命题、联结词、命题公式与真值表

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)(PR)∧(┐Q∨S)
(3)(P∧(Q∨R))→((P∨Q)∧(R∧S))
(4)┐(P∨(Q→(R∧┐P)))→(R∨┐S)
练习2:page14,17、18
A 1、判断下面一段论述是否为真:
B
是无理数。并且,如果3是无理数,则 2也是
C
无理数。另外,只有6能被2整除,6才能被4整除。 D E
A→B、AB也是命题公式。 (3) 有限步应用条款(1)(2)生成的公式。
例:下列符号串都是命题公式
下列符号串是否为命题公式?
命题、联结词、命题公式与真值表
1、一些基本概念 逻辑、命题、真值
2、联结词 3、命题公式 4、真值表
一、真值表
真值表: 公式A在所有赋值下的取值情况列成的表
例 给出公式的真值表: A= (qp) qp 的真值 表
2、赋值、成真(假)赋值、指派
pq
qp
00
1
赋值
01
0
10
1
11
1
成真赋值
指派
(qp) q (qp) qp
0
1
0
1
0
1
1
1
练习1:求命题公式的真值表
1、P∧Q)→R
2、┐((P∨Q)∧P)
3、Q∧(P→Q)→P
4、设p,q的真值为0;r,s的真值为1,求下列
命题公式的真值
(1)P∨(Q∧R)
pq
qp (qp) q (qp) qp
00
1
0
1
01
0
0
1
10
1
0
1
11
Βιβλιοθήκη Baidu
1
1
1
回顾一下:五个联结词真值表
否定
等价(双条件)
合取
析取
蕴涵(条件)
几个相关概念
1、合式公式的层次:
0层
1层
2层
3层
pq
qp (qp) q (qp) qp
00
1
0
1
01
0
0
1
10
1
0
1
11
1
1
1
几个相关概念
A(BC) (D E)
1 01
10
p
2、什么情况下,下面论述为真:
q
说小王不会唱歌或小李不会跳舞是正确的,而
说如果小王会唱歌,小李会跳舞是不正确的。
(p q) (pq)
综合问题1
Key:
命题、联结词、命题公式与真值表
1、一些基本概念 逻辑、命题、真值
2、联结词 3、命题公式 4、真值表
问题?
一、命题的定义
命题P——不关心其具体涵义,只关心其值的 真值
命题变元——定义域:真、假 命题常元——T和F 命题公式(也称命题,合式公式)——含命题变元
的断言,由以下规则生成: (1)单个原子公式是命题。 (2)若A、B是命题公式,┐A、A∧B、A∨B、
相关文档
最新文档