abaqus XFEM 方法介绍
ABAQUS平台的扩展有限元方法模拟裂纹实现
ABAQUS平台的扩展有限元方法模拟裂纹实现1.1 扩展有限元方法(XFEM)在ABAQUS上的实现ABAQUS中XFEM的实现,两个步骤最为关键:1、选择模型中可能出现的裂纹区域,将其单元设为具有扩展有限元性质的enrichment element.2、其次重要的是选择恰当的破坏准则,使单元在达到给定的条件破坏,裂纹扩展。
在ABAQUS中模拟裂纹扩展的操作中,需要注意的是:1、在Property模块,添加损伤演化参数、破坏法则、损伤稳定性参数2、在Interaction模块,主菜单Special中创建XFEM的enrichment element对于固定的裂纹模型,采用ABAQUS/STANDARD中使用奇异渐进函数。
针对移动的裂纹问题,在XFEM中,有一种方法基于traction-separation cohesive behavior,即使用虚拟节点连续片段法进行移动裂纹建模,ABAQUS/STANDAR D 中用于计算脆性或韧性材料的裂纹初始化和扩展过程的模拟。
另外一种cohesive segments method (粘性片段方法)可用于bulk material中的任意路径的裂纹初始化模拟扩展过程,由于裂纹扩展不依赖于单元边界,在XFEM中,裂纹每扩展一次需要通过一个完整单元,避免尖端应力奇异性。
除此之外,ABAQUS为拥护提供了自定义子程序,来满足不同建模的需要。
ABAQUS/STANDARD中的任意力学本构模型均可用来模拟扩展裂纹的力学特性。
由于XFEM采用的形函数在求解过程中,很容易造成逼近线性相关,极大的增加了收敛难度,到目前为止,能够实现扩展有限元的商业软件只有ABAQUS,但是ABAQUS为了减少求解难度,做了大量简化,因此用ABAQUS 扩展有限元模拟裂纹扩展时,有一些局限[16]:1.扩展单元内不能同时存在两条裂纹,所以ABAQUS不能模拟分叉裂纹;2.在裂纹扩展分析过程中,每一个增量步的裂纹转角不允许超过90度;3.自适应的网格是不被支持的;4.固定裂纹中,只有各向同性材料的裂纹尖端渐进场才被考虑。
ABAQUS中扩展有限元(XFEM)功能简介
ABAQUS中扩展有限元(XFEM)功能简介扩展有限元(Extended Finite Element Method)是一种解决断裂力学问题的新的有限元方法,其理论最早于1999年,由美国西北大学的教授Belyschko和Black首次提出,主要是采用独立于网格剖分的思想解决有限元中的裂纹扩展问题,在保留传统有限元所有优点的同时,并不需要对结构内部存在的裂纹等缺陷进行网格划分。
ABAQUS基于在非线性方面的突出优势,在其6.9的版本中开始加入了扩展有限元功能,到6.13做了一些修正,加入了一些可以被CAE支持的关键字。
目前为止,除了手动编程,能够实现扩展有限元常用的商业软件只有ABAQUS,今天,我们就来谈谈ABAQUS 中如何实现扩展有限元。
1. XFEM理论在XFEM理论出现之前,所有对裂纹的静态模拟(断裂)都基本上是采用预留裂缝缺角,通过细化网格仿真裂缝的轮廓。
而动态的模拟(损伤)基本上都是基于统计原理的Paris 方法。
然而,断裂和损伤的结合问题却一直没有得到有效的解决,究其原因,在于断裂力学认可裂纹尖端的应力奇异现象(就是在靠近裂尖的区域应力值会变无穷大),并且尽可能的绕开这个区域。
而损伤力学又没有办法回避这个问题(裂纹都是从尖端开裂的)。
从理论上讲,其实单元内部的位移函数(形函数)可以是任意形状的,但大多数的计算软件都采用了多项式或者插值多项式作为手段来描述单元内部的位移场,这是因为采用这种方法更加便于在编程中进行处理。
但是这种方法的缺点就是,由于形函数的连续性,导致单元内部不可能存在间断。
直到Belytschko提出采用水平集函数作为手段,其基本形式为和上面左边的等式描述了单元内裂缝的位置,右边的等式描述了裂尖的位置。
与之对应的形函数便是和其中H(x)是阶跃函数。
想要了解更深的内容,大家可以参考《Extended Finite Element Method》和庄老师的《扩展有限单元法》这种扩充形函数能够描述单元内位移场在裂缝两边的跳跃性,同时,由于裂缝存在于单元内部,其扩展独立与其他单元,使得计算变得高效。
XFEM总结
一、 ABAQUS 中XFEM 的实现(基于牵引分离规则的损伤力学理论)1、选择模型中可能出现裂纹的区域,将其单元设置为具有扩展有限元性质的富集单元;2、选择合适的破坏准则,使得单元在达到条件时发生破坏,裂纹得以扩展。
二、 ABAQUS 中XFEM 的简化1、富集单元内不能存在两条裂缝,说明ABAQUS 放弃了两个形函数带来的耦合问题,所以ABAQUS 中不能模拟分叉裂缝;2、在计算过程中会发现裂缝是不能停留在单元内部,说明ABAQUS 放弃了单元内部对裂尖的描述;3、ABAQUS 在计算XFEM 的损伤时采用的是基于能量释放率的Paris 法则,虽然这是基于弹塑性断裂力学的经典手段,但由于承认了裂尖位置的塑性效应,使得在模拟损伤时也只能对低周疲劳能有比较好的近似。
三、 破环准则——最大主应力准则:1、破坏法则(用以控制损伤的起始)max max max max 0,0,0σσσσ<⎧⎫<>=⎨⎬>⎩⎭0max σ为最大临界主应力(通过实验给定,武汉岩土所为320Pa ),为了避免纯压缩状态下发生损伤。
当上式f 范围为0<f<1+f tol ,其中f tol为一个公差,默认为0.05,当f>1+f tol时,认为达到损伤断裂准则,开始起裂。
2、Damage Evolution损伤演化(用以控制损伤的发展情况)(1)Damage Evolution 中的所有选项是用来确定单元达到强度极限以后的刚度降阶方式,包括基于位移损伤演化规律和基于能量损伤演化规律(武汉岩土所给定基于能量)。
(2)软化定义:线性软化、指数软化、表格定义软化曲线(武汉岩土所为指数软化)(3)Mixed-mode definitiona. 接触点处的正常和剪切分离的相对比例定义了该点处的模式混合。
b.定义等效断裂能释放率:BK准则:(武汉岩土所为软化BK准则,幂指数为2.284,断裂能释放率各向同性均为28)Power准则:Reeder准则(仅适用于三维问题,且Gц≠Gш时最为适用):3、损伤稳定系数:用以改善收敛,一般取1E-5。
