基于ANSYS的桁架桥简单的力学分析
ansys课程设计报告-平面桁架静力学分析
辽宁工程技术大学课程设计课程大型工程分析软件及应用题目平面桁架的静力分析院系力学与工程学院专业班级学生姓名学生学号2018年01月07 日力学与工程学院课程设计任务书课程 大型工程分析软件及应用课程设计题目 平面桁架的静力分析专业 姓名主要内容:1、 小型铁路桥由横截面积为3250mm 2的钢制杆件组装而成。
一辆火车停在桥上,EX=2.1×105MPa ,μ=0.3,ρ=7.8×103kg/m 3。
试计算位置R 处由于载荷作用而沿水平方向移动的距离以及支反力,同时,分析各个节点的位移和单元应力。
2、 试件的几何参数设计报告目录a=1ma=1m a=1m b=1mRF2=280KNF1=210KN第1章概述................................................................................................................... - 3 -1.1 课程设计的意义、目的..................................................................................................... - 3 - 第2章 ANSYS详细设计步骤........................................................................................ - 3 -2.1问题分析.............................................................................................................................. - 3 -2.2基于ANSYS分析的步骤................................................................................................... - 3 -2.2.1启动ANSYS,进入ANSYS界面........................................................................... - 4 -2.2.2定义工作文件名和分析标题.................................................................................... - 4 -2.2.3设定分析类型............................................................................................................ - 4 -2.2.4选择单元类型............................................................................................................ - 4 -2.2.5定义实常数................................................................................................................ - 5 -2.2.6定义力学参数............................................................................................................ - 5 -2.2.7存盘............................................................................................................................ - 6 -2.2.8创立关键点先、线.................................................................................................... - 6 -2.2.9设置、划分网格........................................................................................................ - 8 -2.2.10施加荷载并求解.................................................................................................... - 10 - 第3章设计结果及分析............................................................................................. - 13 -3.1显示桁架变形图................................................................................................................. - 13 -3.2列表显示节点解................................................................................................................. - 14 -3.3上述分析对应的命令流如下:......................................................................................... - 15 - 结论............................................................................................................................... - 17 - 心得体会....................................................................................................................... - 17 - 参考文献....................................................................................................................... - 18 -设计报告第1章概述1.1 课程设计的意义、目的1〕ANSYS模态分析用于确定设计结构或机器部件的振动特性〔固有频率和振型〕,即结构的固有频率和振型,它们是承受动态载荷的重要参数,也可作为其他动力学分析的起点,是进行谱分析或模态叠加法普响应分析或瞬态动力学分析所必需的前期分析过程。
ANSYS实例分析75道(含结果)
ANSYS实例分析75道(含结果)【【ANSYS算例算例】】3.4.2(1)基于图形界面的桁架桥梁结构分析基于图形界面的桁架桥梁结构分析(stepbystep)下面以一个简单桁架桥梁为例,以展示有限元分析的全过程。
背景素材选自位于密执安的“OldNorthParkBridge“(1904-1988),见图3-22。
该桁架桥由型钢组成,顶梁及侧梁,桥身弦杆,底梁分别采用3种不同型号的型钢,结构参数见表3-6。
桥长L=32m,桥高H=5.5m。
桥身由8段桁架组成,每段长4m。
该桥梁可以通行卡车,若这里仅考虑卡车位于桥梁中间位置,假设卡车的质量为4000kg,若取一半的模型,可以将卡车对桥梁的作用力简化为P1,P2和P3,其中P1=P3=5000N,P2=10000N,见图3-23。
图3-22位于密执安的“OldNorthParkBridge“(1904-1988)图3-23桥梁的简化平面模型(取桥梁的一半)表3-6桥梁结构中各种构件的几何性能参数构件惯性矩m4横截面积m2顶梁及侧梁桥身弦梁底梁解答解答以下为基于ANSYS 图形界面(GraphicUserInterface,GUI)的菜单操作流程。
