小学奥数讲义:圆柱和圆锥

合集下载

(完整版)六年级数学圆柱与圆锥复习讲义(教师版).doc

(完整版)六年级数学圆柱与圆锥复习讲义(教师版).doc

六年级数学圆柱与圆锥复习讲义知教学:一、柱的特征及表面(一)柱的特征.1、柱的.同学出生活中柱形状的物.2、柱各部分的名称.柱的上、下两个面叫做底面,它是面相等的两个.两底面之的距离叫做高.柱的两个底面面相等,柱有无数条高.(二)柱的面和算公式.1、柱的面.柱的面=底面的周×高字母表示:S= Ch2、面公式的用.例1. 一段柱形的材,底面周是 0.28 米,高是 2.4 米.它的面是多少平方米?(得数保留两位小数):制作个薯片筒的面,需要多大面的?(三)柱的表面.柱的面与两个底面的和,就是柱的表面.但是生活中往往只求面和一个底面的面的和,比如例 2. 一个没有盖的柱形状的皮水桶,高是 45 厘米,底面直径是 34 厘米.做个水桶需要多少皮?(得数保留整数)例3. 一个柱的高增加 4 厘米,表面增加50.24 平方厘米,求柱体的底面.1:一个柱形水池,水池内壁和底面都要上瓷,水池底面直径 6 米,池深 1.2 米。

瓷的面是多少平方米?二、柱、的体(一)的像蛋卷、草帽⋯⋯的形体都是,是由哪几部分成的呢?各有什么特点?顶点侧面高h底面圆柱体有高,而且有无数条;圆锥体有高吗?有多少条?有,只有一条.(二)圆柱的体积圆柱的体积=底面积×高用字母表示:V圆柱体Sh下面应用公式做一道题.例 4. 有一根圆柱形状的塑料棒,它的横截面的面积是24 平方厘米,长是0.9 米.这根塑料棒的体积是多少立方厘米?例 5. 如图所示,一块长方形铁皮,利用图中的阴影部分刚好做一个油桶(接头处忽略不计).求这个油桶的容积.例 6. 一只装水的圆柱形玻璃杯,底面积是80 平方厘米,水深 8 厘米.现将一个底面积是16 平方厘米的长方体铁块竖放在水中后,仍有一部分铁块露在外面.现有水深多少厘米?练习 1:把一个长8 厘米、宽 6 厘米、高 4 厘米的长方体木块削成一个最大的圆柱体积木,这个圆柱体积木的体积是多少立方厘米?练习 2:一个饮料瓶的瓶身呈圆柱形,容积为250 毫升。

小学六年级奥数教案—圆柱圆锥

小学六年级奥数教案—圆柱圆锥

一、教学目标:1.让学生了解圆柱体和圆锥体的概念。

2.能够正确计算圆柱体和圆锥体的体积和表面积。

3.培养学生的观察能力和分析问题的能力。

二、教学重难点:1.圆柱体和圆锥体的概念及特点。

2.计算圆柱体和圆锥体的体积和表面积的方法。

三、教学步骤:1.导入新知识(5分钟)通过几个简单的问题引导学生了解圆柱体和圆锥体的概念:(提问)大家知道什么是圆柱体吗?(学生回答)(提问)什么是圆锥体呢?(学生回答)(解释)圆柱体就是由两个底面相等且平行的圆所围成的立体,而圆锥体则是由一个底面和一个顶点围成的立体。

2.讲解圆柱体的性质及计算体积和表面积的方法(10分钟)(解释)圆柱体的体积公式为V=πr²h,其中r代表底面半径,h代表高度。

表面积公式为S=2πrh+2πr²。

(举例)现在有一个圆柱体,底面半径为4cm,高度为8cm,我们来计算一下它的体积和表面积。

(计算)V=π×4²×8=128π≈401.92,S=2π×4×8+2π×4²≈200.96+100π≈601.923.针对圆柱体的练习(15分钟)(出题)现有一个圆柱体,底面半径为6cm,高度为12cm,分别计算它的体积和表面积。

4.讲解圆锥体的性质及计算体积和表面积的方法(10分钟)(解释)圆锥体的体积公式为V=1/3πr²h,其中r代表底面半径,h 代表高度。

表面积公式为S=πr(r+√(r²+h²))。

(举例)现在有一个圆锥体,底面半径为3cm,高度为8cm,我们来计算一下它的体积和表面积。

(计算)V=1/3π×3²×8=72π≈226.2,S=π×3(3+√(3²+8²))=3π(3+√(9+64))=3π(3+√73)≈303.925.针对圆锥体的练习(15分钟)(出题)现有一个圆锥体,底面半径为5cm,高度为10cm,分别计算它的体积和表面积。

小学奥数讲义:圆柱和圆锥

小学奥数讲义:圆柱和圆锥

小学奥数讲义:圆柱和圆锥圆柱和圆锥【知识要点】1、圆柱的表面积=底面积×2+侧面积圆柱的体积=底面积×高2、圆锥的体积=31×底面积×高【精选例题】1、圆柱体的侧面展开,放平,是边长分别为10厘米和12厘米的长方形,那么这个圆柱体的体积是________立方厘米。

(结果用π表示)2、如图所示,圆柱形的售报亭的高和底面直径相等,且顶部平均分成六份,开一个边长等于底面半径的正方形售报窗口。

问:窗口处挖去的圆柱部分的面积占圆柱侧面积的几分之几?3、下图所示图形是一个底面直径是20厘米的装有一部分水的圆柱形容器,水中放着一个底面直径为12厘米,高为10厘米的圆锥体铅锤,当铅锤从水中取出后,容器中的水下降了几厘米?4、如图所示,圆锥形容器中装有5升水,水面高度正好是圆锥高度的一半,这个容器还能装多少升水?5、有一种饮料瓶的瓶身呈圆柱形(不包括瓶颈),容积是30立方分米。

现在瓶中装有一些饮料,正放时饮料高度为20厘米,倒放时空余部分的高度为5厘米(见图)。

问:瓶内现有饮料多少立方分米?6、有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(如图)。

如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米?7、一车工用一段长30厘米,直径为8厘米的圆钢,车一个如下图所示的零件,这个零件的表面积是多少?8、如图,在一个棱长为20厘米的正方体密闭容器的下底固定了一个实心圆柱体,容器内盛有m 升水时,水面恰好经过圆柱体的上底面。

如果将容器倒置,圆柱体有8厘米露出水面。

已知圆柱体的底面积是正方体底面积的81,求实心圆柱体的体积。

【练习】1、将一个棱长是20厘米的正方体,削成一个圆柱体,并且使圆柱体的体积最大,求此时削去的那部分体积。

2、把一段长1.2m 的圆钢切成两段,表面积增加50平方厘米,这段圆钢的体积是多少立方厘米?3、用一块长60厘米、宽40厘米的铁皮做圆柱形水桶的侧面,另找一块铁皮做底。

