七年级上册线段的比较和画法

合集下载

数学人教版七年级上册线段的比较和画法

数学人教版七年级上册线段的比较和画法

1、在直线上画线段BA=a,再在BA的 延长线上画线段AC=b.
C b A a B
则线段BC的长度是多少? 结论:线段BC是线段BA与线段AC的和 几何语言表示:
BC=BA + AC = a + b
2、在直线上画条线段AB=a,再在BA 上画线段BC=b. (a > b)
A a C b B
则线段AC的长度是多少? 结论:线段AC是线段AB与线段BC的差 几何语言表示:
A
B
C
D
E
(3)根据图形填空:
AB BC CD AB BC CD AD=____+____+____=3___=3___=3___,
1 即AB= _____ AB 3
理解强化
1、据右图填空:
(1)CB = AB + AC ;
(2)AC = BC - AB ;
C A B
(3)AB = BC - AC ;
一点把线段分成两条相等的线段,这点就 叫做这条线段中点;
A
B
C
几何语言:
点B在线段AC上,
1 AB BC ( 或 AB AC ,或 AC 2 AB ) 2
\
反之,
点B是线段AC的中点 (线段中点的定义) 点B是线ຫໍສະໝຸດ AC的中点(线段中点的定义)
1 \ AB BC ( 或 AB AC ,或 AC 2 AB ) 2
(2)AB=10cm,BC=2cm,AC=7cm (2)如图, ∵AC=AB-BC=10-2=8(cm) 又∵AC=7cm C ·· ∴AC的值与已知不符合 A· B ∴A、B、C三点不在同一条直线上. (3)AB=11cm,BC=5cm,AC=6cm (3)如图, ∵AB-BC=11-5=6(cm) 又∵AC=6cm A B · · · C ∴ AB-BC=AC ∴A、B、C三点在同一条直线上.

七年级数学上册 第四章 基本平面图形 2 比较线段的长短 怎样画线段的和,差?怎样进行线段和、差、倍

七年级数学上册 第四章 基本平面图形 2 比较线段的长短 怎样画线段的和,差?怎样进行线段和、差、倍

怎样画线段的和,差?怎样进行线段和、差、倍、分的计算?
难易度:★★★★
关键词:线段
答案:
画线段的和时,先画线段a,然后在a的延长线上截取b,所得的线段就是a+b.画线段的差时,在较长线段的内部,以其中一个端点为端点截取较短的线段,剩下的那条线段就是两者的差。

【举一反三】
典例:如图,C,D是线段AB上的两点,E是AC的中点,F是BD的中点,若EF=m,CD=n,则AB=()。

思路导引:利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.
标准答案:由题意得,EC+FD=m-n
∵E是AC的中点,F是BD的中点,
∴AE+FB=EC+FD
∴AE+FB=m-n
又∵AB=AE+FB+CD
∴AB=m-n+m=2m-n。

北师大版七年级上4.2比较线段的长短

北师大版七年级上4.2比较线段的长短

北师大版七年级上4.2比较线段的长短知识点总结1、线段的性质:两点之间,线段最短。

2、两点之间的距离:两点之间线段的长度叫做两点之间的距离。

3、比较线段长短的方法:(1)目测法;(2)度量法;(3)叠合法4、线段的中点:在线段上,到线段两个端点距离相等的点叫做线段的中点。

5、尺规作图:用没有刻度的直尺和圆规作图6、用尺规作线段:(1)作一条线段等于已知线段;(2)作一条线段等于已知线段的二倍;(3)作一条线段等于已知线段的和或差。