(1)进入进入ANSYS(设定工作目录和工作文件)(设定工作目录和工作文件)程序程序→→ANSYS→→ANSYSInteractive→→Workingdirectory(设置工作目录)→Initialjobname(设置工作文件名):TrussBridge→→Run→→OK(2)设置计算类型设置计算类型:Preferences…→→Structural→→OK(3)定义单元类型定义单元类型ANSYSMainMenu:Preprocessor→→ElementType→→Add/Edit/Delete.→→Add…→→Beam:2delastic3→→OK(返回到ElementTypes窗口)→→Close(4)定义实常数以确定梁单元的截面参数定义实常数以确定梁单元的截面参数ANSYSMainMenu:Preprocessor→→RealConstants…→→Add/Edit /Delete→→Add…→→selectType1Beam3→→OK→→RealConsta ntsSetNo.:1,AREA:2.19E-3,,Izz:3.83e-6(1号实常数用于顶梁和侧梁)→→Apply→→RealConstantsSetNo.:2,AREA:1.185E-3,,Izz:1.87E-6(2号实常数用于弦杆)→→Apply→→RealConstantsSetNo.:3,AREA:3.031E-3,,Izz:8.47E-6(3号实常数用于底梁)→→OK(backtoRealConstantswindow)→Close(theRealConstant swindow)(5)定义材料参数定义材料参数ANSYSMainMenu:Preprocessor→→MaterialProps→→MaterialMo dels→→Structural→→Linear→→Elastic→→Isotropic→→EX:2.1e11,PRXY:0.3(定义泊松比及弹性模量)→→OK→→Density(定义材料密度)→DENS:7800,→→OK→→Close(关闭材料定义窗口)(6)构造桁架桥模型构造桁架桥模型生成桥体几何模型ANSYSMainMenu:Preprocessor→→Modeling→→Create→→Keypoints→→InActive CS→→NPTKeypointnumber::1,,X,,Y,,ZLocationinactiveCS::0,,0→→Apply→→同样输入其余15个特征点坐标(最左端为起始点,坐标分别为(4,0),(8,0),(12,0),(16,0),(20,0),(24,0),(28,0),(32,0),(4,5.5),(8,5.5),(12 ,5.5),(16.5.5),(20,5.5),(24,5.5),(28,5.5))→Lines→Lines→→StraightLine→→依次分别连接特征点→→OK网格划分ANSYSMainMenu:Preprocessor→→Meshing→→MeshAttributes→→PickedLines→→选择桥顶梁及侧梁→→OK→→selectREAL:1,TYPE:1→→Apply→→选择桥体弦杆→→OK→→selectREAL:2,TYPE:1→→Apply→→选择桥底梁→→OK→→selectREAL:3,TYPE:1→→OK→→ANSYSMainMen u:Preprocessor→→Meshing→→MeshTool→→位于SizeControls 下的Lines::Set→→ElementSizeonPicked→→Pickall→→Apply→→NDIV::1→→OK→→Mesh→→Lines→→Pickall→→OK(划分网格)(7)模型加约束模型加约束ANSYSMainMenu:Solution→→DefineLoads→→Apply→→Struct ural→→Displacement→→OnNodes→→选取桥身左端节点→→OK→→selectLab2:AllDOF(施加全部约束)→→Apply→→选取桥身右端节点→→OK→→selectLab2:UY(施加Y方向约束)→→OK(8)施加载荷施加载荷ANSYSMainMenu:Solution→→DefineLoads→→Apply→→Struct ural→→Force/Moment→→OnKeypoints→→选取底梁上卡车两侧关键点(X坐标为12及20)→→OK→→selectLab:FY,,Value:-5000→→Apply→→选取底梁上卡车中部关键点(X坐标为16)→→OK→→selectLab:FY,,Value:-10000→→OK→→ANSYSUtilityMenu:→→Select→→Everything(9)计算分析计算分析ANSYSMainMenu:Solution→→Solve→→CurrentLS→→OK(10)结果显示结果显示ANSYSMainMenu:GeneralPostproc→→PlotResults→→Deedshape→→Defshapeonly →→OK(返回到PlotResults)→→ContourPlot→→NodalSolu→→DOFSolution,Y-Componentof Displacement→→OK(显示Y方向位移UY)(见图3-24(a))定义线性单元I节点的轴力ANSYSMainMenu→GeneralPostproc→→ElementTable→→Define Table→→Add→→Lab:[bar_I],Bysequencenum:[SMISC,1]→→OK →→Close定义线性单元J节点的轴力ANSYSMainMenu→→GeneralPostproc→→ElementTable→→Def ineTable→→Add→→Lab:[bar_J],Bysequencenum:[SMISC,1]→→OK→→Close画出线性单元的受力图(见图3-24(b))ANSYSMainMenu→→GeneralPostproc→→PlotResults→→ContourPlot→→LineElemRes→→LabI:[bar_I],LabJ:[bar_J],Fact :[1]→→OK(11)退出系统退出系统ANSYSUtilityMenu:File→→Exit→→SaveEverything→→OK(a)桥梁中部最大挠度值为0.003374m(b)桥梁中部轴力最大值为25380N图3.24桁架桥挠度UY以及单元轴力计算结果【【ANSYS算例算例】】3.4.2(2)基于命令流方式的桁架桥梁结构分析基于命令流方式的桁架桥梁结构分析!%%%%%[ANSYS 算例]3.4.2(2)%%%%%begin%%%%%%!------注:命令流中的符号$,可将多行命令流写成一行------/prep7!进入前处理/PLOPTS,DATE,0!设置不显示日期和时间!=====设置单元和材料ET,1,BEAM3!定义单元类型R,1,2.19E-3,3.83e-6,,,,,!定义1号实常数用于顶梁侧梁R,2,1.185E-3,1.87e-6,0,0,0,0,!定义2号实常数用于弦杆R,3,3.031E-3,8.47E-6,0,0,0,0,!定义3号实常数用于底梁MP,EX,1,2.1E11!定义材料弹性模量MP,PRXY,1,0.30!定义材料泊松比MP,DENS,1,,7800!定义材料密度!-----定义几何关键点K,1,0,0,,$K,2,4,0,,$K,3,8,0,,$K,4,12,0,,$K,5,16,0,,$K,6,20,0,,$K,7,2 4,0,,$K,8,28,0,,$K,9,32,0,,$K,10,4,5.5,,$K,11,8,5.5,,$K,12,12,5.5,,$K,13,16,5.5,,$K,14,20,5.5,,$K,15,24,5.5,,$K,16,28,5.5,,!-----通过几何点生成桥底梁的线L,1,2$L,2,3$L,3,4$L,4,5$L,5,6$L,6,7$L,7,8$L,8,9!------生成桥顶梁和侧梁的线L,9,16$L,15,16$L,14,15$L,13,14$L,12,13$L,11,12$L,10,11$L,1,10! ------生成桥身弦杆的线L,2,10$L,3,10$L,3,11$L,4,11$L,4,12$L,4,13$L,5,13$L,6,13$L,6,14 $L,6,15$L,7,15$L,7,16$L,8,16!------选择桥顶梁和侧梁指定单元属性LSEL,S,,,9,16,1,LATT,1,1,1,,,,!-----选择桥身弦杆指定单元属性LSEL,S,,,17,29,1,LATT,1,2,1,,,,!-----选择桥底梁指定单元属性LSEL,S,,,1,8,1,LATT,1,3,1,,,,!------划分网格AllSEL,all!再恢复选择所有对象LESIZE,all,,,1,,,,,1!对所有对象进行单元划分前的分段设置LMESH,all!对所有几何线进行单元划分!=====在求解模块中,施加位移约束、外力,进行求解/soluNSEL,S,LOC,X,0!根据几何位置选择节点D,all,,,,,,ALL,,,,,!对所选择的节点施加位移约束AllSEL,all!再恢复选择所有对象NSEL,S,LOC,X,32!根据几何位置选择节点D,all,,,,,,,UY,,,,!对所选择的节点施加位移约束ALLSEL,all!再恢复选择所有对象!------基于几何关键点施加载荷FK,4,FY,-5000$FK,6,FY,-5000$FK,5,FY,-10000/replot!重画图形Allsel,all!选择所有信息(包括所有节点、单元和载荷等)solve!求解!=====进入一般的后处理模块/post1!后处理PLNSOL,U,Y,0,1.0!显示Y方向位移PLNSOL,U,X,0,1.0!显示X方向位移!------显示线单元轴力------ETABLE,bar_I,SMISC,1ETABLE,bar_J,SMISC,1PLLS,BAR_ I,BAR_J,0.5,1!画出轴力图finish!结束!%%%%%[ANSYS算例]3.4.2(2)%%%%%end%%%%%%【【ANSYS算例算例】】3.2.5(3)四杆桁架结构的有限元分析四杆桁架结构的有限元分析下面针对【典型例题】3.2.5(1)的问题,在ANSYS平台上,完成相应的力学分析。
(整理)基于ansys的钢桁架桥的分析和计算
基于ansys的钢桁架桥的分析和计算姓名: 马彦学院:建筑与环境专业:工程力学学号:1043055033指导老师:朱哲明2013/6/151.问题简述钢桁架桥简图如下,尺寸如图,单元长12m,高16m。
设桥面板为0.3m厚的混凝土板。