小学奥数模块教程第11讲 圆柱与圆锥

小学奥数模块教程第11讲  圆柱与圆锥

第十一讲 圆柱与圆锥按照数学学习规律,在学完图形的“面”后,自然要学习“体”的概念。

圆柱的体积公式与长方体体积公式一致,也是底面积乘高。

圆柱的表面积包括圆柱的两个底面积和圆柱的侧面积。

底面积即圆的面积,侧面展开是一个长方形,它的面积是底面周长乘高。

圆锥只掌握体积公式。

圆锥体的体积是与它等底等高的圆柱体体积的31。

V 圆柱=sh =πr 2hV 圆锥=31sh =31πr 2h S 圆柱表=2S 底+S 圆柱侧=2πr 2+2πrh[关键词]: 圆柱、圆锥体积公式 圆柱表面积公式例1、一个圆柱和一个圆锥底面周长的比是3:4,它们体积的比是9:7,圆锥与圆柱高的最简单的整数比是例2、在一个底面半径是30厘米的圆柱形储水桶里,浸没着一个高为24厘米的圆锥形实物,当把这个实物从储水桶中取出时,桶里的水面下降了2厘米,这个圆锥形实物的底面半径是多少?例3、一段圆柱体木料,如果截成两个小圆柱体,它的表面积增加6.28平方厘米;如果沿着直径劈成两个半圆柱体,它的表面积将增加80平方厘米,求原圆柱体的表面积。

例4、把图中阴影部分做一个圆柱体(单位:厘米),这个圆柱体的容积是多少毫升?例5、如图,一个物体由三个圆柱组成,它们的底面圆半径分别为1.5分米,3分米,5分米,而高都是2分米,则这个物体的表面积是多少平方分米?1、一块直角三角板,两条直角边的长度分别是4 cm和3 cm,分别绕两条直角边旋转一圈,都可以得到一个圆锥体,这两个圆锥体的体积比是几比几?2、一个圆锥与一个圆柱的体积之比是1:2,底面积之比是3:4,圆柱的高是9厘米,求圆锥的高是多少厘米?3、一个圆柱体的侧面展开图是一个正方形,这个圆柱底面直径与高的比是多少?4、一个圆锥的高12厘米,体积是40立方厘米,比与它同底的圆柱体积少20立方厘米,这个圆柱的高是多少厘米?5、有两个边长为8厘米的正方体盒子。

A盒中放入直径为8厘米、高为8厘米的圆柱体铁块一个,B盒中放入直径为4厘米、高为8厘米的圆柱体铁块四个。

六年级寒假奥数培优讲义——6-03-圆锥圆柱强化3-讲义-学生

六年级寒假奥数培优讲义——6-03-圆锥圆柱强化3-讲义-学生

第3讲 圆柱与圆锥强化【学习目标】1、深入圆柱与圆锥;2、掌握圆柱圆锥中的各种计算。

【知识梳理】1、圆柱:(1)体积=底面积×高;(2)侧面积=底面周长×高;2、圆锥:(1)体积=底面积×高×31; (2)圆锥侧面展开是扇形。

【典例精析】 【例1】圆柱圆锥比例关系:(1)一个圆柱和一个圆锥体积相等,底面半径之比是2:3,高之比是 。

(2)一个圆锥与一个圆柱的底面积相等,已知圆锥与圆柱的体积比是1:6,圆锥的高是4.8厘米,则圆柱的高是 厘米.(3)一个圆柱的底面半径扩大到原来的2倍,高不变,它的体积扩大到原来的 。