其方法是相同的,都是先画一条射线,然后用圆规在射线上截取即可,注意保留作图痕迹,画完图形后写出总结“某某线段即为所求作的线段”。

尺规作图的定义:仅用圆规和没有刻度的直尺作图的方法叫做尺规作图.要点诠释:(1)只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.(2)直尺必须没有刻度,无限长,且只能使用直尺的固定一侧.只可以用它来将两个点连在一起,不可以在上面画刻度.(3)圆规可以开至无限宽,但上面也不能有刻度.它只可以拉开成之前构造过的长度.2.线段的中点:如下图,若点B在线段AC上,且把线段AC分成相等的两条线段AB与BC,这时点B叫做线段AC的中点.3. 用尺规作线段或比较线段(1)作一条线段等于已知线段:用圆规作一条线段等于已知线段.例如:下图所示,用圆规在射线AC上截取AB=a.要点诠释:几何中连结两点,即画出以这两点为端点的线段.(2)线段的比较:叠合比较法:利用直尺和圆规把线段放在同一条直线上,使其中一个端点重合,另一个端点位于重合端点同侧,根据另一端点与重合端点的远近来比较长短.如下图:要点诠释:线段的比较方法除了叠合比较法外,还可以用度量比较法.如图所示,在一条笔直公路a的两侧,分别有A、B两个村庄,现要在公路a上建一个汽车站C,使汽车站到A、B两村的距离之和最小,问汽车站C的位置应如何确定?【答案与解析】解:如图,连接AB与直线a交于点C,这个点C的位置就是符合条件的汽车站的位置.【总结升华】“两点之间线段最短”在实际生活中有广泛的应用,此类问题要与线段的性质联系起来,这里线段最短是指线段的长度最短,连接两点的线段的长度叫做两点间的距离,线段是图形,线段长度是数值.举一反三:【变式】(1)如图1所示,把原来弯曲的河道改直,A、B两地间的河道长度有什么变化?(2)如图2,公园里设计了曲折迂回的桥,这样做对游人观赏湖面风光有什么影响?与修一座直的桥相比,这样做是否增加了游人在桥上行走的路程?说出上述问题中的道理.【答案】解:(1)河道的长度变小了.(2)由于“两点之间,线段最短”,这样做增加了游人在桥上行走的路程,有利于游人更好地观赏湖面风光,起到“休闲”的作用.思维导图教学设计一、教材分析:1、教材的地位和作用本节课是教材第五章《平面图形及其位置关系》的第二节,是平面图形的重要的基础知识。

6.3 线段的长短比较 教学课件 (共28张PPT)

6.3 线段的长短比较 教学课件 (共28张PPT)

讲授新课
作一条线段等于已知线段 已知:线段 a,作一条线段 AB,使 AB=a. 第一步:用直尺画射线 AF; 第二步:用圆规在射线 AF 上截取 AB = a. 所以线段 AB 为所求线段.
a Aa B F
在数学中,我们常限定用无刻度的直尺和圆规作图,这就是尺规作图.
讲授新课
尺规作图的要点: 1.直尺只能用来画线,不能量距; 2.尺规作图要求作出图形,说明结果,并保留作图痕迹.
生活中我们常常会比较两个物体的长短。如图两支铅笔 谁长?
我们可以把两支铅笔看成两条线段,这样我们就把实际 问题转化为了几何问题.
讲授新课
思考:怎样比较两条线段的长短??
Aa B
(1)度量法 用刻度尺量出它们的 长度,再进行比较.
Cb
D
(2) 叠合法 将其中一条线段“移动”, 使其一端点与另一线段的 一端点重合,两线段的另 一端点均在同一射线上.
(2)连接两点的线段叫两点间的距离;
(3)两点之间所有连线中,线段最短;
(4)射个
C.3个
D.4个
当堂检测
2.某同学用剪刀沿直线将一片平整的银杏叶减掉一部分(如图),发现剩下的银
杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是(

A.两点之间线段最短 C.垂线段最短
解:作图步骤如下:
aa b
(1)作射线 AM;
A B1 B2
BM
(2)在 AM 上顺次截取 AB1=a,B1B2=a,
B2B=b,则线段 AB=2a+b.
讲授新课 知识点三 有关线段的基本事实
探究
我要去书店 怎么走呀?
商场
礼堂
书店
讲授新课
根据生活经验,容易发现: 两点之间的所有连线中,线段最短

浙教版七年级上册上《线段的长短比较》课件

浙教版七年级上册上《线段的长短比较》课件

我的收获与困惑: _______________________ _______________________ _______________________ _______________________ _________________.
自我评价: _______________________ _______________________ _______________________ _______________________ _________________.
我的建议或意见: _______________________ _______________________ _______________________ _______________________ __________________.
使BC= AB, A
问:⑴线段AC的长为多少?
DB
C
⑵若点D为线段AC的中点, ①求线段CD的长。
②若BD=3cm,求AB的长。
小狗、小猫为什么都选择直的路?
A B
D
C
如图,从小明家到学校共有三条路,小明为 了尽快到学校,应选择第 _⑵ 条路。为什么?
能否再建一条更短的路?
学校ห้องสมุดไป่ตู้
(1) (2)
小明家
请按下面的步骤操作: 1、在一张透明纸上画一条线段AB;
2、对折这张纸,使线段AB的两个 端点重合;
3、把纸展开铺平,标明折痕点C。 问:线段AC和线段BC相等吗?
点C把线段AB分成相等的两条线段AC
和BC,点C叫做线段AB的中点。
若AC=BC, (或 AC=BC= 1 AB)
则C是线段AB的中点
B