裂纹扩展的扩展有限元(xfem)模拟实例详解
基于ABAQUS 扩展有限元的裂纹模拟化工过程机械622080706010 李建1 引言1.1 ABAQUS 断裂力学问题模拟方法在abaqus中求解断裂问题有两种方法(途径):一种是基于经典断裂力学的模型;一种是基于损伤力学的模型。
断裂力学模型就是基于线弹性断裂力学及其基础上发展的弹塑性断裂力学等。
如果不考虑裂纹的扩展,abaqus可采用seam型裂纹来分析(也可以不建seam,如notch型裂纹),这就是基于断裂力学的方法。
这种方法可以计算裂纹的应力强度因子,J积分及T-应力等。
损伤力学模型是指基于损伤力学发展而来的方法,单元在达到失效的条件后,刚度不断折减,并可能达到完全失效,最后形成断裂带。
这两个模型是为解决不同的问题而提出来的,当然他们所处理的问题也有交叉的地方。
1.2 ABAQUS 裂纹扩展数值模拟方法考虑模拟裂纹扩展,目前abaqus有两种技术:一种是基于debond的技术(包括VCCT);一种是基于cohesive技术。
debond即节点松绑,或者称为节点释放,当满足一定得释放条件后(COD 等,目前abaqus提供了5种断裂准则),节点释放即裂纹扩展,采用这种方法时也可以计算出围线积分。
cohesive有人把它译为粘聚区模型,或带屈曲模型,多用于模拟film、裂纹扩展及复合材料层间开裂等。
cohesive模型属于损伤力学模型,最先由Barenblatt 引入,使用拉伸-张开法则(traction-separation law)来模拟原子晶格的减聚力。
这样就避免了裂纹尖端的奇异性。
Cohesive 模型与有限元方法结合首先被用于混凝土计算和模拟,后来也被引入金属及复合材料。
Cohesive界面单元要服从cohesive 分离法则,法则范围可包括粘塑性、粘弹性、破裂、纤维断裂、动力学失效及循环载荷失效等行为。
此外,从abaqus6.9版本开始还引入了扩展有限元法(XFEM),它既可以模拟静态裂纹,计算应力强度因子和J积分等参量,也可以模拟裂纹的开裂过程。
ABAQUS精选本FEM扩展元例子的详细图解
版本X F E M(扩展有限元)例子的详细图解一、part模块中的操作:二、 1.生成一个新的part,取名为plate,本part选取3Ddeformablesolidextrusion类型(如图1)三、 2.通过Rectangle工具画出一长3,高6的矩形。
考虑使用工具栏add-dimension和editdimension来画出精确长度的模型。
强烈建议此矩形的左上角坐标为(0,3),右下角坐标为(3,-3)(如图2)四、 3.完成后拉伸此矩形,深度为1.(如图3)五、图1,图2,图3,4.生成一个新的part,取名为crack,本part选取3Ddeformableshellextrusion类型(如图4)5.生成一条线,此线的左端点坐标为(0,),右端点坐标为(,)6.完成后拉伸此线,深度为1.(如图6)7.保存此模型为XFEMtutor(如图7),以后经常保存模型,不再累述。
8.在partPlate中分别创建4个集合,分别为:all,bottom,top和fixZ,各部分的内容如图8~11所示。
二、Material模块中的操作:1.创建材料elsa,其弹性参数为E=210GPa,泊松比为(如图12)最大主应力失效准则作为损伤起始的判据,最大主应力为(如图13)损伤演化选取基于能量的、线性软化的、混合模式的指数损伤演化规律,有关参数为G1C=G2C=G3C=42200N/m,=1.(如图14)2.创建一个SolidHomogeneous的section,名为solid(如图15),此section与材料elsa相联(如图16),并将此section赋给platepart(也就是集合all)(如图17)3.赋予材料取向,分别如图18~21所示。
三、划分网格:网格控制为:Hex型structured(如图22),单元类型为C3D8R(如图23)设置plate各边的网格种子为8,26,36(如图24),各边种子的个数不能改变(如图25)四、装配模块:选中plate和crack两个part,分别生成2个实体(如图26),生成一个参考点,参考点的坐标为(,-3,0)(如图27,28)。
航空器复合材料胶接接头设计(ABAQUS-XFEM)
摘要复合材料结构的连接形式主要分为胶接和机械连接,随着复合材料在航空航天领域的广泛应用,胶接因其在复合材料结构连接中的优良特性日益受到结构设计人员的青睐,具有连接效率高、结构轻、抗疲劳、密封性好等优点。
然而胶接设计也具有很大的挑战性,在结构强度计算中,胶接连接接头部位一般为危险部位,需要重点校核。
所以,对复合材料胶接接头的设计分析是十分必要的。
本选题利用成熟的有限元商用软件ABAQUS,使用XFEM(扩展有限元法)对胶层和复合材料层的应力场等进行分析。
通过分析计算这些应力,同时应用相应的失效准则,进而可预测初始裂纹的扩展与否及扩展的长度,为胶接接头设计的选择提供必要的依据。
在文章中,讨论了胶接长度、胶层厚度和初始裂纹的位置对裂纹扩展的影响。
通过对仿真结果的分析,提出了减小胶接长度和胶层厚度的观点,指出裂纹易于产生及扩展的区域,对胶接接头的设计进行了优化。
胶接接头的优化设计对拓宽复合材料在飞机结构上的应用范围,进一步减轻结构重量、提高疲劳性能和降低制造成本具有重要的工程使用价值。