杆件截面号形状规格端斜杆 1 工字梁400*400*16*16上下弦 2 工字梁400*400*12*12横向连接梁 2 工字梁400*400*12*12其他腹杆 3 工字梁400*300*12*12参数钢材混凝土EX 2.1x1011 3.5x1010PRXY 0.3 0.1667DENS 7850 25002.材料实常数3.半横架桥模型镜面对称,生成整体模型3.施加约束及受力4.计算及分析结果◆整体位移云图◆结点总位移矢量图◆单元第一主应力云图◆单元第二主应力云图◆单元第三主应力云图◆节点位移结果PRINT U NODAL SOLUTION PER NODE***** POST1 NODAL DEGREE OF FREEDOM LISTING *****LOAD STEP= 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATESYSTEMNODE UX UY UZ USUM1 0.18808E-02-0.20919E-01 0.70316E-03 0.21015E-012 0.11411E-02-0.21354E-01 0.59772E-03 0.21393E-013 0.14813E-02-0.20809E-01 0.11202E-02 0.20892E-014 0.15919E-02-0.20373E-01 0.11392E-02 0.20467E-015 0.22549E-02-0.18918E-01 0.10528E-02 0.19081E-016 0.23458E-02-0.18310E-01 0.10055E-02 0.18487E-017 -0.10050E-02-0.18459E-01-0.38731E-02 0.18887E-018 -0.11376E-02-0.19066E-01-0.38598E-02 0.19486E-019 0.24977E-02-0.12074E-01 0.72603E-03 0.12351E-0110 0.29237E-02-0.11079E-01 0.68719E-03 0.11479E-0111 -0.35033E-02-0.10438E-01-0.84626E-02 0.13887E-0112 -0.38537E-02-0.10965E-01-0.84226E-02 0.14353E-0113 0.27521E-02 0.0000 0.0000 0.27521E-0214 0.34768E-02 0.0000 0.0000 0.34768E-0215 0.82671E-03-0.17947E-01 0.14911E-03 0.17967E-0116 0.67748E-03-0.19250E-01 0.10648E-03 0.19262E-0117 0.42077E-02-0.19398E-01 0.59595E-02 0.20725E-0118 0.40812E-02-0.18095E-01 0.59727E-02 0.19488E-0119 0.40101E-03-0.10784E-01 0.34385E-04 0.10791E-0120 0.34470E-03-0.12307E-01 0.25523E-06 0.12312E-0121 0.69212E-02-0.11199E-01 0.10204E-01 0.16656E-0122 0.65820E-02-0.10142E-01 0.10244E-01 0.15847E-0123 0.0000 0.0000 0.0000 0.000024 0.0000 0.0000 0.0000 0.0000MAXIMUM ABSOLUTE VALUESNODE 21 2 22 2VALUE 0.69212E-02-0.21354E-01 0.10244E-01 0.21393E-01◆单元受力结果PRINT ELEMENT TABLE ITEMS PER ELEMENT***** POST1 ELEMENT TABLE LISTING *****STAT CURRENT CURRENTELEM ZHOU_I ZHOU_J1 -49659. 7936.32 -42695. -3502.73 -9873.9 -28642.4 9567.9 -51440.5 -15016. 23374.6 -22120. -5510.47 -26981. -11385.8 -33355. 18549.9 -17656. -15556.10 -16095. -16301.11 -16203. -16943.12 -12683. -20132.13 4836.6 5157.114 -17901. -18351.15 -2331.6 23001.16 -18331. -20015.17 -6067.9 50464.18 -19568. -26493.19 -5052.8 51411.20 -26836. -34142.21 -23626. -29919.22 -32522. -21349.23 -35649. -25215.24 -699.47 1061.525 690.13 -1048.326 5802.4 -1462.327 -9677.8 5182.928 16212. -4765.129 -4310.8 3979.130 -25.038 0.000031 -9.3064 0.000032 23.898 0.000033 -3569.2 -42609.34 8110.9 -49823.35 -5544.6 -22051.36 -11343. -27005.37 18453. -33238.38 -28592. -9977.139 -51593. 9648.540 23614. -15193.41 -16998. -16116.***** POST1 ELEMENT TABLE LISTING *****STAT CURRENT CURRENTELEM ZHOU_I ZHOU_J42 -20120. -12682.43 -15489. -17761.44 -16350. -16082.45 5157.1 4836.646 -18351. -17901.47 -2225.2 22850.48 -18463. -19869.49 -6087.5 50530.50 -19228. -26843.51 -5332.4 51796.52 -21374. -32473.53 -25205. -35655.54 -34114. -26894.55 -29953. -23607.56 -1061.5 699.4757 1048.3 -690.1358 5171.8 -9672.159 -1448.6 5796.560 3928.8 -4269.361 -4732.8 16215.62 -20.844 0.000063 -5.2944 0.000064 36.585 0.0000MINIMUM VALUESELEM 39 4VALUE -51593. -51440.MAXIMUM VALUESELEM 40 51VALUE 23614. 51796.5.命令流文件/FILNAM,Structural/TITLE,Truss Bridge Static Analysis/COM,Structural/prep7et,1,beam4et,2,shell63sectype,1,beam,i,,0 !定义工字型截面secoffset,cent !截面至心不偏移secdata,0.4,0.4,0.4,0.016,0.016,0.016,0,0,0,0 !定义工字型截面参数sectype,2,beam,i,,0secoffset,centsecdata,0.4,0.4,0.4,0.012,0.012,0.012,0,0,0,0sectype,3,beam,i,,0secoffset,centsecdata,0.3,0.3,0.4,0.012,0.012,0.012,0,0,0,0r,1,0.0187,0.00017,0.00054,0.4,0.4,0, !定义单元实常数r,2,0.0141,0.128e-3,0.415e-3,0.4,0.4,,r,3,0.0117,0.541e-4,0.324e-3,0.3,0.4,,r,4,0.3,,,,,,MP,EX,1,2.1E11MP,PRXY,1,0.3MP,DENS,1,7850MP,EX,2,3.5E10MP,PRXY,2,0.1667MP,DENS,2,2500N,,0,0,-5,,,, !创建节点,复制结点NGEN,4,4,ALL,,,12,,,1,NGEN,2,1,ALL,,,,,10,1,NGEN,2,1,2,10,4,,16,,1,NGEN,2,1,3,11,4,,,-10,1,TYPE,1MAT,1REAL,1ESYS,0 !单元坐标系SECNUM,1TSHAP,LINEE,11,14 !建立单元TYPE,1 MAT,1 REAL,1 ESYS,0 SECNUM,2 TSHAP,LINE E,2,6E,6,10E,10,14 E,1,5E,5,9E,9,13E,3,7E,7,11E,4,8E,8,12E,1,2E,3,4E,5,6E,7,8E,9,10E,13,14 TYPE,1 MAT,1 REAL,1 ESYS,0 SECNUM,3 TSHAP,LINE E,3,6E,6,11E,4,5E,5,12E,2,3E,1,4E,6,7E,5,8E,10,11 E,9,12TYPE,2MAT,2REAL,1 ESYS,0TSHAP,QUADE,1,2,6,5E,5,6,10,9E,9,10,14,13NSYM,X,14,ALLESYM,,14,ALLNUMMRG,ALL,,,,LOW NUMCMP,ALL FINISH/SOLNSEL,S,,,23,24D,ALL,,,,,,UX,UY,UZ,,, NSEL,S,,,13,14D,ALL,,,,,,UY,UZ,,, NSEL,S,,,1,2F,ALL,FY,-100000 ALLSEL,ALL ACEL,0,10,0, ANTYPE,0SOLVEFINISH/POST1PLDISP,2PLNSOL,U,SUM,0,1PLVECT,U,,,,VECT,NODE,ON,0ETABLE,zhou_i,SMISC,1ETABLE,zhou_j,SMISC,7ETABLE,zhou_i,SMISC,2ETABLE,zhou_j,SMISC,8ETABLE,zhou_i,SMISC,6ETABLE,zhou_j,SMISC,12PRETAB,ZHOU_I,ZHOU_J,JIAN_I,JIAN_J,WAN_I,WAN_J PLLS,ZHOU_I,ZHOU_J,1,0PRNSOL,U,COMPFINISH/EXIT。
Ansys桥梁应用技术—桁架桥受力仿真