6.2.2线段的比较与运算 课件(共14张PPT)初中数学人教版(2024)七年级上册

6.2.2线段的比较与运算 课件(共14张PPT)初中数学人教版(2024)七年级上册

(或AB=2AM=2MB)
反之也成立:因为AM=MB=
1 2
AB
(或AB=2AM=2MB)
所以M是线段AB的中点.
典例精讲
线段的运算
考点2-2
【例2】若AB=6cm,点C是线段AB的中点,点D是线段CB的中点,
求:线段AD的长是多少?
解:因为C是线段AB的中点.
A
所以AC=CB=
1 2
AB=
1 2
A.3 B.2 C.3或5 D.2或6
b
∴线段AB为所求.
A
B
CF
针对训练
线段的运算
考点3-1
1.如图1,点B,C在线段AD上则AB+BC=_A_C_,AD-CD=_A_C_,BC=_A_C_-_A_B_
=_B_D_-_C_D_. A
B
C
D
2.如图1,AB=CD,则图中另外两条相等的线段为_A_C_=_B_D__.
3.点A,B,C在同一条数轴上,其中点A,B表示的数分别是-3,1,若
方法总结:无图时求线段的长,应注意分类讨论,一般分以下 两种情况:点在某一线段上;点在该线段的延长线.
课堂小结
线段的比较与运算
中点
线段的和差
思想方法
方程思想 分类思想
知识梳理
针对训练
线段的比较与运算
查漏补缺
1.已知线段AB=6cm,延长AB到C,使BC=2AB,若D为AB的中点,则线段
DC的长为_1_5_c_m__.
BC=5,则AC=_1_1_或__1__.
目录
01
知识要点
02
线段的运算 线段的中点
精讲精练
新知探究
线段的运算---中点

人教版七年级数学上册《线段的比较》PPT

人教版七年级数学上册《线段的比较》PPT

D
B
a
b
所以AB=a+b.
C
知识点二:线段的和与差
问题2:已知线段a,b(b>a)画一条线
段AC,使AC=b-a . a
b
画法:①先用直尺画一条射线AM;
②在射线AM上截取AD = b
在线段AD上截取DC=a.
所以AC=b-a.
AC
D
M
b a
你能用这根绳子正好做一双鞋带吗?
知识点三:线段的中点
所以AC=CB= 1 AB 3cm
2
因为点D是线段CB的中点
所以CD 1 CB 1.5cm 2
所以AD AC CD 4.5cm
1、比较两条线段大小的方法:
(1)度量法 (2)叠合法
2、线段的和与差; 3、线段的中点、三等分点、四等分点。
作业布置
课本:128页 第1、2 题
再见!
再来测测眼力吧!
在刚才的活动中我们知道了AB<CD,你知道 AB比CD少多少吗?
A
B
C
D
如何用一条线段表示两条线段的和 以及线段的差呢?
知识点二:线段的和与差
问题1:已知线段a、b,画一条线段AB,
使AB=a+b.
a
b
画法:①先画一条射线AC;
②在射线AC上依次截取 AD = a ,DB=b.
A
C
D
4.1cm
00
11
22
33
44
55
66
77
88
方法二:叠合法
先把两条线段的一端 重合,另一端落在 同侧,然后根据另一端落下的位置,进行比较。
C
D
E
F

人教版七年级上册线段的比较与运算

人教版七年级上册线段的比较与运算

无图的问题
已知线段 MN ,取 MN 中点 P,PN 的中点 Q,QN 的中点 R,由中点的定义可知,MN 8= ______RN. 提示:先画出图形.
无图的问题
线段AB =6厘米,点 C 在直线AB上,且BC =3厘米,则线段 AC 的长为___________. 提示:先把图画出来. 答案:3厘米或9厘米 总结:无图就有可能多解.
练习
根据图形填空: 1.AC =_A__B__+__B_C___ 2.(如图)增加一个D点,则,AC =_A_B___+_B_D___+_D__C___ 3.此时AC =__A_D____+___D_C___(换一种表示方法)
练习
如图,点C,B,D 在射线 AM 上,用a,b,c 的和差关系 表示线段 AD. 答案:AD =a-b+c.
AB=6CP=9cm
练习
如图,点D 是线段AB 的中点,C 是线段AD 的中点,若AB =4cm ,求线段CD 的长度.
练习
M 是线段 AB 上的一点,其中不能判定点 M 是线段 AB 中 点的是(BM
练习
如图,已知点C 是线段AB 的中点,点D 是线段AC 的中点 ,完成下列填空:
归纳
两点的所有连线中,线段最短. 简单地说,两点之间线段最短. 连接两点间的线段的长度,叫做这两点的距离.
练习 如图:这是A、B 两地之间的公路,在公路工程改造计划时, 为使A、B 两地行程最短,应如何设计线路?在图中画出.你 的理由是什么?
两点之间线段最短
练习 有条小河L,点A,B 表示在河两岸的两个村庄,现在要建造 一座小桥,请你找出造桥的位置,使得A,B 两村的路程最 短,并说明理由?
(1)AB =___2___BC; (2)BC =___2___AD; (3)BD =___3___AD.

