数组和广义表A
数据结构第4章 数组和广义表
第4章数组和广义表【例4-1】二维数组A的每一个元素是由6个字符组成的串,其行下标i=0,1,…,8,列下标j=1,2,…,10。
若A以行为主序存储元素,A[8][5]的物理地址与当A按列为主序存储时的元素()的物理地址相同。
设每个字符占一个字节。
A.A[8][5] B.A[3][10] C.A[5][8] D.A[0][9]解:二维数A是一个9行10列的矩阵,即A[9][10]。
按行存储时,A[8][5]是第85个元素存储的元素。
而按列存储时,第85个存储的元素是A[3][10]。
即正确答案为B。
【例4-2】若对n阶对称矩阵A以行序为主序方式将其下三角形的元素(包括主对角线上所有元素)依次存放于一维数组B[n(n+1)/2]中,则在B中确定的位置k的关系为()。
A.jii+-2)1(*B.ijj+-2)1(*C.jii++2)1(*D.ijj++2)1(*解:如果a ij按行存储,那么它的前面有i-1行,其有元素个数为:1+2+3+…+(i-1)=i(i-1)/2。
同时它又是所在行的第j列,因此它排列的顺序还得加上j,一维数组B[n(n+1)/2]中的位置k与其下标的关系是:jii+-2)1(*。
因此答案为A。
【例4-3】已知n阶下三角矩阵A,按照压缩存储的思想,可以将其主对角线以下所有元素(包括主对角线上元素)依次存放于一维数组B中。
请写出从第一列开始以列序为主序分配方式时在B中确定元素a ij的存放位置的公式。
解:如果a ij按列存储,那么它的前面有j-1列,共有元素:n+(n-1)+(n-2)+ …+[n-(j-2)]=(j-1)*n-2)1)(2(--jj而它又是所在列的第i行,因此在它前的元素个数还得加上i。
因此它在一维数组B中的存储顺序为:(j-1)*n-2)1)(2(--jj+i【例4-4】已知广义表L=((x,y,z),a,(u,t,w)),从L表中取出的原子项ASCII码最大的运算是()。
数据结构——用C语言描述(第3版)教学课件第5章 数组与广义表
5.1 数组的定义和运算 5.2 数组的顺序存储和实现 5.3 特殊矩阵的压缩存储
5.3.1 三角矩阵 5.3.2 带状矩阵 5.3.3 稀疏矩阵 5.4 广义表 5.5 总结与提高
5.1 数组的定义和运算
数组是一种数据类型。从逻辑结构上看,数组可以 看成是一般线性表的扩充。二维数组可以看成是线 性表的线性表。例如:
Am×n=
a12 a12 ┅
a1j
┅ a1n
a21 a22 ┅
a2j
┅ a2n
┇┇
ai1 ai2 ┅
aij
┇┇
┅ ain
am1 am2 ┅
amj
┅ amn
矩阵Am×n看成n个列向量的线性表,即j=(a1j,a2j, …,amj)
我们还可以将数组Am×n看成另外一个线性表: B=(1,,2,,… ,m),其中i(1≤i ≤m)本身也是一个线性表, 称为行向量,即: I= (ai1,ai2, …,aij ,…,ain)。
Loc[j1,j2,j3]=Loc[c1,c2,c3]+ α1*(j1-c1)+ α2*(j2-c2)+ α3(j3-c3)
=Loc[c1,c2,c3]+ Σαi*(ji-ci) (1≤i≤3)
由公式可知Loc[j1,j2,j3]与j1,j2,j3呈线性关系。 对于n维数组A(c1:d1,c2:d2,…,cn,dn),我们只要把上式推 广,就可以容易地得到n维数组中任意元素aj1j2…jn的存储 地址的计算公式。
疏矩阵。
0 12 9 0 0 0 0
0 0 3 0 0 15
0 0 0 00 0 0
12 0 0 0 18 0
M6×7= -3 0 0 0 0 14 0
数据结构 5数组和广义表A
1 Status Locate(Array A,va_list ap,int &off) 2{ 3 //若ap指示的各下标值合法,则求出该元素在A中,相对地
址off
4 off=0; 5 for(i=0;i<A.dim;++i) 6 { 7 ind=va_arg(ap,int); 8 if(ind<0||ind>A.bounds[i]) return OVERFLOW; 9 off+=A.constants[i] *ind; 10 } 11 return OK; 12 }
行数 总列数,即 第2维长度 元素个数
ij
补充:计算二维数组元素地址的通式
设一般的二维数组是A[c1..d1, c2..d2],这里c1,c2不一定是0。
单个元素 长度
二维数组列优先存储的通式为: LOC(aij)=LOC(ac1,c2)+[(j-c2)*(d1-c1+1)+i-c1)]*L
6
例1〖软考题〗:一个二维数组A[1..6, 0..7],每个数组元素
16
5.4
1、定义:
广义表的定义
广义表是线性表的推广,也称为列表(lists) 记为: LS = ( a1 , a2 , ……, an ) 广义表名 表头(Head) 表尾 (Tail) n是表长
