1.1 第1课时 认识勾股定理1

合集下载

北师大版八年级数学上册第一章勾股定理第1课探索勾股定理课件

北师大版八年级数学上册第一章勾股定理第1课探索勾股定理课件

2. 如图,正方形ABCD的面积为25 cm2,△ABP为直角三角形, ∠APB=90°,且PB=3 cm,那么AP的长为( C )
A. 5 cm
B. 3 cm
C. 4 cm
D. 不能确定
3. 在Rt△ABC中,斜边BC=4,则BC2+AB2+AC2= 32 . 4. 如图,所有的四边形都是正方形,所有的三角形都是直角三角 形,其中最大的正方形的边长为7 cm,则正方形A,B,C,D的面积之和 为 49 cm2.
第一章 勾股定理
1 探索勾股定理 第1课时
1. 直角三角形三边存在的关系:在直角三角形中,任意两条边确定了,另 外一条边也就随之 确定 ,三边之间存在着一种特定的 数量 关系.
2. 我国古代把直角三角形中较短的直角边称为 勾 ,较长的直角边称为 股 , 斜边称为 弦 .
3. 勾股定理:直角三角形两直角边的 平方和 等于斜边的 平方 .如果用a, b和c分别表示直角三角形的两直角边和斜边,那么 a2+b2=c2 .
4. 如图,在△ABC中,∠C=90°. (1)若已知a,b,则c2= a2+b2 ; (2)若已知a,c,则b2= c2-a2 ; (3)若已知b,c,则a2=长分别为3和4,下列说法中正确的是( C )
A. 斜边长为25
B. 三角形的周长为25
C. 斜边长为5
D. 三角形的面积为20
2. 三个正方形的面积如图所示,则S的值为( C )
A. 3
B. 4
C. 9
D. 12
3. 在Rt△ABC中,∠C=90°,AB=25,AC=7,则△ABC的面积为84 . 4. 如图,为了测得湖两岸点A和点B之间的距离,一个观测者在点C设桩, 使∠ABC=90°,并测得AC=20m,BC=16m,则点A和点B之间的距离是 12 m.

1.1 第1课时 认识勾股定理

1.1  第1课时 认识勾股定理

利用勾股定理进行计算
8 cm
10 cm
2.判断题. AB=5,AC=12,则斜边BC=13 ( )
c=10 ( )
①△RtABC的两直角边
②△ABC的两边a√=6,b=8,则
3.填空题 ∠C=90°,AC=6,CB=8,则
△ABC的面积为_____,斜边24上的高CD为______.
4.8
在△ABC中,
A D
C
B
解:设另一条直角边长是x cm.由勾股定理得:
152+ x2 =172,x2=172-152=289–225=64,
解得 x=±8(负值舍去),
所以另一直角边长为8 cm, 故直角三角形的面积是:
1 8 15 60 (cm2).
2
当堂练 习
1.图中阴影部分是一个正方形,则此正方形的面积 为 36. cm²
第一章 勾股定理 1.1 探索勾股定理 第1课时 认识勾股定理
学习目标 1.了解勾股定理的内容,理解并掌握直角三角形三边之间的
数量关系.(重点) 2.能够运用勾股定理进行简单的计算.(难点)
导入新 课
如图,这是一幅美丽的图案,仔细观察,你能发现这幅图中的奥秘吗?带着疑 问我们来一起探索吧.
讲授新 课
名字的由来
我国古代把直角三角形中较短的直角边 称为勾,较长的直角边称为股,斜边称为弦, “勾股定理”因此而得名.
在西方又称毕达哥拉 斯定理
求下列图形中未知正方形的面积或未知边的长度(口答): 已知直角三角形两边,求第三边.
利用勾股定理进行计算 例 求斜边长为17 cm、一条直角边长为15 cm的直角三角形的面积.
勾股定理的初步认识
问题1:观察下面地板砖示意图:

北师大版八年级数学上册1.1 第1课时 勾股定理的认识 课件(共23张PPT)

北师大版八年级数学上册1.1 第1课时 勾股定理的认识  课件(共23张PPT)

探究新知
1.在纸上画若干个直角三角形,分别测量它们的
三条边,看看三边长的平方之间有怎么样的关系?
c
a
b
直角三角形的两直角边的平方和等于斜边的平方,这就是
著名的“勾股定理”。
如果直角三角形的两条直角边为a、b,斜边为c,那么有
a2+b2=c2.
数学小知识
我国古代称直角三角形的较短的直角边为勾,较长的直角
求 的长.
解:因为 ⊥ ,
所以 ∠ = ∠ = 90∘ .
在 Rt △ 中, 2 = 2 − 2 = 102 − 82 = 36 ,
所以 = 6 .
设 = = ,则 = − 6 .
在 Rt △ 中, 2 = 2 + 2 ,
所以 △ =
1

2
1
2
⋅ = × 25 × 12 = 150 .
6. 如图,直线 上有三个正方形 , , .若 , 的面积分别
为 5 和 11 ,则 的面积为( C )
A. 4
B. 6
C. 16
D. 55
7. 如图,在 △ 中, = , = 10 , ⊥ ,垂足为 , = 8 .
(2) 已知 = 12 , = 16 ,求 .
【解】在 Rt △ 中, ∠ = 90∘ , = 12 , = 16 ,
所以 2 = 2 + 2 = 122 + 162 = 400 .
所以 = 20 .
例2 如图,在 △ 中, ⊥ 于点 ,且 + = 32 ,
因为 ∠ = 90∘ ,所以 2 + 2 = 2 .

北师大版八年级上册1.1第1课时认识勾股定理说课稿

北师大版八年级上册1.1第1课时认识勾股定理说课稿
(三)学习动机
为了激发学生的学习兴趣和动机,我采取以下策略和活动:
1.创设情境:通过引入实际问题,让学生感受到勾股定理在生活中的广泛应用,从而激发他们的学习兴趣。
2.探索活动:组织学生进行小组合作,引导他们通过观察、猜想、归纳等方法,探索勾股定理的发现过程,增强学生的参与感和成就感。
3.竞赛激励:开展勾股定理知识竞赛,鼓励学生积极参与,提高他们的学习热情。
2.提出问题:提出一个与勾股定理相关的问题:“一个直角三角形的两个直角边分别为3和4,那么它的斜边是多少?”让学生尝试解答,引发学生对勾股定理的探究兴趣。
3.故事导入:讲述古希腊数学家毕达哥拉斯发现勾股定理的传说故事,让学生在轻松愉快的氛围中进入新课学习。
(二)新知讲授
在新知讲授阶段,我将逐步呈现知识点,引导学生深入理解:
-及时给予学生反馈,针对性地解答学生的疑问。
-课后评估教学效果,通过作业、测试和学生的反馈来了解教学成效。
课后,我将进行以下反思和改进:
1.分析学生的作业和测试成绩,查找教学中的不足。
2.根据学生的接受程度,调整教学节奏和难度。
3.定期与学生交流,了解他们的学习需求,不断优化教学方法。
3.课堂展示:鼓励学生将小组探究的成果进行展示,其他学生进行评价和提问,以此提高学生的表达能力和批判性思维。
4.课后交流:利用网络平台,开展线上讨论和交流,让学生在课后继续探讨勾股定理相关知识,延伸学习空间。
四、教学过程设计
(一)导入新课
为了快速吸引学生的注意力和兴趣,我将采用以下方式导入新课:
1.创设情境:通过展示一张古老的直角三角形图形,引发学生思考:“为什么在古老的建筑中,直角三角形如此常见?”从而激发学生对直角三角形相关性质的好奇心。