关键词:复合材料板胶接接头扩展有限元裂纹扩展AbstractThe joint methods of composite structure contain cementing and mechanical connection.. With the use of composite in the field of aviation increased a lot in recent years for its high strength and lightness, the cementing is increasingly favored by the structure design staff for its excellent characteristics in the connection field of composite structure. The characteristics are high ligation efficiency, light structure, antifatigue and good sealing. However, glued design also has a great challenge. In the structural strength calculations, glued joints are generally connected to dangerous parts and need to focus on checking. Therefore, the design and analysis of composite bonded joint is very necessary.The topic use the sophisticated and commercial software -ABAQUS, in the field of finite element, and use XFEM ( extended finite element method ) as the foundation to analysis the stress field of bonding layers and composite layers. By analyzing and calculating these stresses, while applying the appropriate failure criterion, we can predict the initial crack extension and the length of the expansion. In this way, it can provide the necessary basis for the design of bonding joints. In the article, we discussed the impact of the bonding length, layer thickness and initial crack location on crack propagation. Through the analysis of simulation results, we presented two standpoints of reducing the length of bonding joint and the thickness of adhesive. Besides, we pointed the areas where cracks are easy to generate and expand. Optimal design of adhesive joints in composite materials has important engineering value to broaden the scope of application of the aircraft structure and further reduce the structural weight, improve the performance of fatigue and reduce manufacturing costs.Keywords:Composite plates, Adhesive joints, XFEM, Crack extension目录摘要 (I)Abstract ....................................................... I I 目录.......................................................... I II 第一章引言.. (1)1.1导言 (1)1.2胶接连接 (2)1.2.1 简介 (2)1.2.2胶接连接应当注意的问题 (3)1.2.3胶接连接研究现状 (3)1.3 胶接接头 (4)1.3.1胶接接头简介 (4)1.3.2胶接接头的基本形式 (5)1.3.3胶接接头的破坏模式 (6)1.3.4胶接接头处可能出现的裂纹及其影响 (7)第二章复合材料损伤和胶接连接的力学模型 (8)2.1导言 (8)2.2复合材料层板强度预测 (8)2.3复合材料和胶层断裂准则 (10)第三章利用ABAQUS建立复合材料胶接接的有限元模型 (13)3.1扩展有限元方法和工程软件ABAQUS简介 (13)3.1.1传统有限元方法 (13)3.1.2扩展有限元方法及基本原理 (14)3.1.3ABAQUS简介 (15)3.2利用ABAQUS建立复合材料板胶接模型的过程 (16)3.2.1几何模型的建立和约束条件 (16)3.2.2材料属性 (17)3.2.3定义接触 (19)3.2.4 对于XFEM定义 (19)第四章基于裂纹扩展分析的单面搭接接头设计 (21)4.1复合材料胶接接头在纵向载荷下的受力分析 (21)4.2不同搭接长度下胶接接头的裂纹扩展情况 (23)4.2.1搭接长度为15mm的情况 (23)4.2.2搭接长度为10mm的情况 (25)4.2.3搭接长度为20mm的情况 (26)4.2.4不同搭接长度下裂纹情况的对比及结论 (28)4.3不同胶层厚度下胶接接头的裂纹扩展情况 (29)4.3.1胶层厚度为0.1mm的情况 (29)4.3.2胶层厚度为0.2mm的情况 (31)4.3.3胶层厚度为0.3mm的情况 (33)4.3.4不同胶层厚度下裂纹情况的对比及结论 (34)带五章基于裂纹扩展的斜面搭接接头设计 (37)5.1斜面搭接接头在纵向载荷下的受力分析 (37)5.2不同裂纹位置下胶接接头的裂纹扩展情况 (38)5.2.1选取的三种不同裂纹位置 (39)5.2.2裂纹的扩展情况 (40)5.2.3三种情况对比及结论 (42)5.3单面搭接和斜面搭接情况的对比 (43)第六章全文总结及展望 (46)6.1全文总结 (46)6.2展望 (47)致谢辞 (49)参考文献 (50)第一章引言1.1导言复合材料作为一种新材料,在最近的半个多世纪中飞速发展,由于复合材料采用纤维加强结构,使得复合材料具有比重小、比强度和比模量大的特点,并且由于采用的是铺层结构,制造过程简单,容易成型。