【趁热打铁-1】(1)一个圆锥和一个圆柱,它们的底面积相等,体积也相等。

如果圆柱的高是6厘米,那么圆锥的高是 。

(2)把一个圆柱的侧面沿高剪开,得到一个正方形,这个圆柱的底面半径是5cm,那么圆柱的高是 cm。

(3)一个圆柱和一个圆锥体积相等,底面半径之比是2:3,高之比是。

(4)一个圆柱和一个圆锥等底等高,它们的体积相差28立方厘米,那么圆柱的体积是立方厘米。

【例2】一个圆柱体底面周长和高相等。

如果高缩短2厘米,表面积就减少12.56平方厘米。

求这个圆柱体的表面积。

(π取3.14)【趁热打铁-2】把一个圆柱体侧面展开,得到一个正方形,这个圆柱体的底面半径是0.5分米,圆柱体的高是米。

(π取3.14)【例3】如右图所示,把一张铁皮剪开,正好能制成一只铁皮汽油桶,这个汽油桶的容积是______升。

【趁热打铁-3】在下面的长方形纸片中,剪出两个圆和一个长方形,恰好可以围成一个圆柱。

(π取3.14)(1)求这个圆柱的体积。

(2)求原长方形纸片的面积。

【例4】一个奶瓶(如下图),它的瓶身呈圆柱形(不包括瓶颈),容积是32.4立方厘米。

当瓶子正放时,瓶内酸奶高8厘米;当瓶子倒放时,空余部分高2厘米,则瓶内酸奶的体积是立方厘米。

【趁热打铁-4】—瓶装满的矿泉水,小强喝了一些,瓶中水深15 cm,把瓶盖拧紧后倒置放平,无水部分高6 cm,瓶内直径是8 cm。

(小学奥数)圆柱与圆锥

(小学奥数)圆柱与圆锥

立體圖形 表面積體積 圓柱h r 222π2πS rh r =+=+圆柱侧面积个底面积2πV r h =圆柱 圓錐h r 22ππ360n S l r =+=+圆锥侧面积底面积 注:l 是母線,即從頂點到底面圓上的線段長21π3V r h =圆锥体板塊一 圓柱與圓錐【例 1】 如圖,用高都是1米,底面半徑分別為1.5米、1米和0.5米的3個圓柱組成一個物體.問這個物體的表面積是多少平方米?(π取3.14)11111.50.5【例 2】 有一個圓柱體的零件,高10釐米,底面直徑是6釐米,零件的一端有一個圓柱形的圓孔,圓孔的直徑是4釐米,孔深5釐米(見右圖).如果將這個零件接觸空氣的部分塗上防銹漆,那麼一共要塗多少平方釐米?例題精講圓柱與圓錐【例 3】(希望杯2試試題)圓柱體的側面展開,放平,是邊長分別為10釐米和12釐米的長方形,那麼這個圓柱體的體積是________立方釐米.(結果用π表示)【例 4】如右圖,是一個長方形鐵皮,利用圖中的陰影部分,剛好能做成一個油桶(接頭處忽略不計),求這個油桶的容積.(π 3.14=)【鞏固】如圖,有一張長方形鐵皮,剪下圖中兩個圓及一塊長方形,正好可以做成1個圓柱體,這個圓柱體的底面半徑為10釐米,那麼原來長方形鐵皮的面積是多少平方釐米?(π 3.14=)【例 5】把一個高是8釐米的圓柱體,沿水準方向鋸去2釐米後,剩下的圓柱體的表面積比原來的圓柱體表面積減少12.56平方釐米.原來的圓柱體的體積是多少立方釐米?【鞏固】一個圓柱體底面周長和高相等.如果高縮短4釐米,表面積就減少50.24平方釐米.求這個圓柱體的表面積是多少?【例 6】一個圓柱體形狀的木棒,沿著底面直徑豎直切成兩部分.已知這兩部分的表面積之和比圓柱體的表面積大22008cm,則這個圓柱體木棒的側面積是________2cm.(π取3.14)第2题【鞏固】已知圓柱體的高是10釐米,由底面圓心垂直切開,把圓柱分成相等的兩半,表面積增加了40平方釐米,求圓柱體的體積.(π3=)【例 7】一個圓柱體的體積是50.24立方釐米,底面半徑是2釐米.將它的底面平均分成若干個扇形後,再截開拼成一個和它等底等高的長方體,表面積增加了多少平方釐米?(π 3.14=)【例 8】右圖是一個零件的直觀圖.下部是一個棱長為40cm的正方體,上部是圓柱體的一半.求這個零件的表面積和體積.【例 9】 輸液100毫升,每分鐘輸2.5毫升.如圖,請你觀察第12分鐘時圖中的數據,問:整個吊瓶的容積是多少毫升?【例 10】 一個擰緊瓶蓋的瓶子裏面裝著一些水(如圖),由圖中的數據可推知瓶子的容積是_______ 立方釐米.(π取3.14) 8(单位:厘米)4106【鞏固】一個酒精瓶,它的瓶身呈圓柱形(不包括瓶頸),如圖.已知它的容積為26.4π立方釐米.當瓶子正放時,瓶內的酒精的液面高為6釐米;瓶子倒放時,空餘部分的高為2釐米.問:瓶內酒精的體積是多少立方釐米?合多少升?【鞏固】一個酒瓶裏面深30cm,底面內直徑是10cm,瓶裏酒深15cm.把酒瓶塞緊後使其瓶口向下倒立這時酒深25cm.酒瓶的容積是多少?(π取3)253015【鞏固】一個蓋著瓶蓋的瓶子裏面裝著一些水,瓶底面積為10平方釐米,(如下圖所示),請你根據圖中標明的數據,計算瓶子的容積是______.【鞏固】一個透明的封閉盛水容器,由一個圓柱體和一個圓錐體組成,圓柱體的底面直徑和高都是12釐米.其內有一些水,正放時水面離容器頂11釐米,倒放時水面離頂部5釐米,那麼這個容器的容積是多少立方釐米?(π3 )5cm【例 11】(希望杯2試試題)如圖,底面積為50平方釐米的圓柱形容器中裝有水,水面上漂浮著一塊棱長為5釐米的正方體木塊,木塊浮出水面的高度是2釐米.若將木塊從容器中取出,水面將下降________釐米.【例 12】有兩個棱長為8釐米的正方體盒子,A盒中放入直徑為8釐米、高為8釐米的圓柱體鐵塊一個,B盒中放入直徑為4釐米、高為8釐米的圓柱體鐵塊4個,現在A盒注滿水,把A盒的水倒入B盒,使B盒也注滿水,問A盒餘下的水是多少立方釐米?【例 13】蘭州來的馬師傅擅長做拉麵,拉出的麵條很細很細,他每次做拉麵的步驟是這樣的:將一個麵團先搓成圓柱形面棍,長1.6米.然後對折,拉長到1.6米;再對折,拉長到1.6米……照此繼續進行下去,最後拉出的麵條粗細(直.問:最後馬師傅拉出的這些細麵條的總長有多少徑)僅有原先面棍的164米?(假設馬師傅拉麵的過程中.麵條始終保持為粗細均勻的圓柱形,而且沒有任何浪費)【例 14】一個圓柱形容器內放有一個長方形鐵塊.現打開水龍頭往容器中灌水.3分鐘時水面恰好沒過長方體的頂面.再過18分鐘水灌滿容器.已知容器的高為50釐米,長方體的高為20釐米,求長方體底面面積與容器底面面積之比.【例 15】一只裝有水的圓柱形玻璃杯,底面積是80平方釐米,高是15釐米,水深8釐米.現將一個底面積是16平方釐米,高為12釐米的長方體鐵塊豎放在水中後.現在水深多少釐米?【鞏固】一只裝有水的圓柱形玻璃杯,底面積是80平方釐米,高是15釐米,水深10釐米.現將一個底面積是16平方釐米,高為12釐米的長方體鐵塊豎放在水中後.現在水深多少釐米?【鞏固】一只裝有水的圓柱形玻璃杯,底面積是80平方釐米,高是15釐米,水深13釐米.現將一個底面積是16平方釐米,高為12釐米的長方體鐵塊豎放在水中後.現在水深多少釐米?【例 16】一個圓柱形玻璃杯內盛有水,水面高2.5釐米,玻璃杯內側的底面積是72平方釐米.在這個杯中放進棱長6釐米的正方體鐵塊後,水面沒有淹沒鐵塊.這時水面高多少釐米?【例 17】一個盛有水的圓柱形容器,底面內半徑為5釐米,深20釐米,水深15釐米.今將一個底面半徑為2釐米,高為17釐米的鐵圓柱垂直放入容器中.求這時容器的水深是多少釐米?【例 18】有甲、乙兩只圓柱形玻璃杯,其內直徑依次是10釐米、20釐米,杯中盛有適量的水.甲杯中沉沒著一鐵塊,當取出此鐵塊後,甲杯中的水位下降了2釐米;然後將鐵塊沉沒於乙杯,且乙杯中的水未外溢.問:這時乙杯中的水位上升了多少釐米?【鞏固】有一只底面半徑是20釐米的圓柱形水桶,裏面有一段半徑是5釐米的圓柱體鋼材浸在水中.鋼材從水桶裏取出後,桶裏的水下降了6釐米.這段鋼材有多長?【例 19】一個盛有水的圓柱形容器底面內半徑為5釐米,深20釐米,水深15釐米.今將一個底面半徑為2釐米,高為18釐米的鐵圓柱垂直放人容器中.求這時容器的水深是多少釐米?【例 20】如圖11-7,有一個圓柱和一個圓錐,它們的高和底面直徑都標在圖上,單位是釐米.那麼,圓錐體積與圓柱體積的比是多少?【例 21】一個圓錐形容器高24釐米,其中裝滿水,如果把這些水倒入和圓錐底面直徑相等的圓柱形容器中,水面高多少釐米?【例 22】(”希望杯”一試六年級)如圖,圓錐形容器中裝有水50升,水面高度是圓錐高度的一半,這個容器最多能裝水升.,乙容器中水的【例 23】如圖,甲、乙兩容器相同,甲容器中水的高度是錐高的13,比較甲、乙兩容器,哪一只容器中盛的水多?多的是少高度是錐高的23的的幾倍?乙甲【例 24】張大爺去年用長2米、寬1米的長方形葦席圍成容積最大的圓柱形糧囤.今年改用長3米寬2米的長方形葦席圍成容積最大的圓柱形的糧囤.問:今年糧囤的容積是去年糧囤容積的多少倍?【例 25】(仁華考題)如圖,有一卷緊緊纏繞在一起的塑膠薄膜,薄膜的直徑為20釐米,中間有一直徑為8釐米的卷軸,已知薄膜的厚度為0.04釐米,則薄膜展開後的面積是平方米.20cm8cm100cm【鞏固】圖為一卷緊繞成的牛皮紙,紙卷直徑為20釐米,中間有一直徑為6釐米的卷軸.已知紙的厚度為0.4毫米,問:這卷紙展開後大約有多長?【鞏固】如圖,厚度為0.25毫米的銅版紙被卷成一個空心圓柱(紙卷得很緊,沒有空隙),它的外直徑是180釐米,內直徑是50釐米.這卷銅版紙的總長是多少米?【例 26】(人大附中分班考試題目)如圖,在一個正方體的兩對側面的中心各打通一個長方體的洞,在上下底面的中心打通一個圓柱形的洞.已知正方體邊長為10釐米,側面上的洞口是邊長為4釐米的正方形,上下底面的洞口是直徑為4釐米的圓,求此立體圖形的表面積和體積.板塊二旋轉問題【例 27】如圖,ABC是直角三角形,AB、AC的長分別是3和4.將ABC∆繞AC旋轉一周,求ABC∆掃出的立體圖形的體積.(π 3.14=)CB A4 3【例 28】 已知直角三角形的三條邊長分別為3cm ,4cm ,5cm ,分別以這三邊軸,旋轉一周,所形成的立體圖形中,體積最小的是多少立方釐米?(π取3.14)【鞏固】如圖,直角三角形如果以BC 邊為軸旋轉一周,那麼所形成的圓錐的體積為16π,以AC 邊為軸旋轉一周,那麼所形成的圓錐的體積為12π,那麼如果以AB 為軸旋轉一周,那麼所形成的幾何體的體積是多少?ABC【例 29】 如圖,ABCD 是矩形,6cm BC =,10cm AB =,對角線AC 、BD 相交O .E 、F 分別是AD 與BC 的中點,圖中的陰影部分以EF 為軸旋轉一周,則白色部分掃出的立體圖形的體積是多少立方釐米?(π取3)A BA B【鞏固】(華杯賽決賽試題)如圖,ABCD 是矩形,6cm BC =,10cm AB =,對角線AC 、BD 相交O .圖中的陰影部分以CD 為軸旋轉一周,則陰影部分掃出的立體的體積是多少立方釐米?B A【例 30】 如圖,從正方形ABCD 上截去長方形DEFG ,其中AB=1釐米,DE=12釐米,DG=13釐米。

