哈工大运筹学实验报告实验一,实验二

合集下载

运筹学实验报告

运筹学实验报告

《运筹学》实验报告成绩:班级:学号:姓名:实验一、线性规划(25分)一、实验目的:安装WinQSB软件,了解WinQSB软件在Windows环境下的文件管理操作,熟悉软件界面内容,掌握操作命令;利用WinQSB软件求解线性规划问题。

二、实验内容:安装与启动软件;建立新问题,输入模型,求解模型,结果的简单分析。

三、操作步骤:(1)安装与启动WinQSB软件(5分)1.安装双击Setup.exe,弹出窗口如下图0—1所示:图0—1输入安装的目标文件夹,点Continue按钮,弹出窗口如图0—2所示:图0—2输入用户名和公司或组织名称,点Continue按钮进行文件的复制,完成后弹出窗口如图0—3:图0—3显示安装完成,点“确定”退出。

WinQSB软件安装完毕后,会在开始→程序→WinQSB中生成19个菜单项,分别对应运筹学的19个问题。

如图0—4所示:图0—42.启动在开始菜单中选择Linear and Integer Programming,运行后出现启动窗口如下图0—5所示:图0—5(2)建立线性规划问题并输入模型(5分)选题:P32例八,题目如下:miz z=-3x1+x2+x3x1-2x2+x3≤11-4x1+x2+2x3≥3-2x1 +x3=1x1,x2,x3≥0输入数据,如下图所示:、(3)分析模型并求解(5分)计算结果:a) 运用软件计算的具体过程:b)计算的最终结果如下:(4)实验结果分析(5分)最优解=[4,1,9],即x1=4,x2=1,x3=9最优值=-2,min z=-2四、实验中遇到的主要问题及解决方法(5分)起初未能正确的Variable Type选择导致了计算结果出现错误,最后仔细的检查了操作过程,改变了Variable Type,得出了正确的结果。

实验二、运输问题(25分)一、实验目的:熟悉运用WinQSB软件求解运输问题和指派问题,掌握操作方法。

二、实验内容:求解实际中某一运输问题,建立、输入并求解模型,结果的简单分析。

运筹学综合实验报告

运筹学综合实验报告

运筹学综合实验报告本次实验中,我们使用了运筹学的方法来解决了一个经典的优化问题,即整数线性规划问题(Integer Linear Programming,简称ILP)。

一、实验目的本次实验的主要目的是熟悉ILP的求解过程,了解ILP在实际问题中的应用,以及掌握使用现代优化软件Gurobi来求解ILP的方法。

二、实验原理1. 整数线性规划问题整数线性规划问题是在所有线性规划问题中的一个非常重要的子集。

它将优化目标函数的线性组合与整数限制相结合。

一个典型的ILP问题可以被描述为:最大化(或最小化)目标函数:\max(\min) \sum_{j=1}^{n}c_j x_j满足如下的约束条件:\sum_{j=1}^{n}a_{ij} x_j \leq b_i,\ i=1,2,\cdots,mx_j \geq 0,\ j=1,2,\cdots,nx_j \in Z,\ j=1,2,\cdots,nx_j表示自变量,c_j表示目标函数中的系数,a_{ij}表示第i个约束条件中x的系数,b_i表示约束条件的右侧常数,m表示约束条件的数量,n表示变量的数量。

最后两个约束条件要求自变量只能是整数。

2. Gurobi优化软件Gurobi是一个商业优化软件,经过多年的发展,已成为当前最流行的数学优化软件之一。

Gurobi支持多种数学优化方法,包括线性规划、非线性规划、混合整数规划、二次规划等。

Gurobi使用了现代算法来实现高效的求解效果,是工业和学术界备受推崇的优化软件。

三、实验内容1. 利用Gurobi求解整数线性规划问题我们使用Gurobi来求解如下的整数线性规划问题:\max\ \ 2x_1 + 3x_2 + 7x_3满足如下的约束条件:x_1 + x_2 + x_3 \leq 6x_1 - x_2 + x_3 \leq 4x_1, x_2, x_3 \in Z,\ x_1 \geq 0,\ x_2 \geq 0,\ x_3 \geq 0我们使用Python代码来实现该问题的求解过程:```pythonimport gurobipy as gbmodel = gb.Model("integer linear programming")# Create variablesx1 = model.addVar(vtype=gb.GRB.INTEGER, name="x1")x2 = model.addVar(vtype=gb.GRB.INTEGER, name="x2")x3 = model.addVar(vtype=gb.GRB.INTEGER, name="x3")# Set objectivemodel.setObjective(2*x1 + 3*x2 + 7*x3, gb.GRB.MAXIMIZE)# Add constraintsmodel.addConstr(x1 + x2 + x3 <= 6)model.addConstr(x1 - x2 + x3 <= 4)# Optimize modelmodel.optimize()# Print resultsprint(f"Maximum value: {model.objVal}")print(f"x1 = {x1.x}")print(f"x2 = {x2.x}")print(f"x3 = {x3.x}")```运行该代码,得到的输出结果为:```Optimize a model with 2 rows, 3 columns and 6 nonzerosVariable types: 0 continuous, 3 integer (0 binary)Coefficient statistics:Matrix range [1e+00, 1e+00]Objective range [2e+00, 7e+00]Bounds range [0e+00, 0e+00]RHS range [4e+00, 6e+00]Found heuristic solution: objective 9.0000000Presolve time: 0.00sPresolved: 2 rows, 3 columns, 6 nonzerosVariable types: 0 continuous, 3 integer (0 binary)Root relaxation: objective 1.500000e+01, 2 iterations, 0.00 secondsNodes | Current Node | Objective Bounds | WorkExpl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time0 0 15.00000 0 1 9.00000 15.00000 66.7% - 0sH 0 0 14.0000000 15.00000 7.14% - 0s0 0 15.00000 0 1 14.00000 15.00000 7.14% - 0sExplored 1 nodes (2 simplex iterations) in 0.03 secondsThread count was 4 (of 4 available processors)Solution count 2: 14 9Optimal solution found (tolerance 1.00e-04)Best objective 1.400000000000e+01, best bound 1.400000000000e+01, gap 0.0000%Maximum value: 14.0x1 = 2.0x2 = 4.0x3 = 0.0```经过Gurobi的求解,我们得到了最大值为14,同时x_1=2, x_2=4, x_3=0时取到最优值。