Ansys桥梁应用—桁架桥的受力仿真黑宝平航天与建筑工程学院摘要:本文利用仿真分析软件ANSYS对桁架桥实现全桥建模,进而进行受力分析,对总体结构,以及桁架中各弦杆、腹杆和横梁的位移进行仿真。
得出一些结论,为同类工程结构的有限元分析提供参考。
关键字:仿真分析软件ANSYS;全桥建模;受力分析;仿真1 工程简况桁架桥即truss bridge,指的是以桁架作为上部结构主要承重构件的桥梁。
桁架桥一般由主桥架、上下水平纵向联结系、桥门架和中间横撑架以及桥面系组成。
在桁架中,弦杆是组成桁架外围的杆件,包括上弦杆和下弦杆,连接上、下弦杆的杆件叫腹杆,按腹杆方向之不同又区分为斜杆和竖杆。
弦杆与腹杆所在的平面就叫主桁平面。
大跨度桥架的桥高沿跨径方向变化,形成曲弦桁架;中、小跨度采用不变的桁高,即所谓平弦桁架或直弦桁架。
桁架结构可以形成梁式、拱式桥,也可以作为缆索支撑体系桥梁中的主梁(或加劲梁)。
桁架桥梁绝大多数采用钢材修建,亦有采用预应力混凝土修建的例子。
我国比较有名的桁架桥梁有:武汉长江大桥(三联3×128m连续钢桁梁,1957年,为“万里长江第一桥”)、南京长江大桥(三联3×160m连续钢桁梁,1969年)、九江长江大桥(180m+260m+160m梁拱组合体系,1993年)、芜湖长江大桥(180m+312m+180m钢桁斜拉桥,1999年)和香港青马大桥(主跨1377m钢桁加劲梁悬索桥,1997年),目前已动工修建的重庆朝天门大桥为190m+552m+190m钢桁拱桥,将成为世界最大跨径拱桥。
桁架桥为空腹结构,因而对双层桥面有很好的适应性,以上列举的几座桥均布置为双层桥面。
随着计算能力的提高及方法的改进,可以计算更大跨径、更高强超静定次数的桁架桥。
在同样跨径的桥梁中,桁架桥一般总是人们的首选,因为大有成熟而快捷的计算方法和施工技术作为保证。
而且由于预应力技术的出现,使桁架桥的经济性更加突出,人们通过施加预应力筋可以使桥梁的材料节省10%以上。
ANSYS结构静力学分析应用实例解析--钢桁架桥的受力分析
ANSYS结构静⼒学分析应⽤实例解析--钢桁架桥的受⼒分析1. 问题描述钢桁架桥简图如下,已知下承式简⽀钢桁架桥长72m,每个节段为12m,桥宽10m,⾼16m。
设桥⾯板为0.3m厚的混凝⼟板。
2. 求解步骤2.1 建⽴⼯作⽂件名和⼯作标题/FILNAME,Structural/TITLE,Truss Bridge Static Analysis2.2 过滤图形界⾯/COM, Structural ! 指定分析类型为结构分析2.3 定义单元类型/PREP7ET,1,BEAM4ET,2,SHELL632.4 定义梁单元截⾯Main Menu>Preprocessor>Sections>Beam>Common SectionsSECTYPE,1,BEAM,I, , 0 ! 定义⼯字型截⾯ SECOFFSET, CENT !截⾯质⼼不偏移SECDATA,0.4,0.4,0.4,0.016,0.016,0.016,0,0,0,0 !定义⼯字型截⾯参数SECTYPE,2,BEAM,I, , 0 ! 定义⼯字型截⾯SECOFFSET, CENT !截⾯质⼼不偏移SECDATA,0.4,0.4,0.4,0.012,0.012,0.012,0,0,0,0 !定义⼯字型截⾯参数SECTYPE,3,BEAM,I, , 0 ! 定义⼯字型截⾯SECOFFSET, CENT !截⾯质⼼不偏移SECDATA,0.3,0.3,0.4,0.012,0.012,0.012,0,0,0,0 !定义⼯字型截⾯参数2.5 定义实常数Main Menu>Preprocessor>Real Constants>Add/Edit/DeleteR,2,0.0141,0.128E-3,0.415E-3,0.4,0.4R,3,0.0117,0.541E-4,0.324E-3,0.3,0.4R,4,0.32.6 定义材料属性MP,EX,1,2.1E11 ! 定义钢材的材料属性MP,PRXY,1,0.3MP,DENS,1,7800MP,EX,2,3.5E10 ! 定义混凝⼟的材料属性MP,PRXY,2,0.1667 MP,DENS,2,25002.7 创建有限元模型2.7.1 ⽣成半跨桥的节点N,,0,0,-5NGEN,4,4,ALL,,,12,,,1NGEN,2,1,ALL,,,,,10,1NGEN,2,1,2,10,4,,16,,1NGEN,2,1,3,11,4,,,-10,12.7.2 ⽣成半跨桥单元TYPE,1MAT,1REAL,1ESYS,0SECNUM,1 !选择截⾯编号TSHAP,LINE !选择线性单元E,11,14 E,12,13TYPE,1MAT,1REAL,2ESYS,0SECNUM,2 !选择截⾯编号TSHAP,LINE !选择线性单元E,2,6 E,6,10E,10,14E,1,5E,5,9E,3,7E,7,11E,4,8E,8,12E,1,2E,3,4E,5,6E,7,8E,9,10E,11,12E,13,14TYPE,1MAT,1REAL,3ESYS,0SECNUM,3 !选择截⾯编号TSHAP,LINE !选择线性单元E,3,6E,6,11E,4,5E,5,12E,2,3E,1,4E,6,7E,5,8E,10,11E,9,12TYPE,2MAT,2REAL,4ESYS,0SECNUM,3 !选择截⾯编号TSHAP,QUAD !选择四边形单元E,1,2,6,5 E,5,6,10,9E,9,10,14,13Main Menu>Preprocessor>Modeling>Reflect>NodesNSYM,X,14,ALL ! 所有节点以YOZ 平⾯对称ESYM,,14,ALL !所有单元以YOZ 平⾯对称2.7.4 合并重合节点和单元NUMMRG,ALL,,,,LOW ! 合并重复节点单元,编号取较⼩者NUMCMP,ALL ! 压缩节点单元等编号2.7.5 保存模型并退出前处理器SA VE,’mo_xing’,’db’FINISH2.8 施加位移约束/SOL2.8.1 施加位移约束NSEL,S,,,23,24 ! 选择左端节点D,ALL,,,,,,UX,UY,UZ ! 对左端节点施加位移约束NSEL,S,,,13,14 ! 选择右端节点D,ALL,,,,,,UY,UZ ! 对右端节点施加位移约束2.8.2 施加集中⼒NSEL,S,,,1,2 ! 选择中间节点F,ALL,FY,-100000 ! 对中间节点施加竖向集中⼒荷载2.8.3 施加重⼒ALLSEL,ALLACEL,0,10,0 ! 施加重⼒2.9 求解计算ANTYPE,0SOLVEFINISH2.10 查看计算结果2.10.1 查看结构变形图/POST1PLDISP,2 ! 显⽰结构变形图2.10.2 云图显⽰位移PLNSOL,U,SUM,0,1 ! 显⽰总位移云图Main Menu>General Postproc>Plot Results>Vector Plot>PredefinedPLVECT,U,,,,VECT,NODE,ON,0 ! 显⽰节点总位移⽮量图2.10.4 显⽰结构内⼒图2.10.4.1 定义单元表Main Menu>General Postproc>Element Table>Define TableETABLE,zhouli_i,SMISC,1 ! 定义单元表轴⼒ETABLE,zhouli_j,SMISC,7ETABLE,jianli_i,SMISC,2 ! 定义单元表剪⼒ETABLE,jianli_j,SMISC,8ETABLE,wanju_i,SMISC,6 ! 定义单元表弯矩ETABLE,wanju_j,SMISC,122.10.4.2 列表单元表结果PRETAB, zhouli_i, zhouli_j, jianli_i, jianli_j, wanju_i, wanju_j ! 列表显⽰单元表结果Main Menu>General Postproc>Plot Results>Contour Plot>Line Elem ResPLLS, zhouli_i, zhouli_j,1,0 ! 显⽰轴⼒图。
基于ansys的铁路钢桁架桥受力分析1
第一章工程简介1.1工程概况一、结构设计本工程为单线铁路刚桁架桥,铁路线穿过山区桁架桥跨越峡谷,设计桥梁为简支栓焊桁架桥。
整座桥梁主要由桁架构成的桥跨结构和桥墩、桥台组成,为下承式桥。
该桥的跨度为64m,两侧桥台为重力式,其桥跨的的布置及各种杆件的尺寸如图1所示:图1 桥跨的布置以及各种杆件的基本尺寸注:桥跨的单位为m,各种杆件的截面尺寸单位为mm;所有杆件皆为H型截面,所用钢材为16Mnq;图中1为上下弦杆,2为端斜杆,3为直腹杆,4为斜腹杆。
桁架由上弦、下弦、腹杆组成;腹杆的形式又分为斜腹杆、直腹杆;本设计中上下弦杆,端斜杆,直腹杆杆,斜腹杆分别采用不同同的工字钢。
由于杆件本身长细比较大,虽然杆件之间的连接可能是“固接”,但是实际杆端弯矩一般都很小,因此,设计分析时可以简化为“铰接”。
简化计算时,杆件都是“二力杆”,只承受压力或者拉力,而不产生弯矩和剪力。
由于桥梁跨度较大,而单榀的桁架“平面外”的刚度较弱,因此,“平面外”需要设置支撑,设计桥梁时,“平面外”一般也是设计成桁架形式,这样,桥梁就形成双向都有很好刚度的整体。
有些桥梁桥面设置在上弦,因此力主要通过上弦传递;也有的桥面设置在下弦,由于平面外刚度的要求,上弦之间仍需要连接以减少上弦平面外计算长度。
桁架的弦杆在跨中部分受力比较大,向支座方向逐步减小;而腹杆的受力主要在支座附件最大,在跨中部分腹杆的受力比较小,甚至有理论上的“零杆”。
二、施工方法设计采用拖拉法架设简支栓焊桁架桥,其施工步骤为:1.在桥头路基上布置滑道,其滑道的数量要进行计算确定;2.在滑道上拼装钢梁;3.按照牵引设备进行技术检查,合格后开始拖拉钢梁只预定的桥孔位置;4.钢梁降落就位。
技术检查内容包括:钢梁的拼装质量、钢梁的拱度是否满足设计要求;加固杆件的数量、位置和质量是否满足要求;钢梁的中心位置和标高、滑道的设置、牵引动力的配置情况、落梁的设备、信号和照明、施工流程及人身设备安全。
基于ANSYS的平面桁架有限元分析.
