第三讲--多变量最优化 PPT

合集下载

最优化方法课程PPT

最优化方法课程PPT
x

表示
= max { xi }
x 1 = ∑ xi
x 2 = (∑ x
1 2 2 i
)
7
二、数学预备知识
范数的内积 范数不等式
x y = ∑ xi yi
T i =1 n
x+ y ≤ x + y
三角不等式 柯西不等式
x0 = ( x1 ( 0 ) , x2 ( 0 ) ,..., xn ( 0 ) )
() () ()
4
一、最优化方法的基本概念
(2) 非线性规划 非线性规划(Nonlinear Programming, NLP)
f(x),Ci(x) ( i ∈ E U I ),其中之一均为线性函数 ,
(3) 无约束最优化问题 Unconstraint Optimization Problem) 无约束最优化问题(
λ)x(2)
x(2)
x
17
二、数学预备知识
(3) 凸函数的判定准则 一阶判定条件: 在凸集S上具有一阶连续偏导数 一阶判定条件: f(x)在凸集 上具有一阶连续偏导数,则 在凸集 上具有一阶连续偏导数, f(x)为S上凸函数的充要条件是 为 上凸函数的充要条件是
f x
f(x)
( ) ≥ f ( x ) + ∇f ( x ) ( x ( ) − x ( ) )
x
2 21 1
没有约束条件C 没有约束条件 i(x)
5
一、最优化方法的基本概念
4 数学规划模型的分类 主要是针对决策变量x 来进行分类: 主要是针对决策变量 1, x2,…xn来进行分类:
连续型 离散型
线性规划 LP (有、无约束 有 无约束)
非线性规划NLP 非线性规划 (有、无约束 有 无约束)

最优化理论与算法完整版课件 PPT

最优化理论与算法完整版课件 PPT

Bazaraa, J. J. Jarvis, John Wiley & Sons, Inc.,
1977.
组合最优化算法和复杂性
Combinatorial
Optimization 蔡茂诚、刘振宏
Algorithms and Complexity
清华大学出版社,1988 I运nc筹.,学19基82础/1手99册8
最优化首先是一种理念, 运筹学的“三个代表”
其次才是一种方法.
• 模型
• 理论
2021/4/9
• 算法
5
绪论---运筹学(Operations Research -
运筹学O方R)法
最优化/数学规划方法
连续优化:线性规划、 非线性规划、非光滑优 化、全局优化、变分法、 二次规划、分式规划等
离散优化:组合优化、 网络优化、整数规划等
2021/4/9
11
1. 食谱问题
我每天要求一定量的两种维生素,Vc和Vb。 假设这些维生素可以分别从牛奶和鸡蛋中得到。
维生素
Vc(mg) Vb(mg) 单价(US$)
奶中含量
2 3 3
蛋中含量
4 2 2.5
每日需求 40 50
需要确定每天喝奶和吃蛋的量, 目标以便以最低可能的花费购买这些食物, 而满足最低限度的维生素需求量。
最优化理论与算法
2021/4/9
1
提纲
使用教材:
最优化理论与算法 陈宝林
参考书 :
数学规划 黄红选, 韩继业 清华大学出版社
1. 线性规划 对偶定理
2. 非线性规划 K-K-T 定理
3. 组合最优化 算法设计技巧
2021/4/9
2
其他参考书目