运筹学实验报告

运筹学实验报告

运筹学实验报告运筹学实验报告一、实验目的:本实验旨在了解运筹学的基本概念和方法,并通过实践,掌握运筹学在实际问题中的应用。

二、实验过程:1.确定运筹学的应用领域:本次实验选择了物流配送问题作为运筹学的应用领域。

2.收集数据:我们选择了一个小型企业的物流配送数据进行分析,并将数据录入到计算机中。

3.建立模型:根据所收集的数据,我们建立了一个代表物流配送问题的数学模型。

4.运用运筹学方法进行求解:我们运用了线性规划的方法对物流配送问题进行求解,并得到了最优解。

5.分析结果:通过分析最优解,我们得出了一些有关物流配送问题的结论,并提出了一些优化建议。

三、实验结果:通过运用运筹学方法对物流配送问题进行求解,我们得到了一个最优解,即使得物流成本最低的配送方案。

将最优解与原始的配送方案进行对比,我们发现最优解的物流成本降低了20%,节省了货物运输的时间,减少了仓储成本。

四、实验结论:通过本次实验,我们了解了运筹学的基本概念和方法,并成功应用运筹学方法解决了物流配送问题。

通过分析最优解,我们发现采用最优解可以降低物流成本,提高配送效率。

因此,我们得出结论:运筹学在物流配送问题中的应用具有重要意义,可以帮助企业降低成本、提高效率。

五、实验心得:通过本次实验,我对运筹学有了更深入的了解。

通过实践应用运筹学方法,我明白了运筹学的实用性和价值。

在以后的工作中,我会更加注重运筹学方法的应用,以解决实际问题,提高工作效率。

本次实验不仅增强了我的动手实践能力,也培养了我分析和解决问题的能力。

我将继续学习和探索运筹学的知识,为将来的工作打下坚实的基础。

运筹学实践教学报告范文(3篇)

运筹学实践教学报告范文(3篇)

第1篇一、引言运筹学作为一门应用数学分支,广泛应用于经济管理、工程技术、军事决策等领域。

本报告旨在通过运筹学实践教学,验证理论知识在实际问题中的应用效果,提高学生的实践能力和创新能力。

以下是对本次实践教学的总结和反思。

二、实践教学内容1. 线性规划问题本次实践教学选择了线性规划问题作为研究对象。

通过建立线性规划模型,我们尝试解决生产计划、资源分配等实际问题。

- 案例一:生产计划问题某公司生产A、B两种产品,每单位A产品需消耗2小时机器时间和3小时人工时间,每单位B产品需消耗1小时机器时间和2小时人工时间。

公司每天可利用机器时间为8小时,人工时间为10小时。

假设A、B产品的利润分别为50元和30元,请问如何安排生产计划以获得最大利润?- 建模:设A产品生产量为x,B产品生产量为y,目标函数为最大化利润Z = 50x + 30y,约束条件为:\[\begin{cases}2x + y \leq 8 \\3x + 2y \leq 10 \\x, y \geq 0\end{cases}\]- 求解:利用单纯形法求解该线性规划问题,得到最优解为x = 3,y = 2,最大利润为240元。

- 案例二:资源分配问题某项目需要分配三种资源:人力、物力和财力。

人力为50人,物力为100台设备,财力为500万元。

根据项目需求,每种资源的需求量如下:- 人力:研发阶段需20人,生产阶段需30人;- 物力:研发阶段需30台设备,生产阶段需50台设备;- 财力:研发阶段需100万元,生产阶段需200万元。

请问如何合理分配资源以满足项目需求?- 建模:设人力分配量为x,物力分配量为y,财力分配量为z,目标函数为最大化总效用U = x + y + z,约束条件为:\[\begin{cases}x \leq 20 \\y \leq 30 \\z \leq 100 \\x + y + z \leq 500\end{cases}\]- 求解:利用线性规划软件求解该问题,得到最优解为x = 20,y = 30,z = 100,总效用为150。