PREP7 !* ET,1,LINK180 !* R,1,10, ,0 !* !* MPTEMP,,,,,,,, MPTEMP,1,0 MPDATA,EX,1,,2.0e6 MPDATA,PRXY,1,,0.3 WPSTYLE,,,,,,,,0 WPSTYLE,,,,,,,,1 WPSTYLE,,,,,,,,0 WPSTYLE,,,,,,,,1 FLST,3,1,8 FITEM,3,0,0,0 N, ,P51X FLST,3,1,8 FITEM,3,30,0,0 N, ,P51X FLST,3,1,8 FITEM,3,0,30,0 N, ,P51X FLST,3,1,8 FITEM,3,30,30,0 N, ,P51X FLST,3,1,8 FITEM,3,60,30,0
5
数值解与解析解的比较与分析
求出了平面桁架的数值解与解析解,现将两 者的结果进行列表对比
数值解与解析解的比较与分析
表2 整体坐标系下各节点的位移(in)
节点 解析解
U1x 0 0
U1y 0 0
U2x -0.0029 -0.002925
U2y -0.0085 -0.0084404
U3x 0 0
U3y 0 0
基于AN限元分析
平面桁架是工程中常见的结构,本文基于ANSYS平台对平面桁架进行有 限元分析。 首先通过有限元法的理论知识求得平面桁架在一定工况下的理论值,然 后利用ANSYS进行分析得到数值解,最后通过比较理论解与数值解得出结论。 利用ANSYS对平面桁架进行有限元分析,可以提取其他分析结果,对深 入研究平面桁架问题提供了强有力手段,也对其他结构问题的有限元分析具 有指导性意义与价值。
数值解与解析解的比较与分析
表4 单元①的内力与正应力(lb)
钢桁架桥梁结构的ANSYS分析
钢桁架桥梁结构的ANSYS分析摘要本文中采用有限元分析法,在大型有限元分析软件ANSYS平台上分析桥梁工程结构,很好地模拟桥梁的受力、应力情况等。
在静力分析中,通过加载各种载荷,得出结构变形图,找出桥梁的危险区域。
1、问题描述下面以一个简单桁架桥梁为例,以展示有限元分析的全过程。
该桁架桥由型钢组成,顶梁及侧梁,桥身弦杆,底梁分别采用3种不同型号的型钢,结构参数见表1-1。
桥长L=32m,桥高H=5.5m。
桥身由8段桁架组成,每段长4m。
该桥梁可以通行卡车,若这里仅考虑卡车位于桥梁中间位置,假设卡车的质量为4000kg,若取一半的模型,可以将卡车对桥梁的作用力简化为P1 ,P2和P3 ,其中P1= P3=5000 N, P2=10000N,见图1。
1图1桥梁的简化平面模型(取桥梁的一半)2、模型建立在桥梁结构模拟分析中,最常用的是梁单元和壳单元,鉴于桥梁的模型简化,采用普通梁单元beam3。
实体模型的建立过程为先生成关键点,再形成线,从而得到桁架桥梁的简化模型。
3、有限元模型3.1单元属性整个桥梁分成三部分,分别为顶梁及侧梁、弦杆梁、底梁,三者所使用的单元都为beam3单元,因其横截面积和惯性矩不同,所以设置3个实常数。
此外,他们材料都为型钢,材料属性视为相同,取为弹性模量EX为2.1e11 ,泊松比prxy为0.3,材料密度dens为7800。
3.2网格划分线单元尺寸大小为2,即每条线段的1/2。
4、计算4.1约束根据问题描述的要求,该桁架桥梁在x=0处的边界条件为全约束,x=32处的边界条件为y方向位移为0(即UY=0)。
如下图所示。
4.2载荷卡车对桥梁的压力视为3个集中载荷,因为模型只取桥梁的一般,所以3个集中载荷的力之和为20000N,分别为p1=5000N,p2=10000N,p3=5000N。
并将载荷施加在底梁的关键点4,5,6上。
如下图所示。
5、静力分析的计算结果5.1查看结构变形图显示y方向位移显示x方向位移5.2结论从加载后的结构变形图中可以看出,在载荷作用下,桁架桥的中间位置向下发生弯曲变形最为明显而两侧的侧梁变形最小,载荷引起的位移最大处在桥中间位置,随跨中间向两侧递减。
基于ANSYS?WORKBENCH的桁架结构的分析
基于ANSYS WORKBENCH的桁架结构的分析有不少朋友经常问到在WB中的桁架分析问题。
例如下面的桁架,有两个端点被固定,而在C处施加一个向下的集中力,如何计算该问题?在ANSYS APDL中,计算该问题非常简单。
但是在WB中,则比较麻烦。
对于线体模型,WB中默认的单元类型是BEAM188,如果直接使用默认单元会带来一些出乎意料的结果。
本文使用LINK180建模,这样就需要插入命令流。
下面说明使用LINK180的建模方法。
1. 创建静力学结构分析系统。
2. 创建几何模型(1)创建草图(2)根据草图生成线体模型创建圆形截面,其半径为10mm(该尺寸随便设置,后面会被覆盖)将截面属性赋予给线体模型3. 设置杆的单元类型在线体模型下添加命令在命令文件编辑窗口输入下列命令、上述命令的含义是:第1行,设置单元类型是LINK180第2-3行,设置截面类型是实心圆,且其横截面积是10mm24. 划分网格在MESH下添加一个单元尺寸控制,设置给所有边划分1等份。
网格划分结果如下图5. 施加边界条件该下面两个关键点施加固定支撑,给上面点施加数值向下的力100N,结果如下图6. 求解并进行后处理进行求解。
然后进行后处理。
可以发现应力,应变,能量等按钮均不可使用。
使用BEAM TOOL。
但是ANSYS表明,该梁工具不能使用。
添加BEAM RESULTS但是ANSYS表明,该梁工具也不能使用。
使用WORKSHEET所提供的自定义数据类型,选择其中的总位移结果、得到位移如下图读者可尝试使用WORKSHEET中的其它用户自定义结果,【评论】1. 通过在几何体模型后面添加命令,并编辑命令文本,可以设定单元为杆单元LINK180.2. 可以在MESH后添加尺寸控制,而对各根杆件设置网格划分份数。
3. 在后处理时,WB所提供的大多数后处理按钮均不可使用,此时只能使用WORKSHEET中提供的用户自定义变量。
基于ansys的铁路钢桁架桥受力分析
山东农业大学毕业设计题目:基于ansys的福厦铁路钢桁架桥静力分析院部水利土木工程学院专业班级届次学生姓名陈雪峰学号指导教师二O一一年六月十八日目录1工程简介1.1 工程概况1.2 施工方法1.3 加载工况2有限元法基本原理及ansys简介2.1 有限元法基本原理2.2 ansys处理有限元问题的一般方法3福厦铁路桁架桥静力分析3.1 有限元模型3.2 自重荷载工况下的建模及求解3.3 中—活载工况下的建模及求解3.4 计算结果分析4总结参考文献致谢词Contents1 Project description1.1 Project Overview1.2 Construction methods1.3 Load conditions2 The basic principles of finite element method and ansys Profile2.1 The basic principles of finite element method2.2 Ansys finite element problems dealing with the general approach3Fuzhou-Xiamen Railway static analysis of truss bridges3.1 Finite element model3.2 Weight load conditions modeling and solving3.3 The live load conditions of the modeling and solution3.4 Calculation results4 SummaryReferencesThanks Words基于ANSYS的铁路钢桁架桥静力分析作者:陈雪峰道路桥梁与渡河工程3班指导教师:白润波摘要:本毕业设计为“基于ansys的福厦铁路钢桁架桥静力分析”,包括三个主要过程:收集设计资料,确定桥梁的设计方案,材料特性;用已有的资料采用ansys软件运用命令流方法建模分析结构的受力变形;对得出的结果进行分析,并做出正确合合理解释。
ANSYS的钢桁架静力分析命令流实例
ANSYS的钢桁架静力分析命令流摘要:在实际工程结构中,最常用的方法是结构的线性静力分析。
尽管结构形式与建筑材料多种多样,设计规范与设计原理也不尽相同,但在设计过程中结构分析却是一致的,基本上采用线弹性分析结构的内力。
因此,结构的线性静力分析应用广泛,并且是其他各种分析的基础.本文介绍的内容是探讨ANSYS有限元软件对钢桁架的静力受力分析。
关键词:结构;桁架;静力分析;ANSYS;有限元The Statical Analysis of Steel Truss based on ANSYSAbstract:In the practical engineering structure, the most commonly used method is the structural linear statical analysis. Although structural style and building materials varied, design code and design concept is different,In the design process the structural analysis is no difference and the structure internal force is always analyzed through using linear elastic。