北师大版七年级上册数学4.1.2 比较线段的长短PPT课件

北师大版七年级上册数学4.1.2 比较线段的长短PPT课件

a
b
2a
b
A 2a-b B
探究新知
知识点 4 线段的中点
A
MB
在一张纸上画一条线段,折叠纸片,使线段的端 点重合,折痕与线段的交点处于线段的什么位置?
探究新知
A
MB
如图,点M 把线段 AB 分成相等的两条线段AM 与BM, 点 M 叫做线段AB 的中点.类似地,还有线段的三等分点、 四等分点等.
相等的线段?
小提示:在可打开角度 的最大范围内,圆规可 截取任意长度,相当于 可以移动的“小木棍”.
探究新知
讨论 你们平时是如何比较两个同学的身高的?你能从 比身高的方法中得到启示来比较两条线段的长短吗?
探究新知
比较两个同学高矮的方法:
①用卷尺分别度量出两个同学的身高,将所得的
数值进行比较.
——度量法.
DB
所以
AC
=CB

1 2
AB

1 2
×6
= 3 (cm).
因为D是线段CB的中点,
所以
CD

1 2
CB=
1 2
×3

1.5 (cm).
所以 AD = AC + CD = 3 + 1.5 = 4.5 (cm).
巩固练习
变式训练
1.如图,点C 是线段AB 的中点,若AB = 8 cm,则AC = 4 cm.
北师大版 数学 七年级 上册
4.1.2 比较线段的长短
素养目标
3. 理解线段中点、等分点的意义,能够运用线段的和、 差、倍、分关系求线段的长度.
2. 会用尺规画一条线段等于已知线段,会比较两条线 段的长短.
1. 了解两点间距离的意义,理解“两点之间,线段最 短”的线段性质,并学会运用.

2024年新人教版七年级数学上册 6.2.2 线段的比较与运算(课件)

2024年新人教版七年级数学上册 6.2.2   线段的比较与运算(课件)

3.线段的长短比较: (1)线段长短比较的实质是线段的长度的比较. (2)线段长短的比较方法:
①度量法(数):用刻度尺量出线段的长度,根据长度大小来比较, 长度大的线段较长,长度相等时两线段相等. ②叠合法(形):比较两条线段AB与CD的长短,可以把线段AB移 到线段CD上,使点A与点C重合,点B与点D在重合点的同一侧.
3.(1)两点的所有连线中,__线__段_最__短______.简单说成: __两__点__之_间__,__线__段__最_短____________.
(2)连接两点的线段的长度,叫作这两点间的___距__离____.
例1.如图,已知线段a、b,尺规作图:
(1)画一条线段AC=a+b;(根据下列作法画出图形)
知识点4:线段的中点及等分点(难点)
1.线段的中点:如图,点M在线段AB上,AM=BM,点M叫作线 段AB的中点.
应用:因为点M是线段AB的中点,所以AM=BM=
1 2
AB,
AB=2AM=2BM.
2.线段的等分点:
如图①所示,B,C是线段AD上的两点,
且AB=BC=CD=
1 3
AD或AD=3AB=3BC=3CD,
活动导入
同学们,请你在草稿纸上画一条线段AB. 你能在草稿纸上作出一条同样大小的线段吗? 你是怎么做的?
情境导入 同学们,请你们观察这三组图形,你能比较出每组图形中线段a和b 的长短吗?
a b
事实上,这三组图形中,线段a和b的长度是相等的. 很多时候,眼见未必为实,准确比较线段的长短还 需要更加严谨的办法.
小组展示
越展越优秀
提疑惑:你有什么疑惑?
知识点1:线段的画法及长短比较(重点)
1.尺规作图:在数学中,我们常限定用无刻度的直尺和圆规作图, 这就是尺规作图.

6.2.2 线段的运算与比较课件人教版数学七年级上册

6.2.2  线段的运算与比较课件人教版数学七年级上册

汽车站,使它到A,B两村的距离之和最小,试在l上标
作法是:连接AB交I于点P,
则P点为汽车站位置,
理由是:两点之间,线段最短.
探究4:线段的运算
同学们观察并填空:在直线上作线段AB=a,再在AB的延长线上作线段

究 BC=b,线段AC就是 线段a 与 线段b 的和,记作AC= a+b (图①).
与 设线段a>b,如果在线段AB上作线段BD=b,

(图②).
线段b 的差,记作AD= a-b
用 那么线段AD就是 线段a 与
A
C
B
a
b
A
D
a b
B
理解应用

A,B,C三点在同一直线上,线段AB=5 cm,BC=4 cm,
那么A,C两点间的距离是





(
C
)
A.1 cm
B.9 cm
C.1 cm或9 cm
D.以上答案都不对
A C
A
B
B
C
探究 :线段的中 点





操作与思考:如图在一张透明的纸上画一条线段.折叠纸片,使线段的端
点重合,折痕与线段的交点处于线段的什么位置?
A
M
B
探究4:线段的中点
已知AM=MB,M 就是线段AB的中点吗?