最优化方法PPT

最优化方法PPT

共117页第8页
同时太阳系这个"整体"又是它所属的"更大整 体"--银河系的一个组成部分。世界上的具体系统是 纷繁复杂的,必须按照一定的标准,将千差万别的 系统分门别类,以便分析、研究和管理,如:教育 系统、医疗卫生系统、宇航系统、通讯系统等等。 如果系统与外界或它所处的外部环境有物质、能量 和信息的交流,那么这个系统就是一个开放系统, 否则就是一个封闭系统。开放系统具有很强的生命 力,它可能促进经济实力的迅速增长,使落后地区 尽早走上现代化。如改革开放以来已大大增强了我 们的综合国力。而我国的许多边远山区农村,由于 交通不便,相对封闭,还处于比较落后的状态。
会科学和思维科学的相互渗透与交融汇流,产生了 具有高度抽象性和广泛综合性的系统论、控制论和 信息论。
系统论是研究系统的模式、性能、行为和规律 的一门科学。它为人们认识各种系统的组成、结构、 性能、行为和发展规律提供了一般方法论的指导。 系统论的创始人是美籍奥地利理论生物学家和哲学 家路德维格·贝塔朗菲。系统是由若干相互联系的 基本要素构成的,它是具有确定的特性和功能的有 机整体。如太阳系是由太阳及其围绕它运转的行星 (金星、地球、火星、木星等等)和卫星构成的。
从数学上比较一般的观点来看,所谓最优化问题可 以概括为这样一种数学模型:给定一个“函数”,F(X), 以及“自变量”X应满足的一定条件,求X为怎样的值时, F(X)取得其最大值或最小值。这里在函数和自变量两个 词上之所以打上引号,是想强调它们的含意比中学数学 和大学微积分中函数的定义要广泛得多。通常,称F(X) 为“目标函数”,X应满足的条件为“约束条件”。约 束条件一般用一个集合D表示为:X∈D。求目标函数 F(X)在约束条件X∈D下的最小值或最大值问题,就是一 般最优问题的数学模型,它还可以利用数学符号更简洁 地表示成:Min F(X)或Max F(X)。

《多目标优化方法》PPT课件

《多目标优化方法》PPT课件

cij
b1, b2 , b3, b4
解: 设变量 xij ,i 1,2,3; j 1表,2,3示,4 由 运Ai往
总吨公里数为
,总d运ij xi费j 为
求解
i1 j1
的B j货物数,于是
,问题ci优j xij化为
i1 j1
34
min
dij * xij
i1 j1
34
min
cij * xij
点 B1, B2 , B。3, 其B4 需要量分别为
b1, b2 , b3, b4

3
ai
,4 b已j 知

i
j
的A距i 离和B单j 位运价分别为
(km)和 (元di)j ,现要决定如ci何j 调运多少,才能使总的
吨,公里数和总运费都尽量少?
解: 设变量 xij , i 1,2,3; 表j 示1由,2,3,4运往 的货物Ai数,于是总
可以看到:
当P=1时,(VP)就是非线性规划, 称为单目标规划。
对于单目标问题Min f (x,) x1, x2 总D可比较
与 f (x2的) 大小.
f (x1)
对于多目标规划(VP),对于 x1, x2 D, f (x1与) f (都x2 ) 是P 维向量,如何比较两个向量的大小?
多目标优化的非劣解集 Noninferior solution for the model
积为
,它x决1 *定x2重量,而梁的强度取决于截面


1 6
x1
*
x22
因此,容易列出 梁的数学模型:
min
x1 * x2
max
1 6
*
x1
*

最优化课件,超级有用

最优化课件,超级有用

(n )
即不管 Xi 服从什么分布,当 n 相当大时,它们的均值接近于 它们的数学期望
18
结束
2.
X1, X 2 ,L , X n
独立同分布,记
1n X n i1 X i
EX i , DX i 2 则有中心极限定理:
X x
x
R, lim n
P
/
n
x
1
-u2
e 2 du
2
12
结束
4. X ~ U (a,b) EX a b DX 1 (b a)2
2
12
5.
X ~ E() EX 1
DX
1
2
6. X ~ N (a, 2 ) EX a DX 2
13
结束
二.多维随机变量及其分布
• n 维随机变量常记为: X ( X1, X 2 ,L , X n ) 特别地, 2 维随机变量常记为: ( X ,Y )
(5) X ,Y独立,E ( XY) EX EY
10
结束
g( xk ) pk
Eg ( x)
k 1
X 离散型
g(
x)
f
(
x)dx
X 连续型
2.方差:DX=E(X-EX)2
•X是离散型: DX xk EX 2 pk
k 1
•X是连续型,其密度函数是 f(x):
DX x EX 2 f (x)dx
(1) f (x) 0, x (, );(2) f ( x)dx 1
•知道了密度函数f (x),就可以解决任何事件的概率计算: b
P(a X b) f (x)dx
a
•一元随机变量的分布函数F (x)=P(Xx)

