,得cosx=3/10或cosx=-1/2,代入原式可得y的最大值为(7+8√6)/5.六.利用三角函数的周期性对于周期函数,可以利用其周期性来求解最值问题.例如对于y=3sin(2x+π/6)+4cos(2x-π/3),求其最大值.分析]解:由于sin和cos函数都是周期为2π的函数,因此可以将y化简为y=3sin2x+4cos2x+3√3,利用三角函数的性质可得y的最大值为7+3√3.七.利用三角函数的单调性对于单调函数,可以利用其单调性来求解最值问题.例如对于y=2sinx+3cosx,求其最小值.分析]解:y的导数y'=2cosx-3sinx,y'的符号与sinx和cosx的符号相同,因此y在[π/2,π]上单调递减,在[0,π/2]上单调递增,因此y的最小值为y(π/2)=2.八.利用三角函数的对称性对于一些具有对称性的三角函数,可以利用其对称性来求解最值问题.例如对于y=sin2x+cos2x,求其最大值和最小值.分析]解:y=sin2x+cos2x=1,因此y的最大值为1,最小值也为1.九.利用三角函数的积分性质对于一些三角函数的积分性质,可以利用其求解最值问题.例如对于y=sin2x/x,求其最大值.分析]解:y'=2cos2x/x-sin2x/x²,令y'=0,得x=tanx,代入原式可得y的最大值为2.十.利用三角函数的平均值不等式对于一些三角函数,可以利用其平均值不等式来求解最值问题.例如对于y=sin2x+cos2x,求其最大值和最小值.分析]解:由平均值不等式可得(sin2x+cos2x)/2≥sinx*cosx,因此y的最大值为1,最小值也为1.sin x+\cos x=1+2\sin x\cos x$,设$t=\sin x+\cos x$,则$2\sin x\cos x=\frac{t^2-1}{2}$,$\therefore y=\frac{t+\frac{t^2-1}{2}}{2}=\frac{t^2+t-1}{4}$,其中$t\in[-\sqrt{2},\sqrt{2}]$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求三角函数最值的四种方法
解决这一类问题的基本途径,同求解其他函数最值一样,一方面应充分利用三角函数自身的特殊性如有界性等,另一方面还要注意将求解三角函数最值问题转化为求一些我们所熟知的函数二次函数等最值问题.下面介绍几种常见的三角函数最值的求解策略
1.配方转化策略
对能够化为形如y =a sin 2x +b sin x +c 或y =a cos 2
x +b cos x +c 的三角函数最值问题,可看作是sin x 或cos x 的二次函数最值问题,常常利用配方转化策略来解决.
[典例1] 求函数y =5sin x +cos 2x 的最值.
[解] y =5sin x +()1-2sin 2x =-2sin 2x +5sin x +1=-2⎝
⎛⎭⎪⎫sin x -542+338. ∵-1≤sin x ≤1,∴当sin x =-1,即x =2k π-π2,k ∈Z 时, y min =-2×8116+338=-6;当sin x =1,即x =2k π+π2,k ∈Z 时,y max =-2×116+338=4.
[题后悟道]
这类问题在求解中,要注意三个方面的问题:其一要将三角函数准确变形为sin x 或cos x 的二次函数的形式;其二要正确配方;其三要把握三角函数sin x 或cos x 的范围,以防止出错,若没有特别限制其范围是[-1,1].
2.有界转化策略
对于所给的三角函数能够通过变形化为形如y =A sin(ωx +φ)等形式的,常常可以利用三角函数的有界性来求解其最值.这是解决三角函数最值问题常用的策略之一.
[典例2] 设函数f (x )=4cos ⎝
⎛⎭⎪⎫ωx -π6sin ωx -cos(2ωx +π),其中ω>0. 求函数y =f (x )的最值.
[解] f (x )=4⎝ ⎛⎭
⎪⎫32cos ωx +12sin ωx sin ωx +cos 2ωx =23sin ωx cos ωx +2sin 2ωx +cos 2ωx -sin 2ωx
=3sin 2ωx +1,
因为-1≤sin 2ωx ≤1,
所以函数y =f (x )的最大值为3+1,最小值为1- 3.
[题后悟道]
求解这类问题的关键是先将所给的三角函数化为一个角的三角函数问题,然后利用三角函数的有界性求其最值.
3.单调性转化策略
借助函数单调性是求解函数最值问题常用的一种转化策略.对于三角函数来说,常常是先化为y =A sin(ωx +φ)+k 的形式,再利用三角函数的单调性求解.
[典例3] 函数f (x )=22sin ⎝ ⎛⎭⎪⎫x +π4-32在⎣⎢⎡⎦⎥⎤π,17π12上的最大值为________,最小值为________.
[解析] 由π≤x ≤17π12,得5π4≤x +π4≤5π3
. 因为f (x )=22sin ⎝ ⎛⎭⎪⎫x +π4-32在⎣⎢⎡⎦⎥⎤π,5π4上是减函数,在⎣⎢⎡⎦⎥⎤5π4,17π12上是增函数,且f (π)>f ⎝ ⎛⎭⎪⎫17π12,所以当x =5π4时,f (x )有最小值为22sin ⎝
⎛⎭⎪⎫5π4+π4-32=-22-32. 当x =π时,f (x )有最大值-2.
[答案] -2 -
22-32
[题后悟道]
这类三角函数求最值的问题,主要的求解策略是先将三角函数化为一个角的三角函数形式,然后再借助于函数的单调性,确定所求三角函数的最值.
4.数形结合转化策略
对于形如y =b -sin x a -cos x 的三角函数最值问题来说,常常利用其几何意义,将y =b -sin x a -cos x 视为定点(a ,b )与单位圆上的点(cos x ,sin x )连线的斜率来解决.
[典例4] 求函数y =-sin x 2-cos x
(0<x <π)的最小值. [解] 将表达式改写成y =0-sin x 2-cos x
,y 可看成连接点A (2,0)与点P (cos x ,sin x )的直线的斜率.由于点(cos x ,sin x )的轨迹是
单位圆的上半圆(如图),所以求y 的最小值就是在这个半圆上求一点,
使得相应的直线斜率最小.
设过点A 的直线与半圆相切于点B ,则k AB ≤y <0.
可求得k AB =tan 5π6=-33
. 所以y 的最小值为-
33⎝ ⎛⎭⎪⎫此时x =π3.
[题后悟道]
这类三角函数的最值问题,求解策略就是先将函数化为直线斜率的形式,再找出定点与动点满足条件的图形,最后由图形的几何意义求出三角函数的最值.。