1.1探索勾股定理第1课时认识勾股定理(教案)2022秋八年级上册初二数学北师大版(安徽)

1.1探索勾股定理第1课时认识勾股定理(教案)2022秋八年级上册初二数学北师大版(安徽)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了勾股定理的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对勾股定理的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.重点难点解析:在讲授过程中,我会特别强调勾股定理的表达式和证明方法这两个重点。对于难点部分,我会通过构造图形和实际操作来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与勾股定理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过实际测量合作意识和表达交流素养,通过小组讨论和课堂分享,促进学生之间的交流与合作。
三、教学难点与重点
1.教学重点
-理解勾股定理的概念及其表达形式:即直角三角形中,两条直角边的平方和等于斜边的平方。这是本节课的核心内容,教师需通过直观的图形演示和实际操作,使学生深刻理解这一数学规律。
-掌握勾股定理的证明方法:通过不同的证明方法(如构造法、割补法、代数法等),让学生体会数学的严谨性和多样性,加强对定理的理解。
-灵活运用勾股定理解决问题:学生在解决问题时可能会出现对定理运用不灵活的情况,例如,无法将实际问题转化为直角三角形的边长计算问题。
-掌握勾股定理的适用范围:学生需要明确勾股定理只适用于直角三角形,对于非直角三角形不适用。
举例:针对证明过程的难点,可以设计以下教学活动:
a.通过割补法证明勾股定理时,教师可以引导学生通过剪纸、拼接等实际操作,直观地感受证明过程,降低理解难度。
-应用勾股定理解决实际问题:将勾股定理应用于解决直角三角形边长计算等问题,使学生掌握定理在实际生活中的运用。

北师大版八年级上册数学1.1第1课时认识勾股定理教案1

北师大版八年级上册数学1.1第1课时认识勾股定理教案1

1. 1研究勾股定理第 1 课时认识勾股定理1.研究勾股定理,进一步发展学生的推理能力;2.理解并掌握直角三角形三边之间的数目关系. ( 要点、难点 )一、情境导入如下图的图形像一棵枝叶旺盛、姿态优美的树,这就是有名的毕达哥拉斯树,它由若干个图形构成,而每个图形的基本元素是三个正方形和一个直角三角形.各组图形大小不一,但形状一致,结构奇巧.你能说说此中的神秘吗?二、合作研究研究点一:勾股定理的初步认识【种类一】直接利用勾股定理求长度如图,已知在△ABC 中,∠ACB=90°, AB=5cm, BC= 3cm, CD⊥ AB 于点D,求 CD的长.分析:先运用勾股定理求出AC 的长,11再依据 S△ABC=2AB·CD=2AC·BC,求出 CD的长.解:∵△ ABC 是直角三角形,∠ACB=90°, AB= 5cm, BC=3cm,∴由勾股定理得222222AC = AB - BC= 5 - 3 = 4 ,∴ AC= 4cm. 又11AC·BC∵S ABC=AB·CD=AC·BC,∴CD=△22AB4×3 12(cm) ,故 CD的长是12==cm.555方法总结:由直角三角形的面积求法可知直角三角形两直角边的积等于斜边与斜边上高的积,这个规律也称“弦高公式”,它常与勾股定理联合使用.【种类二】勾股定理与其余几何知识的综合运用如图,已知 AD是△ ABC的中线.求2222证: AB +AC= 2(AD + CD) .分析:结论中波及线段的平方,所以可以考虑作AE⊥ BC于点 E,在△ ABC中结构直角三角形,利用勾股定理进行证明.证明:如图,过点 A 作 AE⊥BC 于点 E.在 Rt △ACE、 Rt△ ABE和 Rt△ ADE中, AB2=22222222AE + BE,AC= AE+ CE,AE= AD- ED,∴2222222 AB + AC= (AE + BE) + (AE + CE) = 2(AD- ED2) + (DB - DE)2+ (DC+ DE)2= 2AD2-22222ED+ DB-2DB·DE+ DE+ DC+2DC·DE+2222DE= 2AD+DB+ DC+ 2DE(DC- DB).又∵ AD22是△ ABC 的中线,∴ BD= CD,∴ AB + AC=22222AD+ 2DC= 2(AD + CD) .方法总结:结构直角三角形,利用勾股定理把需要证明的线段联系起来.一般地,波及线段之间的平方关系问题时,往常沿着这个思路去剖析问题.【种类三】分类议论思想在勾股定理中的应用在△ ABC中, AB= 20,AC= 15,AD 为 BC边上的高,且 AD= 12,求△ ABC 的周长.分析:应试虑高AD在△ABC内和△ABC外的两种情况.解:当高 AD在△ ABC内部时,如图①.在 Rt △ ABD中,由勾股定理,得22 BD= AB-222=162,∴ BD= 16;在 Rt △ ACDAD=20 -12中,由勾股定理,得2222-CD= AC- AD= 15122= 81,∴ CD=9. ∴BC= BD+ CD= 25,∴△ABC的周长为25+20+ 15= 60.当高 AD在△ ABC外面时,如图② . 同理可得 BD= 16,CD=9. ∴BC= BD-CD= 7,∴△ABC的周长为 7+20+ 15= 42. 综上所述,△ABC的周长为 42 或 60.方法总结:题中未给出图形,作高结构直角三角形时,易遗漏钝角三角形的情况.如在本例题中,易只考虑高AD在△ABC内的情况,忽略高AD在△ ABC外的情况.研究点二:利用勾股定理求面积如图,以Rt△ ABC的三边长为斜边分别向外作等腰直角三角形.若斜边AB =3,则图中△ ABE 的面积为 ________,暗影部分的面积为 ________.1分析:由于 AE= BE,所以 S△ABE=2AE·BE 122222= AE. 又由于AE+ BE = AB,所以 2AE =2212129AB ,所以 S△=4AB=4× 3=4;同理可得ABES△AHC+121222 S△BCF=4A C+4BC. 又由于AC+BC=212121 AB ,所以暗影部分的面积为4AB +AB =24212999AB=×3=2.故填、.242方法总结:求解与直角三角形三边相关的图形面积时,要联合图形想方法把图形的面积与直角三角形三边的平方联系起来,再利用勾股定理找到图形面积之间的等量关系.三、板书设计勾股定理:直角三角形两直角边的平方和等于斜边的平方.假如用 a,b,c 分别表示直角三角形的两直角边和斜边,那么a2+b2= c2.让学生领会数形联合和由特别到一般的思想方法,进一步发展学生的说理和简单推理的意识及能力;进一步领会数学与现实生活的密切联系.在研究勾股定理的过程中,体验获取成功的快乐;经过介绍勾股定理在中国古代的研究,激发学生热爱祖国的悠长文化历史,激励学生奋发学习.。