第三讲 无约束优化(多维无约束优化方法)

第三讲   无约束优化(多维无约束优化方法)

2019/10/21
5
1. 梯度法(最速下降法 )
(2)迭代公式 : X (k 1) X (k) k S (k) X k f X k

X (k1) X (k) k
f f
X k X k
f
X k


f ,f x1 x2
X (2) 1
S (1)
S为S(2)的共轭方向。
S即为S(1)的共轭方向。
2019/10/21
18
(2)共轭梯度法的基本原理
2)共轭方向的构造
S k1 f X k1 k S k
上式的意义是以新的负梯度方向 f X k1 ,加上原
负梯度的一部分k S k 来构造 S k1 。
2019/10/21
3
1. 梯度法(最速下降法 )
数值迭代格式
X (k 1) X (k ) k S (k )
从数值迭代格式可以看出,构造一种算法的关键 是如何确定一个有利的搜索方向。
梯度方向是函数值上升最快的方向,负梯度 方向是函数值下降最快的方向。
2019/10/21
以负梯度方向作为搜索方向
4)牛顿法不能保证函数值稳定下降,严重时还会造 成点列发散导致迭代失败。
2019/10/21
1 27
3. 多维牛顿法(阻尼牛顿法)
问题的提出
因函数不一定是二次函数,基本牛顿法的步长因子 恒为1,有时会导致迭代发散而失效。
改进方法
仍取牛顿方向,但改用最优步长因子:
X (k1) X (k ) k [H ( X (k ) )]1f ( X (k) ) 一维搜索求最优步长
'X 0

多目标优化设计方法PPT39页

多目标优化设计方法PPT39页
目的是将多目标优化问题转化为单目标 优化问题
7.4 功效系数法
一、功效系数 极小值
多目标优化设 计中,各子目 标的要求不同
极大值 一个合适的数值
每个子目标都用一个功效函数di表示 ——其值为功效系数
功效函数的范围[0,1]
fi(X)的值满意时,di=1 fi(X)的值不满意时,di=0
7.4 功效系数法(续)
1、基本思想
这种方法是对各目标函数的最优值放宽要求, 可以对各目标函数的最优值取给定的宽容值,即 ε1>0, ε2>0,…。这样,在求后一个目标函数的 最优值时,对前一目标函数不严格限制在最优解 内,而是在前一目标函数最优值附近的某一范围 内进行优化,因而避免了计算过程的中断。
若干个最优解组成的集合称为绝对最优解集,用 Da*b 表示。
只有当F(X)的各个子目标fi(X)的最优点都存在,并且 全部重叠于同一点时,才存在有绝对最优解。
7.1 概述(续)
2、有效解(非劣解) 设 X* D (D为可行域), 若不存在 X D ,使
fi ( X ) fi ( X*)(i 1, 2,..., m)
hj ( X ) 0, ( j 1, 2,..., k)
向量形式的目标函数
设计变量应满足的所 有约束条件
7.1 概述(续)
二、几个基本概念
1、最优解 设 X* D (D为可行域), 若对于任意 X D ,恒使
fi ( X*) fi ( X )(i 1, 2,..., m)
成立,则称X*为多目标优 化问题的绝对最优解,简称最优解。
评价函数:
7.2 统一目标函数法(续)
二、统一目标函数的构造方法(续) 3、平方和加权法 基本思想:在理想点法的基础上引入权数

