数学建模中优化模型之运输问题讲解

合集下载

运输问题的数学模型例题

运输问题的数学模型例题

运输问题的数学模型例题运输问题是指在运输过程中,如何最优地分配资源,使得运输成本最小,运输效率最高。

运输问题的数学模型包括最小化成本、最大化效益等多种形式。

下面我们来看一个例题。

问题描述:某物流公司有3个仓库和4个客户,每个仓库和客户之间的距离已知。

现在需要将货物从仓库运送到客户,每个客户需要的货物量也已知。

假设每个仓库的货物量都足够满足所有客户的需求,如何安排运输方案,使得总运输成本最小?解题思路:我们可以用线性规划来解决这个问题。

设每个仓库和客户之间的运输量为$x_{ij}$,其中$i$表示仓库编号,$j$表示客户编号。

则总运输成本可以表示为:$$%min %sum_{i=1}^3%sum_{j=1}^4 c_{ij}x_{ij}$$其中$c_{ij}$表示从仓库$i$到客户$j$的单位运输成本。

同时,对于每个客户$j$,要求其所需货物量$q_j$必须满足:$$%sum_{i=1}^3 x_{ij}=q_j$$对于每个仓库$i$,要求其供应的货物量$y_i$必须满足:$$%sum_{j=1}^4 x_{ij}=y_i$$另外,由于$x_{ij}$必须非负,所以还要满足:$$x_{ij}%geq 0$$综上所述,我们可以得到如下线性规划模型:$$%min %sum_{i=1}^3%sum_{j=1}^4 c_{ij}x_{ij}$$$$s.t.% %sum_{i=1}^3 x_{ij}=q_j,% j=1,2,3,4$$$$% % % % % % % % % %sum_{j=1}^4 x_{ij}=y_i,% i=1,2,3$$ $$% % % % % % % % % x_{ij}%geq 0,% i=1,2,3,% j=1,2,3,4$$这是一个标准的线性规划模型,可以用常见的线性规划求解器求解。

求解结果就是每个仓库和客户之间的运输量$x_{ij}$,以及总运输成本。

总结:运输问题是一个常见的优化问题,在实际生产和物流中经常会遇到。

大学竞赛数学建模钢管订购和运输优化模型

大学竞赛数学建模钢管订购和运输优化模型

1)将图1转换为一系列以单位钢管的运输费用为权的赋权图. 所以可先求出钢厂 Si
到铁路与公路相交点 b j 的最短路径.如图3
30
290
320 160 160 1200 690 720 1100 202 20 1150 306 450 80 195 462 520 690 170 88 70 70
5.假设钢管在铁路运输路程超过1000km,铁路每增加1 至100km,1单位钢管运输的运价增至5万元.
6.订购的钢管数量刚好等于需要铺设的钢管数量
二.基本假设
7.销售价和运输价不受市场价格变化的影响
三. 符号说明
第 第 个钢厂, 个钢厂的最大产量, 个点,
输送天然气的主管道上的第 第 钢厂 在点
86
333
621
165
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
比较好的方法:引入0-1变量
fi表示钢厂i是否使用;xij是从钢厂i运到节点j的钢管量 yj是从节点j向左铺设的钢管量;zj是向右铺设的钢管量
0.1 15 Min Aij xij [(1 y j ) y j (1 z j ) z j ] i, j 2 j 1 s.t. 500 f i xij si f i ,
非线性规划模型可用LINGO软件包或MATLAB软件包来求解,但这些软件包不能 直接处理约束条件:
可用分支定界法将此条件改为 模型变为
1)不让钢厂S7生产,模型变为:
计算结果: f1 1278632(万元)(此时每个钢厂的产量都满足条件) 2)要求钢厂S7 产量不小于500个单位,模型变为:

数学建模运输问题

数学建模运输问题

有时候把两个表写在一起:
销地 产地 1 2 . . . m 销量
销地 产地 1 2 . . . m
1
2

n
产 量 a1 a2 . . . am 销地 产地 1 1 2 … n 产 量 a1 a2 . . . am
b1
1
b2
2


bn
n
2 . . . m
销量
c11 c12 … c1n c21 c22 … c2n . . . . . . . . . cm1 cm2 … cmn b1 b2 … bn
B2 10 4 5 6 14 6 5 3 4 3+4 B3 B4’ B4’’ 产量 (万台) 10 12 10 10
4
4 2
6
4
Global optimal solution found at iteration: 8 Objective value: 172.0000
销地 厂家 1 2
1
2
3
4
销地 厂家 A1 A2 A3 最高需求(万台)
31
x
32
x x x x x
33
x 2 3 4 6
34
7
x 11 x x 12 x x 13 x x 14 x x
ij
21
31
22
32
23
33
LINGO求解
24
34
0
设有三个电视机厂供应四个地区某种型号的电视机。 各厂家的年产量、 销地 各地区的年销售量以及 B1 B2 B3 厂家 各地区的单位运价 A1 6 3 12 如右表, A2 4 3 9 试求出总的运费最省的 A3 9 10 13 6 14 0 最低需求(万台) 电视机调拨方案。