ABAQUS平台的扩展有限元方法模拟裂纹实现
ABAQUS平台的扩展有限元⽅法模拟裂纹实现ABAQUS平台的扩展有限元⽅法模拟裂纹实现1.1 扩展有限元⽅法(XFEM)在ABAQUS上的实现ABAQUS中XFEM的实现,两个步骤最为关键:1、选择模型中可能出现的裂纹区域,将其单元设为具有扩展有限元性质的enrichment element.2、其次重要的是选择恰当的破坏准则,使单元在达到给定的条件破坏,裂纹扩展。
在ABAQUS中模拟裂纹扩展的操作中,需要注意的是:1、在Property模块,添加损伤演化参数、破坏法则、损伤稳定性参数2、在Interaction模块,主菜单Special中创建XFEM的enrichment element对于固定的裂纹模型,采⽤ABAQUS/STANDARD中使⽤奇异渐进函数。
针对移动的裂纹问题,在XFEM中,有⼀种⽅法基于traction-separation cohesive behavior,即使⽤虚拟节点连续⽚段法进⾏移动裂纹建模,ABAQUS/STANDAR D 中⽤于计算脆性或韧性材料的裂纹初始化和扩展过程的模拟。
另外⼀种cohesive segments method (粘性⽚段⽅法)可⽤于bulk material中的任意路径的裂纹初始化模拟扩展过程,由于裂纹扩展不依赖于单元边界,在XFEM中,裂纹每扩展⼀次需要通过⼀个完整单元,避免尖端应⼒奇异性。
除此之外,ABAQUS为拥护提供了⾃定义⼦程序,来满⾜不同建模的需要。
ABAQUS/STANDARD中的任意⼒学本构模型均可⽤来模拟扩展裂纹的⼒学特性。
由于XFEM采⽤的形函数在求解过程中,很容易造成逼近线性相关,极⼤的增加了收敛难度,到⽬前为⽌,能够实现扩展有限元的商业软件只有ABAQUS,但是ABAQUS为了减少求解难度,做了⼤量简化,因此⽤ABAQUS 扩展有限元模拟裂纹扩展时,有⼀些局限[16]:1.扩展单元内不能同时存在两条裂纹,所以ABAQUS不能模拟分叉裂纹;2.在裂纹扩展分析过程中,每⼀个增量步的裂纹转⾓不允许超过90度;3.⾃适应的⽹格是不被⽀持的;4.固定裂纹中,只有各向同性材料的裂纹尖端渐进场才被考虑。
裂纹扩展的扩展有限元(xfem)模拟实例详解
基于ABAQUS 扩展有限元的裂纹模拟化工过程机械622080706010 李建1 引言1.1 ABAQUS 断裂力学问题模拟方法在abaqus中求解断裂问题有两种方法(途径):一种是基于经典断裂力学的模型;一种是基于损伤力学的模型。
断裂力学模型就是基于线弹性断裂力学及其基础上发展的弹塑性断裂力学等。
如果不考虑裂纹的扩展,abaqus可采用seam型裂纹来分析(也可以不建seam,如notch型裂纹),这就是基于断裂力学的方法。
这种方法可以计算裂纹的应力强度因子,J积分及T-应力等。
损伤力学模型是指基于损伤力学发展而来的方法,单元在达到失效的条件后,刚度不断折减,并可能达到完全失效,最后形成断裂带。
这两个模型是为解决不同的问题而提出来的,当然他们所处理的问题也有交叉的地方。
1.2 ABAQUS 裂纹扩展数值模拟方法考虑模拟裂纹扩展,目前abaqus有两种技术:一种是基于debond的技术(包括VCCT);一种是基于cohesive技术。
debond即节点松绑,或者称为节点释放,当满足一定得释放条件后(COD 等,目前abaqus提供了5种断裂准则),节点释放即裂纹扩展,采用这种方法时也可以计算出围线积分。
cohesive有人把它译为粘聚区模型,或带屈曲模型,多用于模拟film、裂纹扩展及复合材料层间开裂等。
cohesive模型属于损伤力学模型,最先由Barenblatt 引入,使用拉伸-张开法则(traction-separation law)来模拟原子晶格的减聚力。
这样就避免了裂纹尖端的奇异性。
Cohesive 模型与有限元方法结合首先被用于混凝土计算和模拟,后来也被引入金属及复合材料。
Cohesive界面单元要服从cohesive 分离法则,法则范围可包括粘塑性、粘弹性、破裂、纤维断裂、动力学失效及循环载荷失效等行为。
此外,从abaqus6.9版本开始还引入了扩展有限元法(XFEM),它既可以模拟静态裂纹,计算应力强度因子和J积分等参量,也可以模拟裂纹的开裂过程。
abaqus疲劳裂纹扩展模拟方法
在Abaqus中进行疲劳裂纹扩展模拟通常需要使用ABAQUS/Standard或ABAQUS/Explicit这两个分析模块。
ABAQUS提供了丰富的工具和元素来模拟疲劳裂纹扩展,以下是一个基本的步骤:1. 建模:-使用ABAQUS/CAE(图形用户界面)或ABAQUS脚本语言(Python)创建模型。
确保模型包含准确的几何形状和边界条件。
2. 网格划分:-确保模型的网格划分足够细致,特别是在裂纹尖端区域。
使用ABAQUS 提供的适当类型的网格元素,如二维或三维等元素。
3. 材料定义:-定义材料的力学性质和断裂参数。
在疲劳分析中,通常需要使用合适的疲劳材料参数。
4. 加载和约束:-定义加载和约束条件。
对于疲劳裂纹扩展,通常使用周期性的加载。
加载可以是压力、力、位移等。
5. 疲劳裂纹增长:-使用ABAQUS的断裂力学(XFEM)方法来模拟裂纹的扩展。
你可以使用ABAQUS/Standard的XFEM方法来处理裂纹尖端的应力集中。
6. 结果输出:-设置合适的输出请求以获得关于裂纹扩展和结构响应的信息。
这可能包括应力、应变、位移、裂纹长度等。
7. 迭代分析:-如果需要模拟多个加载循环的疲劳裂纹扩展,你可能需要使用ABAQUS/Standard的循环加载功能,或者通过ABAQUS/Explicit进行显式动态疲劳分析。
8. 后处理:-使用ABAQUS/CAE或Python脚本进行后处理,绘制结果图形,分析裂纹扩展速率等。
请注意,这仅仅是一个基本的指南。
实际应用中,还需要考虑更多因素,如裂纹尖端应力场的准确建模、裂纹扩展准则的选择等。
确保在模拟前仔细阅读ABAQUS文档,并根据具体问题和标准进行模拟设置。
XFEM实现裂纹扩展
---因为专注,所以卓越!