A
如图,点M 把线段AB分成相
M
B
如图, AM

=MB= AB或

等的两条线段AM 与MB,点M 叫
AB=2AM =2BM.点M 叫作线段

七年级数学上册青岛版第一单元线段的比较与作法

七年级数学上册青岛版第一单元线段的比较与作法

• A
• B
两点的所有连线中,线段最短.(即两点之间,线段最短) 连接两点间的线段的长度,叫做这两点的距离。
练一练
1.M﹑N两点之间的距离是( C )
(A)连接M﹑N两点的线段 (B)连接M﹑N 两点的线 (C)连接M﹑N两点的线段的长度 (D)直线MN的长度
2.(1)若点B在直线AC上,且 AB=9,BC=4,则AC 两点间的距离 是( D ) (A)5 (B)13
AC
B
l
a
b
想一想
a b
AC
ba
已知线段a、b(b>a)画一条线段 AC,使AC=b-a.
画法:
①先用直尺画一条直线l; ②在直线l上截取AD = b;
在线段AD上截取DC=a. 所以AC=b-a.
l D
试一试 已知线段a、b,画线段AB ,使AB=2a-b.
①画一条直线l.
a
②在直线l上顺序截取
你知道他们谁更高吗? 你是怎样得出这个结论的呢?
那你知道如何比较两条线段的长短吗?
线段的比较
议一议
已知线段AB与线段CD, 如何比较两条线段的长短?
A
B
C
D
3.1cm 4.1cm
0
11
22
33
44
55
66
77
88
第一种方法:度量法
用一把尺子量出两根绳子的长度,再进行比较.
试比较绳子AB与绳子CD、绳子EF、绳子MN的大小?
A
E
①C
BC FM
D
D
N AB=CD
②E
F
AB>EF
③M
N
AB<MN
第二种:叠合法

线段的比较与画法(精选6篇)

线段的比较与画法(精选6篇)