六年级奥林匹克数学基础教程12圆柱及圆锥.doc

六年级奥林匹克数学基础教程12圆柱及圆锥.doc

小学数学奥数基础教程圆柱与圆锥这一讲学习与圆柱体和圆锥体相关的体积、表面积等问题。

例1如右图所示,圆锥形容器中装有5升水,水面高度正好是圆锥高度的一半,这个容器还可以装多少升水?剖析与解:此题的重点是要找出容器上半部分的体积与下半部分的关系。

这表示容器能够装8份5升水,已经装了1份,还可以装水5×(8-1)=35(升)。

例2用一块长 60厘米、宽40厘米的铁皮做圆柱形水桶的侧面,另找一块铁皮做底。

这样做成的铁桶的容积最大是多少?(精准到1厘米3)剖析与解:铁桶有以60厘米的边为高和以40厘米的边为高两种做法。

专心爱心专心1时桶的容积是桶的容积是例3有一种饮料瓶的瓶身呈圆柱形(不包含瓶颈),容积是30分米3。

此刻瓶中装有一些饮料,正放时饮料高度为20厘米,倒放时空余部分的高度为5厘米(见右图)。

问:瓶内现有饮料多少立方分米?剖析与解:瓶子的形状不规则,而且不知道底面的半径,仿佛没法计算。

比较一下正放与倒放,由于瓶子的容积不变,装的饮料的体积不变,因此空余部分的体积应该同样。

将正放与倒放的空余部分变换一下地点,能够看出饮料瓶的容积应该等于底面积不变,高为20+5=25(厘米)例4皮球掉进一个盛有水的圆柱形水桶中。

皮球的直径为15厘米,水桶专心爱心专心2中后,水桶中的水面高升了多少厘米?解:皮球的体积是水面高升的高度是450π÷900π=(厘米)。

答:水面高升了厘米。

例5有一个圆柱体的部件,高10厘米,底面直径是 6厘米,部件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见右图)。

假如将这个部件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米?剖析与解:需要涂漆的面有圆柱体的下底面、外侧面、上边的圆环、圆孔的侧面、圆孔的底面,此中上边的圆环与圆孔的底面能够拼成一个与圆柱体的底面同样的圆。

涂漆面积为专心爱心专心3例6将一个底面半径为20厘米、高27厘米的圆锥形铝块,和一个底面半径为30厘米、高20厘米的圆柱形铝块,熔铸成一底面半径为15厘米的圆柱形铝块,求这个圆柱形铝块的高。

六年级巨人奥数116讲

六年级巨人奥数116讲

第一讲 圆柱和圆锥的表面积一、知识要点表面积是指物体各个面的面积之和。

在解答有关圆柱、圆锥的表面积问题时,要注意以下几点:1.借助图形仔细辨别表面积包含了哪些具体的面,增加了哪些面,减少了哪些面,要正确运用公式进行解答。

2.把一个立体图形切成两部分,新增加的表面积等于切面面积的两倍;反之,把两个立体图形粘合到一起,减少的表面积等于粘合面积的两倍。

3.有时解决问题过程中,题中一个关键的数量未知时,可借助字母做中介,从而解题。

4.解组合图形表面积时,要整体考虑,仔细观察组合图形各个面之间是否有某种联系,是否可将一些面变形为其他的面。

需要记住的公式:圆柱体的侧面积=2πRh 圆柱体的表面积=2πRh+2πR 2=2πR (h+R )二、精选例题:例1:有一块方木,横截面为正方形,边长4分米,相当于长的101,根据现有木料要加工成最大的圆柱体,则此圆柱体的表面积是多少?【思路点拨】例2:用铁皮做一个如图所示的工件(两端不封闭),需要铁皮多少平方厘米? (3π=)【思路点拨】例3: 有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的直孔,如图.圆孔的直径是4厘米,孔深5厘米.如果将这个零件接触空气部分涂上防锈漆,一共需涂多少平方厘米?【思路点拨】例4:将高都是1米,底面半径分别为1.5米、1米和0.5米的三个圆柱组成一个物体。

求这个物体的表面积。

【思路点拨】例5:一个圆柱体底面周长和高相等.如果高缩短了2厘米,表面积就减少12.56平方厘米.求这个圆柱体的表面积.【思路点拨】例6:一段圆柱体木料,如果截成两段,其表面积增加6.28平方厘米,如果沿着直径劈成两个半圆柱体,其表面积增加40平方厘米。

求此圆柱体的表面积。

【思路点拨】例7:从一个底面半径为3厘米,高为4厘米的圆柱中,挖去一个以圆柱上底面为底,下底面中心为顶点的圆锥,得到一个如下图的几何体。

求这个几何体的表面积。

【思路点拨】例8:如图,在一个正方体的两对侧面的中心各打通一个长方体的洞,在上下底面的中心打通一个圆柱形的洞.已知正方体边长为10厘米,侧面上的洞口是边长为4厘米的正方形,上下侧面的洞口是直径为4厘米的圆,求此立体图形的表面积.【思路点拨】练习:1、一个长方形的长8厘米,宽4厘米,以长方形的长为轴旋转一周得到一个立体图形,这个立体图形的表面积是多少?2、有一个底面直径6厘米,高5厘米的圆柱体,沿着上下底面的圆心的连线切开后,它的表面积增加了多少平方厘米?3、如图是一顶帽子。

六年级奥数_圆柱和圆锥

六年级奥数_圆柱和圆锥

圆柱和圆锥一个矩形,以它的一条边为轴旋转一周生成的几何体叫做圆柱。

或者说它由一个圆筒形的曲面和两个一样大的圆面围成的几何图形。

这个圆筒形的曲面叫做它的侧面,这两个圆面叫做它的底。

把圆柱的侧面展开,得到一个长方形,这个长方形的长等于圆柱的底面周长,这个长方形的宽等于圆柱的高。

如果用r表示底面圆的半径,h表示高,那么:圆柱侧面积是:S侧=2πrh或S侧=πd h圆柱表面积是:S表=2πrh+2πr2圆柱的体积是:V体=πr2h一个直角三角形,以它的一条直角边为轴旋转一周生成的几何体叫做圆锥。

直角三角形斜边旋转生成的曲面叫做圆锥的侧面,另一条直角边旋转生成的圆面叫做圆锥的底面。

从圆锥的顶点到底面圆心的线段的长是圆锥的高。

圆锥的侧面展开是一个扇形,这个扇形的半径长等于生成圆锥的直角三角形的斜边长,扇形的弧长就是圆锥底面周长。

如果用r表示底面圆的半径,l表示母线(三角形的斜边)长,h 表示高,那么:圆锥侧面积是:S侧=πrl圆锥表面积是:S表=πrl+πr21πr2h圆锥体积是:V体=3例1:有一张长方形铁皮如图所示,剪下阴影部分制成圆柱体(单位:分米),求这个圆柱体的表面积。