勾股定理第一节ppt课件

勾股定理第一节ppt课件
40
A
90
B
C
160 40
答:两孔中心A,B的距离为130mm.
作业快餐:
1.完成课本习题1、2、3(必做) 2.课后小实验:如图,分别以直角三角形的三 边为直 径作三个半圆,这三个半圆的面积之间有什么关系?为 什么? (必做) 3.做一棵奇妙的勾股树(选做)
总统证法
美国总统证法:
D c a
C
c b a B
b
A
请同学们动手证明
证明3:
C D
a c c
你能只用这两个 直角三角形说明 a2+b2=c2吗?
b
A
b
梯形ABCD
∵S = 1
=
1 2
E
a
B
a+b 2
2 又∵ S 梯形ABCD = S AED + S EBC + S 1 1 1 1 = ab+ ba+ c 2 = (2ab+ c 2 ) 2 2 2 2 比较上面二式得 c 2= a 2+ b 2
2 c 大正方形的面积可以表示为 1 2 ba ) 4 ab 也可以表示为 ( 2 c 1 2 ba ) 4 ab ∵ c2= ( 2 2-2ab+a2+ 2ab =b b =a2+b2

a
a
c
a b b
a
b
c
赵爽弦图
∴a2+b2=c2
c
证明2:
2 (a+b) 大正方形的面积可以表示为 ; ab 4 C2 也可以表示为 2
A
130
?
C
120
B
议一议:
如图,大风将一根木制旗 杆吹裂,随时都可能倒下, 十分危急。接警后“119” 迅速赶到现场,并决定从 断裂处将旗杆折断。现在 需要划出一个安全警戒区 域,那么你能确定这个安 全区域的半径至少是多少 米吗?

北师大版八年级数学上册同步练习附答案

北师大版八年级数学上册同步练习附答案

第一章勾股定理1.1 探索勾股定理第1课时认识勾股定理1.若△ABC中,∠C=90°,(1)若a=5,b=12,则c= ;(2)若a=6,c=10,则b= ;(3)若a∶b=3∶4,c=10,则a= ,b= .2.某农舍的大门是一个木制的矩形栅栏,它的高为2 m,宽为1.5 m,现需要在相对的顶点间用一块木棒加固,木板的长为.3.直角三角形两直角边长分别为5 cm,12 cm,则斜边上的高为.4.等腰三角形的腰长为13 cm,底边长为10 cm,则面积为().A.30 cm2B.130 cm2C.120 cm2D.60 cm25.轮船从海中岛A出发,先向北航行9km,又往西航行9 km,由于遇到冰山,只好又向南航行4 km,再向西航行6 km,再折向北航行2 km,最后又向西航行9 km,到达目的地B,求AB两地间的距离.6.一棵9 m高的树被风折断,树顶落在离树根3 m之处,若要查看断痕,要从树底开始爬多高?7.折叠长方形ABCD的一边AD,使点D落在BC边的F点处,若AB=8 cm,BC=10 cm,求EC的长.FC参考答案:1.(1)13;(2)8;(3)6,8. 2.2.5m . 3.1360cm . 4.D . 5.25km . 6.4. 7.3 cm .1.2 一定是直角三角形吗1.如图在∆ABC 中, ∠BAC = 90︒, AD ⊥BC 于D , 则图中互余的角有 A .2对 B .3对 C .4对 D .5对2.如果直角三角形的两边的长分别为3、4,则斜边长为3.已知:四边形ABCD 中,BD 、AC 相交于O ,且BD 垂直AC ,求证:AB CD AD BC 2222+=+。

4. 已知:钝角∆BAC ,CD 垂直BA 延长线于D ,求证:BC AB AC AB AD 2222=++⋅。

D CO ABD AB C5. 已知:AB AC =,且AB AC ⊥,D 在BC 上,求证:BD CD AD 2222+=。

最新北师大版八年级数学上全册优质教学课件(所有课时)

最新北师大版八年级数学上全册优质教学课件(所有课时)
最新北师大版八年级数学上全册优质教学课件
打造中学数学高效课堂的首先教学课件
第一章 勾股定理
1.1 探索勾股定理
第1课时 认识勾股定理
导入新课 讲授新课 当堂练习 课堂小结
学习目标
情境引入
1.了解勾股定理的内容,理解并掌握直角三角形三边之间的
数量关系.(重点) 2.能够运用勾股定理进行简单的计算.(难点)
(2)以5 cm、12 cm为直角边作出一个直角三角形,并测量斜 边的长度. (1)中的规律对这个三角形仍然成立吗?
要点归纳
勾股定理
直角三角形两直角边的平方和等于斜边的平 方.如果a,b和c分别表示直角三角形的两直角 边和斜边,那么a2+b2=c2.
名字的由来
我国古代把直角三角形中较 短的直角边称为勾,较长的直角 边称为股,斜边称为弦,“勾股 定理”因此而得名.
勾 弦 股
在西方又称毕达 哥拉斯定理
练一练
求下列图形中未知正方形的面积或未知边的长度(口答):
100 225
x
17 15
?
已知直角三角形两边,求第三边.
二 利用勾股定理进行计算
例 求斜边长为17 cm、一条直角边长为15 cm的直角三角
形的面积.
解:设另一条直角边长是x cm.由勾股定理得:
152+ x2 =172,x2=172-152=289–225=64, 解得 x=±8(负值舍去), 所以另一直角边长为8 cm, 故直角三角形的面积是: (cm2).
B的面积
9 9
C的面积
13 25
结论:以直角三角形两直角边为边长的小正方形的面
积的和,等于以斜边为边长的正方形的面积.
想一想
(1)你能用直角三角形的两直角边的长a,b和斜边长c来表示