线段的比较与画法(精选6篇)线段的比较与画法篇1示例教学目标1.使学生在理解线段概念的基础上,了解线段的长度可以用正数来表示,因而线段可以度量、比较大小以及进行一些运算.使学生对几何图形与数之间的联系有一定的认识,从而初步了解数形结合的思想.2.使学生学会线段的两种比较方法及表示法.3.通过本课的教学,进一步培养学生的动手能力、观察能力.教学重点和难点对线段与数之间的关系的认识,掌握线段比较的正确方法,是本节的重点,也是难点.教学过程设计一、复习线段的概念,引出线段的长度的度量和表示1.学生动手画出(1)直线AB.(2)射线OA.(3)线段CD.2.提出问题:能否量出直线、射线、线段的长度?(如果有学生将直线、射线也量出了长度,借此复习直线和射线的概念.)3.提出数与形的问题:线段是一个几何图形,而线段的长度可用一个正数表示.这就是数与形的结合.4.线段的两种度量方法:(1)直接用刻度尺.(2)圆规和刻度尺结合使用.(教师可让学生自己寻找这两种方法)5.教师再讲表示法:线段AB=7cm.二、通过实例,引导学生发现线段大小的比较方法教师设计以下过程由学生完成.1.怎样比较两个学生的身高?提出为什么要站在一起,脚底要在一个平面上?2.怎样比较两座大山的高低?只要量出它们的高度.由此引导学生发现线段大小比较的两种比较方法:重叠比较法将两条线段的各一个端点对齐,看另一个端点的位置.教师为学生演示,步骤有三:(1)将线段AB的端点A与线段CD的端点C重合.(2)线段AB沿着线段CD的方向落下.(3)若端点B与端点D重合,则得到线段AB等于线段CD,可以记AB=CD.若端点B落在D上,则得到线段AB小于线段CD,可以记作AB <CD.若端点B落在D外,则得到线段AB大于线段CD,可以记作AB >CD.如图1-6.教师讲授此部分时,应用几个木条表示线段AB和线段CD,这样可以更加直观和形象.也可以用圆规截取线段的方法进行.数量比较法用刻度尺分别量出线段AB和线段CD的长度,将长度进行比较.可以用推理的写法,培养学生的推理能力.写法如下:因为量得AB=××cm,CD=××cm,所以 AB=CD(或AB<CD或AB>CD).总结:现在我们学会了比较线段的大小,还会比较什么?学生可以回答出,可以比较数的大小,进而再问:数的大小如何比较?(数轴)再问:比较线段的大小与比较数的大小有什么联系?引导学生得到:比较线段的大小就是比较数的大小.三、应用实例,变式练习:1.如图1-7,量出以下图形中各条线段的长度,比较它们的大小.并比较一个三角形中任意两边的和与第三边的关系.可以得出什么结论?2.如图1-8,根据图形填空.AD=AB+______+______,AC=______+______,CD=AD-______.3.如图1-9,已知线段AB,量出它的长度并找出它的中点、三等分点、四等分点.4.如图1-10,根据图形填空,(1)AB=______+______+______.(2)AB-a=______+______.四、小结1.教师提问:怎样表示线段的长度?怎样比较线段的大小?通过本节课你对图形与数之间的关系有什么了解?2.根据学生回答的情况,教师重点总结数与形的结合以及比较线段大小的两种方法.五、作业p.18,1.2题.p21,2.3.4题.板书设计课堂教学设计说明1.本课的教学时间为1课时45分钟.2.本课时设计的主导思想是:将数形结合的思想渗透给学生,使学生对数与形有一个初步的认识.为将来的学习打下基础,这节课是一堂起始课,它为学生的思维开拓了一个新的天地.在传统的教学安排中,这节课的地位没有提到一定的高度,只是交给学生比较线段的方法,没有从数形结合的高度去认识.实际上这节课大有可讲,可以挖掘出较深的内容.在教知识的同时,交给学生一种很重要的数学思想.这一点不容忽视,在日常的教学中要时时注意.3.学生在小学时只会用圆规画圆,不会用圆规去度量线段的大小以及截取线段,通过这节课,学生对圆规的用法有一个新的认识.4.在课堂练习中安排了度量一些三角形的边的长度,目的是想通过度量使学生对“两点之间线段最短”这一结论有一个感性的认识,并为下面的教学做一个铺垫.5.为避免本节课的枯燥,可以用提问的形式,出现悬念.如:开始的提问“线段是几何图形,它与数字有什么联系?”“在我们学过的知识和生活中,什么东西可以比较大小?”等.这样就会调动学生的学习的积极性,提高他们的学习兴趣,积极思维,使课堂的气氛更加活跃.6.如果感觉课堂密度小,还可以增加一些培养动手能力的题.如:(1)量一量老师的大三角板中的等腰三角形各边的长,然后再量一量自己手中同样的小三角板各边的长,算一算相等的角所对的边长度的比值,是否相等.(为相似三角形的内容做一些铺垫)(2)量一量课桌四条边的长,再量一量课本四条边的长,算一算长边与长边的比、短边与短边的比.(得到角相等的图形,边不一定成比例)(3)在同一时间下,两棵高矮不同的大树的影子的长度自己量出,然后比较大小,想一想这两棵树哪一棵高?(对相似三角形的边角关系有一定的感性认识)以上的三个题对学有余力的同学是很好的认识数学世界的实例.使本节课的内容更加生动丰富,课堂气氛更加活跃.线段的比较与画法篇2教学设计示例教学目标1.使学生在理解线段概念的基础上,了解线段的长度可以用正数来表示,因而线段可以度量、比较大小以及进行一些运算.使学生对几何图形与数之间的联系有一定的认识,从而初步了解数形结合的思想.2.使学生学会线段的两种比较方法及表示法.3.通过本课的教学,进一步培养学生的动手能力、观察能力.教学重点和难点对线段与数之间的关系的认识,掌握线段比较的正确方法,是本节的重点,也是难点.教学过程。

北师大版数学七年级上册线段长短的比较精品课件PPT

北师大版数学七年级上册线段长短的比较精品课件PPT

练习
1、已知线段a,b,求作线段AC,使 得AC=a+b
a
b
北师大版数学七年级上册课件 4.2线段长短的比较(21张PPT)
北师大版数学七年级上册课件 4.2线段长短的比较(21张PPT)
问题:
(1)已知点C在线段AB上,且AC=2cm, BC=2cm,试判断线段AC与BC的大小关系? 点C为线段AB的什么点?
那么线段AC就是所作线段。A
CB
北师大版数学七年级上册课件 4.2线段长短的比较(21张PPT)
北师大版数学七年级上册课件 4.2线段长短的比较(21张PPT)
三步骤: 1、画射线 2、度量已知线段
北师大版数学七年级上册课件 4.2线段长短的比较(21张PPT)
3、移到射线上
北师大版数学七年级上册课件 4.2线段长短的比较(21张PPT)
直线公理 经过两点有一条直线,并且只有一条直线。
(两点确定一条直线。)
直线、线段、射线的表示 用两个大写字母表示; 用一个小写字母表示。
直线的表示
A
B
直线AB
线段的表示
A
B
线段AB
射线的表示
OA 射线OA
l 直线l
a 线段a
l 射线l
如图所示小强上学时从家(A)去学校(B) 应选择走那条路最近?周末他想去同学家 (C)去玩应选择走哪条路最近?他家到学 校和同学家哪更近?与同伴交流。
2、线段的画法:用直尺和圆规画一 条线段等于已知线段。
概括为:(1)画(2)量(3)截。
北师大版数学七年级上册课件 4.2线段长短的比较(21张PPT)
北师大版数学七年级上册课件 4.2线段长短的比较(21张PPT)
• 3、线段的比较:度量法和重合法(分别从 “数”和“形”的两个方面来比较线段的长短