在广义表中约定:
① 第一个元素是表头,而其余元素组成的表称为表尾; ② 用小写字母表示原子类型,用大写字母表示列表。
13
1 Status Value(Array A,ElemType &e,…){ 2 //A是n维数组,e为元素变量,随后是n个下标值,若各下
标不超界,则e赋值为所指定的A的元素值,即将指定元素值 读到e变量中。
《数据结构》习题集:第5章
第5章数组与广义表一、选择题1.在以下讲述中,正确的是(B )。
A、线性表的线性存储结构优于链表存储结构B、二维数组是其数据元素为线性表的线性表C、栈的操作方式是先进先出D、队列的操作方式是先进后出2.若采用三元组压缩技术存储稀疏矩阵,只要把每个元素的行下标和列下标互换,就完成了对该矩阵的转置运算,这种观点(A )。
A、正确B、错误3.二维数组SA 中,每个元素的长度为3 个字节,行下标I 从0 到7,列下标J 从0 到9,从首地址SA 开始连续存放在存储器内,该数组按列存放时,元素A[4][7]的起始地址为(B)。
A、SA+141B、SA+180C、SA+222D、SA+2254.数组SA 中,每个元素的长度为3 个字节,行下标I 从0 到7,列下标J 从0 到9,从首地址SA 开始连续存放在存储器内,存放该数组至少需要的字节数是( C )。
A、80B、100C、240D、2705.常对数组进行的两种基本操作是(B )。
A、建立与删除B、索引和修改C、查找和修改D、查找和索引6.将一个A[15][15]的下三角矩阵(第一个元素为A[0][0]),按行优先存入一维数组B[120]中,A 中元素A[6][5]在B 数组中的位置K 为( B )。
A、19B、26C、21D、157.若广义表A 满足Head(A)=Tail(A),则A 为(B )。
A、()B、(())C、((),())D、((),(),())8.广义表((a),a)的表头是( C ),表尾是(C )。
A、aB、bC、(a)D、((a))9.广义表((a,b),c,d)的表头是( C ),表尾是(D )。
A、aB、bC、(a,b)D、(c,d)10.广义表((a))的表头是( B ),表尾是(C )。
A、aB、(a)C、()D、((a))11.广义表(a,b,c,d)的表头是(A ),表尾是(D )。
A、aB、(a)C、(a,b)D、(b,c,d)12.广义表((a,b,c,d))的表头是(C ),表尾是(B )。
数组和广义表习题
一、填空题1.通常采用___________存储结构来存放数组。
对二维数组可有两种存储方法:一种是以___________为主序的存储方式,另一种是以___________为主序的存储方式。
2. 用一维数组B与列优先存放带状矩阵A中的非零元素A[i,j] (1≤i≤n,i-2≤j≤i+2),B 中的第8个元素是A 中的第_ _行,第_ _列的元素。
3.设n行n列的下三角矩阵A已压缩到一维数组B[1..n*(n+1)/2]中,若按行为主序存储,则A[i,j]对应的B中存储位置为_______。
4. 所谓稀疏矩阵指的是_ 。
5. 广义表简称表,是由零个或多个原子或子表组成的有限序列,原子与表的差别仅在于____ 。
为了区分原子和表,一般用 ____表示表,用 _____表示原子。
一个表的长度是指 __,而表的深度是指__ __6、设数组a[1..50,1..80]的基地址为2000,每个元素占2个存储单元,若一行序为主序顺序存储,则元素a[45,68]的存储地址为;若以列序为主序存储,则元素a[45,68]的存储地址为。
7、有一个8ⅹ8的下三角矩阵A,若采用行序为主序顺序存储于一维数组a[1..n],则n的值为。
8、三元素组表中的每个结点对应于稀疏矩阵的一个非零元素,它包含有三个数据项,分别表示该元素的、和。
9、已知广义表A=(((a))),则A的表头为:,A的表尾为:。
10、求下列广义表操作的结果:(1)Head ((a,b),(c,d)) == ; //头元素不必加括号(2)Head(Tail((a,b),(c,d)))== ;(3)Head(Tail(Head((a,b),(c,d))))== ;(4)Tail(Head(Tail((a,b),(c,d))))== ;11、设W为一个二维数组,其每个数据元素占用4个字节,行下标i从0到7 ,列下标j从0到3 ,则二维数组W的数据元素共占用_______个字节。
Chapter05_数组和广义表_数据结构(C语言版)_严蔚敏_配套ppt课件
M
1 1 2 3 3 4
1 5 3 1 2 4
3 7 -1 -1 -2 2
N
1 1 2 3 4 5
1 3 3 2 4 1
3 -1 -2 -1 2 7
行列下 标调换
1 5 3 1 2 4
1 1 2 3 3 4
3 7 -1 -1 -2 2
按行下 标排序
法1:
按照矩阵M的列序进行转置,即按三元组A的 第二个字段值(列下标)由小到大的顺序进行转置。 为了找到M中每一列中所有的非零元素,需要对其 三元组表a.data从第一行起整个扫描一遍,由于 a.data是以M的行序为主序来存放每个非零元素 的,对于M中具有相同列下标的非零元来讲,先扫 描到的非零元的行下标一定小于后扫描到的非零元 的行下标,由此得到的恰是b.data应有的顺序。
• 压缩的含义
– 为多个值相同的元素只分配一个存贮空间; – 零元素不分配或少分配存贮空间。
• 特殊矩阵:元素值相同或零元素分布有 一定规律的矩阵。 • 稀疏矩阵:元素值相同或零元素分布没 有规律的矩阵。 • 特殊矩阵的压缩存贮实际是将二维数组 的数据元素压缩到一维数组上。
特殊矩阵的压缩存储
特殊矩阵: 非零元在矩阵中的分布有一定规则
常用的稀疏矩阵的存储方法
三元组表示法 顺序存储 行逻辑联接的顺序表 带辅助行向量的二元组表示法 伪地址表示法 带行指针向量的单链表示法 链接存储 散列存储 行列表示法(十字链表) 多链表示法(正交表)
顺序存储
1、三元组表示法 用一个线性表来表示稀疏矩阵,线性表的每个 结点对应稀疏矩阵的一个非零元素。其中包括三个 域,分别为该元素的行下标、列下标和值。结点间 的先后顺序按矩阵的行优先顺序排列(跳过零元 素),将线性表用顺序的方法存储在连续的存储区 里。
《数据结构与算法》第五章-数组和广义表学习指导材料
《数据结构与算法》第五章数组和广义表本章介绍的数组与广义表可视为线性表的推广,其特点是数据元素仍然是一个表。
本章讨论多维数组的逻辑结构和存储结构、特殊矩阵、矩阵的压缩存储、广义表的逻辑结构和存储结构等。
5.1 多维数组5.1.1 数组的逻辑结构数组是我们很熟悉的一种数据结构,它可以看作线性表的推广。
数组作为一种数据结构其特点是结构中的元素本身可以是具有某种结构的数据,但属于同一数据类型,比如:一维数组可以看作一个线性表,二维数组可以看作“数据元素是一维数组”的一维数组,三维数组可以看作“数据元素是二维数组”的一维数组,依此类推。
图5.1是一个m行n列的二维数组。
5.1.2 数组的内存映象现在来讨论数组在计算机中的存储表示。
通常,数组在内存被映象为向量,即用向量作为数组的一种存储结构,这是因为内存的地址空间是一维的,数组的行列固定后,通过一个映象函数,则可根据数组元素的下标得到它的存储地址。
对于一维数组按下标顺序分配即可。
对多维数组分配时,要把它的元素映象存储在一维存储器中,一般有两种存储方式:一是以行为主序(或先行后列)的顺序存放,如BASIC、PASCAL、COBOL、C等程序设计语言中用的是以行为主的顺序分配,即一行分配完了接着分配下一行。
另一种是以列为主序(先列后行)的顺序存放,如FORTRAN语言中,用的是以列为主序的分配顺序,即一列一列地分配。
以行为主序的分配规律是:最右边的下标先变化,即最右下标从小到大,循环一遍后,右边第二个下标再变,…,从右向左,最后是左下标。
以列为主序分配的规律恰好相反:最左边的下标先变化,即最左下标从小到大,循环一遍后,左边第二个下标再变,…,从左向右,最后是右下标。
例如一个2×3二维数组,逻辑结构可以用图5.2表示。
以行为主序的内存映象如图5.3(a)所示。
分配顺序为:a11 ,a12 ,a13 ,a21 ,a22,a23 ; 以列为主序的分配顺序为:a11 ,a21 ,a12 ,a22,a13 ,a23 ; 它的内存映象如图5.3(b)所示。
数组与广义表
其中:1) 矩阵Am×n看成n个列向量的线性表
2) 每个列向量:αj=(a1j, a2j, a3j, …, amj )(0≤j ≤n-1) 3) ai,j在列方向上有一个前驱ai-1,j, 有一个后继ai+1,j
• 或者,可以看成是一个线性表:A=(a0,a1,……,am-1)
• 其中每个数据元素aj是一个行向量形式的线性表: A
}ADT Array
• • • N维数组含有元素的个数: b1 × b2 × … × bn 第i维的长度: bi 元素下标(j1 , j2, … ,jn),0 ≤ ji ≤ bi -1
5.1 数组示例:
数组的定义
a00 a01 …….. a10 a11 …….. am-1,n-1 …….. a0,n-1 a1,n-1 am-1,n-1
1 2 … i-1 aij
*(A.base + off) = e;
return OK; }
5.3 矩阵的压缩存储 特殊矩阵和稀疏矩阵
特殊矩阵:矩阵中很多值相同的元素并且它们的分布 有一定的规律。 稀疏矩阵:矩阵中有很多零元素。 压缩存储的基本思想是: ⑴ 为多个值相同的元素只分配一个存储空间;
⑵ 对零元素不分配存储空间。
5.3.1 3 6 4 7 8
普通高等教育“十一五”国家级规划教材
设一个系统中二维数组采用行序为主的存储方式,已知二 维数组a[10][8]中每个元素占用四个存储单元,且第一 个数据元素地址是1000,求a[4][5]的存储地址?