Therefore, the linear static analysis of structure is widely used and is other various analysis foundation。
This paper introduces the static force analysis of steel truss by finite element software ANSYS 。
简单桁架桥梁ansys分析
简单桁架桥梁ansys分析Ansys是一款广泛使用的有限元分析软件,可以用于各种工程结构的分析,包括桁架桥梁。
下面是一个简单的桁架桥梁分析的步骤,使用Ansys进行模拟。
一、建立模型1.创建新的分析:在Ansys中,首先需要创建一个新的分析。
选择适当的分析类型,例如静态分析或动态分析,根据需要进行设置。
2.创建几何体:在Ansys中,可以使用自带的建模工具创建几何体。
对于桁架桥梁,需要创建梁单元和节点。
梁单元用于模拟桥梁的横梁和纵梁,节点用于连接梁单元。
3.定义材料属性:为梁单元分配适当的材料属性,例如弹性模量、泊松比、密度等。
4.网格化:对几何体进行网格化,以生成有限元网格。
可以调整网格密度以获得更精确的结果。
5.边界条件和载荷:定义边界条件和载荷。
对于桁架桥梁,可能需要在支撑处施加固定约束,并在桥面上施加车辆载荷。
二、进行分析1.运行分析:在Ansys中,可以运行分析并观察结果。
可以使用后处理功能来查看结果,例如位移、应力、应变等。
2.检查结果:检查模型的位移、应力、应变等是否符合预期。
如果结果不符合预期,可能需要返回模型进行修正。
三、优化设计1.优化设置:在Ansys中,可以使用优化工具对模型进行优化设计。
设置优化目标,例如最小化总重量或最大化刚度。
2.运行优化:运行优化过程,Ansys将自动调整模型的参数以达到优化目标。
3.检查结果:在优化完成后,检查结果以确保满足设计要求。
四、验证模型1.确认模型的正确性:在完成优化设计后,需要确认模型的正确性。
可以通过与实验数据进行比较,或者与其他分析工具的结果进行比较来验证模型的准确性。
2.进行敏感性分析:可以使用Ansys的敏感性分析功能来确定哪些参数对模型结果影响最大。
这有助于在后续设计中更好地控制这些参数。
3.确认模型的可靠性:确认模型是否符合工程要求和规范。
如果模型满足所有条件,那么可以将其用于实际工程设计。
五、应用模型1.工程设计:在确认模型的正确性和可靠性后,可以将模型应用于实际的工程设计。
简单桁架桥梁ANSYS分析
下面以一个简单桁架桥梁为例,以展示有限元分析的全过程。
背景素材选自位于密执安的"Old North Park Bridge" (1904 - 1988),见图3-22。
该桁架桥由型钢组成,顶梁及侧梁,桥身弦杆,底梁分别采用3种不同型号的型钢,结构参数见表3-6。
桥长L=32m,桥高H=5.5m。
桥身由8段桁架组成,每段长4m。
该桥梁可以通行卡车,若这里仅考虑卡车位于桥梁中间位置,假设卡车的质量为4000kg,若取一半的模型,可以将卡车对桥梁的作用力简化为P1,P2和P3,其中P1= P3=5000 N, P2=10000N,见图3-23。
图3-22位于密执安的"Old North Park Bridge" (1904 - 1988)图3-23桥梁的简化平面模型(取桥梁的一半)表3-6桥梁结构中各种构件的几何性能参数构件惯性矩m4横截面积m2顶梁及侧梁(Beam1) 643.8310m-´322.1910m-´桥身弦梁(Beam2) 61.8710-´31.18510-´底梁(Beam3) 68.4710-´33.03110-´解答以下为基于ANSYS图形界面(Graphic User Interface , GUI)的菜单操作流程。
安全提示:如果聊天中有涉及财产的操作,请一定先核实好友身份。
发送验证问题或点击举报天意11:36:47(1)进入ANSYS(设定工作目录和工作文件)程序→ANSYS →ANSYS Interactive →Working directory(设置工作目录)→Initial jobname(设置工作文件名):TrussBridge →Run →OK(2)设置计算类型ANSYS Main Menu:Preferences…→Structural →OK(3)定义单元类型hhQÆRRN«•QQoomm QM•9NN•}ANSYS Main Menu:Preprocessor →Element Type →Add/Edit/Delete... →Add…→Beam : 2delastic 3 →OK(返回到Element Types窗口)→Close(4)定义实常数以确定梁单元的截面参数ANSYS Main Menu: Preprocessor →Real Constants…→Add/Edit/Delete →Add…→select Type 1Beam 3 →OK →input Real Constants Set No. : 1 , AREA: 2.1 9E-3,Izz: 3.83e-6(1号实常数用于顶梁和侧梁) →Apply →input Real Constants Set No. : 2 , AREA: 1.18 5E-3,Izz: 1.87E-6 (2号实常数用于弦杆)→Apply →input Real Constants Set No. : 3, AREA: 3.031E-3,Izz: 8.47E-6 (3号实常数用于底梁) →OK(back to Real Constants window) →Close (the Real Constants win dow)(5)定义材料参数ANSYS Main Menu: Preprocessor →Material Props →Material Model s →Structural →Linear→Elastic →Isotropic →input EX: 2.1e11, PRXY: 0.3(定义泊松比及弹性模量) →OK →Density (定义材料密度) →input DENS: 7800, →OK →Close(关闭材料定义窗口)(6)构造桁架桥模型生成桥体几何模型ANSYS Main Menu:Preprocessor →Modeling →Create →Keypoints →In Active CS →NPTKeypoint number:1,X,Y,Z Location in active CS:0,0 →Apply →同样输入其余15个特征点坐标(最左端为起始点,坐标分别为(4,0), (8,0), (12,0), (16,0), (20,0), (24,0), (28,0), (32,0), (4,5 .5), (8,5.5),(12,5.5), (16.5.5), (20,5.5), (24,5.5), (28,5.5))→Lines →Lines →Straight Line →依次分别连接特征点→OK网格划分ANSYS Main Menu: Preprocessor →Meshing →Mesh Attributes →P icked Lines →选择桥顶梁及侧梁→OK →select REAL: 1, TYPE: 1 →Apply →选择桥体弦杆→OK →select REAL: 2,TYPE: 1 →Apply →选择桥底梁→OK →select REAL: 3, TYPE:1 →OK →ANSYS Main Menu:Preprocessor →Meshing →MeshTool →位于Size Controls下的Lines:Set →Element Size on Picked→Pick all →Apply →NDIV:1 →OK →Mesh →Lines →Pick all →OK (划分网格)(7)模型加约束ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Displacement →OnNodes →选取桥身左端节点→OK →select Lab2: All DOF(施加全部约束) →Apply →选取桥身右端节点→OK →select Lab2: UY(施加Y方向约束) →OK(8)施加载荷ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Force/Moment →OnKeypoints →选取底梁上卡车两侧关键点(X坐标为12及20)→OK →select Lab: FY,Value: -5000→Apply →选取底梁上卡车中部关键点(X坐标为16)→OK →select Lab: FY,Value: -10000 →OK→ANSYS Utility Menu:→Select →Everything(9)计算分析ANSYS Main Menu:Solution →Solve →Current LS →OK(10)结果显示ANSYS Main Menu:General Postproc →Plot Results →Deformed shape →Def shape only →OK(返回到Plot Results)→Contour Plot →Nodal Solu →DOF Solution, Y-Component of D isplacement→OK(显示Y方向位移UY)(见图3-24(a))定义线性单元I节点的轴力ANSYS Main Menu →General Postproc →Element Table →Define Table →Add →Lab:[bar_I], By sequence num: [SMISC,1] →OK →Close定义线性单元J节点的轴力ANSYS Main Menu →General Postproc →Element Table →Define Table →Add →Lab:[bar_J], By sequence num: [SMISC,1] →OK →Close画出线性单元的受力图(见图3-24(b))ANSYS Main Menu →General Postproc →Plot Results →Contour Plot →Line Elem Res →LabI: [ bar_I], LabJ: [ bar_J], Fact: [1] →OK(11)退出系统ANSYS Utility Menu:File →Exit →Save Everything →OK(a)桥梁中部最大挠度值为0.003 374m (b)桥梁中部轴力最大值为25 380N图3.24桁架桥挠度UY以及单元轴力计算结果!