2024七年级数学上册第6章基本的几何图形6.3线段的比较与运算课件青岛版

2024七年级数学上册第6章基本的几何图形6.3线段的比较与运算课件青岛版

知3-练
解题秘方:先由点M,N分别是AC,BC 的中点求出CM, CN的长度,再由MN=CM+CN求出线段MN的长度. 解:因为M,N分别是AC,BC的中点,AC=12,BC=8, 所以CM=12AC=6,CN=12BC=4 . 所以MN=CM+CN =6+4=10.
知3-练
4-1.[期末·日照东港区]已知线段AB=10 cm,C是直线AB 上一点,BC=4 cm,若M是AB的中点,N是BC的中 点,则线段MN的长度是_7__c_m_或__3__c_m_.
知1-讲
(2)叠合法:比较两条线段AB,CD的长短时,可把它们移 到同一条直线上,使点A和点C重合,点B和点D落在点 A(C)的同侧. 若点B和点D重合,则AB=CD;若点D落 在点A,B之间,则AB >CD;若点D落在线段AB的延长 线上,则AB< CD.
拓展:
知1-讲
(1)“ 线段”是一个几何图形,而“线段的长度”是一个
知2-练
(2)画一条线段,使它等于a-c. 解题秘方:先画一条射线EF,再用圆规截取EH=a, HG=c(点G在线段EH上),则线段EG即为所求. 解:如图6.3-8,线段EG即为所求.
知2-练
3-1. 如图,已知线段a,b,c(a>b)(要求:保留作图痕迹). (1)作一条线段,使它等于a-b+c;
解:如图(答案不唯一), 线段AC 即为所求.
(2)作一条线段,使它等于2a-b. 解:如图(答案不唯一), 线段EG即为所求.
知2-练
知识点 3 线段的中点和线段的倍分
知3-讲
1. 线段的中点 如果线段上一点将线段分成相等的两条线段,那么这个 点叫作线段的中点. 如图6.3-9 ①,如果M是线段 AB的