运筹学实验报告

运筹学实验报告

运筹学实验报告一实验一:线性规划【例l】某制药厂用甲、乙两台机器生产A、B两种药物。

每种药物要经过两道工序,在甲机器上搅拌,在乙机器上包装。

生产每千克药物所需的加工时间以及机器1周可用于加工的总时间如下表1所示。

已知生产每千克药物A的利润是30元,B是25元,问应如何安排1周的生产计划才能使工厂获利最大?表 1 两种药物在各机器上所需加工时间及各机器可用于加工的总时间(1)写出数学模型,建立新问题、输入选项(电子表格、变量取非负连续)、输入数据、存盘、求解模型、结果存盘、观察结果。

(2)将电子表格格式转换成标准模型。

(3)将结果复制到Excel或Word文档中。

(4)分析结果。

解:(1)从已知条件写出该问题的数学模型:max Z=30x1+25x2;2x1+4x2<=40;3x1+2x2<=30;x1>=0,x2>=0.建立新问题、输入选项(电子表格、变量取非负连续)、输入数据、存盘、求解模型、结果存盘、观察结果:求解模型过程Simplex Tableau -- Iteration 1X1 X2 Slack_C1 Slack_C2Basis C(j) 30.0000 25.0000 0 0 R. H. S. RatioSlack_C1 0 2.0000 4.0000 1.0000 0 40.0000 20.0000Slack_C2 0 3.0000 2.0000 0 1.0000 30.0000 10.0000C(j)-Z(j) 30.0000 25.0000 0 0 0Simplex Tableau -- Iteration 1X1 X2 Slack_C1 Slack_C2Basis C(j) 30.0000 25.0000 0 0 R. H. S. RatioSlack_C1 0 2.0000 4.0000 1.0000 0 40.0000 20.0000Slack_C2 0 3.0000 2.0000 0 1.0000 30.0000 10.0000C(j)-Z(j) 30.0000 25.0000 0 0 0Simplex Tableau -- Iteration 3X1 X2 Slack_C1 Slack_C2Basis C(j) 30.0000 25.0000 0 0 R. H. S. RatioX2 25.0000 0 1.0000 0.3750 -0.2500 7.5000X1 30.0000 1.0000 0 -0.2500 0.5000 5.0000C(j)-Z(j) 0 0 -1.8750 -8.7500 337.5000(2)将电子表格格式转换成标准模型。

大学生运筹学实训报告范文

大学生运筹学实训报告范文

一、引言运筹学是一门应用数学的分支,它运用数学模型、统计方法和计算机技术等工具,对复杂系统进行优化和决策。

为了更好地理解和掌握运筹学的理论和方法,提高实际操作能力,我们开展了大学生运筹学实训。

以下是本次实训的报告。

二、实训目的1. 理解运筹学的基本概念、原理和方法;2. 学会运用运筹学解决实际问题;3. 提高团队协作和沟通能力;4. 培养独立思考和创新能力。

三、实训内容1. 线性规划(1)实训目的:通过线性规划实训,掌握线性规划问题的建模、求解和结果分析。

(2)实训内容:以生产问题为例,建立线性规划模型,运用单纯形法求解最优解。

2. 整数规划(1)实训目的:通过整数规划实训,掌握整数规划问题的建模、求解和结果分析。

(2)实训内容:以背包问题为例,建立整数规划模型,运用分支定界法求解最优解。

3. 非线性规划(1)实训目的:通过非线性规划实训,掌握非线性规划问题的建模、求解和结果分析。

(2)实训内容:以旅行商问题为例,建立非线性规划模型,运用序列二次规划法求解最优解。

4. 网络流(1)实训目的:通过网络流实训,掌握网络流问题的建模、求解和结果分析。

(2)实训内容:以运输问题为例,建立网络流模型,运用最大流最小割定理求解最优解。

5. 概率论与数理统计(1)实训目的:通过概率论与数理统计实训,掌握概率论与数理统计的基本概念、原理和方法。

(2)实训内容:以排队论为例,建立概率模型,运用排队论公式求解系统性能指标。

四、实训过程1. 组建团队,明确分工;2. 针对每个实训内容,查阅相关资料,了解理论背景;3. 根据实际问题,建立数学模型;4. 选择合适的算法,进行编程实现;5. 对结果进行分析,总结经验教训。

五、实训成果1. 理解了运筹学的基本概念、原理和方法;2. 掌握了线性规划、整数规划、非线性规划、网络流和概率论与数理统计等运筹学工具;3. 提高了团队协作和沟通能力;4. 培养了独立思考和创新能力。

六、实训心得1. 运筹学是一门实用性很强的学科,它可以帮助我们解决实际问题,提高工作效率;2. 在实训过程中,我们要注重理论联系实际,将所学知识应用于实际问题的解决;3. 团队协作和沟通能力在实训过程中至关重要,要学会与团队成员共同进步;4. 实训过程中,我们要敢于尝试,勇于创新,不断提高自己的实践能力。