第一章 勾股定理

第一章  勾股定理

第一章勾股定理1.1 探索勾股定理第1课时探索勾股定理基础题知识点1 认识勾股定理1.下列说法正确的是( D )A.若a,b,c是△ABC的三边,则a2+b2=c2B.若a,b,c是Rt△ABC的三边,则a2+b2=c2C.若a,b,c是Rt△ABC的三边,∠A=90°,则a2+b2=c2D.若a,b,c是Rt△ABC的三边,∠A=90°,则c2+b2=a22.在Rt△ABC中,斜边长BC=3,AB2+AC2+BC2的值为(A)A.18 B.9C.6 D.无法计算3.若一个直角三角形的两条直角边长都为1,则它的斜边长的平方是(C)A.12B.1C.2 D.44.(淮安中考)如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB的长度为(A)A.5B.6C.7D.255.已知在Rt△ABC中,∠C=90°.(1)若a=3,b=4,则c=5;(2)若a=6,c=10,则b=8;(3)若c=25,b=15,则a=20.知识点2 勾股定理的简单应用6.如图,做一个宽80厘米,高60厘米的长方形木框,需在相对角的顶点加一根加固木条,则木条的长为(B) A.90厘米B.100厘米C.105厘米 D.110厘米7.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了4步路(假设2步为1米),却踩伤了花草.8.已知等腰三角形的底边长为6,底边上的中线长为4,求等腰三角形的腰长.解:如图,因为AD是BC的中线,所以BD =12BC =3,AD ⊥BC.在Rt △ABD 中,由勾股定理,得 AB 2=AD 2+BD 2=42+32=25. 所以AB =5,即腰长为5.知识点3 利用勾股定理求面积9.(深圳校级期中)图中字母所代表的正方形的面积为144的选项为(D)10.如图,Rt △ABC 中,∠C =90°,若AB =15 cm ,则正方形ADEC 和正方形BCFG 的面积为(C)A .150 cm 2B .200 cm 2C .225 cm 2D .无法计算中档题11.(资阳中考)如图,点E 在正方形ABCD 内,满足∠AEB =90°,AE =6,BE =8,则阴影部分的面积是(C) A .48 B .60 C .76 D .8012.如图,若∠BAD =∠DBC =90°,AB =3,AD =4,BC =12,则CD =(B) A .5 B .13 C .17 D .1813.如图,已知△ABC 中,AB =17,AC =10,BC 边上的高AD =8,则边BC 的长为(A)A .21B .15C .6D .以上答案都不对14.在Rt △ABC 中,∠C =90°,已知a ∶b =3∶4,c =100,其中a ,b ,c 分别为∠A ,∠B ,∠C 的对边,则b 的长为(C)A .30B .60C .80D .12015.如图所示为一种“羊头”形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②,…,依此类推,若正方形①的面积为64,则正方形⑤的面积为(B)A .2B .4C .8D .1616.如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =4,以点A 为圆心,AC 长为半径画弧,交AB 于点D ,则BD =2.17.如图,小明将一张长为20 cm ,宽为15 cm 的长方形纸剪去了一角,量得AB =3 cm ,CD =4 cm ,则剪去的直角三角形的斜边长为20cm.18.如图所示,已知在△ABC 中,∠ACB =90°,AB =5 cm ,BC =3 cm ,CD ⊥AB 于点D ,求CD 的长.解:因为△ABC 是直角三角形,AB =5 cm ,BC =3 cm , 由勾股定理有 AC 2=AB 2-BC 2,所以AC =52-32=4(cm).又因为S △ABC =12AB ·CD =12BC ·AC ,得CD =AC ·BC AB =125 cm.所以CD 的长是125cm.综合题19.在△ABC 中,AB =20,AC =15,BC 边上的高等于12,求△ABC 的周长. 解:①如图1,BD =202-122=16,CD =152-122=9,所以BC =BD +CD =16+9=25.所以周长为AB +BC +CA =20+25+15=60.图1 图2②如图2,BD=202-122=16,CD=152-122=9,所以BC=BD-CD=16-9=7.所以周长为AB+BC+CA=20+7+15=42.所以△ABC的周长为60或42.第2课时 验证勾股定理及其计算基础题知识点1 验证勾股定理1.历史上对勾股定理的一种证法采用了下列图形:其中两个全等的直角三角形边AE 、EB 在一条直线上.证明中用到的面积相等关系是(D)A .S △EDA =S △CEBB .S △EDA +S △CEB =S △CDEC .S 四边形CDAE =S 四边形CDEBD .S △EDA +S △CDE +S △CEB =S 四边形ABCD2.用如图1所示的4个形状、大小完全一样的直角三角形拼一拼,摆一摆,可以摆成如图2所示的正方形,你能利用这个图形验证勾股定理吗?解:观察图形我们不难发现,大的正方形的边长是(a +b),里面小的正方形的边长为c.大正方形面积可以表示为(a +b)2,也可以表示为12ab ×4+c 2.对比这两种表示方法,可得出(a +b)2=12ab ×4+c 2.整理得c 2=a 2+b 2.因此利用这个图形可以验证勾股定理.知识点2 勾股定理的简单应用3.为了迎接新年的到来,同学们做了许多拉花布置教室,准备召开新年晚会,小王搬来一架长为2.5米的木梯,准备把梯子架到2.4米高的墙上,则梯脚与墙角的距离为(A) A .0.7米 B .0.8米 C .0.9米 D .1.0米4.在一块平地上,张大爷家屋前9米远处有一棵大树.在一次强风中,这棵大树从离地面6米处折断倒下,量得倒下部分的长是10米.出门在外的张大爷担心自己的房子被倒下的大树砸到.大树倒下时会砸到张大爷的房子吗?请你通过计算、分析后给出正确的回答(A) A .一定不会 B .可能会C .一定会D .以上答案都不对5.某天我国海监船驶向钓鱼岛海域执法时,海监船甲以15海里/时的速度离开港口向北航行,海监船乙船同时以20海里/时的速度离开港口向东航行,则它们离开港口2小时后相距50海里.6.如图是一个外轮廓为长方形的机器零件平面示意图,根据图中标出的尺寸(单位:mm),计算两圆孔中心A 和B 的距离为100mm.7.如图是某小区一健身中心的平面图,活动区是面积为200 m 2的长方形,休息区是直角三角形,请你求出半圆形餐饮区的面积.解:AD 的长为20020=10(m).由勾股定理可得DE =6 m.所以半圆形餐饮区的面积S =12π×(6÷2)2=92π(m 2).答:半圆形餐饮区的面积为92π m 2.中档题8.如图1是边长分别为a ,b 的两个正方形,经如图2所示的割补可以得到边长为c 的正方形,且面积等于割补前的两正方形面积之和.利用这个方法可以推得或验证勾股定理.现请你通过对图2的观察指出下面对割补过程的理解不正确的是(B)A .割⑤补⑥B .割③补①C .割①补④D .割③补②9.如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a ,较短直角边为b ,则ab 的值是(A) A .4 B .6 C .8 D .1010.一辆装满货物,宽为2.4米的卡车,欲通过如图所示的隧道,则卡车的外形高必须低于(A) A .4.1米 B .4.0米 C .3.9米 D .3.8米11.如图,将一根20 cm 长的细木棒放入长、宽、高分别为4 cm 、3 cm 和12 cm 的长方体无盖盒子中,则细木棒露在盒外面的最短长度是7cm.12.《中华人民共和国道路交通安全法》规定:小汽车在城市街路上行驶速度不得超过70 km/h.如图,一辆小汽车在一条城市道路上直道行驶,某一时刻刚好行驶到路对面车速检测仪的正前方30 m 处,过了2 s 后,测得小汽车与车速检测仪间距离为50 m .这辆小汽车超速了吗?解:这辆小汽车超速了. 依题意得AB =50 m , AC =30 m ,由勾股定理得BC =AB 2-AC 2=502-302=40(m). 小汽车速度为40÷2=20(m/s)=72(km/h).因为小汽车在城市街路上行驶速度不得超过70 km/h , 所以这辆小汽车超速了.13.4个全等的直角三角形的直角边分别为a 、b ,斜边为c.现把它们适当拼合,可以得到如图的图形,利用这个图形可以验证勾股定理,你能说明其中的道理吗?请试一试.解:图形的总面积可以表示为: c 2+2×12ab =c 2+ab ,也可以表示为:a 2+b 2+2×12ab =a 2+b 2+ab ,所以c 2+ab =a 2+b 2+ab ,即a 2+b 2=c 2.综合题14.为了向建国六十八周年献礼,某校各班都在开展丰富多彩的庆祝活动,八年级(1)班开展了手工制作竞赛,每个同学都在规定时间内完成一件手工作品.陈莉同学在制作手工作品的第一、二个步骤是: ①先裁下了一张长BC =20 cm ,宽AB =16 cm 的长方形纸片ABCD ; ②将纸片沿着直线AE 折叠,点D 恰好落在BC 边上的F 处. 请你根据①②步骤解答下列问题:计算EC ,FC 的长.解:因为△ADE 与△AFE 关于AE 对称, 所以△ADE ≌△AFE. 所以DE =FE ,AD =AF.因为BC =20 cm ,AB =16 cm , 所以CD =16 cm ,AD =AF =20 cm.在Rt△ABF中,由勾股定理,得BF=12 cm.所以FC=20-12=8(cm).因为四边形ABCD是长方形,所以∠C=90°.设CE=x,则DE=EF=16-x,在Rt△CEF中,由勾股定理,得(16-x)2=64+x2. 解得x=6.所以EC=6 cm.1.2 一定是直角三角形吗基础题知识点1 直角三角形的判别1.在△ABC 中,AB =3,AC =4,BC =5,则该三角形为(B) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形2.