%%%%% [ANSYS算例]3.4.2(2) %%%%% begin %%%%%%!------注:命令流中的符号$,可将多行命令流写成一行------/prep7 !进入前处理/PLOPTS,DATE,0 !设置不显示日期和时间!=====设置单元和材料ET,1,BEAM3 !定义单元类型R,1,2.19E-3,3.83e-6, , , , , !定义1号实常数用于顶梁侧梁R,2,1.185E-3,1.87e-6,0,0,0,0, !定义2号实常数用于弦杆R,3,3.031E-3,8.47E-6,0,0,0,0, !定义3号实常数用于底梁MP,EX,1,2.1E11 !定义材料弹性模量MP,PRXY,1,0.30 !定义材料泊松比MP,DENS,1,,7800 !定义材料密度!-----定义几何关键点K,1,0,0,, $ K,2,4,0,, $ K,3,8,0,, $K,4,12,0,, $K,5,16,0,, $K,6,20,0,, $K,7,24,0,, $K,8,28,0,, $K,9,32,0,, $K,10,4,5.5,,$K,11,8,5.5,, $K,12,12,5.5,, $K,13,16,5.5,, $K,14,20,5.5,, $K,15,24,5.5, , $K,16,28,5.5,,!-----通过几何点生成桥底梁的线L,1,2 $L,2,3 $L,3,4 $L,4,5 $L,5,6 $L,6,7 $L,7,8 $L,8,9!------生成桥顶梁和侧梁的线L,9,16 $L,15,16 $L,14,15 $L,13,14 $L,12,13 $L,11,12 $L,10,11 $L,1,10!------生成桥身弦杆的线L,2,10 $L,3,10 $L,3,11 $L,4,11 $L,4,12 $L,4,13 $L,5,13 $L,6,13 $L,6, 14 $L,6,15 $L,7,15 $L,7,16 $L,8,16!------选择桥顶梁和侧梁指定单元属性LSEL,S,,,9,16,1,LATT,1,1,1,,,,hhQÆRRN«•QQoomm QM•9NN•}!-----选择桥身弦杆指定单元属性LSEL,S,,,17,29,1,LATT,1,2,1,,,,!-----选择桥底梁指定单元属性LSEL,S,,,1,8,1,LATT,1,3,1,,,,!------划分网格AllSEL,all !再恢复选择所有对象LESIZE,all,,,1,,,,,1 !对所有对象进行单元划分前的分段设置LMESH,all !对所有几何线进行单元划分!=====在求解模块中,施加位移约束、外力,进行求解/soluNSEL,S,LOC,X,0 !根据几何位置选择节点D,all,,,,,,ALL,,,,, !对所选择的节点施加位移约束AllSEL,all !再恢复选择所有对象NSEL,S,LOC,X,32 !根据几何位置选择节点D,all,,,,,,,UY,,,, !对所选择的节点施加位移约束ALLSEL,all !再恢复选择所有对象!------基于几何关键点施加载荷FK,4,FY,-5000 $FK,6,FY,-5000 $FK,5,FY,-10000/replot !重画图形Allsel,all !选择所有信息(包括所有节点、单元和载荷等)solve !求解!=====进入一般的后处理模块/post1 !后处理PLNSOL, U,Y, 0,1.0 !显示Y方向位移PLNSOL, U,X, 0,1.0 !显示X方向位移!------显示线单元轴力------ETABLE,bar_I,SMISC, 1ETABLE,bar_J,SMISC, 1PLLS,BAR_I,BAR_J,0.5,1 !画出轴力图finish !结束你参考这个例题试一下。
ANSYS实例分析(三角桁架受力分析 )
三角桁架受力分析1 问题描述图1所示为一三角析架受力简图。
图中各杆件通过铰链连接,杆件材料参数及几何参数见表1和表2,析架受集中力F1=5000N, F2=3000N 的作用,求析架各点位移及反作用力。
图1 三角桁架受力分析简图表1 杆件材料参数表2 杆件几何参数2 问题分析该问题属于析架结构分析问题。
对于一般的析架结构,可通过选择杆单元,并将析架中各杆件的几何信息以杆单元实常数的形式体现出来,从而将分析模型简化为平面模型。
在本例分析过程中选择LINK l 杆单元进行分析求解。
3 求解步骤3.1 前处理(建立模型及网格划分) 1.定义单元类型及输入实常量选择Structural Link 2D spar 1单元,步骤如下:选择Main Menu|Preprocessor|Element Type|Add Edit/Delete 命令,出现Element Types 对话框,单击Add 按钮,出现Library of Element Types 对话框。
在Library of Element Types 列表框中选择Structural Link 2D spar 1,在Element type reference number 文本框中输入1,单击OK 按钮关闭该对话框。
如图2所示。
E 1/Pa E 2/Pa E 3/Pa ν1 ν2 ν3 2.2E11 6.8E102.0E110.30.260.26L1/m L 1/m L 1/m A 1/m 2 A 2/m 2 A 3/m 2 0.4 0.50.36E-49E-44E-4图2 单元类型的选择输入三杆的实常量(横截面积),步骤如下:选择Main Menu|Preprocessor|Real Constants|Add/Edit/Delete命令,出现Real Constants 对话框,单击Add按钮,出现Element Type for Real Constants对话框,单击OK按钮,出现Real Constant Set Number 1, for LINK1对话框,在Real Constant Set No.文本框中输入1,在Cross-sectional area文本框中输入6E-4,在Initial strain文本框中输入0。
桁架桥
桁架桥ANSYS分析
四、建模
单元属性:type=1,MAT=1,SEC=1. 连接节点5、6、7和12、13、14以及5、12和6、 13和7、14
桁架桥ANSYS分析
四、建模
单元属性:type=2,MAT=1,REAL=1. 连接节点5、2、7和12、9、1 单元属性:type=2,MAT=1,REAL=1. 连接节点1、5和2、6和3、7和8、12和9、13和 10、14
桁架桥ANSYS分析
四、建模
生成另一半 Reflect node Y-Zplan X INC=14 Reflect ELEMENT NINC=14 压缩节点、编号、单元
桁架桥ANSYS分析
五、加载
桁架桥ANSYS分析
五、加载
桁架桥ANSYS分析
五、加载
桁架桥ANSYS分析
五、加载
桁架桥ANSYS分析
桁架桥ANSYS分析
三、定义梁截面
BEAM188:SEC1——AREA=3;B=3,H=1
桁架桥ANSYS分析
三、定义梁截面
SHELL181:SEC2——Thickness=0.3
桁架桥ANSYS分析
三、定义材料
1# EX=3.5E10; PRXY=0.1677;DENS=2500 2# EX=21E10; PRXY=0.3;DENS=3500
• 桁架桥
桁架桥ANSYS分析
某桁架桥,桥宽10,桥长72,高12,每个节段长12,分析 在荷载作用下构件受力。
桁架桥ANSYS分析
BEAM188——下弦梁、上弦梁、横梁、端斜腹梁
一、定义单元 LINK180——其他斜腹梁、竖杆
SHELL181——桥面梁
桁架桥ANSYS分析
基于ANSYS的桥梁分析
钢桁架桥静力受力分析对一架钢桁架桥进行具体静力受力分析,分别采用GUI方式和命令流方式。
A 问题描述图6-15 钢桁架桥简图已知下承式简支钢桁架桥桥长72米,每个节段12米,桥宽10米,高16米。
设桥面板为0.3米厚的混凝土板,当车辆行驶于桥梁上面时,轴重简化为一组集中力作用于梁上,来计算梁的受力情况。
桁架杆件规格有三种,见下表:表6-2 钢桁架桥杆件规格所用材料属性如下表:表6-3 材料属性参数钢材混凝土弹性模量EX 2.1×1011 3.5×1010泊松比PRXY0.30.1667密度DENS78502500B GUI操作方法1.创建物理环境1)过滤图形界面:GUI:Main Menu> Preferences,弹出“Preferences for GUI Filtering”对话框,选中“Structural”来对后面的分析进行菜单及相应的图形界面过滤。