网格划分
焊缝在管道的上下起始位置,造成几何模型的急剧变化, 导致网格不容易划分,因此,使用专业的的前处理软件 ANSA进行网格划分,使得焊缝的网格密度大于其他位置 的网格密度。
初始裂纹在焊缝中的位置
---因为专注,所以卓越!
分析过程
---因为专注,所以卓越!
I型裂纹扩展过程的动画演示
---因为专注,所以卓越!
II型裂纹扩展过程的动画演示
---因为专注,所以卓越!
ABAQUS采用XFEM模 案例2 块实现压力容器的裂纹 过程的模拟,如果图所 示,压力容器与外部连 接的接口处存在初始微 裂纹,当容器内压力达 到一定程度,裂纹开始 启裂并扩展。 模型的建模与应用针对 工程实例,很好的展现 了XFEM强大的裂纹扩 展功能。
石油管道的裂纹扩展模拟
利用ABAQUS的XFEM方法实现石油管道的裂纹扩展,在 已知起始裂纹尺寸的情况下,根据外部载荷模拟裂纹的起 裂和扩展过程。 由于裂纹的尺寸较整体模型尺寸较小,因此采用用户子模 型的方法对局部进行更加细致的分析。
一、XFEM模块功能简述
ABAQUS V6.9及其以后的版本将拓展有限元方法引入到 其分析中,并增加了新的模块XFEM,该方法可以认为是 有限元方法处理不连续问题的革命性变革。这是第一个将 XFEM商用化的软件。 固体力学中存在两类典型的不连续问题,一类是因材料特 性突变引起的弱不连续问题,这类问题以双材料问题和夹 杂问题为代表,其复杂性由物理界面处的应变不连续性引 起;另一类是因物体内部几何突变引起的强不连续问题, 这类问题以裂纹问题为代表,其复杂性由几何界面处的位 移不连续性和端部的奇异性引起。物体内部物理界面的脱 粘或起裂,是上述两类问题的混合。
abaqusXFEM方ń樯abaqusXFEM方法介绍aspanclass=
abaqus XFEM 方ń樯abaqus XFEM 方法介绍aspan class= 裂纹扩展分析体验热分析中的热物性参数:材料密度,热导率,比热容,电阻率,弹性模量,融化潜热的焓、泊松比、散热系数。
在ABAQUS模型中,需用3D的deformable、shell、exctrusion方式建立一个初始裂纹,长短适宜,初始裂纹要从开始起裂的点设置。
由于计算方法目前还不稳定,参数要适当调整。
设置网格划分参数的时候,应该对称设置,否则网格不对称。
断裂应力的大小要和断裂能量的设置相应,能量太大、太小导致不易收敛,断裂区域的网格要规则,各个方向尺寸要差不多,整个厚度方向单元数量一致,且越少越好,即使裂纹起始点两侧单元未参与裂纹,也要尽可能均匀规则,裂纹扩展的区域不能被PARTION开,应该是一体的。
冲击动载荷时,载荷步时间应尽可能小,maxps damage应力应大于ductile damage应力。
初始裂纹不能在单元界限扩展,否则导致不收敛。
裂纹可在两种弹性金属界面上。
适用于弹性材料、两种弹性材料界面裂纹和幂硬化材料。
我建立的弹塑性材料模型不容易收敛,把塑性去掉后反而容易收敛。
建立ductile manage模型时,需要材料的塑性行为,但必须同时有traction manage模型,否则就提示某些单元的fracture damage模型未能建立,。
traction manage模型和ductile manage模型中的damage evolution中的类型和数值要相同。
初始屈服应力和断裂应力不能差太多。
动力学的冲击裂纹分析,不能有塑性(当然也不能有ductile damage),可能是因为increment time 太大了,(或者是先分析一下不带塑性材料的,通过了才分析有塑性材料的,) 断裂能量要和断裂应力相适应,否则可能因为能量太高,还未达到,但应力达到了,导致裂纹不开裂、计算不收敛。
能量太低,很容易就满足了能量开裂原则,但应力未达到,裂纹不能开裂、计算不收敛。
XFEM分析
使用X-FEM方法建立间断化扩展特性概述建立离散化扩展特性,如裂纹:●通常被称为扩展有限元方法(XFEM);●基于单元划分的传统有限元方法扩展;●采用特殊的位移函数,通过扩展自由度允许间断特性的存在;●不需要重新划分网格用于适应几何间断特性;●是一种非常有效和有吸引力的方法,用于模拟任意性、求解相关路径裂纹的裂纹初始及裂纹扩展过程,而不用要求重新划分网格;●可以同时与基于面的粘性行方法(surface-based cohesive behavior)和虚拟裂纹闭合法同时使用(VCCT);●可以用于计算任意稳定表面裂纹的路径积分,而不需要在裂纹尖端周围重新剖分网格;●允许基于小滑动形式(small-sliding formulation)的裂纹单元之间的接触作用;●允许几何非线性和材料非线性的存在;●当前只对一阶应力/位移固体连续单元有效。
建模方法使用传统有限元方法建立固定不连续性质,如裂纹,要求网格划分符合几何不连续。
因此,很多的网格重构需要建立用以更好地模拟裂纹尖端附近奇异渐进场。
建立扩展裂纹模型更加复杂,这是由于网格需要连续不断地更新以适应裂纹扩展过程中几何不连续性。
扩展有限元方法(XFEM)可以缓解裂纹面网格划分带来的缺点。
扩展有限元方法由Belytschko and Black(1999)首次提出。
该方法基于整体划分(partition of unity)的概念(Melenk and Babuska 1996),属于传统有限元方法的扩展。
该整体划分概念使扩展函数(enrichment functions)方便地插入到有限元近似当中。
间断性可以通过与额外自由度相关联的扩展函数(enriched functions)来确定。
然而,扩展有限元方法保留了有限元框架及一些特性,如刚度矩阵的稀疏性及对称性等。
节点扩展函数简介(Introducing nodal enrichment functions)为了实现断裂分析,扩展函数通常包括裂纹尖端附近渐进函数(near-tip asymptotic functions)-用于模拟裂纹尖端附近的应力奇异性,及间断函数(discontinuous functions)-用于表示裂纹面处位移跳跃。