运输问题的优化模型

运输问题的优化模型

运输方案问题的优化模型摘要:本文研究运输最优化问题。

运输问题(Transportation Problem)是一个典型的线性规划问题。

一般的运输问题就是要解决把某种产品从若干个产地调运到若干个销地,在每个产地的供应量与每个销地的需求量已知,并知道各地之间的运输单价的前提下,如何确定一个使得总的运输费用最小的方案的问题。

本论文运用线性规划的数学模型来解决此运输问题中总费用最小的问题。

引入x变量作为决策变量,建立目标函数,列出约束条件,借助LINGO软件进行模型求解运算,得出其中的最优解,使得把某种产品从2个产地调运到3个客户的总费用最小。

关键词:LINGO软件运输模型最优化线性规划1问题重述与问题分析1、1 问题重述要把一种产品从产地运到客户处,发量、收量及产地到客户的运输费单价如表1所示。

表1 运输费用表客户1 客户2 客户3 发量产地1 10 4 12 3000 产地2 8 10 3 4000 需求量2000 1500 5000这是一个供求不平衡问题,产品缺少1500个单位,因此决定运输方案应按下列目标满足要求:第一目标,客户1为重要部门,需求量必须全部满足;第二目标,满足其他两个客户至少75%的需要量;第三目标,使运费尽量少;第四目标,从产地2到客户1的运量至少有1000个单位。

1、2 问题分析运输方案就是安排从两个产地向三个客户运送产品的最佳方案,目标是使运费最少。

而从题目来看产品的总量只有7000个单位,客户的需求量却有8500个单位,产品明显的缺了1500各单位,所以至少要按以下要求分配运输,首先客户1为重要部门,需求量必须全部满足,从产地2到客户1的运量至少有1000个单位,即至少向客户1发2000个单位,且从产地2向客户1发的要大于等于1000个单位;其次满足其他两个客户至少75%的需要量,即至少得向客户2发1125个单位,至少向客户3发3750个单位。

最佳的运输方案就是满足了要求中的发量,而让运输费用最少的方案。

专题二运输规划问题建模

专题二运输规划问题建模

27
销地 产地 A1 A2 A3 销量 销地 产地 A1 A2
目标函数表示运输总费用,要求其极小化; 第一个约束条件的意义是由各产地运往某一销地的物品数 量之和等于该销地的销量;
第二个约束条件表示由某一产地运往销地的物品数量之和 等于该产地的产量;
第三个约束条件表示变量的非负条件。
5
设有三个电视机厂。生产同一种彩色电视机, 日生产能力分别是:50,60,50,供应四个 门市部,日销售量分别是:40,40,60,20 台,从各分厂运往个门市部的运费如表所示, 试安排一个运费最低的运输计划。
门市部 工厂
1 2 3 需求总计 1 9 7 6 40 2 12 3 5 40 3 9 7 9 60 4 6 7 11 20 供应总计 50 60 50
6
供求平衡的运输问题:供:50+60+50=160
需:40+40+60+20=160
数学模型
min z

i1
3
4
j1
c ij x ij
1 3 1 7 2
2 11 9 4 6
3 3 2 10 5
4 10 8 5 7
供应 7 4 9
25
(2)最优解的判别 判别的方法是计算非基变量即空格的检验数。当所有的非基 变量检验数全都大于等于 0 时为最优解。 ① 方法一:闭回路法
在给出调运方案的计算表上,从每一空格出发, 找一条闭回路。 它是以空格为起点,用水平线或垂直线向前划, 每碰到一数字格就转 90 度后继续前进。直到回到 起始空格处为止,(A1 , B1) 空格与(A1 , B4) 、 (A2 , B4) 和 (A2 , B1) 三个有数字的格构成一闭回路,如 此等等。 每个空格都存在唯一的闭回路。

数学建模的船队运输最优化问题

数学建模的船队运输最优化问题

天,第5型船每个航次需增加减载时间4天。假设各型船的年度闲置费用均为购船
当时船价的3%。假设各型船年度营运时间为350天。
查阅相关资料,补充必要计算数据,参考教材中数学模型,以追求2012年船
队总费用支出最小为目标,制订该船队的年度货运航线配船计划。求2012年完成
各条航线预测运量的最佳航线配船方案及相应的船队总费用支出额。
现有船型技术参数及数量船型编号载重吨数量艘净吨位万元船速kn燃料油消耗170001060008000131823000158000110001352432000201104615000139261507016000133118766200001444023452220001353621表2航线参数航线编号挂靠港口运量万吨航线编号挂靠港口运量万吨秦皇岛宁波1000天津广州500秦皇岛广州800青岛宁波542天津宁波700连云港广州600表3港口装卸效率秦皇岛港天津港青岛港连云港宁波港广州港最大装船效率850080008000300080008300最大卸船效率660060006000300060006300注
a62 A62 a63 A63 a64 A64
a65 A65
a66 A66
小写字母代表船数 大写代表船次
各种船往返一次所用的时间
D=2+M/p+M/q+2S/V/24 M:载重量 p:装货率 q:卸货率
S:航线长度 V:船速 2:港口为停靠时间 24:一天 24 小时
1
2
3
4
5
6
秦皇岛-宁 波
11.372
船型编号 载重(吨) 数量(艘)
表1 现有船型技术参数及数量
燃料油消耗 柴油消耗率 船员定编
净吨位 船价 (万元) 船速(kn)