在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c 且a 2-b 2=c 2,则下列说法正确的是(C) A .∠C 是直角 B .∠B 是直角 C .∠A 是直角 D .∠A 是锐角3.如图,正方形网格中的△ABC ,若小方格边长为1,则△ABC 的形状为(A)A .直角三角形B .锐角三角形C .钝角三角形D .以上答案都不对4.木工做一个长方形桌面,量得桌面的长为60 cm ,宽为32 cm ,对角线长为68 cm ,则这个桌面合格(填“合格”或“不合格”).5.如图,在△ABC 中,AB =13,BC =10,BC 边上的中线AD =12.求: (1)AC 的长度; (2)△ABC 的面积.解:(1)因为AD 是BC 的中线,BC =10, 所以BD =CD =5.因为52+122=132,所以AD 2+BD 2=AB 2. 所以∠ADB =90°. 所以∠ADC =90°.所以AC =AD 2+CD 2=144+25=13.(2)S △ABC =12CB ·AD =12×10×12=60.知识点2 勾股数6.下列几组数中,为勾股数的一组是(D)A .0.3,0.5,0.4B .-15,8,7C .21,45,20D .15,20,257.有一组勾股数,知道其中的两个数分别是17和8,则第三个数是15.8.将勾股数3,4,5扩大2倍,3倍,4倍,…,可以得到勾股数6,8,10;9,12,15;12,16,20;…,则我们把3,4,5这样的勾股数称为基本勾股数,请你写出两组不同于以上所给出的基本勾股数:如5,12,13;7,24,25等.9.如图,四边形ABDC 中,∠A =90°,AB =4,AC =3,CD =13,BD =12,求这个四边形的面积.解:连接BC.在△ABC 中,∠A =90°,AB =4,AC =3,由勾股定理,得BC 2=AC 2+AB 2=32+42=25,则BC =5. 在△BDC 中,CD =13,BD =12,BC =5, BD 2+BC 2=122+52=169,CD 2=132=169,所以BD 2+BC 2=CD 2,即△BDC 为∠CBD =90°的直角三角形.所以四边形ABDC 的面积为12AB ·AC +12BC ·BD =12×4×3+12×5×12=36.中档题10.满足下列条件的△ABC ,不是直角三角形的是(D)A .b 2=c 2-a 2B .a ∶b ∶c =3∶4∶5C .∠C =∠A -∠BD .∠A ∶∠B ∶∠C =3∶4∶511.五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,其中正确的是(C)12.小红要求△ABC 中最长边上的高,测得AB =8 cm ,AC =6 cm ,BC =10 cm ,则可知最长边上的高是(B) A .48 cm B .4.8 cm C .0.48 cm D .5 cm13.如图,分别以三角形三边为直径向外作三个半圆,如果较小的两个半圆面积之和等于较大的半圆面积,那么这个三角形为(B) A .锐角三角形 B .直角三角形 C .钝角三角形D .锐角三角形或钝角三角形14.如图,方格中的点A ,B 称为格点(横线的交点),以AB 为一边画△ABC ,其中是直角三角形的格点C 的个数为(B)A .3B .4C .5D .615.观察下列一组勾股数:6,8,10;8,15,17;10,24,26;12,35,37;…;a ,b ,c.根据你的发现,写出当a =20时,b =99,c =101.16.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,且满足c +a =2b ,c -a =12b ,则△ABC 是什么特殊三角形?解:因为c +a =2b ,c -a =12b ,所以(c +a)(c -a)=2b ·12b.所以c 2-a 2=b 2,即a 2+b 2=c 2.所以△ABC 为∠C =90°的直角三角形.综合题17.如图,在△ABC 中,∠ABC =90°,AB =6 cm ,AD =24 cm ,BC 与CD 的长度之和为34 cm ,其中点C 是直线l 上的一个动点,请你探究当点C 离点B 有多远时,△ACD 是以DC 为斜边的直角三角形.解:因为BC 与CD 的长度之和为34 cm , 所以设BC =x cm ,则CD =(34-x)cm.因为在△ABC 中,∠ABC =90°,AB =6 cm ,所以AC 2=AB 2+BC 2=62+x 2.因为△ACD 是以DC 为斜边的直角三角形,AD =24 cm ,所以AC 2=CD 2-AD 2=(34-x)2-242.所以62+x 2=(34-x)2-242. 解得x =8, 即BC =8 cm.答:当点C 离点B8 cm 时,△ACD 是以DC 为斜边的直角三角形.1.3 勾股定理的应用基础题知识点1 勾股定理在生活中的应用1.如图,湖的两端有A、B两点,从与BA方向成直角的BC方向上的点C测得CA=130米,CB=120米,则AB为(C)A.30米B.40米C.50米D.60米2.一个圆柱形的油桶高120 cm,底面直径为50 cm,则桶内所能容下的最长的木棒长为(D)A.5 cm B.100 cmC.120 cm D.130 cm3.国庆假期中,小华与同学去玩探宝游戏,按照探宝图,他们从门口A处出发先往东走8 km,又往北走2 km,遇到障碍后又往西走3 km,再向北走到6 km处往东拐,仅走了1 km,就找到了宝藏,则门口A到藏宝点B的直线距离是(D)A.20 kmB.14 kmC.11 kmD.10 km4.你听说过亡羊补牢的故事吧.为了防止羊的再次丢失,牧羊人要在高0.9 m,宽1.2 m的长方形栅栏门的相对角顶点间加固一条木板,则这条木板至少需1.5_m长.5.一渔船从A点出发,向正北方向航行5公里到B点,然后从B点向正东方向航行12公里至C点,则AC长为13公里.6.如图是一个滑梯示意图,若将滑梯AC水平放置,则刚好与AB一样长,已知滑梯的高度CE=3 m,CD=1 m,求滑道AC的长.解:设AC的长为x m.因为AC=AB,所以AB=AC=x m.因为EB=CD=1 m,所以AE=(x-1)m.在Rt△ACE中,AC2=CE2+AE2,即x2=32+(x-1)2.解得x=5.所以滑道AC的长为5 m.7.如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶端A在AC上运动,量得滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,求滑竿顶端A下滑多少米?解:因为AB=DE=2.5,BC=1.5,∠C=90°,所以AC=AB2-BC2= 2.52-1.52=2.因为BD=0.5,所以在Rt△ECD中,CE=DE2-CD2= 2.52-(CB+BD)2= 2.52-(1.5+0.5)2=1.5.所以AE=AC-EC=0.5.答:滑竿顶端A下滑了0.5米.知识点2 立体图形中两点之间的最短距离8.如图,若圆柱的底面周长是30 cm,高是40 cm,从圆柱底部A处沿侧面缠绕一圈丝线到顶部B处作装饰,则这条丝线的最小长度是(D)A.80 cm B.70 cmC.60 cm D.50 cm9.如图是棱长为1的正方体木块,一只蚂蚁现在A点,若在B处有一食物,它想尽快吃到食物,设蚂蚁沿正方体表面爬行的最短路程为a,则a2=5.中档题10.已知小龙、阿虎两人均在同一地点,若小龙向北直走160公尺,再向东直走80公尺后,可到神仙百货,则阿虎向西直走________公尺后,他与神仙百货的距离为340公尺(C)A.100 B.180C.220 D.26011.(济南中考)如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m处,发现此时绳子末端距离地面2 m,则旗杆的高度为(滑轮上方的部分忽略不计)为(D)A.12 m B.13 mC.16 m D.17 m12.(东营中考)如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行10米.13.如图是延安某地一个农家的窑洞的洞门示意图,其上方为半圆形,若长方形的对角线AC =2.5米,AD =1.5米,则洞口的面积为4.5平方米(π取3).14.如图,长方体的高为3 cm ,底面是正方形,边长为2 cm ,现有一苍蝇从A 点出发,沿长方体的表面到达C 点处,则苍蝇所经过的最短距离为5_cm.15.如图,圆柱的底面周长为6 cm ,AC 是底面圆的直径,高BC =6 cm ,点P 是BC 上一点,且PC =23BC.一只蚂蚁从A 点出发沿着圆柱体的表面爬行到点P 的最短距离是多少?解:画侧面展开图,如图, 因为圆柱的底面周长为6 cm , 所以右图中AC =3 cm. 又因为PC =23BC ,所以PC =23×6=4(cm).在Rt △ACP 中,AP 2=AC 2+CP 2,得AP =5 cm. 所以蚂蚁爬行的最短距离是5 cm.综合题16.印度数学家什迦罗(1141年~1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边;渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?”请用学过的数学知识回答这个问题.解:如图,由题意知,AC=2,AD=0.5.在Rt△ACD中,由勾股定理,得CD2=AC2-AD2=22-0.52=3.75. 设湖水深BD为x尺,则BC为(x+0.5)尺.在Rt△BCD中,由勾股定理,得BD2+CD2=BC2,即x2+3.75=(x+0.5)2,解得x=3.5.答:湖水深3.5尺.小专题(一) 利用勾股定理解决最短路径问题——教材P19T12的变式与应用【教材母题】(教材P19T12)如图,长方体的长为15 cm,宽为10 cm,高为20 cm,点B离点C的距离是5 cm,一只蚂蚁要沿着长方体的表面从点A爬到点B,需要爬行的最短路程是多少?