解: Loc(a[4][5])=Loc(a[0][0])+(i*m+j)*k =1000+(4*8+5)*4 =1148
L:每个数据元素占用的存储单元
第8章 数组和广义表
第8章数组和广义表[能力要求](1)计算机基础知识:掌握线性表的概念以及顺序表和链表的基本操作。
(2)分析问题:针对具体的问题,要能够运用线性表去进行分析,逐步找到解决问题的方法。
(3)具有概念化和抽象化能力:针对具体的应用和实际的问题,能够运用线性表对问题进行抽象,提取它的逻辑结构和存储结构。
(4)发现问题和表述问题:在具体的工程中,能够发现工程中涉及到顺序表和链表的问题,并能够明确表述。
(5)建模:在具体的工程中,能够使用线性表进行建模,设计合理的数据结构和相应的算法。
(6)解决方法和建议:在具体工程应用中,发现了关于线性表的问题,要能够解决问题,并提出合理的建议。
(7)定义功能、概念和结构:使用线性表这种逻辑结构处理一些具体问题,实现系统的功能。
(8)设计过程的分段与方法:采取不同的阶段去设计(概念设计、详细设计)一个具体的线性表的应用项目。
(9)软件实现过程:了解系统中各个模块中的关于线性表的设计;讨论算法(数据结构、控制流程、数据流程);使用编程语言实施底层设计(编程)。
8.1知识点:数组的定义和顺序存储一、选择题1①常对数组进行的两种基本操作是()。
A.建立与删除 B.索引和修改C.对数据元素的存取和修改D.查找与索引2①下面说法中,不正确的是()。
A.数组是一种线性结构B.数组是一种定长的线性表结构C.除了插入与删除操作外,数组的基本操作还有存取、修改、检索和排序等D.数组的基本操作有存取、修改、检索和排序等,没有插入与删除操作3②数组A中,每个元素的长度为3个字节,行下标I从1到8,列下标J从1到10,从首地址SA开始连续存放在存储器内,该数组占用的字节数为()。
A.80 B.100 C.240 D.2704②在二维数组A[9][10]中,每一个数组元素A[i][j] 占用3个存储空间,所有数组元素相继存放于一个连续的存储空间中,则存放该数组至少需要的存储空间是()。
A. 80 B.100 C.240 D.2705②设有一个n*n的对称矩阵A,将其下三角部分按行存放在一个一维数组B中,A[0][0]存放于B[0]中,那么第I行的对角元素A[I][I]存放于B中()处。
数据结构第5章
第5章:数组和广义表 1. 了解数组的定义;填空题:1、假设有二维数组A 6×8,每个元素用相邻的6个字节存储,存储器按字节编址。
已知A 的起始存储位置(基地址)为1000,则数组A 的体积(存储量)为 288 B ;末尾元素A 57的第一个字节地址为 1282 。
2、三元素组表中的每个结点对应于稀疏矩阵的一个非零元素,它包含有三个数据项,分别表示该元素的 行下标 、 列下标 和 元素值 。
2. 理解数组的顺序表示方法会计算数组元素顺序存储的地址;填空题:1、已知A 的起始存储位置(基地址)为1000,若按行存储时,元素A 14的第一个字节地址为 (8+4)×6+1000=1072 ;若按列存储时,元素A 47的第一个字节地址为 (6×7+4)×6+1000)=1276 。
(注:数组是从0行0列还是从1行1列计算起呢?由末单元为A 57可知,是从0行0列开始!) 2、设数组a[1…60, 1…70]的基地址为2048,每个元素占2个存储单元,若以列序为主序顺序存储,则元素a[32,58]的存储地址为 8950 。
答:不考虑0行0列,利用列优先公式: LOC(a ij )=LOC(a c 1,c 2)+[(j-c 2)*(d 1-c 1+1)+i-c 1)]*L 得:LOC(a 32,58)=2048+[(58-1)*(60-1+1)+32-1]]*2=8950选择题:( A )1、假设有60行70列的二维数组a[1…60, 1…70]以列序为主序顺序存储,其基地址为10000,每个元素占2个存储单元,那么第32行第58列的元素a[32,58]的存储地址为 。
(无第0行第0列元素)A .16902B .16904C .14454D .答案A, B, C 均不对 答:此题(57列×60行+31行)×2字节+10000=16902( B )2、设矩阵A 是一个对称矩阵,为了节省存储,将其下三角部分(如下图所示)按行序存放在一维数组B[ 1, n(n-1)/2 ]中,对下三角部分中任一元素a i,j (i ≤j), 在一维数组B 中下标k 的值是:A .i(i-1)/2+j-1B .i(i-1)/2+jC .i(i+1)/2+j-1D .i(i+1)/2+j3、从供选择的答案中,选出应填入下面叙述 ? 内的最确切的解答,把相应编号写在答卷的对应栏内。
数据结构第五章
5.3.1 特殊矩阵
是指非零元素或零元素的分布有一定规律的矩阵。
1、对称矩阵 在一个n阶方阵A中,若元素满足下述性质: aij = aji 0≦i,j≦n-1 则称A为对称矩阵。
对称矩阵中的元素关于主对角线对称,故只 要存储矩阵中上三角或下三角中的元素,这样, 能节约近一半的存储空间。
2013-7-25 第4章 18
5.3 矩阵的压缩存储
在科学与工程计算问题中,矩阵是一种常用 的数学对象,在高级语言编制程序时,常将 一个矩阵描述为一个二维数组。 当矩阵中的非零元素呈某种规律分布或者矩 阵中出现大量的零元素的情况下,会占用许 多单元去存储重复的非零元素或零元素,这 对高阶矩阵会造成极大的浪费。 为了节省存储空间,我们可以对这类矩阵进 行压缩存储:
5.2 数组的顺序表示和实现 由于计算机的内存结构是一维的, 因此用一维内存来表示多维数组,就必 须按某种次序将数组元素排成一列序列 ,然后将这个线性序列存放在存储器中 。 又由于对数组一般不做插入和删除 操作,也就是说,数组一旦建立,结构 中的元素个数和元素间的关系就不再发 生变化。因此,一般都是采用顺序存储 的方法来表示数组。
即为多个相同的非零元素只分配一个存储空间; 对零元素不分配空间。
课堂讨论: 1. 什么是压缩存储? 若多个数据元素的值都相同,则只分配一个元素值的 存储空间,且零元素不占存储空间。 2. 所有二维数组(矩阵)都能压缩吗? 未必,要看矩阵是否具备以上压缩条件。 3. 什么样的矩阵具备以上压缩条件? 一些特殊矩阵,如:对称矩阵,对角矩阵,三角矩阵, 稀疏矩阵等。 4. 什么叫稀疏矩阵? 矩阵中非零元素的个数较少(一般小于5%)
通常有两种顺序存储方式:
⑴行优先顺序——将数组元素按行排列,第i+1个行 向量紧接在第i个行向量后面。以二维数组为例,按 行优先顺序存储的线性序列为: a11,a12,…,a1n,a21,a22,…a2n,……,am1,am2,…,amn 在PASCAL、C语言中,数组就是按行优先顺序存 储的。 ⑵列优先顺序——将数组元素按列向量排列,第j+1 个列向量紧接在第j个列向量之后,A的m*n个元素按 列优先顺序存储的线性序列为: a11,a21,…,am1,a12,a22,…am2,……,an1,an2,…,anm 在FORTRAN语言中,数组就是按列优先顺序存储的。
《数据结构及其应用》笔记含答案 第四章_串、数组和广义表
第4章串、数组和广义表一、填空题1、零个或多个字符组成的有限序列称为串。
二、判断题1、稀疏矩阵压缩存储后,必会失去随机存取功能。
(√)2、数组是线性结构的一种推广,因此与线性表一样,可以对它进行插入,删除等操作。
(╳)3、若采用三元组存储稀疏矩阵,把每个元素的行下标和列下标互换,就完成了对该矩阵的转置运算。
(╳)4、若一个广义表的表头为空表,则此广义表亦为空表。
(╳)5、所谓取广义表的表尾就是返回广义表中最后一个元素。
(╳)三、单项选择题1、串是一种特殊的线性表,其特殊性体现在(B)。
A.可以顺序存储B.数据元素是一个字符C.可以链式存储D.数据元素可以是多个字符若2、串下面关于串的的叙述中,(B)是不正确的?A.串是字符的有限序列B.空串是由空格构成的串C.模式匹配是串的一种重要运算D.串既可以采用顺序存储,也可以采用链式存储解释:空格常常是串的字符集合中的一个元素,有一个或多个空格组成的串成为空格串,零个字符的串成为空串,其长度为零。
3、串“ababaaababaa”的next数组为(C)。
A.012345678999 B.012121111212 C.011234223456 D.01230123223454、串“ababaabab”的nextval为(A)。
A.010104101B.010102101 C.010100011 D.0101010115、串的长度是指(B)。
A.串中所含不同字母的个数B.串中所含字符的个数C.串中所含不同字符的个数D.串中所含非空格字符的个数解释:串中字符的数目称为串的长度。
6、假设以行序为主序存储二维数组A=array[1..100,1..100],设每个数据元素占2个存储单元,基地址为10,则LOC[5,5]=(B)。
A.808 B.818 C.1010 D.1020解释:以行序为主,则LOC[5,5]=[(5-1)*100+(5-1)]*2+10=818。
大学数据结构课件--第5章 数组和广义表
a 32 a 33 a 34 0 0
a 43 a 44 a 45 0
a 54 a 55 a 56 a 65 a 66
5.3.2 稀疏矩阵
稀疏矩阵的存储:如何表示非零元素的位置信息 1. 三元组表:每个元素用一个三元组(i,j,v)来表示。 i j v
0 1 6 1 1 6 2 3 8 12 9
2
3 4 5 6 7 8
2
5.2 数组的顺序表示和实现
a00 a00 a10 a01 存储单元是一维结构,而数组是个多维结构 , …… …… 则用一组连续存储单元存放数组的数据元素就有 am-1,0 a0,n-1 个次序约定问题。 a01 a10
a11
……
a11
……
二维数组可有两种存储方式: am-1,1 a1,n-1
……
K=
i*n-i(i-1)/2+j-i n(n+1)/2
当 i≤j 当i>j
0 a11 ... a1n-1 ... ... ... ... 0 0 0 an-1n-1
当i ≤ j时,a[i][j]是非零元素, a[i][j]前面有i行,共有n+(n-1)+(n-2)+…(n-(i-1))
=i(n+[n-(i-1)])/2=i*n-i(i-1)/2个元素,a[i][j]前面有j列,共j-i个非零元素,
A m× n
( a10 a11 … a1,n-1 )
=
注:
( … … …… ) ( am-1,0 am-1,2 … am-1,n-1 ) ( ( ( (
① 数组中的元素都具有统一的类型; ② 数组元素的下标一般都具有固定的上界和下界,即数组一旦 被定义,它的维数和维界就不再发生改变; ③ 数组的基本操作简单:初始化、销毁、存取元素和修改元素值
数据结构 数组和广义表习题