数学建模--运输问题

数学建模--运输问题

运输问题摘要本文主要研究的是货物运输的最短路径问题,利用图论中的Floyd算法、Kruskal算法,以及整数规划的方法建立相关问题的模型,通过matlab,lingo 编程求解出最终结果。

关于问题一,是一个两客户间最短路程的问题,因此本文利用Floyd算法对其进行分析。

考虑到计算的方便性,首先,我们将两客户之间的距离输入到网络权矩阵中;然后,逐步分析出两客户间的最短距离;最后,利用Matlab软件对其进行编程求解,运行得到结果:2-3-8-9-10总路程为85公里。

关于问题二,运输公司分别要对10个客户供货,必须访问每个客户,实际上是一个旅行商问题。

首先,不考虑送货员返回提货点的情形,本文利用最小生成树问题中的Kruskal算法,结合题中所给的邻接矩阵,很快可以得到回路的最短路线:1-5-7-6-3-4-8-9-10-2;然后利用问题一的Floyd算法编程,能求得从客户2到客户1(提货点)的最短路线是:2-1,路程为50公里。

即最短路线为:1-5-7-6-3-4-8-9-10-2-1。

但考虑到最小生成树法局限于顶点数较少的情形,不宜进一步推广,因此本文建立以路程最短为目标函数的整数规划模型;最后,利用LINGO软件对其进行编程求解,求解出的回路与Kruskal算法求出的回路一致。

关于问题三,是在每个客户所需固定货物量的情况下,使得行程之和最短。

这样只要找出两条尽可能短的回路,并保证每条线路客户总需求量在50个单位以内即可。

因此我们在问题二模型的基础上进行改进,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,对于模型求解出来的结果,本文利用Kruskal算法结合题中所给的邻接矩阵进行优化。

得到优化结果为:第一辆车:1-5-2-3-4-8-9-1,第二辆车:1-7-6-9-10-1,总路程为280公里。

关于问题四,在问题一的基础上我们首先用Matlab软件编程确定提货点到每个客户点间的最短路线,然后结合一些限定条件建立一个目标模型,设计一个较好的解决方案进行求解可得到一种很理想的运输方案。

运输问题的数学模型详细讲解,有案例+多种方法

运输问题的数学模型详细讲解,有案例+多种方法
i 1 j 1 m n
m ( 3 1) x ij b j j 1,2, , n i 1 n s .t . x ij a i i 1,2, , m j 1 x 0 ij m n 其中,ai和bj满足: ai b j 称为产销平衡条件。
2、流向图
流向图:
在交通图上表示物资流向的图被称为流向 图。在图中每个发点吨数全部运完,每个 收点所需吨数均已满足。
2、流向图
发点A到收点B的 运输量,用括号 括起。
2、流向图
关于流向图的一些规定 箭头必须表示物资运输的方向 流量写在箭头的旁边,加小括号。 流向不能直接跨越路线上的收点、发点、 交叉点 任何一段弧上最多只能显示一条流向!即 同一段弧上的多条流向必须合并。 除端点外,任何点都可以流进和流出
2 4 6 4 B4
(2)
B5
4 2
8 B3
(8)
4
B2
(8) (1)
4 6 7 A1
3
5 8 A2
图 4-10
第三步:补上丢掉的边,检查有无迂回。 圈 B5B4B3A2 的 圈 长 =4+4+5+8=21, 内 圈长= 4+4+5=13>21/2,有迂回,所 以流向图不是最优流向图。需要调整。
约束方程式中共mn个变量,m+n个约束。
上述模型是一个线性规划问题。但是其结构很特殊, 特点如下: 1.变量多(mn个),但结构简单。
x11 x12 x1n x 21 x 22 x 2 n x m 1 x m 2 x mn 1 1 1 1 1 1 技术系数矩阵 A 1 1 1 1 1 1 1 1 1 1 1 1 m行 n行

数学建模---第四章-运输问题

数学建模---第四章-运输问题
分组构成闭回路,则该变量组对应的列向量组
p , p , , p i1 j1 i2 j2
ir jr
是线性相关的.
推论 1 若变量组对应的列向量组线性无关,则该变 量组一定不包含闭回路.
Go on
性质 1 的证明
Proof : 由直接计算可知
p p p p i1 j1
i1 j2
i2 j2
从理论上讲,运输问题也可用单纯形法来求解, 但是由于运输问题数学模型具有特殊的结构,存在一 种比单纯形法更简便的计算方法 —— 表上作业法, 用表上作业法来求解运输问题比用单纯形法可节约计 算时间与计算费用.但表上作业法的实质仍是单纯形法
§1 运输问题及其数学模型
§1 运输问题及其数学模型
一、运输问题的数学模型
A3 55
6
3
10 4
10
bj 5500 25 10 15
§2 运输问题的表上作业法 2、最小元素法 规则:优先安排单位运价最小的产地与销地之间的运输
任务. Note : 在某行(或列)填入最后一个数时,如果行和 列同时饱和,规定只划去该行(或列)
z 10 40 5 25 3 5 110
设某种物资共有 m 个产地 A1,A2,…,Am,各 产地的产量分别是a1,a2 ,…,am;有n 个销地 B1, B2,…,Bn ,各销地的销量分别为b1,b2,…,bn .
假定从产地Ai(i =1,2,…,m)向销地Bj(j =1, 2,…,n)运输单位物资的运价是cij,问怎样调运才能 使总运费最小?
j 1
i 1, 2, , m
m
xij bj
i 1
j 1, 2, , n
xij 0 i 1, 2, , m; j 1, 2, , n xij 0 i 1, 2, , m; j 1, 2, , n