解:①把长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如图1:所以BD=CD+BC=10+5=15(cm),AD=20 cm.在Rt△ABD中,根据勾股定理,得AB=AD2+BD2=202+152=25(cm).②把长方体的上侧表面剪开与右面这个侧面所在的平面形成一个长方形,如图2,所以BD=CD+BC=20+5=25(cm),AD=10 cm.在Rt△ABD中,根据勾股定理,得AB=AD2+BD2=102+252=725(cm).③把长方体的上侧表面剪开与后面这个侧面所在的平面形成一个长方形,如图3,所以AC=CD+AD=10+20=30(cm).在Rt△ABC中,根据勾股定理,得AB=AC2+BC2=302+52=925(cm).因为25<725<925,所以最短路程是25 cm.1.如图是一个三级台阶,它的每一级的长、宽、高分别为20 dm、3 dm、2 dm,A和B是这个台阶的两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,问蚂蚁沿着台阶面爬行到B点的最短路程是多少?解:经分析,如图,应把台阶看成是纸片折成的,拉平(没高度)成一张长方形(宽为3×3+2×3=15 dm,长为20 dm)的纸.所以AB2=152+202=625(dm2).所以AB=25 dm,即蚂蚁沿着台阶面爬行到B点的最短路程是25 dm.2.(青岛中考改编)如图,圆柱形玻璃杯,高为12 cm,底面周长为18 cm,在杯内离杯底3 cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4 cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离的平方是多少?解:如图,将杯子侧面展开,作点A关于EF的对称点A′,连接的A′C即为最短距离.A′C2=A′D2+CD2=92+132=250(cm2).小专题(二) 利用勾股定理解决折叠问题1.如图所示,有一块直角三角形纸片,∠C =90°,AC =4 cm ,BC =3 cm ,将斜边AB 翻折,使点B 落在直角边AC 的延长线上的点E 处,折痕为AD ,则CE 的长为(A) A .1 cm B .1.5 cm C .2 cm D .3 cm2.如图,长方形ABCD 的边AD 沿折痕AE 折叠,使点D 落在BC 上的点F 处,已知AB =6,△ABF 的面积是24,则FC 等于(B)A .1B .2C .3D .43.如图,有一张直角三角形纸片,两直角边AC =5 cm ,BC =10 cm ,将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则CD 的长为(D) A.252cm B.152 cm C.254cmD.154cm4.如图,在长方形纸片ABCD 中,AB =8 cm ,把长方形纸片沿直线AC 折叠,点B 落在点E 处,AE 交DC 于点F ,若AF =254 cm ,则AD 的长为(C)A .4 cmB .5 cmC .6 cmD .7 cm5.(铜仁中考)如图,在长方形ABCD 中,BC =6,CD =3,将△BCD 沿对角线BD 翻折,点C 落在点C ′处,BC ′交AD 于点E ,则线段DE 的长为(B) A .3 B.154 C .5D.1526.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE 为折痕,则EB′=1.5.7.如图,在Rt△ABC中,∠C=90°,BC=6 cm,AC=8 cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB 边的C′点,那么△ADC′的面积是6_cm2.8.如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的点B′处,点A的对应点为点A′,且B′C=3,求AM的长.解:连接BM,B′M.因为四边形ABCD为正方形,所以∠A=∠D=90°.由题意,得DB′=9-3=6,BM=B′M.设AM=x,则DM=9-x.由勾股定理,得x2+92=BM2,(9-x)2+62=B′M2,所以x2+92=(9-x)2+62,解得x=2,即AM的长为2.章末复习(一) 勾股定理基础题知识点1 勾股定理及其验证1.在△ABC 中,∠A 、∠B 、∠C 的对应边分别是a 、b 、c ,若∠A +∠C =90°,则下列等式中成立的是(C)A .a 2+b 2=c 2B .b 2+c 2=a 2C .a 2+c 2=b 2D .c 2-a 2=b 22.如图是一张直角三角形的纸片,两直角边AC =6 cm ,BC =8 cm ,现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为(B)A .4 cmB .5 cmC .6 cmD .10 cm3.下列选项中,不能用来证明勾股定理的是(D)知识点2 直角三角形的判别4.在△ABC 中,AB =12 cm ,AC =9 cm ,BC =15 cm ,则S △ABC 等于(A)A .54 cm 2B .108 cm 2C .180 cm 2D .90 cm 25.下列说法中,错误的是(D)A .在△ABC 中,∠C =∠A -∠B ,则△ABC 为直角三角形B .在△ABC 中,若∠A ∶∠B ∶∠C =5∶2∶3,则△ABC 为直角三角形 C .在△ABC 中,若a =35c ,b =45c ,则△ABC 为直角三角形D .在△ABC 中,若a ∶b ∶c =3∶2∶4,则△ABC 为直角三角形6.已知如图,在△ABC 中,AB =25,BC =14,BC 边上的中线AD =24,试说明△ABC 是等腰三角形.解:因为AB =25,AD =24, BD =12BC =12×14=7,AD 2+BD 2=242+72=625=252=AB 2,所以△ADB 为直角三角形,且∠ADB =90°, 即AD ⊥BC.在Rt △ADC 中,AC=AD2+CD2=242+72=625=25,所以AB=AC.故△ABC是等腰三角形.知识点3 勾股定理的应用7.一条河的宽度处处相等,小强想从河的南岸横游到北岸去,由于水流影响,小强上岸地点偏离目标地点200 m,他在水中实际游了520 m,那么该河的宽度为(C)A.440 m B.460 mC.480 m D.500 m8.如图,铁路MN和公路PQ在点O处交汇.公路PQ上A处距离O点240米,距离MN这条铁路的距离是120米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,A处受噪音影响的时间是多少?解:作AD⊥MN,并作AB=AC=200 m交MN于点B、C.因为AD=120 m,所以BD=2002-1202=160(m),BC=160×2=320(m),t=0.32÷72×3 600=16(s).答:A处受噪音影响的时间是16 s.中档题9.已知一个直角三角形的两边长分别为6和8,则第三边长的平方是(D)A.100 B.28C.10或14 D.100或2810.在△ABC中,AB=n2+1,AC=2n,BC=n2-1(n>1),则这个三角形是(C)A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形11.某会会标如图所示,它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形.若大正方形的面积为13,每个直角三角形两直角边的和为5,则中间小正方形的面积是(A)A.1 B.2C.4 D.612.在△ABC中,∠C=90°,周长为60,斜边与一条直角边的比为13∶5,则这个三角形的三边长分别为26,24,10.13.(泰州中考)如图,长方形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP 沿BP翻折至△EBP, PE与CD 相交于点O,且OE=OD,则AP的长为4.8.14.古希腊的哲学家柏拉图曾指出,如果m表示大于1的整数,a=2m,b=m2-1,c=m2+1,那么a,b,c为勾股数.请你说明理由.你能利用这个结论得出一些勾股数吗?解:因为a 2=4m 2,b 2=m 4-2m 2+1,c 2=m 4+2m 2+1,a 2+b 2=c 2,所以△ABC 是直角三角形,∠C 为直角.又m 为大于1的整数,故2m ,m 2-1,m 2+1都是正整数,因此,a ,b ,c 为勾股数.利用这个结论可以得出勾股数:如4,3,5;8,15,17等.15.小明把一根长为160 cm 的细铁丝弯折成三段,将其做成一个等腰三角形风筝的边框ABC ,已知风筝的高AD =40 cm ,你知道小明是怎样弯折铁丝的吗?解:设腰长AB =AC =x ,则BC =160-2x ,BD =12BC =80-x. 在Rt △ABD 中,AB 2=BD 2+AD 2,即x 2=(80-x)2+402.解得x =50.所以AB =AC =50 cm ,BC =160-2×50=60(cm).所以小明先量取铁丝50 cm 弯折一次,再量取50 cm 弯折一次,然后将铁丝的两端点对接即可得到等腰三角形风筝的边框ABC.综合题16.如图,一根长度为50 cm 的木棒的两端系着一根长度为70 cm 的绳子,现准备在绳子上找一点,然后将绳子拉直,使拉直后的绳子与木棒构成一个直角三角形,这个点将绳子分成的两段各有多长?解:分两种情况:①如图1,当∠B =90°时,设BC =x cm ,则AC =(70-x)cm.在Rt △ABC 中,AC 2=AB 2+BC 2,即(70-x)2=502+x 2,解得x =1207, 则AC =70-x =3707.②如图2,当∠C =90°时,根据勾3股4弦5可知这两段绳子的长度分别为30 cm 和40 cm.答:该点将绳子分成长度分别为1207 cm 和3707 cm 的两段或30 cm 和40 cm 的两段.。