线段的比较和画法

线段的比较和画法

B
A
C
练习
2、已知线段MN,取MN中点P,PN的中点Q, QN的中点R,由中点的定义可知, RN= 1/8 MN。
我们这节学到了什么?
请同学们回顾本节课学习了哪些知识. 获得了哪些有指导意义的结论?
一、线段长短比较法
1.
度量法
2.
叠合法
二、线段的画法:圆规 三、线段的中点
定义:把一条线段分成两条相等线段 的点叫做这条线段的中点. 2. 中点的应用
怎么比?
生活中比较两人的高矮时,通常采用的是叠合法:
嗨我 高 唉我低
一人移动,与另一人站在 同一水平面,两人靠紧,观察 另一人的位置,多出一段的较 高。
你觉得一样吗?
类似地,比较两条线段的长短,也可使用叠合法: 将一线段“移动”,使其一端点与另一线段的一端点重 , 两线段的另一端点均在同一射线上。
A C B
继续
2、如果线段AB=5厘米,BC=3厘米那么A,C两点间 的距离是( C ) A、8厘米 B、2厘米 C、无法确定
A
B C1
C
再来一个
3、M是线段AB上的一点,其中不能判定点M 是线段AB中点的是( A ) A、AM+BM=AB B、AM=BM C、AB=2BM
A
M
B
练习
练习 1.如图,做一个三角形纸片,你能用几种方法比较出 线段AB与线段AC的长短?
如何做?
思考: 怎样比较两个同学的高矮?
你能用眼睛看出线段的长短吗?
生活中的长短的比较
两个同学的高矮比较 , 可转化为两条线段大小比较。
比较 线段长短的方法:
(1) 度量法 (用刻度尺量出所要比较的线段的长度,根据数
量多少确定它们的大小。) 一端点重合,两线段的另一端点均在同一射线上。)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C C C
A (1) B
A
(2)
B
A
(3)
B
想一想
画一条线段等于已知线段 ;
a
问题一、已知线段a,画线段AB,使AB=a. (1) 画射线AC 画 法:
(2) 在射线AC上截取AB=a.
所以 AB=a.
B A 注意:不要求写画法,但一定要标清 字母,写出有结论. C
再来测测眼力吧!
在刚才的活动中我们知道了AB<CD,你知道 AB比CD少多少吗?你能用线段表示吗?
思维测评
选择题 已知线段AB上有点C,点C使AC∶CB=2∶3, 且AB=20cm,点M是线段AC的中点那么线段AM= ( B ).
A、2cm
B、4cm
C、6cm
D、8cm
思维测评
如图所示,是一个三角形纸片,不用任何 工具,你能准确比较线段AB与线段AC的长 短吗?试用你的办法确定一条线段的中点?
3、已知线段AB=12cm,点M是它的一个
4或8 三等分点, 则AM=___________cm.
思ቤተ መጻሕፍቲ ባይዱ测评
小芳和小丽在研究怎样画一条线段AB,使AB=a+2b-c, 她们经过一番商量,画出线段AB,请你评判一下,
她们画的对吗?如果不对,应怎样改正?
a b
解:如图所示
A
a
c
E B
B E
b
C
c
D
b
l
所以线段AB=a+2b-c.
线段的比较与画法
测测眼力吧!
观察下列三组图形,你能看出每组图形 中线段a与b的长短吗 b
a b
(1) a (3)
b
(2)
a
4.2直线、射线、线段(二)
新英才中英文学校 彭
学习目标
(1)会用不同的方法比较两条线段的大小。 (2)会画线段的和、差。 (3)理解线段中点的概念,会用准确的数学 语言表述。
A M B
文字叙述: 点M把线段AB分成相等的两条线段AM与MB, 我们把M点叫做线段AB的中点.
数学符号语言: 因为点M是线段AB的中点
1 所以AM=MB= 2 AB,AB=2AM=2BM
A
M
N
B
M、N为线段AB的三等分点
AM=MN=NB=
A
1 3 AB; AB=3AM=3MN=3NB
N
M
P
1 4
a
D
a
l
b
所以线段AB=2a-b.
归纳总结:
截取法 线段的画法 度量法
注意:不要求大家写画法,但是一定 要保留作图痕迹,标清字母,写出结 论.
要一量,二算,三画.
情景活动二
你能用这根绳子正好做一双鞋带吗?
看一看说一说
如果我们把拉直的线绳看作线段AB,刚才的折点看 作点M,观察线段AM与BM的关系.
B
M、N、P为线段AB的四等分点 AN=MN=MP=PB= AB;
AB=4AN=4MN=4NP=4PB
思维测评
根据图形填空: A B D C
1、 AB BC AC= _____ + ______ 2、(如图)增加一个D点,则, AB BD DC AC= _____+ _____+ _____
思维测评
情景活动一

明身高:2.26米
易建联身高:2.13米
你知道他们谁更高吗?
你是怎样得出这个结论的呢?
那你知道如何比较两条线段的长短吗?
议一议
已知线段AB与线段CD, 如何比较两条线段的长短?
A C B D
叠合法
归纳总结:
度量法
线段比较的方法

叠合法

做一做
教材131页1题
1、估计下列图形中线段AB与线段AC的大小关 系,再用刻度尺或用圆规来检验你的估计.
C A B D
AB+BD=CD CD-AB=BD
你知道如何画线段的和与差吗?
想一想 问题二:已知线段a、b,画一条线段AB,
a
b
使AB=a+b. 画法: ①先画一条直线l;
②在直线 l上依次截取 AC = a ,CB=b。 所以AB=a+b.
A
a
C b
B
l
想一想
问题三:已知线段a,b(b>a)画一条线段 AC,使AC=b-a。 a
度量法
A
B
(AB=3.8㎝)
C
D
(CD=4.1㎝)
记作:AB<CD
做一做
1、已知线段AB=12cm,点M是它的一个三等分点, 4cm或8cm 则AM=___________cm. 2、请把10厘米长的线段5等分。
A
B
C
思维测评
如图,点P是线段AB的中点,点C、D把线 段AB三等分。已知线段CP=1.5cm,求线段 9cm AB的长等于______.
A C P D
B
归纳总结
本节课的主要内容如下 线段的比较 线段的和、差
直 线 、 射 线 、 线 段 ( 二 )
知识技能
线段的中点
思想方法
数形结合
测测眼力吧!
观察下列三组图形,你能看出每组图形 中线段a与b的长短吗 b
a b
(1) a (3)
b
(2)
a
课外探索:
1.阅读教材本节课的内容。 2.作业:习题4.2中的6,7,9。 3.预习教材131-132页的内容。 4.选作:如图从A村到B村,有二条路径可选择, 你愿意选那一条路径?说出你的理由。

A

B
b
①先用直尺画一条直线l; 画法: ②在直线l上截取AD = b;
在线段AD上截取DC=a。 所以AC=b-a。
A
C b D l
a
试一试
已知线段a、b,画线段AB,使AB=2a-b. (1)画一条直线l. 解: (2)在直线l上顺序截取
a
b
AC=a,CD=a.
(3)在线段AD上截取BD=b.
A B C
相关文档
最新文档