运筹学 运输问题例题数学建模

运筹学 运输问题例题数学建模

运筹学运输问题例题数学建模运筹学是一门研究如何在有限的资源和多种约束条件下,寻求最优或近似最优解的科学。

运输问题是运筹学中的一个重要分支,它主要研究如何把某种商品从若干个产地运至若干个销地,使总的运费或总的运输时间最小。

本文将介绍运输问题的数学建模方法,以及用表上作业法求解运输问题的步骤和技巧。

同时,本文还将给出几个典型的运输问题的例题,帮助读者理解和掌握运输问题的求解过程。

运输问题的数学建模运输问题可以用以下的数学模型来描述:设有m 个产地(或供应地),分别记为A 1,A 2,…,A m ,每个产地i 的产量(或供应量)为a i ;有n 个销地(或需求地),分别记为B 1,B 2,…,B n ,每个销地j 的需求量为b j ;从产地i 到销地j 的单位运费(或单位运输时间)为c ij ;用x ij 表示从产地i 到销地j 的运量,则运输问题可以归结为以下的线性规划问题:其中,目标函数表示总的运费或总的运输时间,约束条件表示每个产地的供应量必须等于其产量,每个销地的需求量必须等于其销量,以及每条运输路线的运量不能为负数。

在实际问题中,可能出现以下几种情况:产销平衡:即∑m i =1a i =∑n j =1b j ,也就是说总的供应量等于总的需求量。

这种情况下,上述数学模型可以直接应用。

产大于销:即∑m i =1a i >∑n j =1b j ,也就是说总的供应量大于总的需求量。

这种情况下,可以增加一个虚拟的销地,其需求量等于供需差额,且其与各个产地的单位运费为零。

这样就可以把问题转化为一个产销平衡的问题。

产小于销:即∑m i =1a i <∑n j =1b j ,也就是说总的供应量小于总的需求量。

这种情况下,可以增加一个虚拟的产地,其产量等于供需差额,且其与各个销地的单位运费为零。

这样也可以把问题转化为一个产销平衡的问题。

弹性需求:即某些销地对商品的需求量不是固定不变的,而是随着商品价格或其他因素而变化。

集装箱运输优化模型及多目标决策支持

集装箱运输优化模型及多目标决策支持

集装箱运输优化模型及多目标决策支持在现代物流中,集装箱运输成为了全球贸易的重要方式之一。

为了提高集装箱运输的效率和降低运输成本,运输优化模型和多目标决策支持成为了研究的热点。

本文将探讨集装箱运输优化模型及多目标决策支持的相关内容。

一、集装箱运输优化模型集装箱运输是一个复杂的问题,涉及到货物选择、装运路径、运输方式等多个因素的综合考虑。

为了找到最佳的运输方案,可以利用数学模型来进行优化。

下面介绍两种常见的集装箱运输优化模型。

1.1 集装箱装箱优化模型集装箱装箱优化模型旨在找到最佳的装箱方式,使得在满足一定约束条件下,集装箱的利用率达到最大化。

具体来说,装箱优化模型要考虑货物的体积、重量、形状等因素,以及集装箱的容积、承重限制等约束条件。

通过对这些因素进行数学建模和求解,可以得到最优的装箱方案。

1.2 集装箱运输路径优化模型集装箱运输路径优化模型旨在找到最短的运输路径,使得货物能够快速到达目的地,并尽量避免空载运输和重复运输。

该模型要考虑到货物运输中的各种约束条件,例如货物的优先级、配送中心的位置、运输工具的可用性等。

通过对这些因素进行数学建模和求解,可以得到最优的运输路径。

二、多目标决策支持随着全球贸易的发展,集装箱运输涉及到的决策变得越来越复杂。

在决策过程中,往往需要考虑多个目标,并且这些目标之间往往存在冲突。

为了支持多目标决策,可以借助决策支持系统。

2.1 多目标优化技术多目标优化技术旨在找到一组最优解,以满足多个冲突的目标。

常见的多目标优化技术包括线性规划、整数规划、动态规划等。

这些技术可以通过对多个目标进行数学建模和求解,得到一组帕累托最优解,为决策提供多个可行的选择。

2.2 决策支持系统决策支持系统是一种集成了多目标优化技术的信息系统,用于辅助决策者进行决策。

该系统可以通过汇集、整理和分析各种信息,帮助决策者了解不同方案的潜在风险和效益,从而做出理性的决策。

同时,决策支持系统还可以提供可视化的决策结果,以帮助决策者更好地理解和评估不同的选择。

数学建模大赛-货物运输问题

数学建模大赛-货物运输问题

货物配送问题【摘要】本文是针对解决某港口对某地区8个公司所需原材料A、B、C的运输调度问题提出的方案。

我们首先考虑在满足各个公司的需求的情况下,所需要的运输的最小运输次数,然后根据卸载顺序的约束以及载重费用尽量小的原则,提出了较为合理的优化模型,求出较为优化的调配方案。