(完整word版)abaqusXFEM方法介绍
裂纹扩展分析体验热分析中的热物性参数:材料密度,热导率,比热容,电阻率,弹性模量,融化潜热的焓、泊松比、散热系数。
在ABAQUS模型中,需用3D的deformable、shell、exctrusion方式建立一个初始裂纹,长短适宜,初始裂纹要从开始起裂的点设置。
由于计算方法目前还不稳定,参数要适当调整。
设置网格划分参数的时候,应该对称设置,否则网格不对称。
断裂应力的大小要和断裂能量的设置相应,能量太大、太小导致不易收敛,断裂区域的网格要规则,各个方向尺寸要差不多,整个厚度方向单元数量一致,且越少越好,即使裂纹起始点两侧单元未参与裂纹,也要尽可能均匀规则,裂纹扩展的区域不能被PARTION开,应该是一体的。
冲击动载荷时,载荷步时间应尽可能小,maxps damage应力应大于ductile damage应力。
初始裂纹不能在单元界限扩展,否则导致不收敛。
裂纹可在两种弹性金属界面上。
适用于弹性材料、两种弹性材料界面裂纹和幂硬化材料。
我建立的弹塑性材料模型不容易收敛,把塑性去掉后反而容易收敛。
建立ductile manage模型时,需要材料的塑性行为,但必须同时有traction manage模型,否则就提示某些单元的fracture damage模型未能建立?。
traction manage模型和ductile manage 模型中的damage evolution中的类型和数值要相同。
初始屈服应力和断裂应力不能差太多。
动力学的冲击裂纹分析,不能有塑性(当然也不能有ductile damage),可能是因为increment time 太大了?(或者是先分析一下不带塑性材料的,通过了才分析有塑性材料的?)断裂能量要和断裂应力相适应,否则可能因为能量太高,还未达到,但应力达到了,导致裂纹不开裂、计算不收敛。
能量太低,很容易就满足了能量开裂原则,但应力未达到,裂纹不能开裂、计算不收敛。
能量的高低也影响到稳定扩展裂纹的长短:能量低的时候,由于需要很少的能量即可实现裂纹扩展,因此稳定扩展的裂纹在不长的时候即会失稳扩展;能量太高的时候,在裂纹稳定扩展的过程中试样积累了相当的能量,因此稳定扩张一段时间后,试样内部的能量和外加能量就可以实现裂纹的失稳扩展,稳定扩展段也不会很长。
abaqus中xfem扩展有限元教程
abaqus中xfem扩展有限元教程一、part模块中的操作:1. 生成一个新的part,取名为plate,本part选取3D deformable solid extrusion类型(如图1)2.通过Rectangle工具画出一长3,高6的矩形。
考虑使用工具栏add-dimension和edit dimension来画出精确长度的模型。
强烈建议此矩形的左上角坐标为(0,3),右下角坐标为(3,-3)(如图2)3. 完成后拉伸此矩形,深度为1.(如图3)4. 生成一个新的part,取名为crack,本part选取3D deformable shell extrusion类型(如图4)5. 生成一条线,此线的左端点坐标为(0,0.08),右端点坐标为(1.5,0.08)6 . 完成后拉伸此线,深度为1.(如图6)7.保存此模型为XFEMtutor(如图7),以后经常保存模型,不再累述。
8. 在part Plate中分别创建4个集合,分别为:all,bottom,top和fixZ,各部分的内容如图8~11所示。
二、Material模块中的操作:1. 创建材料elsa,其弹性参数为E=210GPa,泊松比为0.3(如图12)最大主应力失效准则作为损伤起始的判据,最大主应力为84.4MPa(如图13)损伤演化选取基于能量的、线性软化的、混合模式的指数损伤演化规律,有关参数为G1C= G2C= G3C=42200N/m, =1.(如图14)2.创建一个Solid Homogeneous 的section,名为solid(如图15),此section与材料elsa相联(如图16),并将此section赋给plate part(也就是集合all)(如图17)3.赋予材料取向,分别如图18~21所示。
三、划分网格:网格控制为:Hex型structured(如图22),单元类型为C3D8R(如图23)设置plate各边的网格种子为8,26,36(如图24),各边种子的个数不能改变(如图25)四、装配模块:选中plate和crack两个part,分别生成2个实体(如图26),生成一个参考点,参考点的坐标为(1.5,-3,0)(如图27,28)。
ABAQUS水力压裂模拟-XEFM-COHESIVE-交叉缝-复杂缝-转向缝-体积缝
ABAQUS水力压裂模拟|XFEM和Cohesive方法关键字:单缝、多缝、交叉缝、体积缝、转向缝、缝间干扰、储隔层我是星辰北极星,水力压裂,对于石油工程的朋友并不陌生,它是石油开采和增产的重要手段;也广泛应用于地热开采、地基处理等领域。
由于毕业于石油大学,所以有很多机会接触这方面的问题,也关注着ABAQUS在压裂领域的应用。
这个专题将分享自己在水力压裂仿真中的一些积累,希望大家喜欢。
【主要内容】一、内容概述二、仿真要点介绍2.1 ABAQUS水力压裂模拟常用仿真方法2.2地应力平衡分析(Geostatic)2.3渗流-位移耦合分析(Soils)2.4材料与单位制讲解2.5特殊的输出需求与定义2.6交叉裂缝处理三、实例讲解3.1基于Cohesive单元的二维水力压裂模拟3.2基于Cohesive单元的三维水力压裂模拟3.3水力裂缝与天然裂缝相交模拟-Cohesive单元法3.4裂缝发育地层的水力压裂模拟-Cohesive单元法3.5基于XFEM的水力裂缝转向模拟3.6基于XFEM的水平井多段压裂裂缝的缝间干扰问题研究【二维水力压裂模拟(Cohesive)】通过这个简单的案例讲述采用Cohesive单元模拟水力压裂的基本技巧,让大家掌握注液、停泵憋压等基本设置,以及前后处理的一些技巧。