最优化方法Lecture3_单纯形法1

最优化方法Lecture3_单纯形法1

cB 0 0 4
xB x3 x4 x1 T B1b 7 6 3T , xN x2 x5 T 0
f1 cB B1b 12, w cB B1 0 0 4
z2 c2 wP2 c2 4 z5 c5 wP5 c5 4 最大判别数是z2 c2, x2是进基变量。计算
xk
min
bi yik
|
yik
0
br yrk
0
则得新解 x x1, , xr1, 0, xr1, , xm , 0, , xk , 0, , 0T

f x f
x0
zk
ck
br yrk
f
x0
.
旧基为 P1, , Pr , , Pm 新基为 P1, , Pk , , Pm
xr 为离基变量 xk 为进基变量。
2 s.t.
BxB NxN b
xB B1b B1NxN
xB , xN 0
min
3 s.t.
f x cB B1b B1NxN cN xN
xB B1NxN B1b
1 等价于
xB , xN 0
min f x
4
s.t.
0 f x Im xB
B1NxN B1b
f x 0xB cB B1N cN xN cB B1b
y2 B1P2 1 5 1T , 而b B1b 7 6 3T
br yr1
min
b1 y12
,
b2 y22
min
7
1
,
6 5
6 5
b2 y22
x4为离基变量,用P2代替P4得到新基。
1 2 1 0 0
A P1
P2
P3
P4

数学建模案例之多变量最优化

数学建模案例之多变量最优化

数学建模案例之多变量无约束最优化问题1[1]:某家液晶电视机制造商计划推出两种产品:一种47英寸液晶电视机,制造商建议零售价每台7900元。

另一种42英寸液晶电视机,零售价6500元。

公司付出的成本为47英寸液晶电视机每台4500元,42英寸液晶电视机每台3800元,再加上3200000元的固定成本。

在竞争的销售市场中,每年售出的液晶电视机数量会影响液晶电视机的平均售。

据估计,对每种类型的电视,每多售出一台,平均销售价格会下降0.08元。

而且47英寸液晶电视机的销售量会影响42英寸液晶电视机的销售,反之也是如此。

据估计,每售出一台47英寸液晶电视机,42英寸的液晶电视机平均售价会下降0.024元,而每售出一台42英寸的液晶电视机,47英寸液晶电视机的平均售价会下降0.032元。

问:(1)问每种电视应该各生产多少台,使总利润最大?(2)对你在(1)中求出的结果讨论42英寸液晶电视机的价格弹性系数的灵敏性。

1.问题分析、假设与符号说明这里涉及较多的变量:s:47英寸液晶电视机的售出数量(台);t:42英寸液晶电视机的售出数量(台);p:47英寸液晶电视机的售出价格(元/台);q:42英寸液晶电视机的售出价格(元/台);C:生产液晶电视机的成本(元);R:液晶电视机销售的收入(元);P:液晶电视机销售的利润(元)这里涉及的常量有:两种液晶电视机的初始定价分别为:339元和399元,成本分别为:195元和225元;每种液晶电视机每多销售一台,平均售价下降系数a=0.01元(称为价格弹性系数);两种液晶电视机之间的销售相互影响系数分别为0.04元和0.03元;固定成本400000元。

变量之间的相互关系确定:假设1:对每种类型的液晶电视机,每多售出一台,平均销售价格会下降1元。

假设2:据估计,每售出一台42英寸液晶电视机,47英寸的液晶电视机平均售价会下降0.3元,而每售出一台47英寸的液晶电视机,42英寸液晶电视机的平均售价会下降0.4元。

多目标优化方法讲义(PPT64张)

多目标优化方法讲义(PPT64张)

决策空间 可行域
目标空间 可行域
示例2
m i n( F X ) f ( Xf ) ,2 ( X ) 1
T
3 6 4 1 1 L 3 f ( X ) x ( ) 2 1 4 4 4 4 4 4 3 E Dx Dx Dx 2 2 61 2 1 2 9.78 10 x1 s.t. g1 ( X ) 180 0 7 4 4.096 10 x2
4
2 1 2
2 2
1
2 1
2 2