针对问题一,我们在两个大的方面进行分析与优化。

第一方面是对车次安排的优化分析,得出①~④公司顺时针送货,⑤~⑧公司逆时针送货为最佳方案。

第二方面我们根据车载重相对最大化思想使方案分为两个步骤,第一步先是使每个车次满载并运往同一个公司,第二步采用分批次运输的方案,即在第一批次运输中,我们使A材料有优先运输权;在第二批次运输中,我们使B材料有优先运输权;在第三批次中运输剩下所需的货物。

最后得出耗时最少、费用最少的方案。

耗时为40.5007小时,费用为4685.6元。

针对问题二,加上两个定理及其推论数学模型与问题一几乎相同,只是空载路径不同。

我们采取与问题一相同的算法,得出耗时最少,费用最少的方案。

耗时为26.063小时,费用为4374.4元。

针对问题三的第一小问,我们知道货车有4吨、6吨和8吨三种型号。

我们经过简单的论证,排除了4吨货车的使用。

题目没有规定车子不能变向,所以认为车辆可以掉头。

然后我们仍旧采取①~④公司顺时针送货,⑤~⑧公司逆时针送货的方案。

最后在满足公司需求量的条件下,采用不同吨位满载运输方案,此方案分为三个步骤:第一,使8吨车次满载并运往同一公司;第二,6吨位车次满载并运往同一公司;第三,剩下的货物若在1~6吨,则用6吨货车运输,若在7~8吨用8吨货车运输。

最后得出耗时最少、费用最省的方案。

耗时为19.6844小时,费用为4403.2。

一、问题重述某地区有8个公司(如图一编号①至⑧),某天某货运公司要派车将各公司所需的三种原材料A,B,C从某港口(编号⑨)分别运往各个公司。

路线是唯一的双向道路(如图1)。

货运公司现有一种载重 6吨的运输车,派车有固定成本20元/辆,从港口出车有固定成本为10元/车次(车辆每出动一次为一车次)。

数学建模运输优化模型

数学建模运输优化模型

2012年数学建模培训第二次测试论文题目运输优化模型姓名马鹏系(院)数学系专业信息与计算科学、应用数学2012 年8 月27 日运输优化模型[摘要]在社会的经济生产活动中,产地(厂家)与客户都会想方设法合理调拨资源、降低运输费用,实现利益最大化,完成资源优化配置。

本文在运输费单价恒定,各产地发量一定,各客户的需求量也一定的条件下,努力解决多个特定目标实现问题。

力求最优的运输方案。

在确定问题为不平衡的运输问题时,先虚设一个产地,将问题装华为平衡运输问题,将问题转化为目标规划问题,按照目标规划问题的建模思想逐步建立模型。

本文的主要特点在于,将不平衡的线性规划问题合理地转化为目标规划问题,在求解时充分利用LINGO软件求解。

关键词: lingo 目标规划线性规划运输优化问题运费最少一.问题重述运输功能是整个现代物流七大基本功能之一,占有很重要的地位,运输成本在整个物流系统中所占的比重也很大,运输成本的有效控制对物流总成本的节约具有举足轻重的作用。