1【三维水力压裂模拟Cohesive)】三维模型计算量较大,但可以模拟储隔层压裂过程中,水力裂缝限制在储层中扩展的形态,当然,下图中的裂缝形态主要受储隔层的材料性质和地应力状态影响;不合适的地层条件将导致水力裂缝窜层现象的发生。
【水力裂缝与天然裂缝相交模拟】本例中采用Cohesive单元模拟水力裂缝交叉,并可通过该模型分析不同地应力情况下水力裂缝遇到天然裂缝后的扩展轨迹。
应力差较小时,易促使天然裂缝张开;应力差较大时,水力裂缝可穿过天然裂缝。
【裂缝发育地层的水力压裂模拟】在前面三个案例的基础上,进行裂缝发育地层条件下的复杂缝网模拟,可以形成体积缝网的压裂效果;仿真的难点在于全局嵌入零厚度Cohesive单元层,本例采用POLARIS」nsertCohElem插件实现。
基于ABAQUS平台的扩展有限元方法
基于ABAQUS平台的扩展有限元方法扩展有限元方法(XFEM)是一种能够有效处理裂纹、接触、损伤等大变形、大变位问题的计算方法。
该方法扩展了传统有限元方法(FEM),使其能够更准确地模拟物体的断裂行为。
ABAQUS是一款常用的有限元分析软件,提供了XFEM功能,可以在其平台上进行XFEM分析。
XFEM的主要思想是在有限元网格中引入额外的自由度,这些自由度可以用来描述物体内部的裂纹、接触等特征。
通过在网格中引入额外的基函数,XFEM能够通过有限元分析获取到界面上的开裂和断裂行为,从而更准确地预测物体的破坏。
XFEM在ABAQUS平台上的应用主要包括以下几个方面。
1.裂纹模拟:XFEM能够准确地模拟裂纹的扩展行为。
在ABAQUS中,用户可以通过定义裂纹路径和裂纹扩展准则,来模拟裂纹在不同加载条件下的扩展过程。
同时,用户还可以对裂纹的形状、长度、位置等进行控制,以得到更准确的结果。
2.接触分析:XFEM可以模拟接触问题,包括刚性接触和非线性接触。
在ABAQUS中,用户可以通过定义接触面和接触行为,来模拟物体之间的接触行为。
XFEM能够考虑接触面的开裂和闭合,从而更准确地模拟接触问题。
3.损伤模拟:XFEM可以模拟材料的损伤行为,包括塑性、弹塑性和弹性损伤。
在ABAQUS中,用户可以通过定义损伤模型和损伤准则,来模拟材料的损伤行为。
XFEM能够考虑材料中的裂纹行为,从而更准确地模拟损伤问题。
4.多物理场耦合:XFEM可以模拟多个物理场的耦合问题,如固体力学和热传导、固体力学和流体力学等。
在ABAQUS中,用户可以通过定义不同物理场的边界条件和耦合关系,来模拟多物理场耦合问题。
XFEM能够考虑多物理场之间的相互作用,从而更准确地模拟多物理场问题。
总之,基于ABAQUS平台的扩展有限元方法可以更准确地模拟物体的断裂、接触、损伤等问题。
通过在有限元网格中引入额外的自由度,XFEM 能够更准确地描述物体内部的裂纹、接触等特征。
Abaqus提取XFEM(扩展有限元)裂缝长度和缝隙面积(精品)
Abaqus提取XFEM(扩展有限元)裂缝长度【壹讲壹插件】2015-7-20作者:星辰-北极星Abaqus提取XFEM(扩展有限元)裂缝长度 (1)第一部分:Abaqus 扩展有限元方法XFEM (2)1.1概要 (2)1.2这些你有注意到吗? (2)1.3 圆孔内压裂缝模拟实例 (2)1.3.1 部件建立 (2)1.3.2 材料性质定义(part1) (2)1.3.3 分析步定义 (3)1.3.4 参数输出 (3)1.3.5 接触模块定义Crack (3)1.3.6边界条件定义 (4)1.3.7 网格划分 (4)1.3.8初始地应力施加 (4)1.3.9 计算结果: (4)第二部分:扩展有限元裂缝长度求解 (5)2.1 概要 (5)2.2 基本求解思路: (5)第三部分:星辰-北极星插件介绍:POLARIS-XFEMCreckGeo2D (6)3.1 概要 (6)3.2 插件的主要功能 (6)3.3 使用注意事项 (6)3.4 插件使用简介 (7)3.4.1 打开插件 (7)3.4.2 数据获取 (7)3.4.3 裂缝信息获取 (8)3.4.4 示例 (8)第一部分:Abaqus 扩展有限元方法XFEM文章转自:/908754116/blog/14374022441.1概要XFEM即扩展有限元方法,它在标准有限元框架内研究问题,保留了有限元方法的所有优点。
扩展有限元法与有限元法最根本的区别在于所使用的网格与结构内部的几何或物理界面无关,从而克服了在诸如裂纹尖端等高应力和变形集中区进行高密度网格划分所带来的困难,在模拟裂纹扩展时也无需对网格进行重新划分。
如果要正常地使用它,我们首先要了解Abaqus中的扩展有限元方法有哪些特别,它在理论上做了哪些简化等,帮助文档进行了很好的讲解:《Abaqus Analysis User's Manual》10.7.1 Modeling discontinuities as an enriched feature using the extended finite element method。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
裂纹扩展分析体验
热分析中的热物性参数:材料密度,热导率,比热容,电阻率,弹性模量,融化潜热的焓、泊松比、散热系数。
在ABAQUS模型中,需用3D的deformable、shell、exctrusion方式建立一个初始裂纹,长短适宜,初始裂纹要从开始起裂的点设置。
由于计算方法目前还不稳定,参数要适当调整。
设置网格划分参数的时候,应该对称设置,否则网格不对称。
断裂应力的大小要和断裂能量的设置相应,能量太大、太小导致不易收敛,