3 6 4 1 1 L 3 f ( X ) x (4 4 4 4 ) 4 4 2 1 3 E Dx Dx Dx 2 2 1 2 1 2
9.78 106 x1 s.t. g1 ( X ) 180 0 7 4 4.096 10 x2 g2 ( X ) 75.2 x2 0 g3 ( X ) x2 40 0 g4 ( X ) x1 0
(1) (1) (1)
(1)
( 2)
, fm ( X )
(1) (2)
T
F(X
(2)
) f1 ( X
(2)
), f2 ( X
(2)
),
, fm ( X ) , m) X (2)
T
若对于每一个分量,都有 fl ( X (1) ) fl ( X (1) ) (l 1, 2, 则显然,X (1)优于X (2),记为X (1)
向量不等式的含义为
p p f ( X ) f ( X ) j 1 , 2 , , m , 但 至 少 有 一 个 f ( X ) f ( X ) j j l l
决策空间 非劣解集

最优化方法全部ppt课件

最优化方法全部ppt课件
解法:Lagrange乘子法
1.2 实例
数据拟合问题 原料切割问题 运输问题 营养配餐问题 分配问题
1.3 基本概念
1. 最优化问题的向量表示法
设 xvx1,x2,L,xnT 则
m i n fx 1 ,x 2 ,L ,x n m i n fx v (1)
以向量为变量的实值函数 定义向量间的序关系(定义1.1):
②取 c0,1,4,9,L并画出相应的曲线(称之为等值线).
③确定极值点位置,并用以往所学方法求之。
易知本题的极小值点 xv* 2,1T。
再复杂点的情形见P13上的例1.7。 虽然三维及以上的问题不便于在平面上画图,图解 法失效,但仍有相应的等值面的概念,且等值面具有以 下性质:
①有不同函数值的等值面互不相交(因目标函数是单值 函数的缘故);
其中
g1 xv0
x1
g2 xv0
x1
L
gv
xv0
g1 xv0
x2
g2 xv0
x2
L
M
g1 xv0
xn
M
g2 xv0
xn
称为向量值函数 gv xv 在点
L
xv 0
g
m xv0
x1
g
m
xv0
x2
g
M
m xv0
xn
处的导数,
而gv xv0 T 称为向量值函数 gv xv 在点 xv 0 处的Jacobi矩阵。
称为最优化方法。最优化方法是在第二次世界大战前后,
在军事领域中对导弹、雷达控制的研究中逐渐发展起来 的。
最优化方法解决问题一般步骤: (1)提出需要进行最优化的问题,开始收集有关资 料和数据; (2)建立求解最优化问题的有关数学模型,确定变 量,列出目标函数和有关约束条件; (3)分析模型,选择合适的最优化方法; (4)求解方程。一般通过编制程序在电子计算机上 求得最优解; (5)最优解的验证和实施。 随着系统科学的发展和各个领域的需求,最优化方 法不断地应用于经济、自然、军事和社会研究的各个领 域。

多变量最优化

多变量最优化

1.提出问题-变量
问题1中的全部变量包括:
s=19英寸彩电的售出数量(台); t=21英寸彩电的售出数量(台); p=19英寸彩电的平均销售价格(美元/台); q=21英寸彩电的平均销售价格(美元/台); C=生产彩电的成本(美元); R=彩电销售的收入(美元); P=彩电销售的利润(美元)。
1.提出问题-常量
给出:若 在Sf 的某个点内 (x1,L达,x到n)极大值或极小
值,设 在这点f 可微,则在这个点上
。f也就0 是说
,在极值点有
f x1
(x1,
L
,
xn)
0
f xn
(x1,
L
,
xn)
0
(2-1)
据此我们可以在求极大或极小点时,不考虑那些在S内
部使 f 的某一个偏导数不为0的点。因此,要求极大或
极小点,我们就要求解方程组(2-1)给出的n个未知数、
图2.1 彩电问题的利润y关于19英寸彩电的生产量s和 21英寸彩电的生产量t的3维图象
图2.2 彩电问题中关于19英寸彩电的生产量x1和 21英寸彩电的生产量x2的利润函数有的水平集图
5.回答第一步中提出的问题
简单来说,这家公司今年可以通过生产4735台19 英寸彩电和7043台21英寸彩电来获得最大利润,每年 获得的净利润为553641美元。
利用计算机代数系统求解问题有几项优点:它 可以提高效率,结果更准确。
4.利用第二步确定的标准过程求解
图2.2给出了函数P的3维图象,图象显示,y在内部达到 最大值;图2.3给出了P的水平集图,从中我们可以估计出y的 最大值出现在x1=5000,x2=7000附近。函数y是一个抛物面, 其最高点为方程组的唯一解。