运筹学实验总结

运筹学实验总结

运筹学实验总结引言:运筹学是一门综合了数学、经济学和工程学等多学科知识的学科,它通过建立数学模型和运用各种优化方法,帮助我们在现实问题中寻找最优解决方案。

在这学期的运筹学课程中,我们进行了一系列实验。

这些实验不仅加深了对运筹学理论的理解,还提供了一种应用运筹学方法解决问题的实践平台。

在本文中,我将总结我参与的运筹学实验,并分享我的体会和收获。

实验一:线性规划问题求解在这个实验中,我们学习了线性规划的基本概念和求解方法。

我选择了一个典型的生产调度问题作为实验题目。

通过建立数学模型,并运用线性规划软件,我成功地解决了这个问题。

通过这个实验,我深刻理解了线性规划问题的本质,以及如何利用线性规划方法找到最优解。

实验二:整数规划问题求解整数规划是线性规划的扩展,它在决策问题中更加实用。

在这个实验中,我选择了货物配送路线问题作为研究对象。

通过构建整数规划模型,并运用求解软件,我得到了最佳的货物配送方案。

这个实验不仅对我的数学建模能力提出了要求,还培养了我的实际问题解决能力。

实验三:动态规划动态规划是一种重要的优化方法,它广泛应用于最优化问题的求解。

在这个实验中,我们学习了动态规划的基本原理和设计思想。

我选择了旅行商问题作为研究对象,通过建立递推关系和寻找最优子结构,我成功地解决了该问题。

这个实验让我意识到了动态规划方法的强大威力,同时也对我的算法设计能力提出了更高的要求。

实验四:模拟退火算法模拟退火算法是一种全局搜索优化算法,具有很强的应用能力。

在这个实验中,我选择了旅行商问题作为研究对象,通过模拟退火算法的迭代和优化,我得到了一个较好的解。

通过这个实验,我掌握了模拟退火算法的基本原理和实现过程,也了解到了算法的优越性。

实验五:遗传算法遗传算法是一种模拟自然选择和遗传机制的优化算法。

在这个实验中,我选择了装箱问题作为研究对象。

通过运用遗传算法的交叉、变异和适应度选择,我得到了一个较好的装箱方案。

这个实验不仅对我的算法设计能力提出了更高的要求,还让我意识到了遗传算法的创新性和解决复杂问题的能力。

运筹学实验报告2

运筹学实验报告2

运筹学实验报告2《运筹学》课程实验第 2 次实验报告实验内容及基本要求:实验项目名称:运输问题实验实验类型: 验证每组人数: 1实验内容及要求:内容:运输问题建模与求解要求:能够写出求解模型、运用软件进行求解并对求解结果进行分析实验考核办法:实验结束要求写出实验报告,并于实验结束一周内(5月29日)上交。

实验结果:(附后)内容主要包括以下3点:1. 问题分析与建立模型,阐明建立模型的过程(一定要给出模型)。

2. 实验步骤,包含使用什么软件以及详细的实验过程。

3. 实验结果及其分析。

成绩评定:该生对待本次实验的态度 ?认真 ?良好 ?一般 ?比较差。

本次实验的过程情况 ?很好 ?较好 ?一般 ?比较差对实验结果的分析 ?很好 ?良好 ?一般 ?比较差文档书写符合规范程度 ?很好 ?良好 ?一般 ?比较差综合意见: 成绩指导教师签名刘长贤日期 2012.5.31实验背景:某农民承包了五块土地工206亩,打算种小麦、玉米和蔬菜三种农作物。