(提示:圆桶盖的周长等于长方形铁皮的长)例2:一个圆柱高8厘米,如果它的高增加2厘米,那么它的表面积将增加25.12平方厘米。

求原来圆柱的表面积是多少平方厘米?例3:如图(单位:厘米),以粗线为轴,沿箭头方向旋转一周,试求所形成的立体的体积。

例4:如图,一张扇形薄铁片,弧长18.84分米,它能够围成一个高4分米的圆锥,试求圆锥的容积(接缝处忽略不计)。

例5:如图,圆锥形容器中装有3升水,水面高度正好是圆锥高度的一半,这个容器还能装多少升水?例6:有两个圆柱形的油桶,形体相似(即底面积半径与高的比值相同),尺寸如图。

两个油桶都装满了油,若小的一个装了2千克油,那么大的一个装了多少千克油?例7:如图,上面是个半圆柱,下半部是一个长方体,它的表面积和体积各是多少厘米?例8:要做一个形如图所示的零件,请问它的体积是多少立方厘米?(14π).3=。

圆柱和圆锥综合讲义

圆柱和圆锥综合讲义

圆柱与圆锥综合讲义【知识点总结】圆柱1.圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆。

(2)侧面的特征:圆柱的侧面是一个曲面,其展开图是一个长方形。

(3)高的特征:圆柱有无数条高。

2.圆柱的高:两个底面之间的距离叫做高。

3.圆柱的侧面展开图:当沿高展开时展开图是长方形;当底面周长和高相等时,沿高展开图是正方形;当不沿高展开时展开图是平行四边形。

4.圆柱的侧面积:圆柱的侧面积=底面的周长×高,用字母表示为:S 侧=Ch 。

5.圆柱的表面积:圆柱的表面积=侧面积+2×底面积,即S 表= S 侧+2 S 底。

6.圆柱的体积:圆柱所占空间的大小,叫做这个圆柱体的体积,V=Sh 。

圆锥1.圆锥的高:从圆锥的顶点到底面圆心的距离是圆锥的高。

2.圆锥的特征:(1)底面的特征:圆锥的底面一个圆。

(2)侧面的特征:圆锥的侧面是一个曲面,展开图是扇形。

(3)高的特征:圆锥只有一条高。

13.圆锥体积公式:V=13 Sh圆柱与圆锥的关系:与圆柱等底等高的圆锥体积是圆柱体积的三分之一。

(2)体积和高相等的圆锥与圆柱之间,圆锥的底面积是圆柱的三倍。

(3)体积和底面积相等的圆锥与圆柱之间,圆锥的高是圆柱的三倍。

一、判断:1,圆柱体的体积与圆锥体的体积比是3 ∶1。

( )2,圆柱体的高扩大2倍,体积就扩大2倍。

( )3,等底等高的圆柱和圆锥,圆柱的体积比圆锥的体积大2倍.( )4,圆柱体的侧面积等于底面积乘以高。

()5,圆柱体的底面直径是3厘米,高是9.42厘米,它的侧面展开后是一个正方形()二、选择:(1)1,圆柱体的底面半径扩大3倍,高不变,体积扩大()A、3倍B、9倍C、6倍2,把一个棱长4分米的正方体木块削成一个最大的圆柱体,体积是()立方分米。

A、50.24B、100.48C、643,求长方体,正方体,圆柱体的体积共同的公式是()A、V= abhB、V= a3C、V= Sh4,把一个圆柱体的侧面展开得到一个边长4分米的正方形,这个圆柱体的体积是()立方分米A、16 B、50.24 C、100.485,把一团圆柱体橡皮泥揉成与它等底的圆锥体,高将()A、扩大3倍B、缩小3倍C、扩大6倍D、缩小6倍圆柱与圆锥综合提高(分类型总结)一、各元素的简单转换例1:压路机的滚筒是圆柱体,它的长是2米,滚筒横截面的半径是0.6米。

(完整版)学生版—小学六年级奥数教案(圆柱圆锥)

(完整版)学生版—小学六年级奥数教案(圆柱圆锥)

圆柱与圆锥这一讲学习与圆柱体和圆锥体有关的体积、表面积等问题。

圆柱体的体枳二冗-h,圆柱体的侧面积=Kf,圆柱体的表面租=2心G+h),园锥体的体积==咒7拍4J T例1如右图所示,圆锥形容器中装有高度的一半,这个容器还能装多少升水?分析与解:本题的关键是要找出容器上半部分的体积与下半部分的关系例2用一块长60厘米、宽40厘米的铁皮做圆柱形水桶的侧面,另找一块铁皮做底。

这样做成的铁桶的容积最大是多少?(精确到1厘米3)分析与解:铁桶有以60厘米的边为高和以40厘米的边为高两种做法。

例3有一种饮料瓶的瓶身呈圆柱形(不包括瓶颈),容积是30分米3。

现在瓶中装有一些饮料,正放时饮料高度为20厘米,倒放时空余部分的高度为5厘米(见右图)。

问:瓶内现有饮料多少立方分米?n20 I-分析与解:瓶子的形状不规则,并且不知道底面的半径,似乎无法计算。

比较一下正放与倒放,因为瓶子的容积不变,装的饮料的体积不变,所以空余部分的体积5升水,水面高度正好是圆锥应当相同。

例4皮球掉进一个盛有水的圆柱形水桶中。

皮球的直径为15厘米,水桶底面直径为60厘米.皮球有{的体积楼在水中(见右圈),问,皮球掉进水中后,水桶中的水面升高了多少厘米?(注日半径为F的球的体积是□例5有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见右图),如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米?分析与解:需要涂漆的面有圆柱体的下底面、外侧面、上面的圆环、圆孔的侧面、圆孔的底面,其中上面的圆环与圆孔的底面可以拼成一个与圆柱体的底面相同的圆。

练习121. 一个底面直径为20厘米的圆柱形木桶里装有水,水中淹没着一个底面直径为18厘米、高为20厘米的铁质圆锥体。

当圆锥体取出后,桶内水面将降低多少?2. 用直径为40厘米的圆钢锻造长300厘米、宽100厘米、厚2厘米的长方形钢板,应截取多长的一段圆钢?3. 右上图是一个机器零件,其下部是棱长20厘米的正方体,上部是圆柱形的一半。

【精品奥数】六年级下册数学思维训练讲义-第二讲 圆柱与圆锥(一) 人教版(含答案)

【精品奥数】六年级下册数学思维训练讲义-第二讲  圆柱与圆锥(一)  人教版(含答案)

第二讲圆柱与圆锥(一)第一部分:趣味数学旋转杂技表演“咚咚哐、咚咚哐,”随着阵阵锣鼓声,几何城中在进行晚会。

在高大的舞台上,竖立着一根根又高又大的柱子,柱子旁边有各种各样的图形“各位观众,你们好!”主持小姐走到舞台前,用清脆的声音向大家说,“旋转杂技表演现在开始!”话音刚落,在舞台的中央,排出了一列被隐藏了半边的图形:怎么全是半个图形呀?”有的观众议论。

“咚咚哐!”又一阵锣鼓声响,随着动听的音乐,舞台上的半个图形,全部都旋转起来奇迹出现了,原来,台上的半个图形,一旋转,就变成了美丽的立体图了:“真好看啊!”大家情不自禁地鼓起掌来“你们看,长方形绕它的一条边旋转周,就成为圆柱了。