八上-第一章勾股定理

八上-第一章勾股定理

第一章勾股定理第1课时认识勾股定理1 我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称弦·直角三角形三边之间的关系称为勾股定理。

2 勾股定理是指直角三角形两直角边的平方和等于边的平方.如果用a,b和c分别表示直角三角形的两直角边和斜边,那么 a2+b2=c2 。

预学感知在Rt△ABC中,∠B=90°,AC=10,AB=6,则则BC的长为。

知识点一勾股定理的认识【例1】在△ABC中,∠ACB=90°,∠A,∠B,∠C的对边分别为a,b,C.当a=9,c=41时,则b= 。

【名师点拔】由于∠ACB=90°,则有a2=c2,因而只需把已知数据代入相应字母,即可求出第三条线段的长。

知识点二勾股定理的简单运用【例2】如图,△ABC中,∠ACB=90°,AC=7,BC=24,CD⊥AB于点D。

求:(1)AB的长;(2)CD的长。

【名师点拔】由于△.ABC为直角三角形,就可先由匀股定理理求出AB,再根据面积求出CD的长。

1.已知直角三角形中两条边长,要弄清哪条是斜边,哪条是直角边,不能确定时,要分类讨论;2.在直角三角形中求斜边上的高,一般是借助面积这个中间量,21ab=21ch 。

1.在Rt △ABC 中,两直角边长分别为10和24,则斜边长等于 ( )A.25B.26C.27D.282.在Rt △ABC 中,斜边长BC =3,则AB 2+AC 2= 。

3. 如图,分别以直角三角形的三边为边向外作正方形,则正方形A 的面积是 ,B 的面积是 。

4. 要登上某建筑物,靠墙有一架梯子,底端离建筑物5m ,顶端离地面12m ,则梯子的长度为 。

5. 如图,有两棵树,一棵高12m ,另一棵高6m ,两树相距8m ,一只鸟从一棵树的树梢飞到另一棵树梢,则小鸟至少飞行 m 。

6. 某天我国海监船驶向钓鱼岛海域执法时,海监船甲以15海里/时的速度离开港口向北航行,海监船乙同时以20海里/时的速度离开港口向东航行,则它们离开港口2h 后相距 海里。

北师大版初中八年级数学上册 1.1.1 认识勾股定理 课件(共20张PPT)

北师大版初中八年级数学上册 1.1.1 认识勾股定理 课件(共20张PPT)

( 55 ) 25
30
( 34)
95 61
( 42 ) 18
60
200 ( 350)
150
总结归纳
C A
B
SA+SB=SC
ac b
ac b
a2+b2=c2
a2+b2=c2
总结归纳
勾股定理
直角三角形两直角边的平方和等于斜边的 平方.如果a,b和c分别表示直角三角形的 两直角边和斜边,那么a2+b2=c2.
第一章 勾股定理
1.1 探索勾股定理
第1课时 认识勾股定理
导入新课
情境引入
如图,这是一幅美丽的图案,仔细观察,你能发 现这幅图中的奥秘吗?带着疑问我们来一起探索吧.
数学家毕达哥拉斯的故事
相传2005年前,毕达哥拉斯有一次在朋友家做客时,发现 朋友家的用砖铺成的地面…
毕达哥拉斯就从地面上这十分常见的图形中,发现了令世人震惊的定理:
方法一:割
方法二:补
方法三:拼
分割为四个直角三 角形和一个小正方 形.
补成大正方形,用大正 方形的面积减去四个直 角三角形的面积.
将几个小块拼成若干个小 正方形,图中两块红色 (或绿色)可拼成一个小 正方形.
填一填:观察右边两 幅图:完成下表(每 个小
A的面积 B的面积 C的面积
左图 4
9
13
右图 16
9
25
怎样计 算正方 形C的面 积呢?
分析表中数据,你发现了什么?
A的面积 B的面积 C的面积
左图 4
9
13
右图 16
9
25
C A
B
SA+SB=SC
结论:以直角三角形两 直角边为边长的小正方 形的面积的和,等于以 斜边为边长的正方形的 面积.