通过物流流程的改善能降低物流成本,能给企业带来难以预料的效益,影响运输成本的因素是多样化、综合性的,这就要求对运输成本的分析要采用系统的观点,进行综合分析。

由于影响物流运输成本的因素很多,控制措施既涉及运输环节本身,也涉及供应链的整个物流流程。

要想降低物流运输成本,就必须运用系统的观点和方法,进行综合分析,发现问题,解决问题,使物流运输活动更加优化、物流运输成本更加合理化。

本文已知把一种产品从产地一、二运到客户1、2、3处,产地的发量、客户的收量及各产地到各客户的运输单价已知。

本文要解决问题是:客户1为重要部门,必须全部满足需求量;满足客户2、3至少75%的的需求量;使总运费尽量少;从产地2到客户1的运量至少有1000个单位。

二.问题分析根据题目中所给出的条件知:有现成的两个产地和需要产品的三个客户。

且两个产地的产量不同,运送到各个客户的运费单价不同。

三个客户所需的货物量不同。

运输问题—数学模型及其解法

运输问题—数学模型及其解法
闭合回路中标有“”的基变量同时有多个达到最小 变换后,有多个原基变量变为 0,选运费最大者为出变量,其
余保留在新的基础解中 退化较严重时,可能会出现多次迭代只有值为 0 的基变量在
转移。此时,一要耐心,二要正确选择出变量
踏石法迭代中需注意的问题:
1、错误地将分配表中基变量的解代入到运费表中 2、不能正确画闭合回路 3、初始解退化,未能补足基变量的个数。因此在位势法中 多次令某个 ui 或 vj 为 0; 4、在位势法中只能令一个 ui 或 vj 为 0;若不能求出全部 ui 和 vj ,说明基变量未选够数或未选对
3.3.3 关于退化问题
1、初始解退化。即所求初始基变量的个数少于 m+n1。必须
补足基变量的个数,否则不能正常解出 m+n个 ui 和 vj
所补基变量的值为 0 ,补充的原则:(1)尽量先选运费小的实变量;
(2)补充后不能有某个基变量独占一行一列
12
3.3.3 关于退化问题
2、迭代过程中出现退化
❖ 共有m+n1个基变量xij ,因此可得m+n1个等式 ui+vj=wij ❖ m+n1个等式只能解出 m+n1个 ui 和 vj ,而一共有m+n
个 ui 和 vj ,但可令任一个ui 或 vj =0,从而解出其它 m+n1个的值;这就是位势法 ❖ 令 zij= ui + vj ,其相当原问题xij的机会费用 ❖ 若对所有非基变量有 zij wij 0,即 ui + vj wij,表明当 前ui 和 vj 是对偶问题的可行解,由互补松弛定理可知当前 m+n1个基变量xij 是最优解,否则 ❖ 从 zij wij > 0 中找最大者,对应 xij 就是入变量

数学建模模版之运输问题资料

数学建模模版之运输问题资料

ui
vj
cij , (i,
j
)
J
,并将其填于格
N
子(i,j)的左下角(基变量格子不填)
最优判别: 如表中各非基格子(i,j)左下角全小于等于零, 则当前解为最优。
例. 由最小元素法求得的可行调运方案为:
B1 B2 B3 B4 B5 ui
A1
7 -8
A2
5 0
10 8 6 4 0
-7 -7
20 20
2.(TP)的特征
k
记 ek (0,,0,1, 0,,0)T Enm , (TP)的系数矩阵:
A (Pij ) E(nm)nm
① Pij=ei+em+j,rank(A)=m+n-1,从而A不是行满秩的,且A的任 何m+n-1行线性无关,故(TP)的基解中有n+m-1个基变量;
② (TP)恒有可行解和最优解
作业:2.14 ①用最小元素法产生初始调运方案
②用伏格尔法产生初始调运方案
2.6.3 产销不平衡TP问题的平衡转换
m
n
1. 供过于求: ai bj
i 1
j 1
①原始数学模型:
mn
min z
cij xij
i1 j 1
n
s.t. xij ai ,i 1,2,, m j 1
m
xij bj , j 1,2,, n
6
6
4
(2) 用伏格尔法产生初始调运方案
|
|
B1 B2 B3 产量 行差额
|
A1
5★ 1★ 8 2 10
12 2 4 4√ 5√
A2
2★ 4 3
0★
14 11