”“直角三角形绕一条直角边旋转一周,就形成了圆锥!”“哈哈!旋转杂技真有趣啊!”“圆的一半以直径为轴旋转一周就成球形了。

”“还有花瓶啊,”大家边议论边欣赏,台上台下一片欢腾。

第二部分:习题精讲例题1:一个圆柱体底面周长和高相等。

如果高缩短了2厘米,表面积就减少12.56平方厘米.求这个圆柱体的表面积。

分析:一个圆柱体底面周长和高相等,说明圆柱体侧面展开是一个正方形.解题的关键在于求出底周长。

根据条件:高缩短2厘米,表面积就减少12.56平方厘米,用上图表示,从图中不难看出阴影部分就是圆柱体表面积减少部分,值是12.56平方厘米,所以底面周长C=12.56÷2=6.28(厘米).这个问题解决了,其它问题也就迎刃而解了.解:底面周长(也是圆柱体的高):12.56÷2=6.28(厘米).侧面积:6.28×6.28=39.4384(平方厘米)两个底面积(取π=3.14):表面积:39.4384+6.28=45.7184(平方厘米)答:这个圆柱体的表面积是45.7184平方厘米.练习1:一个圆柱体,高减少3厘米,表面积就减少37.68平方厘米,那么这个圆柱面积是多少?2.圆柱形的售报亭的高和底面直径相等,如图所示,开一个边长等于底面半径的正方形售报窗口,窗口处挖去的圆柱部分的面积占圆柱形侧面积的几分之几?3.如图所示,从棱长为10的立方体(正方体)中挖去一个底面半径为2,高为10的圆柱体后,得到的几何体的表面积和体积各是多少?(x取3)例题2:一个酒精瓶,它的瓶身呈圆柱形(不包括瓶颈),如下图.已知它的容积为26.4π立方厘米。

苏教版六年级下册圆柱和圆锥讲义

苏教版六年级下册圆柱和圆锥讲义

圆柱和圆锥专题讲义【知识教学】一、圆柱的特征及表面积(一)圆柱的特征.1、圆柱的认识.举出生活中圆柱形状的实物.2、圆柱各部分的名称.圆柱的上、下两个面叫做底面,它们是面积相等的两个圆.两底面之间的距离叫做高.圆柱的两个底面面积相等,圆柱有无数条高.(二)圆柱的侧面积和计算公式.1、圆柱的侧面积.圆柱的侧面积=底面的周长×高字母表示: S=Ch2、侧面积公式的应用.例1. 一段圆柱形的钢材,底面周长是0.28米,高是2.4米.它的侧面积是多少平方米?(得数保留两位小数)S=Ch0.28×2.4=0.672≈0.67(平方米)答:它的侧面积大约是0.67平方米.练习:制作这个薯片筒的侧面标签,需要多大面积的纸?(三)圆柱的表面积.圆柱的侧面积与两个底面积的和,就是圆柱的表面积.但是实际生活中往往只求侧面和一个底面的面积的总和,比如例2. 一个没有盖的圆柱形状的铁皮水桶,高是45厘米,底面直径是34厘米.做这个水桶需要多少铁皮?(得数保留整数)(1)水桶的侧面积:34×3.14×45=106.76×45=4804.2(平方厘米)(2)水桶的底面积:(34÷2)2×3.14=289×3.14=907.46(平方厘米)(3)做水桶需要的铁皮:4804.2+907.46=5711.66≈5712(平方厘米)答:做这个水桶需要铁皮5712平方厘米.例3. 一个圆柱的高增加4厘米,表面积增加50.24平方厘米,求圆柱体的底面积.分析:圆柱的高增加4厘米,表面积增加50.24平方厘米,50.24平方厘米就是高是4厘米的圆柱的侧面积,根据这两个条件可以求出圆柱的底面周长,从而求出圆柱的底面积.50.24÷4=12.56(厘米)12.56÷3.14÷2=2(厘米)2×2×3.14=12.56(平方厘米)答:圆柱体的底面积是12.56平方厘米.练习1:一个圆柱形水池,水池内壁和底面都要镶上瓷砖,水池底面直径6米,池深1.2米。

六年级上册秋季奥数培优讲义——6-04-圆锥圆柱3-讲义-学生

六年级上册秋季奥数培优讲义——6-04-圆锥圆柱3-讲义-学生

第4讲 圆柱与圆锥【学习目标】1、认识圆柱与圆锥;2、学会计算圆柱与圆锥的体积及表面积。

【知识梳理】1、圆柱:(1)概念:圆柱上、下两个面是相等的圆,它们都叫圆柱的底面;曲面部分叫作圆柱的侧面;两个底面之间的距离,叫作圆柱的高。

(2)圆柱的侧面沿一条高展开后可得到一个长方形,这个长方形的长相当于圆柱的底面的周长,它的宽相当于圆柱的高,这个长方形的面积就是圆柱的侧面积。

(3)体积=底面积×高;(4)侧面积=底面周长×高2、圆锥:(1)概念:以直角三角形的一条直角边所在的直线为轴,将直角三角形绕着它旋转360°所得的几何体叫作圆锥。

(2)将圆锥的侧面沿顶点和底面圆周上一点的连线展开,可以得到一个扇形。

(3)体积=底面积×高×31。

【典例精析】 【例1】认识圆柱:(1)一个长方形的长是8cm,宽是6cm 。

以它的一条边为轴旋转一周,得到的图形的底面积可 能是 cm ²,也可能是 cm ²。

(2)一个圆柱的底面半径是3cm,高是5cm,它的侧面积是 cm ²,表面积是 cm ²。

(3)用边长是1厘米的正方形围成一个圆柱体,它的体积是 。

【趁热打铁-1】(1)将圆柱的侧面展开能得到平面图形。

(2)把一个圆柱的侧面沿高剪开,得到一个正方形,这个圆柱的底面半径是5cm,那么圆柱的高是 cm。

(3)把一个长6.28dm、宽3.14dm的长方形纸片卷成一个圆柱,这个圆柱的侧面积是 dm²(保留整数),它的底面积可能是 dm²,也可能是 dm²。

【例2】认识圆锥:下图中,分别以长方形的长或宽为轴旋转一周,所得立体图形的体积相差____立方厘米;分别以直角三角形的两条直角边为轴旋转一周,所得立体图形的体积相差____立方厘米。

【趁热打铁-2】将下图中的直角三角形以一条直角边为轴旋转一周,可以得到一个圆锥,圆锥的底面直径和高分别是多少?【例3】求下图形的表面积:【趁热打铁-3】(1)求下图形的表面积:(2)已知一个圆柱的底面周长是25.12cm,高是10cm,求其表面积。

小学奥数精讲第二讲 圆柱与圆锥知识讲解

小学奥数精讲第二讲 圆柱与圆锥知识讲解
48 4 12 (厘米),侧面积是:12 12 144 (平方厘米),两个底面积是: 3 12 3 22 2 24 (平
方厘米).所以表面积为:144 24 168 (平方厘米).
3.一个圆锥的底面周长是 18 厘米,高是 5 厘米,它的体积为______立方厘米.(π 取 3) 【答案】45
\2/
8. 如图,从棱长为 10 的立方体中挖去一个底面半径为 2,高为 10 的圆柱体后,得到的几何体的表 面积是______,体积是______.(π 取 3)
【答案】 696 , 880 【解析】表面积为 6 10 10 2 2 310 3 22 2=696 ,体积为10 10 10 3 22 10=880 .