《最优化理论》课件

《最优化理论》课件
递归法
递归地求解子问题,并存 储子问题的解以避免重复
计算。
备忘录法
使用备忘录存储子问题的 解,以避免重复计算,同 时避免因重复计算而导致
的内存消耗。
迭代法
通过迭代的方式求解子问 题,并逐渐逼近最优解。
动态规划的应用
生产计划问题
在生产过程中,需要制定生产计 划以满足市场需求,同时最小化 生产成本。动态规划可以用于求 解此类问题。
线性规划问题具有形式化 的特征,包括决策变量、 目标函数和约束条件。
线性规划问题通常用于解 决资源分配、生产计划、 运输和分配等问题。
线性规划的解法
线性规划的解法有多种,包括 单纯形法、椭球法、分解算法
等。
单纯形法是最常用的线性规 划解法,它通过迭代过程寻 找最优解,每次迭代都使目
标函数值减小。
椭球法和分解算法也是常用的 解法,但它们在处理大规模问
谢谢您的聆听
THANKS
线性规划问题
在目标函数和约束条 件均为线性时,寻找 最优解的问题。
非线性规划问题
在目标函数或约束条 件为非线性时,寻找 最优解的问题。
整数规划问题
在变量取整数值且约 束条件为整数时,寻 找最优解的问题。
最优化问题的求解方法
牛顿法
通过构造一个二次函数近似目 标函数,并利用牛顿公式求解 最优解。
共轭梯度法
要点二
详细描述
在生产领域,整数规划可以用于生产计划、资源分配等问 题,如安排生产线的生产计划、分配原材料等资源。在管 理领域,整数规划可以用于物流调度、车辆路径等问题, 如优化物流配送路线、制定车辆行驶计划等。在经济领域 ,整数规划可以用于投资组合、风险管理等问题,如优化 投资组合以实现最大收益或最小风险。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考虑y对于a的灵敏性。 计算可得,在a=0.01时,有
dPPdxPdyP da xda yda a
P a
x12
S (y,a ) 5 5 1 4 1 0 7 0 0 2(2 1 5 9 0 2 .0 0 0 1 0/3 9 ) 0 .4 0
因此,19英寸彩电的价格弹性系数提高10%, 会使利润下降4%.
'-7/1000*x - 1/50*y + 174 = 0', 'x', 'y') >> dxda = diff(s.x, a) >> sxa = dxda * a / s.x >> a = 0.01 >> eval(sxa)
Matlab 优化函数
无约束多变量函数极小
fminunc
1) 建立目标函数的m-文件