第五章数组和广义表习题一、选择题1.已知广义表LS=((a,b,c),(d,e,f)),运用head和tail函数取出LS中原子e运算是。
A.head(tail(LS))B.tail (head(LS))C.head(tail(head(tail(LS))))D. head(tail(tail(head(LS))))2.若广义表A满足head(A)= tail(A),则A为。
A.()B.(())C.((),())D.((),(),())3.广义表A=(a,b,(c,d),(e,(f,g))),则下面式子Head(Tail(Head(Tail(Tail(A)))))的值为。
A.()B.(d)C.cD.d4.稀疏矩阵一般的压缩存储方法有 两种。
A.二维数组和三维数组B.三元组和散列表C.三元组和十字链表D.散列表和十字链表5.已知矩阵A是一个对称矩阵,为了节省存储,将其下三角部分按行优先存放在一维数组B[1…n(n-1)/2]中,对下三角部分中任一元素aij(i>=j)在一维数组B的下标位置k值是。
A.i(i-1)/2+j-1B. i(i-1)/2+jC. i(i+1)/2+j-1D. i(i+1)/2+j6.已知广义表L=((x,y,z),a,(u,t,w)),从L表中取出原子u的运算是。
A.head(tail(tail(L)))B.tail(head(head(tail(L))))C.head(tail(head(tail(L))))D.head(head(tail(tail(L))))7.广义表L=((a,b,c)),则L的长度和深度分别为。
A.1和1B.1和3C.1和2D.2和38. tail (head(((a,b,c,d,e))))= 。
A.aB.c,dC.D.(b,c,d,e)9.二维数组A[10…20,5…10]采用列序方式存储,每个数据元素占4个存储单元,且A[10,5]的存储地址是1000,则A[20,9]的地址是。
数据结构数组和广义表
数据结构05数组与广义表数组与广义表可以看做是线性表地扩展,即数组与广义表地数据元素本身也是一种数据结构。
5.1 数组地基本概念5.2 数组地存储结构5.3 矩阵地压缩存储5.4 广义表地基本概念数组是由相同类型地一组数据元素组成地一个有限序列。
其数据元素通常也称为数组元素。
数组地每个数据元素都有一个序号,称为下标。
可以通过数组下标访问数据元素。
数据元素受n(n≥1)个线性关系地约束,每个数据元素在n个线性关系地序号 i1,i2,…,in称为该数据元素地下标,并称该数组为n维数组。
如下图是一个m行,n列地二维数组A矩阵任何一个元素都有两个下标,一个为行号,另一个为列号。
如aij表示第i行j列地数据元素。
数组也是一种线性数据结构,它可以看成是线性表地一种扩充。
一维数组可以看作是一个线性表,二维数组可以看作数据元素是一维数组(或线性表)地线性表,其一行或一列就是一个一维数组地数据元素。
如上例地二维数组既可表示成一个行向量地线性表: A1=(a11,a12,···,a1n)A2=(a21,a22, ···,a2n)A=(A1,A2, ···,Am) ············Am=(am1,am2, ···,amn)也可表示成一个列向量地线性表:B1=(a11,a21,···,am1)B2=(a12,a22, ···,am2)A=(B1,B2, ···,Bm) ············Bn=(a1n,a2n, ···,amn)数组地每个数据元素都与一组唯一地下标值对应。
数据结构05数组和广义表11
2021/11/8
12
设有m×n二维数组Amn,下面我们看按元素的下标求其 地址的计算:
以“行为主序”的分配为例:设数组的基址为LOC(a11), 每个数组元素占据l个地址单元,那么aij 的物理地址可用一 线性寻址函数计算:
LOC(aij) = LOC(a11) + ( (i-1)*n + j-1 ) * l 在C语言中,数组中每一维的下界定义为0,则:
(1) 取值操作:给定一组下标,读其对应的数据元素。
(2) 赋值操作:给定一组下标,存储或修改与其相对应的
数据元素。
我们着重研究二维和三维数组,因为它们的应用是广泛的,
尤其是二维数组。
2021/11/8
9
5.1.3 数组的存储结构
• 通常,数组在内存中被映象为向量,即用向量作为数组的 一种存储结构,这是因为内存的地址空间是一维的,数组的行 列固定后,通过一个映象函数,则可根据数组元素的下标得到 它的存储地址。
• 任一数据元素的存储地址可由公式算出:
Loc(a i,j)=loc(a 0,0)+(i*n+j)*L
– 以列序为主序的顺序存储
• 在以列序为主序的存储方式中,数组元素按列向量排列, 即第j+1个列向量紧接在第j个列向量之后, 把所有数组 元素顺序存放在一块连续的存储单元中。
• 任一数据元素的存储地址可由公式算出
–Loc(a i,j)=loc(a c1,c2)+[(j-c1)*(d1-c1+1)+(i-c1)]*L
2021/11/8
8
5.1.2 数组的基本操作
数组一旦被定义,它的维数和维界就不再改变。因此,除了 结构的初始化和销毁之外,数组的基本操作一般不会含有元素 的插入或删除等操作,数组只有访问数组元素和修改元素值的 操作。
数据结构第五章 数组和广义表
5.3.1
特殊矩阵
1、对称矩阵 在一个n阶方阵A中,若元素满足下述性质: aij = aji 1≤i,j≤n 则称A为对称矩阵。 a11 1 5 1 3 7 a21 a 22 5 0 8 0 0 a31 a32 a33 1 8 9 2 6 ……………….. 3 0 2 5 1 an 1 a n 2 a n 3 …a n n 7 0 6 1 3