数学建模与优化方法在物流管理中的应用

数学建模与优化方法在物流管理中的应用

数学建模与优化方法在物流管理中的应用在当代快速发展的经济环境中,物流行业已成为全球经济中不可或缺的一环。

如何提高物流运作效率,降低成本,成为了物流公司和供应链管理人员不得不面对的重大挑战。

数学建模和优化方法已成为物流管理过程中的重要工具。

本文将探讨数学建模和优化方法在物流管理中的应用。

一、数学建模在物流管理中的应用数学建模是将实际问题转换为可以计算和处理的数学问题的过程。

它是一种有效的解决问题的方法。

在物流管理中,数学建模可以用来模拟和分析物流系统的运行情况,并通过优化算法来找到最优解决方案。

1. 路线规划模型物流管理的核心是货物的运输,尤其是路线规划。

数学建模可以通过建立路线规划模型,分析出各个运输节点的交通拥堵情况、配送时间和成本,从而找到最短路径和最优运输方案。

同时,还可以考虑不同的策略,如多点配送、多车协同等,以最大化利润。

2. 仓库布局模型仓库布局是另一个物流管理的重要问题。

它需要考虑仓库位置、利用率和存储方式等因素。

通过数学建模,可以确定最佳仓库布局,以最大限度地提高仓库的效率和利润,同时尽可能地降低成本和复杂度。

3. 调度模型调度是物流管理中的关键问题。

通过数学建模,可以确定最优化的调度策略,以最大限度地提高效率和满足客户需求。

调度模型可以考虑不同的因素,例如车辆数量、装载量、调度频率和路线安排等,以避免或降低延误和费用。

二、优化方法在物流管理中的应用优化方法是数学建模过程中寻找最优解决方案的关键。

在物流管理中,有多种优化方法可以应用。

1. 线性规划线性规划是一种优化方法,它可以在限制条件下最大化或最小化目标函数。

在物流管理中,线性规划可以用来优化运输计划的各项成本指标,如货运成本、仓储成本和运输时间等。

2. 整数规划整数规划是一种线性规划的扩展,它要求决策变量取整数值。

在物流管理中,整数规划可以用来处理离散情况,如车辆的数量、货物的配送量等。

3. 遗传算法遗传算法是一种模拟自然进化过程的数学优化方法。

数学建模大赛-货物运输问题

数学建模大赛-货物运输问题

数学建模大赛-货物运输问题问题重述:某港口需要将三种原材料A、B、C分别运往8个公司,运输车有三种型号:4吨、6吨、8吨。

每辆车有固定成本,每次出车也有固定成本。

运输车平均速度为60公里/小时,每日工作不超过8小时。

设计一个方案,使得耗时最少、费用最省。

方案设计:针对问题一,我们首先考虑最小化运输次数,然后根据卸载顺序和载重费用尽量小的原则,提出了较为合理的优化模型。

我们采用顺时针送货(①~④公司)和逆时针送货(⑤~⑧公司)的方案,并将方案分为两步:第一步是使每个车次满载并运往同一个公司;第二步是采用分批次运输的方案,即在第一批次运输中,我们使A材料有优先运输权;在第二批次运输中,我们使B材料有优先运输权;在第三批次中运输剩下所需的货物。

最后得出耗时为40.5007小时,费用为4685.6元的方案。

针对问题二,我们加上两个定理及其推论,设计的数学模型与问题一几乎相同,只是空载路径不同。

我们采用与问题一相同的算法,得出耗时为26.063小时,费用为4374.4元的方案。

针对问题三的第一小问,我们排除了4吨货车的使用,并仍旧采用顺时针送货(①~④公司)和逆时针送货(⑤~⑧公司)的方案。

最后在满足公司需求量的条件下,采用不同吨位满载运输方案,分为三步:第一,使8吨车次满载并运往同一公司;第二,6吨位车次满载并运往同一公司;第三,剩下的货物若在1~6吨内,则用6吨货车运输,若在7~8吨内用8吨货车运输。

最后得出耗时为19.6844小时,费用为4403.2元的方案。

建立模型时,需要注意以下几个问题:目标层:在建立模型时,如果将调度车数、车次以及每车次的载重和卸货点都设为变量,会导致模型中变量过多,不易求解。

因此,可以将目标转化为两个阶段的求解过程。

第一阶段是规划车次阶段,求解车次总数和每车次的装卸方案;第二阶段是车辆调度阶段,安排尽量少的车辆数,每车次尽量满载,使总的运费最小。

约束层:1)运输车可以从顺时针或者逆时针方向送货,需要考虑不同方向时的载重用;(2)大小件的卸车顺序要求不同原料搭配运输时,沿途必须有序卸货;(3)每车次的送货量不能超过运输车的最大载重量;(4)满足各公司当日需求。

数学建模飞机运输问题要点

数学建模飞机运输问题要点

多变量有约束最优化问题摘要本文以一家运输航空公司的一架飞机运载能力100吨和运载货物的容量50000立方英尺有限的情况下,有三种货物(即x1、x2、x3)需要运输,公司规定每吨货物收取一定的费用,而要运输的每种货物的吨数都有规定的上限(最多不超过30吨、40吨、50吨),并且公司规定由于飞机需要保养与维护,飞机须停飞115天,因此每年只有250天的工作时间。

在此情况下每天怎样安排运输三种货物使公司每年获得最大利润w。

对于此问题只用线性规划的一般方法建立相应的数学模型,在用数学软件求出在给定限行区域内的最优解(w、x1、x2、x3),在对这些最优解进行分析与讨论,确定其为有效最优解。

并以此作为公司对三种货物运输安排方式。

对于问题一,求使得运输航空公司获得最大利润w的x1、x2、x3三种货物的吨数,建立相应的数学模型。

再根据运输能力最多100吨和运载货物容积的最大50000立方英尺,还有每天公司规定的每种货物的运输上限即x1种货物最多运输30吨,x2种货物最多运输40吨,x3种货物最多50吨,建立约束条件。

并用数学软件mathematica进行求解,即为所求的最优解(也就是w=21875,x1=30,x2=7.5,x3=50)。

对于问题二中,要求计算每个约束的影子价格。

我们将利用问题一中建立的目标函数和约束条件,将其编写成源程序输入到Lindo软件中进行求解。

再将得到的界进行讨论与和模型的稳健性分析并且通过其在题意的理解,解释其含义。

问题三中,对于公司将耗资改装飞机以扩大运货区来增加运输能力,且旧飞机使用寿命为5年,每架飞机的改造要花费200000美元,可以增加2000立方英尺的容积。

重量限制仍保持不变。

假设飞机每年飞行250天,这些旧飞机剩余的使用寿命约为5年。

根据此问题我们将建立数学规划模型,利用Lindo软件计算其影子价格和利润并且与前面进行比较,进行分析。

关键词:线性规划、mathematica软件的应用、Lindo的软件应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6
5 3
9
10
6
v1=10
v2=6
v3=4
单位费用变化:5-(4+(-4)=5
4 3
u1=-4
7 u2=-2
6
13 u3=6
v4=0
对偶变量法(10)
1
2
3
6
7
5
1
14
5
5
8
4
2
2
8
13
6
5 3
9
10
6
v1=10
v2=6
v3=4
单位费用变化:3-(0+(-4)=7
4
3 u1=-4
7
7 u2=-2
6
6
13 u3=6
v4=0
对偶变量法(6)
1
2
3
6
7
5
1
14
8
4
2
2
8
13
6
5 3
9
10
6
v1=10
v2=6
u2+v1=c21 v1=10
v3=4
4 3
u1
7 u2=-2
6
13 u3=6
v4=0
对偶变量法(7)
1
2
3
6
7
5
1
14
8
4
2
2
8
13
6
5 3
9
10
6
v1=10
v2=6
u1+v1=c11 u1=-4
运输问题
运输问题的表示 网络图、线性规划模型、运输表 初始基础可行解 西北角法、最小元素法 求解方法 闭回路法、对偶变量法 特殊形式运输问题 不平衡问题、转运问题
运输问题网络图
供应地
运价
6
s1=14 1 7
5 3