>> syms a >> z = (339 - a*x - 0.003*y).*x + (399 - 0.004*x - 0.01*y).*y
- (400000 + 195*x + 225*y) >> dzdx = diff(z, x) >> dzdy = diff(z, y) >> s = solve('-2*a*x + 144 - 7/1000*y = 0',
问题是:每种彩电应该各生产多少台?
提出问题:
变量:
x=19英寸彩电的售出数量(每年) y=21英寸彩电的售出数量(每年) p=19英寸彩电的销售价格(美元) q=21英寸彩电的销售价格(美元) R=彩电销售的收入(美元/年) C=生产彩电的成本(美元)
假设:
p 3 3 9 0 .0 1 x 0 .0 0 3 y q 3 9 9 0 .0 0 4 x 0 .0 1 y Rpxqy C 4 0 0 0 0 0 1 9 5 x 2 2 5 y PRC
S ( x ,a ) ( 2 2 1 6 0 0 0 0 0 0 0 ) ( 0 .0 1) 4 0 0 1 .1 4 1 0 6 7 5 5 4 0 0 0 /1 1 73 5 1
S(y,a) 9695 0.27 36153
如果将19英寸彩电的价格弹性系数提高10%,则 我们应将19英寸彩电的生产量缩小11%,21英寸 彩电的生产量扩大2.7%.
计算机代数系统--matlab
>> [x, y] = meshgrid(0:400:10000, 0:400:10000); >> z = (339 - 0.01*x - 0.003*y).*x + (399 - 0.004*x - 0.01*y).*y
- (400000 + 195*x + 225*y); >> mesh(x, y, z)
可画出x和y关于a的曲线图.
19英寸彩电的价格弹性系数a的提高,会导致 19英寸彩电的最优生产量x的下降,及21英寸 彩电的最优生产量y的提高。而且,图中显示 x比y对于a更敏感。
计算可得,在a=0.01时,有
dx 66480000000 22160000000 da(40000a49)2 41067
解得全局极大值点 x4735,y7043.
f 21592000553641. 39
回答问题:
这家公司可以通过生成4735台19英寸彩电和 7043台21英寸彩电来获得最大利润,每年获得 的净利润为553641美元,每台19英寸彩电的平 均售价为270.52美元,每台21英寸彩电的平均 售价为309.63美元。生产的总支出为美元,相 应的利润率为19%。因此建议这家公司应该实 行推出新产品的计划。
x, y 0
P=彩电销售的利润(美元/年)
目标:最大化利润函数P
选择建模方法 无约束多变量最优化问题
建立模型: PRC
(3390.01x0.003y)x(3990.004x0.01y)y (400000195x225y) 144x0.01x2174y0.01y20.007xy400000
求解模型: P 1440.02x 0.007y 0 x P 1740.007x 0.02y 0 y
在竞争的销售市场中,每年售出的彩电数量会影响彩电的平 均售价。据估计,对每种类型的彩电,每多售出一台,平均 销售价格会下降1美分。而且19英寸彩电的销售会影响21英 寸彩电的销售,反之亦然。据估计,每售出一台21英寸彩电, 19英寸彩电的平均售价会下降0.3美分,而每售出一台19英 寸彩电,21英寸彩电的平均售价会下降0.4美分。
'-7/1000*x - 1/50*y + 174 = 0', 'x', 'y') >> subs(z, {x, y}, [s.x, s.y])
大家应该也有点累了,稍作休息
大家有疑问的,可以询问和交流
灵敏性分析 在向公司报告结论之前,应对我们关于彩电市场 和生产过程所做的假设进行灵敏性分析,以保证 结果具有稳健性。 我们主要关心的是决策变量x和y的值,因为公司 要据此来确定生产量。
>> syms x y >> z = (339 - 0.01*x - 0.003*y).*x + (399 - 0.004*x - 0.01*y).*y
- (400000 + 195*x + 225*y); >> dzdx = diff(z, x) >> dzdy = diff(z, y) >> s = solve(‘-1/50*x + 144 - 7/1000*y = 0',
第三讲--多变量最优化
例:竞争性产品生产中的利润最大化
一家彩电制造商计划推出两种新产品:一种19英寸液晶平板 电视机,制造商建议零售价为339美元;另一种21英寸液晶 平板电视机,零售价为399美元。公司付出的成本为19英寸 彩电每台195美元,21英寸彩电每台225美元,还要加上 400000美元的固定成本。
对19英寸彩电的价格弹性系数a的灵敏性进行分析.
P(339ax0.003y)x(3990.004x0.01y)y (400000195x225y)
144x0.01x2174y0.01y20.007xy400000
求偏导数并令其为零,可解得
x 1662000 400000a 49
y 8700 581700 40000a 49
相关文档
最新文档