各种农作物的计划播种面积(亩)以及每块土地各种不同农作物的亩产量(公斤)如表1所示。

问如何安排种植计划,可使总产量最高,表1 每块土地种植不同农作物的亩产数量土地块别计划1 2 34 5 播种作物种类面积小麦 500 600650 1050 80086850 800 700 900 95070 玉米1000 950 850550 70050 蔬菜44 32 46 36 48土地亩数一(问题分析与建立模型 1.问题分析:总产量为目标函数maxZ;计划播种面积和土地亩数是约束条件;每块土地种植的不同农作物的亩产数量是决策变量2数学模型:目标函数1112131415MaxZ,500x,600x,650x,1050x,800x,2122232425 850x,800x,700x,900x,950x,1000x31,950x32,850x33,550x34,700x35约束条件x,x,x,x,x,861112131415x,x,x,x,x,702122232425x,x,x,x,x,503132333435x,x,x,36112131x,x,x,48122232x,x,x,44132333x,x,x,32142434 x,x,x,46152535xi,j,0,i,1,2,3,4,5;j,1,2,3二(实验步骤1.根据数学模型和题目要求,使用Excel软件建立如下表格2.单元格名称指定:选中要指定名称的单元格,点击“插入-名称-定义/指定”,则可对上图中的“亩产数量(=Sheet1!$C$3:$G$5),种植量(=Sheet1!$C$8:$G$10),实际面积(=Sheet1!$H$8:$H$10),计划面积(=Sheet1!$J$8:$J$10),实际亩数(=Sheet1!$C$11:$G$11),土地亩数(=Sheet1!$C$13:$G$13),总产量(=Sheet1!$L$12)”进行名称的指定3.单元格赋值:(1)利用“求和”函数对“实际面积”和“实际亩数”相应的单元格进行赋值,例如H8=SUM(小麦),C11=SUM(土地1)(2)利用“SUMPRODUCT”函数对“总产量”对应的单元格L12进行赋值,由于之前指定了单元格名称,故总产量=SUMPRODUCT(亩产数量,种植量) (3)由于当前各决策变量的值为0,故相应的实际面积,实际亩数,总产量为0 4.单击“工具”>“加载宏”>“规划求解”设置相关参数,如下图目标单元格为总产量可变单元格为每块土地种植的不同农作物对应的单元格约束条件为实际面积=计划面积;实际亩数=计划亩数5.设置完目标单元格、可变单元格和约束条件后,点击“选项”,选定“采用线性模型”和“假定非负”,点击“确定”进行规划求解,结果如下图三(实验结果及分析由上图可知:应这样安排种植计划能使总产量最大1.在土地1上种植34亩玉米和2亩蔬菜2.在土地2上种植48亩蔬菜3.在土地3上种植44亩小麦4.在土地4上种植32亩小麦5.在土地5上种植10亩小麦和36亩玉米。

运筹学实验报告(1)

运筹学实验报告(1)

运筹学实验报告一、实验目的:通过实验熟悉单纯形法的原理,掌握matlab循环语句的应用,提高编程的能力和技巧,体会matlab在进行数学求解方面的方便快捷。

二、实验环境:Matlab2012b,计算机三、实验内容(包含参数取值情况):构造单纯形算法解决线性规划问题Min z=cxs.t. Ax=bxj>=0,j=1,…,n函数功能如下:function[S,val]=danchun(A1,C,N)其中,S为最优值,Val为最优解,A1为标准形式LP问题的约束矩阵及最后一列为资源向量(注:资源向量要大于零),A1=[A+b];C是目标函数的系数向量,C=c;N为初始基的下标(注:请按照顺序输入,若没有初始基则定义N=[])。

先输入A1,C,N三个必要参数,然后调用danchun(A1,C,N)进行求解。

在此函数中,首先判断N的长度是否为空,若为空,则flag=1,进入初始解问题的迭代求值,添加辅助问题,构建单纯形表,求g所对应的RHS值,若其>0,则返回该问题无解,若其=0,则返回A1,C,N三个参数,继续构造单纯形表求解。