8
应 量
s2=27 2
4 2
7
5
9
s3=19 3 10
6
需求地 1 d1=22
2 d2=13
13 u3=6
v4=0
对偶变量法(11)
1
2
3
6
7
5
1
14
5
5
8
4
2
2
8
13
6
5 3
9
10
6
v1=10
v2=6
v3=4
单位费用变化:7-(0+(-2)=9
4
3 u1=-4
7
7
9 u2=-2
6
13 u3=6
v4=0
对偶变量法(12)
1
2
3
6
7
5
1
14
5
5
8
4
2
2
8
13
6
5
9
3
-11
10
6
v1=10
2
3
6
7
5
1 14
5
5
8
4
2
2 8
13
6
5 3
9
10
6
22
13
12
单位费用变化:5+8-6-2=5
4 3
14
7 27
6 19
13
13
闭回路法(3)
1
2
3
4
6
7
5
3
1 14
5
5
7 14
8
4
2
7
2 8
13
6
27
5 3
9
10
6
19
6
13
22
13
12
13
单位费用变化:3+10+8-6-2-6=7
x31 x32 x33 x34
27 地 约
19 束
x11
x21
x31
x12
x 22
x32
x13
x 23
x33
x14
x 24
x34
22

13 求
12
地 约
13 束
x11 x12 x13 x14 x 21 x 22 x 23 x 24 x 31 x32 x33 x 34
0
一般情形:有m 各供应地,n个 需求地,则有
闭回路法(4)
1
2
3
6
7
5
1
14
5
5
8
4
2
2
8
13
6
5 3
9
10
6
22
13
12
单位费用变化:7+10-6-2=9
4
3
7 14
7
9 27
6
19 13
13
闭回路法(5)
1
2
3
4
6
7
5
3
1
14
5
5
7 14
8
4
2
7
2 8
13
6
9 27
5
9
3
-11
10
6
6 19
13
22
13
12
13
单位费用变化:2+5-8-10=-11
3
13 14 1 0
8
2
2
4
2
7
13
12
27 15 2 0
5
9
10
3
19
6
19 0
22
13
12
13
3 2
0
0
0
0
空格改进指数计算—闭回路法(1)
1
2
3
6
7
5
1
14
5
8
4
2
2
8
13
6
5 3
9
10
6
22
13
12
单位费用变化:7+8-6-4=5
4 3
14
7 27
6 19
13
13
闭回路法(2)
1
min z =
xij 0
m i 1
c x n
j1 ij ij
s.t.
m i 1
xij
ai ,
j 1,2,, n
x n j1 ij
bi ,
i
1,2,, m
运输问题的表格表示——运输表
需求地 供应地
1
2
3
需求量
1
6
x11
8
x21
5
x31
22
2
3
7
x12
4
x22
9
x32
13
5
x13
2
x23
v3=4
4 3
u1=-4
7 u2=-2
6
13 u3=6
v4=0
对偶变量法(8)
1
2
3
6
7
5
1
14
5
8
4
2
2
8
13
6
5 3
9
10
6
v1=10
v2=6
v3=4
单位费用变化:7-(6+(-4)=5
4 3
u1=-4
7 u2=-2
6
13 u3=6
v4=0
对偶变量法(9)
1
2
3
6
7
5
1
14
5
5
8
4
2
2
8
13
v4=0
对偶变量法(2)
1
2
6
7
1
14
8
4
2
8
13
5
9
3
v1
v2
u3+v4=c34 u3=6
3 5
2
6
10
6
v3
4 3
u1
7 u2
6
13 u3=6
v4=0
对偶变量法(3)
1
2
3
6
7
5
1
14
8
4
2
2
8
13
6
5 3
9
10
6
v1
v2
u3+v3=c33 v3=4
v3=4
4 3
u1
7 u2
6
13 u3=6
10
x33
12

4


3
x14
7
x24
6
x34
13
14
27
19
60 60
初始基础可行运输方案—西北角法
1
2
3
4
6
7
5
3
1
14
14
8
4
2
7
2
27
8
13
6
5 3
9
10
6
19
6
13
22
13
12
13
初始可行解运输方案确定—最小元素法
依运费从小到大的次序安排运输方案, 知道所有限制满足
!
1
2
3
4
6
7
5
1
1
闭回路法(6)
1
2
3
6
7
5
1
14
5
5
8
4
2
2
8
13
6
5
相关文档
最新文档