第1课时:勾股定理的认识

第1课时:勾股定理的认识

a2 c2 b2, b2 c2 a2;
bc a
3形.作: 用:已知直角三角形任意
两边长,
(注意:哪条边是斜边)
求第三边长.
x 看图求出正方形的面积 的值。
144 x
81
36 x
100
返回主界面
.求下列直角三角形中未知边的长: 5
8
17
x
x
16
20
x 12
方法小结: 可用勾股定理建立方程.
返回主界面
17.1勾股定理
第1课时:勾股定理的认识
1、了解勾股定理的由来,经历探索勾股定理 的过程.
2、理解并能用不同的方法证明勾股定理,并 能简单的运用。
3、提高推理意识与探究习惯,感受我国古代 数学的伟大成就
毕达哥拉斯(公元前572— 前492年)古希腊著名的哲 学家、数学家、天文学家。
相传2500年前,毕达哥拉斯有 一次在朋友家做客时,发现朋友家 的用砖铺成的地面中反映了直角三 角形三边的某种数量关系。
毕达哥拉斯(公元前572— 前492年)古希腊著名的哲 学家、数学家、天文学家。
相传2500年前,毕达哥拉斯有 一次在朋友家做客时,发现朋友家 的用砖铺成的地面中反映了直角三 角形三边的某种数量关系。
s1 s2 s3
返 拼回 图
S1+S2=S3
a²+a²=c²
等腰直角三角形两直角边 的平方和等于斜边的平方。
c c
bc a
c
a
b
剪返拼回
赵爽证法
a²+b²=c²
bc
a
c
c
c
c
a²+b²=c²
S=c²
勾股的含义是什么?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1 探索勾股定理 第1课时 认识勾股定理
1.探索勾股定理,进一步发展学生的推理能力;
2.理解并掌握直角三角形三边之间的数量关系.(重点、难点)
一、情境导入
如图所示的图形像一棵枝叶茂盛、姿态优美的树,这就是著名的毕达哥拉斯树,它由若干个图形组成,而每个图形的基本元素是三个正方形和一个直角三角形.各组图形大小不一,但形状一致,结构奇巧.你能说说其中的奥秘吗?
二、合作探究
探究点一:勾股定理的初步认识
【类型一】 直接利用勾股定理求长度
如图,已知在△ABC 中,∠ACB =90°,AB =5cm ,BC =3cm ,CD ⊥AB 于点D ,求CD
的长.
解析:先运用勾股定理求出AC 的长,再根据S △ABC =12AB·CD =1
2AC ·BC ,求出CD 的长.
解:∵△ABC 是直角三角形,∠ACB =90°,AB =5cm ,BC =3cm ,∴由勾股定理得AC
2
=AB 2-BC 2=52-32=42
,∴AC =4cm.又∵S △ABC =12AB ·CD =12AC ·BC ,∴CD =AC·BC AB =4×35=
125(cm),故CD 的长是12
5
cm. 方法总结:由直角三角形的面积求法可知直角三角形两直角边的积等于斜边与斜边上高的积,这个规律也称“弦高公式”,它常与勾股定理联合使用.
【类型二】 勾股定理与其他几何知识的综合运用
如图,已知AD是△ABC的中线.求证:AB2+AC2=2(AD2+CD2).
解析:结论中涉及线段的平方,因此可以考虑作AE⊥BC于点E,在△ABC中构造直角三角形,利用勾股定理进行证明.
证明:如图,过点A作AE⊥BC于点E.在Rt△ACE、Rt△ABE和Rt△ADE中,AB2=AE2+BE2,AC2=AE2+CE2,AE2=AD2-ED2,∴AB2+AC2=(AE2+BE2)+(AE2+CE2)=2(AD2-ED2)+(DB-DE)2+(DC+DE)2=2AD2-2ED2+DB2-2DB·DE+DE2+DC2+2DC·DE+DE2=2AD2+DB2+DC2+2DE(DC-DB).又∵AD是△ABC的中线,∴BD=CD,∴AB2+AC2=2AD2+2DC2=2(AD2+CD2).
方法总结:构造直角三角形,利用勾股定理把需要证明的线段联系起来.一般地,涉及线段之间的平方关系问题时,通常沿着这个思路去分析问题.
【类型三】分类讨论思想在勾股定理中的应用
在△ABC中,AB=20,AC=15,AD为BC边上的高,且AD=12,求△ABC的周长.
解析:应考虑高AD在△ABC内和△ABC外的两种情形.
解:当高AD在△ABC内部时,如图①.在Rt△ABD中,由勾股定理,得BD2=AB2-AD2=202-122=162,∴BD=16;在Rt△ACD中,由勾股定理,得CD2=AC2-AD2=152-122=81,∴CD=9.∴BC=BD+CD=25,∴△ABC的周长为25+20+15=60.
当高AD在△ABC外部时,如图②.同理可得BD=16,CD=9.∴BC=BD-CD=7,∴△ABC 的周长为7+20+15=42.综上所述,△ABC的周长为42或60.
方法总结:题中未给出图形,作高构造直角三角形时,易漏掉钝角三角形的情况.如在
本例题中,易只考虑高AD在△ABC内的情形,忽视高AD在△ABC外的情形.探究点二:利用勾股定理求面积
如图,以Rt △ABC 的三边长为斜边分别向外作等腰直角三角形.若斜边AB =3,
则图中△ABE 的面积为________,阴影部分的面积为________.
解析:因为AE =BE ,所以S △ABE =12AE ·BE =12AE 2.又因为AE 2+BE 2=AB 2,所以2AE 2=AB 2

所以S △ABE =14AB 2=14×32
=94
;同理可得S △AHC +
S △BCF =14AC 2+14BC 2.又因为AC 2+BC 2=AB 2
,所以阴影部分的面积为14AB 2+14AB 2=12AB 2=12×
32
=92.故填94、92
.
方法总结:求解与直角三角形三边有关的图形面积时,要结合图形想办法把图形的面积与直角三角形三边的平方联系起来,再利用勾股定理找到图形面积之间的等量关系.
三、板书设计
勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用a ,b ,c 分别表示直
角三角形的两直角边和斜边,那么a 2+b 2=c 2
.
让学生体会数形结合和由特殊到一般的思想方法,进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系.在探索勾股定理的过程中,体验获得成功的快乐;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国的悠久文化历史,激励学生发奋学习.。

相关文档
最新文档