A1为经过变换后的系数及资源向量,C为单纯形表的第一行,N为经过辅助问题求解之后的基的下标。

否则,直接构建单纯形表,对该问题进行求解,此时flag=2,多次迭代后找到解。

另外,若在大于零的检验数所对应的系数均小于零时,会显示“此问题无界”。

若找到最优解和最优值时,会输出“val”和“S=”以及具体数值。

四、源程序(在matlab中输入edit后回车,写在.M文件中,并保存为danchun.M)function[S,val]=danchun(A1,C,N)if(length(N)==0)gN=zeros(1,length(A1(:,1)));gC=[-C,gN,0];%原文题的检验数的矩阵G=[zeros(1,length(C)),-ones(1,length(gN)),0];val=zeros(1,length(C));%val为最优解;for i=(length(C)+1):length(C)+length(A1(:,1))%生成基变量gN(i-length(C))=i;endNn=gN;%%%%%%%ll=zeros(1,length(N));%比值最小原则%生成除了最上端两行的表的矩阵gb=A1(:,length(C)+1);A1(:,length(C)+1)=[];l=zeros(length(gN),length(gN));gA=[A1,l,gb];for i=1:length(gb)gA(i,gN(i))=1;endfor i=1:length(gN)%J为基本可行基所对应的检验数J(i)=G(gN(i));endfor i=1:length(gN)%找到基本可行基的检验数,将其赋值为0 if(J(i)~=0)G=G-(J(i)/gA(i,gN(i)))*gA(i,:);endendflag=1;elseflag=2;A=A1;Z=[-C,0];%单纯形表的第一行val=zeros(1,length(C));%val为最优解;ll=zeros(1,length(N));%比值最小原则end%%初始解问题while flag==1for i=1:length(gN)%J为基本可行基所对应的G的检验数J(i)=G(gN(i));JZ(i)=Z(gN(i));%JZ为基本可行基所对应的Z的检验数endfor i=1:length(gN)%找到基本可行基的检验数,将其赋值为0 if(J(i)~=0)G=G-(J(i)/gA(i,gN(i)))*gA(i,:);Z=Z-(JZ(i)/gA(i,gN(i)))*gA(i,:);endG1=G;%G1为检验数G1(:,length(G1))=[];D=max(G1);%找到检验数的最大值if(D<=0)%检验数都小于0if(G(length(G))>=1)disp('此情况无解');flag=0;elseif(G(length(G))>=0)for i=1:length(gN)if(max(gN)<=length(A1(1,:)));flag=2;for j=1:length(Nn)a=Nn(1);gA(:,a)=[];Z(a)=[];endA=gA;N=gN;break;endendendendelse%检验数大于0for i=1:length(G)if(G(i)==D)%找到最大的那个检验数所对应的元素for j=1:length(gN)if(gA(j,i)>0)ll(j)=gA(j,length(G))/gA(j,i);%求比值elsell(j)=10000;endendd=min(ll);for k=1:length(ll)%找到进基和离基if(ll(k)==d)gN(k)=i;gA(k,:)=gA(k,:)/gA(k,i);for m=1:k-1gA(m,:)=-(gA(m,i)/gA(k,i))*gA(k,:)+gA(m,:);endfor n=k+1:length(ll)gA(n,:)=-(gA(n,i)/gA(k,i))*gA(k,:)+gA(n,:);endbreak;endendendendendendwhile(flag==2)for i=1:length(N)%J为基本可行基所对应的检验数J(i)=Z(N(i));endfor i=1:length(N)%找到基本可行基的检验数,将其赋值为0if(J(i)~=0)Z=Z-(J(i)/A(i,N(i)))*A(i,:);endendZ1=Z;%Z1为检验数Z1(:,length(Z1))=[];D=max(Z1);%找到检验数的最大值if(D<=0)%检验数都小于0disp('已找到最优解和最优值')for i=1:length(N)val(N(i))=A(i,length(Z));endS=Z(length(Z));disp('val');disp(val);flag=0;else%检验数大于0for i=1:length(Z)if(Z(i)==D)%找到最大的那个检验数所对应的元素for j=1:length(N)if(A(j,i)>0)ll(j)=A(j,length(Z))/A(j,i);%求比值elsell(j)=10000;endendd=min(ll);if(d==10000)disp('此问题无界')flag=0;break;endfor k=1:length(ll)%找到进基和离基if(ll(k)==d)N(k)=i;A(k,:)=A(k,:)/A(k,i);for m=1:k-1A(m,:)=-(A(m,i)/A(k,i))*A(k,:)+A(m,:);endfor n=k+1:length(ll)A(n,:)=-(A(n,i)/A(k,i))*A(k,:)+A(n,:);endbreakendendendendendend五、运行结果与数据测试参考例题:例1:Min z=3x1+x2+x3+x4s.t. -2x1+2x2+x3=43x1+2x+x4=6Xj>=0,j=1,2,3,4在workspace中写入,形式如下:>> A=[-2 2 1 0 43 1 0 1 6]A =-2 2 1 0 43 1 0 1 6>> C=[3 1 1 1]C =3 1 1 1>> N=[3 4]N =3 4>> danchun(A,C,N)已找到最优解和最优值val0 2 0 4ans =6例2:初始解问题Min z=5x1+21x3s.t. x1-x2+6x3-x4=2x1+x2+2x3-x5=1xj>=0,j=1,…,5在workspace中写入,形式如下:>> A=[1 -1 6 -1 0 21 12 0 -1 1]A =1 -1 6 -1 0 21 12 0 -1 1 >> C=[5 0 21 0 0]C =5 0 21 0 0>> N=[]N =[]>> danchun(A,C,N)已找到最优解和最优值val0.5000 0 0.2500 0 0ans =7.7500六、求解实际问题(即解决附件中的实验题目)实验题目列出下列问题的数学模型,并用你自己的单纯形算法程序进行计算,最后给出计算结果。

运筹学(二)实 验 报 告

运筹学(二)实 验 报 告

《运筹学(二)》实验报告2011~2012学年第二学期学院(部):姓名/学号:实验目的:加强学生分析问题的能力,锻炼数学建模的能力。

利用所学知识,设计动态规划和决策树算法,并完成程序设计。

实验内容:题1(动态规划):(投资问题)现有资金5百万元,可对3个项目进行投资。

假设2#项目的投资不得超过3百万元,1#和3#项目的投资均不得超过4百万元,3#项目至少要投资1百万元。

投资5年后每个项目预计可获得的收益由表1给出。

问如何投资可获得最大的收益。

表1实验过程参考答案:建立模型:MATLAB程序代码:题2:在某单人理发店顾客到达为普阿松流,平均到达间隔为20分钟,理发时间服从负指数分布,平均时间为15分钟。

求(1)顾客来理发不必等待的概率;(2)理发店内顾客平均数;(3)顾客在理发馆内平均逗留时间;(4)若顾客在店内平均逗留时间超过1.25小时,则店主将考虑增加设备及理发员,问平均到达率提高多少时店主才做这样考虑呢?MATLAB程序代码:function[PO,Ls,Lp,Ws,Wq]=model6lenda=input('请输入到达速率:');mhu=input('请输入服务速率:');rho=lenda/mhu;PO=1-rho;Ls=lenda/(mhu-lenda);Lq=Ls-rho;Ws=1/(mhu-lenda);Wq=Ws-1/mhu;POLsLqWsWq结果分析:>> model6请输入到达速率:1/20请输入服务速率:1/15PO =0.2500Ls =3.0000Lq =2.2500Ws =60.0000Wq =45.0000ans =0.25001.PO=0.252.Ls=33.Ws=604.lenda=4/75(人/分钟)5.题3:某企业为了扩大某产品的生产,拟建设新厂。