第5章
数组和广义表
5.1 数组的定义
5.2 数组的顺序表示和实现
5.3 矩阵的压缩存储
5.3.1 特殊矩阵
5.3.2 稀疏矩阵
5.4 广义表的定义
5.1 数组的定义
数组-----线性表的扩展 A =(a0,a1,a2,…,an-1)
a00 a10 ┇ Am×n= ai0 ┇ am-1,0 a01 … a0j … a11 … a1j … ┇ ai2 … aij … ┇ am-1,2 … am-1,j … a0,n-1 a1,n-1 ai,n-1 am-1,n-1 α0 α1 ┇ Am×n= α i ┇ α m-1
Assign( &A, e, index1, ..., indexn) 赋值操作 初始条件:A是n维数组,e为元素变量,随后是n个下标值。 操作结果:若下标不超界,则将e的值赋给所指定的A的元 素,并返回OK。 对于数组来说一旦维数确定了,每个元素的下标确定了, 那么整个数组就确定了,这样的一个数组结构除了能改变 某元素的值,其他的不能再改变。
5.2 数组的顺序表示和实现
数组类型特点: 1) 只有引用型操作,没有加工型操作; 2) 数组是多维的结构,而存储空间是一个一维的结构。 有两种顺序映象的方式。
有两种顺序映像方法: 1)以行序为主序(行优先,先行后列):先存储行号较小 的元素,行号相同者先存储列号较小的元素;
数组和广义表思考题及答案
一、选择题1. 将一个A[1..100,1..100]的三对角矩阵,按行优先存入一维数组B[1‥298]中,A中元素A6665(即该元素下标i=66,j=65),在B数组中的位置K为(B )。
供选择的答案:三条对角线有元素值,其他没有A. 198B. 195C. 1972. 二维数组A的元素都是6个字符组成的串,行下标i的范围从0到8,列下标j的范圈从1到10。
从供选择的答案中选出应填入下列关于数组存储叙述中()内的正确答案。
(1)存放A至少需要( E )个字节;(2)A的第8列和第5行共占( A )个字节;(3)若A按行存放,元素A[8,5]的起始地址与A按列存放时的元素(B )的起始地址一致。
供选择的答案:(1)A. 90 B. 180 C. 240 D. 270 E. 540(2)A. 108 B. 114 C. 54 D. 60 E. 150(3)A. A[8,5] B. A[3,10] C. A[5,8] D. A[0,9]3. 设A是n*n的对称矩阵,将A的对角线及对角线上方的元素以列为主的次序存放在一维数组B[1..n(n+1)/2]中,对上述任一元素aij(1≤i,j≤n,且i≤j)在B中的位置为( B )。
A. i(i-l)/2+jB. j(j-l)/2+iC. j(j-l)/2+i-1D. i(i-l)/2+j-14. A[N,N]是对称矩阵,将下面三角(包括对角线)以行序存储到一维数组T[N(N+1)/2]中,则对任一上三角元素a[i][j]对应T[k]的下标k是(B )。
A. i(i-1)/2+jB. j(j-1)/2+iC. i(j-i)/2+1D. j(i-1)/2+15. 设二维数组A[1.. m,1..n](即m行n列)按行存储在数组B[1.. m*n]中,则二维数组元素A[i,j]在一维数组B中的下标为( A )。
A.(i-1)*n+jB.(i-1)*n+j-1C. i*(j-1)D. j*m+i-16. 有一个100*90的稀疏矩阵,非0元素有10个,设每个整型数占2字节,则用三元组表示该矩阵时,所需的字节数是(B )。
数据结构讲义第5章-数组和广义表
5.4 广义表
5)若广义表不空,则可分成表头和表尾,反之,一对表头和表尾 可唯一确定广义表 对非空广义表:称第一个元素为L的表头,其余元素组成的表称 为LS的表尾; B = (a,(b,c,d)) 表头:a 表尾 ((b,c,d)) 即 HEAD(B)=a, C = (e) D = (A,B,C,f ) 表头:e 表尾 ( ) TAIL(B)=((b,c,d)),
5.4 广义表
4)下面是一些广义表的例子; A = ( ) 空表,表长为0; B = (a,(b,c,d)) B的表长为2,两个元素分别为 a 和子表(b,c,d); C = (e) C中只有一个元素e,表长为1; D = (A,B,C,f ) D 的表长为4,它的前三个元素 A B C 广义表, 4 A,B,C , 第四个是单元素; E=( a ,E ) 递归表.
以二维数组为例:二维数组中的每个元素都受两个线性关 系的约束即行关系和列关系,在每个关系中,每个元素aij 都有且仅有一个直接前趋,都有且仅有一个直接后继. 在行关系中 aij直接前趋是 aij直接后继是 在列关系中 aij直接前趋是 aij直接后继是
a00 a01 a10 a11
a0 n-1 a1 n-1
a11 a21 ┇ a12 a22 ┇ ai2 ┇ … amj … amn … aij … ain … … a1j a2j … … a1n a2n β1 β2 ┇ βi ┇ βm
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数组的抽象数据类型定义略,参见教材P90
4
5.2 数组的顺序存储表示和实现
问题:计算机的存储结构是一维的,而数组一般是多 维的,怎样存放?