断裂区域的网格要规则,各个方向尺寸要差不多,整个厚度方向单元数量一致,且越少越好,即使裂纹起始点两侧单元未参与裂纹,也要尽可能均匀规则,裂纹扩展的区域不能被PARTION开,应该是一体的。
冲击动载荷时,载荷步时间应尽可能小,maxps damage应力应大于ductile damage应力。
初始裂纹不能在单元界限扩展,否则导致不收敛。
裂纹可在两种弹性金属界面上。
适用于弹性材料、两种弹性材料界面裂纹和幂硬化材料。
我建立的弹塑性材料模型不容易收敛,把塑性去掉后反而容易收敛。
建立ductile manage模型时,需要材料的塑性行为,但必须同时有traction manage模型,否则就提示某些单元的fracture damage模型未能建立?。
traction manage模型和ductile manage模型中的damage evolution中的类型和数值要相同。
初始屈服应力和断裂应力不能差太多。
动力学的冲击裂纹分析,不能有塑性(当然也不能有ductile damage),可能是因为increment time 太大了?(或者是先分析一下不带塑性材料的,通过了才分析有塑性材料的?)断裂能量要和断裂应力相适应,否则可能因为能量太高,还未达到,但应力达到了,导致裂纹不开裂、计算不收敛。
能量太低,很容易就满足了能量开裂原则,但应力未达到,裂纹不能开裂、计算不收敛。
能量的高低也影响到稳定扩展裂纹的长短:能量低的时候,由于需要很少的能量即可实现裂纹扩展,因此稳定扩展的裂纹在不长的时候即会失稳扩展;能量太高的时候,在裂纹稳定扩展的过程中试样积累了相当的能量,因此稳定扩张一段时间后,试样内部的能量和外加能量就可以实现裂纹的失稳扩展,稳定扩展段也不会很长。
平面应力比平面应变问题更容易收敛。
加宽垂直于裂纹走向的单元长度尺寸有利于收敛。
以下是别人的资料。
在abaqus中创建裂纹
1.create part,如图1所示:
g s i n t h e i r b e i n g a r
e g
o o
d f
o r
s o 图1
2.进入草图模式,创建一矩形板3*6,点鼠标中键2次退出草图模式,如图2所示:
e a
n d
A
l l t h i n
g s i n t h e i r b e i n g a r
e g
o o
d f
o r
s o 图2
e a
n d
A
l l t h i n g s i n t h e i r b e i n g a r
e g
o o
d f
o r
s o 3.part2
用于确定裂纹初始位置。
三维的需要用拉伸shell
模型来给出裂纹初始位置。
4.定义材质
e a
n d
A
l l t h i n g s i n t h e i r b e i n g a r
e g
o o
d f
o r
s o 最后定义图为
5.定义截面属性
e a
n d
A
l l t h i n g s i n t h e i r b e i n g a r
e g
o o
d f
o r
s o 赋值part-1,part-2就不用赋值了啊
装配
e a
n d
A
l l t h i n g s i n t h e i r b e i n g a r
e g
o o
d f
o r
s Step
Interaction
e a
n d
A
l l t h i n g s i n t h e i r b e i n g a r
e g
o o
d f
o r
s o m 直接创建crack xfem
不需要在创建seam 了
e a
n d
A
l l t h i n
g s
i n
t h
e i r
b e
i n g
a r
e g
o o
d f
o r
s o Region 选择整个面
Crack location specify select 选择part-2 否则就是自动判断了啊并指定接触属性
When an element is cut by a crack, the compressive behavior of the crack surfaces has to be considered.
The formulae that govern behavior are very similar to those used for surface-based small-sliding penalty contact
However, the frictional behavior is not yet considered in the shear direction.
e a
n d
A
l l t h i n
g s i n t h e i r b e i n g a r
e g
o o
d f
o r
s o 在重新进入 step
设置
中的
忘了就看不见裂纹扩展 只能看见应力场
e a
n d
A
l l t h i n g s i n t h e i r b e i n g a r
e g
o o
d f
o r
s Load
e a
n d
A
l l t h i n g s i n t h e i r b e i n g a r
e g
o o
d f
o r
s o Mesh
同样只需对part-1进行网格划分
单元选择为cpe4
最后的网格如图所示
e a
n d
A
l l t h i n g s i n t h e i r b e i n g a r
e g
o o
d f
o r
s o 最后一步:修改keywords
改为
好像是只能这样改的
e a
n d
A
l l t h i n g s i n t h e i r b e i n g a r
e g
o o
d f
o r
s Abaqus 附带文件中还修改了
不过本人水平有限 还是不改了
Job 提交就可以了
好运!三维的和二维的步骤完全相同。