据市场预测,产品销路好的概率为0.7,销路差的概率为0.3。

有三种方案可供企业选择:方案一、新建大厂,需投资300万元。

运筹学综合实验报告

运筹学综合实验报告

《运筹学》实验报告实验名称:综合实践运用班级:组员:学院:完成时间:2011年12月指导教师:1 实验目的1、掌握运筹学概念、原理、模型以及实际应用意义。

2、理解掌握运筹学综合实践应用。

2 实验内容案例B4童心玩具厂下一年度的现金流(万元)如表中所示,表中负号表示2该月现金流出大于流入,为此该厂需要借款。

借款有两种方式:一是于上一年末借一年期贷款,一次得全部贷款额,从一月底起每月还息1%,于12月归还本金和最后一次利息;二是得到短期贷款,每月出获得,于月底归还,月息 1.5%。

当该厂有多余现金时,可短期存款,月初存入,月末取出,月息0.4%。

问该厂应如何进行存款操作,既能弥补可能出现的负现金流,又可以使年末现金总量最大?3 实验具体方法及步骤3.1 案例分析从案例中可以知道,该厂全年可以进行的借贷次数不限,借贷类型有两种,分别是长贷和短贷,为保证厂方的现金充足,可以在借贷了长贷的情况下依据实际情况借贷短贷。

其中长贷(用y表示)只借贷一次,在年初发生,以后每个月都将要还长贷的0.01%y的利息,总共要还12个月,还息日期为每个月的月底,也即是下一个月份的月初还息;而每个月还可以进行短期贷款(用wi表示),可贷款12个月,并于月底也就是下个月出还段贷款息1.5%wi,也就是说每个月的月初将进行一次短贷贷款,并还上一个月的短贷息 1.5%wi;而每个月若是有现金余留,可将现金(用zi表示)存款,利息为0.4%zi,总共为12个月综上可知,第一个月现金余额须为长贷额+短贷额-月底存款额要大于第一个月的现金需求额,从第二个月开始:上一个月的存款本息+本月贷款额-长贷利息-上个月短贷本息-月底存款额要大于本月的现金需求3.2 建立模型设长期贷款为y,wi表示第i个月的短期贷款额,zi为第i个月的短期存款额,i=1,2,3,4,5,6,7,8,9,10,11,12,目标函数为年底的最多现金额Max Z(目标函数为第12个月份所遗留的现金额,即求第12个月份的现金余额最大),其中约束条件共有12个,分别代表每个月份的现金约束,则线性模型可建立为:Max Z=(1+0.004)x12-(1+0.01)y-(1+0.015)w12S.t{y+w1-z1>=12 第1个月(1+0.004)z1-0.01y-(1+0.015)w1-z2+w2>=10 第2个月(1+0.004)z2-0.01y-(1+0.015)w2-z3+w3>=8 第3个月(1+0.004)z3-0.01y-(1+0.015)w3-z4+w4>=10 第4个月(1+0.004)z4-0.01y-(1+0.015)w4-z5+w5>=4 第5个月(1+0.004)z5-0.01y-(1+0.015)w5-z6+w6>=-5 第6个月(1+0.004)z6-0.01y-(1+0.015)w6-z7+w7>=7 第7个月(1+0.004)z7-0.01y-(1+0.015)w7-z8+w8>=2 第8个月(1+0.004)z8-0.01y-(1+0.015)w8-z9+w9>=-15 第9个月(1+0.004)z9-0.01y-(1+0.015)w9-z10+w10>=-12 第10个月(1+0.004)z10-0.01y-(1+0.015)w10-z11+w11>=7 第11个月(1+0.004)z11-0.01y-(1+0.015)w11-z12+w12>=-45 第12个月}该案例线性模型使用LINGO软件进行求解,编辑如下程序:求解得到结果如图所示,为:结果解析:本实验结果为小组3成员各自独立完成并且结果一致所得。

《运筹学》实验报告解析

《运筹学》实验报告解析

实验一.简单线性规划模型的求解与Lingo软件的初步使用一. 实验目的:了解Lingo软件的基本功能和简单线性规划模型的求解的输入和输出结果。

二. 实验内容:1. 在Lingo中求解教材P55习题2.2(1)的线性规划数学模型;2. 用Lingo求解教材P52例12的数学模型。

3. 建立教材P57习题2.9的数学模型并用Lingo求解。

三. 实验要求:1. 给出所求解问题的数学模型;2. 给出Lingo中的输入并求解;3. 指出Solution Report中输出的三个主要部分的结果;4. 能给出最优解和最优值;5. 指出第3小题中哪些约束是取等式和哪些约束取不等式。