【答案】7 【解析】铁块被放入以后,“水层”的底面积变成了 128 平方厘米,“水层”高度变成了 9 厘米,说明 9 厘米高的铁块没入水中,3 厘米高的铁块浸入油中.“油层”增加的体积是 3 8 8 192 立方厘米, 增加的高度是192 16 12 1厘米.因此“油层”的高度是 7 厘米.
2
2 4
4
去年粮囤底面积是
22
,高是 1. ( 32
22 2) (
1) 4.5. 因此,今年粮囤容积是去年粮囤容积的 4.5
4
4
4
倍.
12. 一个拧紧瓶盖的瓶子里面装着一些水(如图),由图中的数据可推知瓶子的容积是______ 立方厘 米.( π 取 3.14 )
10 6
8
4 (单位:厘米)
【答案】100.48 【解析】由于瓶子倒立过来后其中水的体积不变,所以空气部分的体积也不变,从图中可以看出, 瓶中的水构成高为 6 厘米的圆柱,空气部分构成高为10 8 2 厘米的圆柱,瓶子的容积为这两部分 之和,所以瓶子的容积为: π (4)2 (6 2) 3.14 32 100.48 (立方厘米).

六年级奥数教程-第19讲 圆柱和圆锥的体积 通用版

六年级奥数教程-第19讲   圆柱和圆锥的体积     通用版

【六年级奥数教程】第19讲 圆柱和圆锥的体积圆柱的体积=底面积×高,圆锥的体积=底面积×高×.一些单纯的求体积的题,一般难13度不大.另一些如长度、面积和体积相结合的题,变体的体积等会有一定难度,解题时的关键是用模型、画图想象的方法确定空间图形,建立对应量之间的联系.例1 (1)一个圆柱与一个圆锥等底等高,那么它们的体积比是( );(2)一个圆柱与一个圆锥体积相等,且等底,那么它们的高的比是( );(3)一个圆柱与一个圆锥体积相等,且等高,那么它们的底面积比是( ).思维点拨 这是圆柱与圆锥的三组基本关系,弄清了这三种关系,可以用来作为结论顺利解答多种题型.例2 如图,以△ABC 的AB 边为轴旋转一周得到一个几何体,求这个几何体的体积.思维点拨 想象一下,旋转后可以得到一个怎样的几何体?答案是:一个大圆锥体内挖去一个小圆锥体.所以,用大圆锥的体积减小圆锥的体积即可.例3 如图,将10毫升酒装入一个圆锥形容器中,酒深正好是容器深的.再加多少毫升酒,12容器就能装满?思维点拨 因为酒面高度是容器高度的,所以,酒面半径是容器底面半径的,因此酒的体1212积(小圆锥)与容器(大圆锥)的容积之比是. 22221111()1322311833r R H R H R H ππππ⨯⨯⨯==⨯⨯例4 求下图木材的体积.(单位:分米)思维点拨这是一个不规则几何体,可以用“割补”的方法转变成圆柱体,把上面缺少的部分补上就得到一个圆柱体,只要把上面圆柱体体积÷2,再加下面圆柱体的体积就行了.例5 有一种酒瓶(如图),容积为282立方厘米,当酒瓶瓶口向上时,瓶内酒的高度是17厘米,瓶口向下时,余下部分的高是3厘米,求瓶内的酒有多少立方厘米,思维点拨瓶口向下和瓶口向上时,瓶内余下的体积相等,因此酒瓶的容积相当于高是20厘米、底面与酒瓶同底的圆柱的体积,从而可以求出酒瓶的底面面积.例6 下图中右图是左图(立体图形)的侧面展开图,求立体图形的表面积和体积.(单位:厘米)思维点拨想象一下,右图中的各个面与左图中的面的对应关系.我们会发现,左图是一个圆柱的丢,圆柱的底面半径是10厘米,高是8厘米.●课内练习1.(1)在一个圆柱内挖去一个最大的圆锥,圆柱、圆锥及剩下的体积之比是( ).(2)等底等高的圆柱和圆锥,已知圆柱的体积比圆锥多6立方分米,圆柱的体积是( ),圆锥的体积是( ).2.下图中ABCD是直角梯形,以BC边为轴旋转一周后所得形体的体积是多少立方厘米?(单位:厘米)3.有大、小两个圆柱,其中小圆柱的底面半径是大圆柱的,高是大圆柱的4倍,那么小圆柱13与大圆柱的体积之比是多少?4.求下图零件的体积.(单位:厘米)5.一个底面半径为6厘米、高为10厘米的圆锥形铁块,沉入装有水的圆柱形桶内,桶的底面直径是20厘米,当铁块从水中取出后,桶里的水面下降多少厘米?6.下图是一块长方形铁皮,沿虚线折起来,做成一个无盖的铁盒,求这个盒子的容积.(单位:厘米)●课外作业1.等底等高的圆柱和圆锥底面相互完全粘在一起,那么圆柱、圆锥及粘成的总体体积的比是( ).2.长方形的长是6分米,宽是5分米,以它的一条边为轴旋转一周,所得形体的体积是多少?3.一个圆锥和一个圆柱,它们的高的比是2:5,底面周长的比是1:2,求圆锥体体积是圆柱的几分之几.4.求下图零件的体积.(单位:厘米)5.A,B两个装有水的圆柱形水杯,内侧半径分别是5厘米、10厘米,从A杯中取出一块沉没的铁块,水面下降了2厘米,把它沉没在B杯中,B杯水没有溢出,这时B杯水面上升了几厘米?6.一个圆柱形杯内装有水,水面高2.5厘米,杯内底面积是72平方厘米,放进棱长是6厘米的正方体铁块,铁块被水淹没,那么这时水面高多少厘米?7.用一个圆柱形木棒,削成一个如下图形状的工具,求削去部分的体积.(单位:厘米)8.一个圆柱形玻璃缸的底面周长是6.28分米,里面的水占缸容量的导,放入一块不规则的石块,这时水面上升了10厘米,正好与缸口齐平,求玻璃缸的容积.9.一个圆柱体的底面周长和高相等,如果高缩短了2厘米,表面积就减少12.56平方厘米,求这个圆柱体的体积.10.在棱长为6厘米的正方体内,挖去一个最大的圆锥体,求剩下的体积是原正方体的百分之几.你知道吗战国时期,公孙龙提出了一个很重要的命题:“一尺之棰,日取其半,万世不竭.”这是什么意思?一尺(尺是我国旧制的长度单位.3尺=1米)的木棒,第1天取去一半,还剩尺,第2天再在这尺中取去一半,还剩尺,第3天再在这尺中再取去一半,还剩尺……1212141418这样继续下去,剩下的越来越小,但不管取多少次,它却永远不会等于零.这是一个很重要的数学概念,刘徽的割圆术也是这样,正多边形的边数越多,就越接近于圆,我们以后的学习将会知道这是限的概念.第19讲 圆柱和圆锥的体积●培优教程例1 3:1 1:3 1:3例2 旋转一周后得到的几何体的体积等于一个大圆锥内挖去一个小圆锥.××62×(10+5)- ××62×5 13π13π =××62×10 13π =376.8(立方厘米).例3如图,设圆锥容器口面的半径为R ,高为H ,倒入的10毫升酒所形成的圆锥高为h ,酒面圆的半径为r.因为h =,所以,r =,因此酒的体积(小圆锥)V 1和容器(大圆锥)的容积V 2之比为 2H 2R . 22212222111342183H r h R V r h V R H R H R H ππ⋅====所以V 2=8V1,即容器的容积是酒的8倍,即80毫升.则再加酒80-10=70(毫升)就能装满容器.例4把木材分成等底面积的两部分,一个是高为2分米的圆柱体,另一个是高为1分米的圆柱体的一半,即(立方分米), 212()222V ππ=⨯⨯= (立方分米), 2212(1222V ππ=⨯⨯⨯= 所以木材的体积为V 1+V 2=2+==7.85(立方分米). π2π52π例5酒瓶的容积相当于底面积与酒瓶相同,高为20厘米的圆柱体体积,所以酒瓶的底面积为282÷(17+3)=14.1(平方厘米).酒的体积为14.1×17=239.7(立方厘米),即瓶内有酒239.7立方厘米.例6 该立体图形的体积是一个圆柱体的,其底面半径为10厘米,高为8厘米. 14 (1)上、下底面积为×102××2=157(平方厘米). π14 (2)侧面积为2××10××8+(10×8)×2=285.6(平方厘米). π14所以表面积为157+285.6=442.6 (平方厘米).(3)体积为×102×8×=628(立方厘米). π14●针对性训练课内练习1.(1)3:1:2(2)9立方分米3立方分米2.32×3.14×5+32×3.14×(10-5)×=188.4(立方厘米). 133.体积之比是4:9. 4.(4÷2)2×3.14×5×=31.4(立方厘米). 125.(62×3.14×10×)÷[()2×3.14]=1.2(厘米). 132026.铁盒的长、宽、高分别为40厘米、20厘米、10厘米,那么盒子的容积为:40×20×10=8000(立方厘米).课外作业1.3:1:42.情况一:以6分米的边为轴旋转,52×3.14×6=471(立方分米).情况二:以5分米的边为轴旋转,62×3.14×5=565.2(立方分米).3.圆锥体体积是圆柱的. 1304.(2÷2)2×3.14×1×+(2÷2)2×3.14×8+(2÷2)2×3.14×3×=31.4(立方厘米). 12125.铁块体积:52×3.14×2=157(立方厘米),水面上升:157÷(102×3.14)=0.5(厘米).6.63÷72+2.5=5.5(厘米).7.×22×10-×22×10=×3.14×4×10=83.73(立方厘米). π13π238.玻璃缸的底面圆半径为6.28÷3.14÷2=1(分米),玻璃缸的高为10÷=30(厘米)=3(分米). 13玻璃缸的容积为=3.14×12×3=9.42(立方分米).2R h π9. 12.56÷2=6.28(厘米),这是底面圆的周长,所以底面圆的半径为6.28÷27x =1(厘米),故这个圆柱体的体积为V =2R h π=3.14×12×6.28=19.72(立方厘米).10.在棱长为6厘米的正方体内挖去一个最大的圆锥体,这个圆锥体底面圆的直径为6厘米,所以圆锥的体积为×32×6=56.52(立方厘米),剩下的体积占正方体体积的×100%=13π33656.526-73.8%.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆柱和圆锥
【知识要点】
1、圆柱的表面积=底面积×2+侧面积
圆柱的体积=底面积×高
2、圆锥的体积=3
1×底面积×高 【精选例题】
1、圆柱体的侧面展开,放平,是边长分别为10厘米和12厘米的长方形,那么这个圆柱体的体积是________立方厘米。