解决办法:事先约定按某种次序将数组元素排成一列序列, 然后将这个线性序列存入存储器中。
例如:在二维数组中,我们既可以规定按行存储,也 可以规定按列存储。
①开始结点的存放地址(即基地址)
②维数和每维的上、下界; ③每个数组元素所占用的单元数
Amn=
补充:计算二维数组元素地址的通式
ac1,c2 … ac1,d2
… aij … ad1,c2 … ad1,d2
设一般的二维数组是A[c1..d1, c2..d2],这里c1,c2不一定是0或1
则行优先存储时的地址公式为:
第5章 数组和广义表 (Arrays & Lists)
5.1 数组的定义 5.2 数组的顺序存储表示和实现 5.3 矩阵的压缩存储 5.4 广义表的定义 5.5 广义表的存储结构
1
5.1 数组的定义
数组: 由一组名字相同、下标不同的变量构成
注意: 这里讨论的数组与高级语言中的数组有所区别:高级 语言中的数组是顺序结构;而这里的数组既可以是顺序的, 也可以是链式结构,用户可根据需要选择。
想一想:若数组是a[0…59, 0…69], 结果是否仍为8950?
维界虽未变,但此时的a[32, 58]不 再是原来的a[32, 58]
9
若是N维数组,其中任一元素的地址该如何计算?
教材已给出低维优先的地址计算公式(见P93(5-2)式)
该式称为n维数组的映像函数:
Loc(j1,j2,…jn)=LOC(0,0,…0)+
n
Ci ji
i 1
数组基址
其中Cn=L, Ci-1=bi×Ci, 1<i≤n
前面若干元素占用 的地址字节总数
每个元素长度
第i维长度
与所存元素个数有关的系数, 可用递推法求出
三维数组且列优先时的元素地址 要会计算!
10
例5:【专科考研资格考试】假设有三维数组A7×9×8,每个
元素用相邻的6个字节存储,存储器按字节编址。已知A的起 始存储位置(基地址)为1000,末尾元素A[6][8][7]的第一个 字节地址为多少?若按高地址优先存储时,元素A[4][7][6]的 第一个字节地址为多少?
3
N维数组的数据类型定义 n_ARRAY = (D, R)
其中:
数据对象:D = {aj1,j2…jn| ji为数组元素的第i 维下标 ,aj1,j2…jn Elemset} 数据关系:R = { R1 ,R2,…. Rn }
Ri = {<aj1,j2,…ji…jn , aj1,j2,…ji+1…jn >| aj1,j2,…ji…jn , aj1,j2,…ji+1…jn D }
判断:“数组的处理比其它复杂的结构要简单”,对吗?
答:对的。因为—— ① 数组中各元素具有统一的类型; ② 数组元素的下标一般具有固定的上界和下界,即数组一
旦被定义,它的维数和维界就不再改变。 ③数组的基本操作比较简单,除了结构的初始化和销毁之
外,只有存取元素和修改元素值的操作。
2
一维数组的特点: 1个下标,ai 是ai+1的直接前驱 二维数组的特点: 2个下标,每个元素ai,j受到两个关系
1…70]的基地址为2048,每个元素占2个存储单元,若以列 序为主序顺序存储,则元素a[32,58]的存储地址为 8950 。 答:请注意审题! 根据列优先公式 Loc(aij)=Loc(a11)+[(j-1)*m+(i-1)]*K 得:LOC(a32,58)=2048+[(58-1)*60+(32-1)]*2=8950
LOC(aij)=LOC(ac1,c2)+[(i-c1)*(d2-c2+1)+j-c2)]*L
数组基址
aij之前的行数
总列数,即 第2维长度
aij本行前面
的元素个数
二维数组列优先存储的通式为:
LOC(aij)=LOC(ac1,c2)+[(j-c2)*(d1-c1+1)+i-c1)]*L
单个元素 长度
例3:已知二维数组Am,m按行存储的元素地址公式是:
Loc(aij)= Loc(a11)+[(i-1)*m+(j-1)]*K , 请问按列存储的公式 相同吗?
答:尽管是方阵,但公式仍不同。应为:
Loc(aij)=Loc(a11)+[(j-1)*m+(i-1)]*K
8
例4 :〖00年华科计算机系考研题〗 :设数组a[1…60,
6
例1:如何求出a(3,2)的存储地址?
0 0 a(0,0) 1 a(1,0) 2 …… 3 …… 4 …… 5 …… 6 a(6,0)
1 a(0,1) a(1,1) …… …… …… …… ……
2 …… …… …… a(3,2) …… …… ……
3 a(0,3) a(1,3) …… …… …… …… a(6,3)
注意: • 若规定好了次序,则数组中任意一个元素的存放地址便有
规律可寻,可形成地址计算公式; • 约定的次序不同,则计算元素地址的公式也有所不同; • C和PASCAL中一般采用行优先顺序;FORTRAN采用列
优先。
5
无论规定行优先或列优先,只要知道以下三要素便可随时求出 任一元素的地址(意义:数组中的任一元素可随机存取):
答: ① 末尾元素A[6][8][7]的第1个字节地址=
1000 +(7×9:
Amn=
a11 a12 … a1n a21 a22 … a2n … … ……
am1 am2 … amn
一个m×n的二维数组可以 看成是m行的一维数组,或 者n列的一维数组。
N维数组的特点: n个下标,每个元素受到n个关系约束
一个n维数组可以看成是由若干个n-1维数组组成的线性表。
要事先确定: ①是行优先方式还是列优先方式? ②数组的首地址是多少? ③每个元素的长度?
否则无法 求出结果
7
例2〖软考题〗:一个二维数组A,行下标的范围是1到6,列
下标的范围是0到7,每个数组元素用相邻的6个字节存储,存 储器按字节编址。那么,这个数组的体积是 288 个字节。 答: Volume=m*n*L=(6-1+1)*(7- 0 +1)*6=48*6=288