2)定义工作标题:GUI:Utility Menu> File> Change Title,在弹出的对话框中输入“Truss Bridge Static Analysis”,单击“OK”。
如图6-16(a)。
指定工作名:GUI:Utility Menu> File> Change Jobname,弹出一个对话框,在“Enter new Name”后面输入“Structural”,“New log and error files”选择yes,单击“OK”。
如图6-16(b)。
图6-16(a)定义工作标题图6-16(b)指定工作名3)定义单元类型和选项:GUI:Main Menu> Preprocessor> Element Type> Add/Edit/Delete,弹出“Element Types”单元类型对话框,单击“Add”按钮,弹出“Library of Element Types”单元类型库对话框。
基于ANSYS钢桁架桥的静动力分析
基于ANSYS钢桁架桥的静动力分析黎波含华北科技学院摘要:本文采用ANSYS分析程序,对下承式钢桁架桥进行了空间有限元建模;对桁架桥进行了静力分析和动力分析(模态分析),作出了桁架桥在静载下的结构变形图、位移云图、以及各个节点处的结构内力图(轴力图、弯矩图、剪切力图),找出了结构的危险截面,在对桁架桥进行模态分析时,主要绘制出了桁架桥的八阶模态振型图,得出一些结论,这些都为桥梁的设计、维护、检测提供了一些技术参数。
关键词:ANSYS;钢桁架桥;模态分析;动力特性引言:随着现代交通运输的快速发展,桥梁兴建的规模在不断的扩大,尤其是现代铁路行业的快速发展更加促进了铁路桥梁的建设,一些新建的高速铁路桥梁可以达到四线甚至是六线,由于桥面和桥身的材料不同导致其受力情况变得复杂,这就需要桥梁需要有足够的承载力,足够的竖向侧向和扭转刚度,同时还应具有良好的稳定性以及较高的减震降噪性,因此对其进行静动力学分析了解其受力特性具有重要的意义。
基于此文中对某下承式钢桁梁桥进行了静动力学分析,初步得到了该桥的一些静动力学结果该结果对桥梁的设计、维护、检测具有一定的指导意义。
1工程简介某一下承式简支钢桁架桥桥长72米,每个节段12米,桥宽10米,高16米。
桥面板为0.3米厚的混凝土板,桁架桥的杆件均使用的是工字型截面但型号有所不同,钢桥的形式见图1,其结构简图见图2图1图2 刚桁架桥简图所用的桁架杆件有三种规格,见表1表1 钢桁架杆件规格杆件截面号形状规格端斜杆1工字形400X400X16X16上下弦2工字形400X400X12X12横向连接梁3工字形400X400X12X12其他腹杆4工字形400X300X12X12所用的材料属性见表2表2 材料属性参数钢材混凝土弹性模量EX 2.1×1011 3.5×10泊松比PRXY0.30.1667密度DENS7850225002 模型构建将下承式钢桁梁桥的各部分杆件,包括上弦杆、下弦杆、腹杆、横梁均采用BEAM188单元,此空间梁单元既可以考虑所模拟杆件的轴向变形,又可以考虑所模杆件在两个平面内的弯曲及绕杆件自身轴的扭转; 钢桥面板采用SHELL181,该空间板单元可以考虑在荷载作用下桥面板内所产生的各种应力; 定义了两套材料属性,桥面为混凝土,各类杆件为钢材,其对应的参数如表2所示;根据表1中的杆件规格定义了三种梁单元截面,根据表1分别定义在相应的梁上;建模时直接建立节点和单元,在后续按照先建节点在建杆最后建桥面板的次序一次建模。
基于ANSYS的桁架内力分析
【 关键 词 】 桁 架 ; 力 ; N Y ; P L 内 A S SA D
【 中图分类号】 T 3 34 U2.
【 文献标识码 】 A
【 文章编号】 10 — 7 X(0 0 0 — 0 10 0 3 7 3 2 1 )2 0 2 — 2
示 结构 变形 图 、 表显示 单元 的计 算结 果等 。 列
2 实例分 析
l 在前 处 理模 块 中定 义节 点设 置 单 元 属性 : 先 1 首 使用 “P E 7 命 令 . /R P ” 进入 前处 理模块 P E 7 并 定义 7 R P, 个 节 点 , 坐 标 为 10 )21 )320、(,)505 其 (, 、(, 、(, 430、(., 0 0 )
第2 5卷 第 2期( 第 14期 ) 总 1
机 械 管 理 开 发
ME CHANI AL C MANAGE ME AN NT D DE VEL P 0 MEN T
21 0 0年 4 月
A r2 1 p .0 0
V 1 5 N . S M N .1) o. o2(U o14 2
1 平面简 单桁 架 内力分 析的 AN Y S S方 法
ME ) , Fx i6 。 1F y 1 O ( =0 一  ̄s 0 × 一 A = . F n ×
=
0,FA+F xsn 0。 = r 2 i6 一 0.
=
,
0,瞅 05 F x i6 。 - Ax15 .m+ 3sn 0 xl F v .+
义在 3号 节 点上 的沿一 y方 向大 小为 7k N的集 中力 , “ 7,X 5 命 令定 义 在 7号 节点 上 的沿 方 向大 小 F, F , ”
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于ANSYS的桁架桥简单的力学分析
姓名戴航
学号20120680203
专业工程力学
班级2班
二〇一五年六月
一、桁架桥的工程背景及用途
桁架桥简介:
桁架桥是桥梁的一种形式,一般多见于铁路和高速公路,指的是以桁架作为上部结构主要承重构件的桥梁。
桁架桥为空腹结构,因而对双层桥面有很好的适应性。
桁架是由直杆组成的一般具有三角形单元的平面或空间结构,桁架杆件主要承受轴向拉力或压力,从而能充分利用材料的强度,节约材料,在跨度较大时可比实腹梁节省材料,减轻自重和增大刚度。
本文通过分析在卡车过桥时,对桁架桥进行ansys静力分析和模态分析,给出危险截面,从而为优化设计提供理论依据。
桁架桥实物如下:
桥梁的简化平面模型(取桥梁的一半):
二、研究对象简介
在本文的分析中,分析模型为:
桁架桥由型钢组成,顶梁及侧梁,桥身弦杆,底梁分别采用3种不同型号的型钢,结构参数见表3-6。
桥长L=32m,桥高H=5.5m。
桥身由8段桁架组成,每段长4m。
该桥梁可以通行卡车,若这里仅考虑卡车位于桥梁中间位置,假设卡车的质量为4000kg,若取一半的模型,可以将卡车对桥梁的作用力简化为P1 ,P2和P3 ,其中P1= P3=5000 N, P2=10000N。
材料性能为:弹性模量E=2.10e10Pa,泊松比为0.3,密度7800kg/m3。
表3-6 桥梁结构中各种构件的几何性能参数
三、单元类型:
共选用三种单元:
1、顶梁及侧梁(beam1),定义1号是实常数用于beam1,截面参数见上
表;
2、桥身弦梁(beam2),定义2号实常数用于beam2,截面数据见上表;
3、底梁(beam3),定义3号实常数用于beam3,截面数据见上表。
四、主要建模过程
1、定义单元类型
2、定义实常数以确定梁单元的截面参数,,定义材料参数
3、构造桁架桥模型
生成桥体几何模型:
ANSYS Main Menu:Preprocessor → Modeling → Create → Keypoints → In Active CS → NPT Keypoint number:1,X,Y,Z Location in active CS:0,0 → Apply→同样输入其余15个特征点坐标(最左端为起始点,坐标分别为 (4,0), (8,0), (12,0), (16,0), (20,0), (24,0), (28,0), (32,0), (4,5.5), (8,5.5), (12,5.5), (16.5.5), (20,5.5), (24,5.5), (28,5.5))→ Lines → Lines → Straight Line →依次分别连接特征点→ OK
网格划分:
ANSYS Main Menu: Preprocessor → Meshing → Mesh Attributes → Picked Lines →选择桥顶梁及侧梁→OK → select REAL: 1, TYPE: 1 → Apply →选择桥体弦杆→OK → select REAL: 2, TYPE: 1 → Apply →选择桥底梁→ OK → select REAL: 3, TYPE:1 → OK → ANSYS Main Menu:Preprocessor → Meshing → MeshTool →位于Size Controls下的Lines:Set → Element Size on Picked → Pick all →Apply → NDIV:1 → OK → Mesh → Lines → Pick all → OK (划分网格)
3、给模型加约束和施加载荷
4、计算分析,显示结果
五、工况分析:
1、加载工况
施加载荷
ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Force/Moment → On Keypoints →选取底梁上卡车两侧关键点(X坐标为12及20)→OK → select Lab: FY,Value: -5000 → Apply →选取底梁上卡车中部关键点(X 坐标为16)→ OK → select Lab: FY,Value: -10000 → OK
→ ANSYS Utility Menu:→ Select → Everything
图形显示结构Y方向的位移
(a)桥梁中部最大挠度值为0.003 374m
等效应力云图
(b)桥梁中部轴力最大值为25 380N
2、自重工况。