(结果用π表示)
2、如图所示,圆柱形的售报亭的高和底面直径相等,且顶部平均分成六份,开一个边长等于底面半径的正方形售报窗口。

问:窗口处挖去的圆柱部分的面积占圆柱侧面积的几分之几?
3、下图所示图形是一个底面直径是20厘米的装有一部分水的圆柱形容器,水中放着一个底面直径为12厘米,高为10厘米的圆锥体铅锤,当铅锤从水中取出后,容器中的水下降了几厘米?
4、如图所示,圆锥形容器中装有5升水,水面高度正好是圆锥高度的一半,这个容器还能装多少升水?
5、有一种饮料瓶的瓶身呈圆柱形(不包括瓶颈),容积是30立方分米。

现在瓶中装有一些饮料,正放时饮料高度为20厘米,倒放时空余部分的高度为5厘米(见图)。

问:瓶内现有饮料多少立方分米?
6、有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(如图)。

如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米?
7、一车工用一段长30厘米,直径为8厘米的圆钢,车一个如下图所示的零件,这个零件的表面积是多少?
8、如图,在一个棱长为20厘米的正方体密闭容器的下底固定了一个实心圆柱体,
容器内盛有m 升水时,水面恰好经过圆柱体的上底面。

如果将容器倒置,圆柱体
有8厘米露出水面。

已知圆柱体的底面积是正方体底面积的8
1,求实心圆柱体的体积。

【练习】
1、将一个棱长是20厘米的正方体,削成一个圆柱体,并且使圆柱体的体积最大,求此时削去的那部分体积。

2、把一段长1.2m 的圆钢切成两段,表面积增加50平方厘米,这段圆钢的体积是多少立方厘米?
3、用一块长60厘米、宽40厘米的铁皮做圆柱形水桶的侧面,另找一块铁皮做底。

这样做成的铁桶的容积最大是多少?(精确到1厘米3)
4、将一个底面半径为20厘米、高27厘米的圆锥形铝块,和一个底面半径为30厘米、高20厘米的圆柱形铝块,熔铸成一底面半径为15厘米的圆柱形铝块,求这个圆柱形铝块的高。

5、在一底面半径为40厘米的圆柱形容器内,有一半径为20厘米的圆柱形物体
浸没在水中,当取出物体后,水面下降了3厘米,求此物体的长度。

6、一个圆柱的侧面展开是一个正方形。

如果高减少3分米,表面积减少94.2平方分米。

原来这个圆柱的体积是多少立方分米?
7、一个圆柱形木块的高是8厘米,竖着从中间切开(如下图),表面积增加了96平方厘米。

这个圆柱形木块的表面积是多少平方厘米?
8、如图,三角形以AB为轴旋转后所得到的仿锤体的体积是多少?(单位:厘米)
9、如图,用高都是1米,底面半径分别为1.5米、1米和0.5米的3个圆柱组成一个物体。

问这个物体的表面积是多少平方米?( 取3.14)
10、如图,底面积为50平方厘米的圆柱形容器中装有水,水面上漂浮着一块棱
长为5厘米的正方体术块,木块浮出水面的高度是2厘米。

若将木块从容器中取出,水面将下降________厘米。

11、用棱长为1厘米的小正方体砌成一个立体图形,从前往后看这个立体图形如图1,如左往右看这个立体图形如图2,则砌成此立体图形最多用了 个小正方体,最少用了 个小正方体。

12、将一个圆锥从顶点沿底面直径切成两半后的截面是一个等腰直角三角形,如果圆锥的高是6厘米,求此圆锥的体积。

13、圆柱体容器A 和B 的深度相等,底面半径分别为3厘米和4厘米,把A 容器装满水后倒入B 容器里,水深比容器的4
3低1.2厘米,B 容器的深度是多少厘米?
14、一个酒精瓶子的瓶身呈圆柱形(如图所示),已知它的容积为188.4立方厘米。

当瓶子正放时,瓶内酒精的液面高为6厘米;瓶子倒放时,空余部分的高为2厘米。

瓶内酒精的体积是多少?
15、下图是一段沿45°角劈开的圆木,这段圆木的体积是多少?(单位:分米)
16、一个深30厘米的圆柱形容器,外圆直径22厘米,壁厚1厘米,已装深27.5厘米的水。

现放入一个底面直径10厘米,高30厘米的圆锥形铁块,则将有多少立方厘米的水溢出?。

相关文档
最新文档