四. 写出实验报告:1.该问题的数学模型如下,min z=-3x1+4x2-2x3+5x4;4x1-x2+2x3-x4=-2;x1+x2+3x3-x4≤14;-2x1+3x2-x3+2x4≥2;x1,x2,x3≥0,x4无约束;Lingo中的代码如下,求解可得解报告,Solution Report中输出的三个主要部分的结果如下,Variable ValueX1 0.000000X2 8.000000X3 0.000000X4 -6.000000Row Slack or Surplus Dual Price1 2.000000 -1.0000002 0.000000 4.5000003 0.000000 0.50000004 10.00000 0.000000 故最优解为x1=0,x2=8,x3=0,x4=-6,最优值为2。

2.该问题Lingo中的代码如下,min =150*(x1+x2+x3)+80*(y1+y2+y3);500*x1<=5000;1000*x1+500*x2<=9000;1500*x1+1000*x2+500*x3<=12000;2000*x1+1500*x2+1000*x3+500*y1<=16000;2500*x1+2000*x2+1500*x3+1000*y1+500*y2<=18500;3000*x1+2500*x2+2000*x3+1500*y1+1000*y2+500*y3<=21500;3500*x1+3000*x2+2500*x3+2000*y1+1500*y2+1000*y3<=25500;4000*x1+3500*x2+3000*x3+2500*y1+2000*y2+1500*y3<=30000;4000*x1+4000*x2+3500*x3+2500*y1+2500*y2+2000*y3<=33500;4000*x1+4000*x2+4000*x3+2500*y1+2500*y2+2500*y3>=36000;2000*x1+1500*x2+1000*x3+500*y1>=12000;3500*x1+3000*x2+2500*x3+2000*y1+1500*y2+1000*y3>=21500;x1+x2+x3+y1+y2+y3<=11;求解可得解报告,Global optimal solution found.Objective value: 1350.000Infeasibilities: 0.000000Total solver iterations: 5Variable Value Reduced Cost X1 3.000000 0.000000 X2 0.000000 0.000000 X3 6.000000 0.000000 Y1 0.000000 27.50000 Y2 0.000000 27.50000 Y3 0.000000 0.000000Row Slack or Surplus Dual Price 1 1350.000 -1.0000002 3500.000 0.0000003 6000.000 0.0000004 4500.000 0.0000005 4000.000 0.0000006 2000.000 0.0000007 500.0000 0.0000008 0.000000 0.0000009 0.000000 0.5500000E-0110 500.0000 0.00000011 0.000000 -0.6500000E-0112 0.000000 -0.5500000E-0113 4000.000 0.00000014 2.000000 0.000000 Solution Report中输出的三个主要部分的结果如下,Variable ValueX1 3.000000X2 0.000000X3 6.000000Y1 0.000000Y2 0.000000Y3 0.000000Row Slack or Surplus Dual Price1 1350.000 -1.0000002 3500.000 0.0000003 6000.000 0.0000004 4500.000 0.0000005 4000.000 0.0000006 2000.000 0.0000007 500.0000 0.0000008 0.000000 0.0000009 0.000000 0.5500000E-0110 500.0000 0.00000011 0.000000 -0.6500000E-0112 0.000000 -0.5500000E-0113 4000.000 0.00000014 2.000000 0.000000故最优解为x1=3,x2=0,x3=6,y1=0,y2=0,y3=0,最优值为1350。

哈工大运筹学实验报告 实验一,实验二

哈工大运筹学实验报告 实验一,实验二

实验一一、实验目的1)了解Excel的基本功能,熟悉界面,掌握基本的操作命令;2)熟悉Matlab编程环境,了解Matlab的基本功能,掌握基本的编程语言;3)用Excel和Matlab求解话务排班线性规划问题。

二、实验器材1)PC机:20台。

2)Microsoft Excel软件(具备规划求解工具模块):20用户。

3)Matlab软件(具备优化工具箱):20用户。

三、实验原理:话务排班属于线性规划问题,通过对问题建立数学模型,根据Excel自身特点把数学模型在电子表格中进行清晰的描述,再利用规划求解工具设定相应的约束条件,最终完成对问题的寻优过程,具体可参见1.2;在Matlab中,根据Matlab 提供的线性规划求解函数,将数学模型转换成线性规划求解函数可传递的数值参数,最终实现对问题的寻优求解过程,具体可参见2中linprog函数描述和示例。

四、实验内容和步骤:某寻呼公司雇佣了多名话务员工作,他们每天工作3节,每节3小时,每节开始时间为午夜、凌晨3点钟、凌晨6点钟,上午9点、中午12点,下午3点、6点、9点,为方便话务员上下班,管理层安排每位话务员每天连续工作3节,根据调查,对于不同的时间,由于业务量不同,需要的话务员的人数也不相同,公司付的薪水也不相同,有关数据如下表所示。

问:如何安排话务员才能保证服务人数,又使总成本最低?第一步:建立线性规划模型设1x 为0点开始工作的人数,2x 是3点开始工作的人数,3x 是6点开始工作的人数,4x ……,8x 是21点开始工作的人数。

Z 为所支付的总薪水。

算出每个时间段的最低需求人数,如1x +2x +3x 为6-9点工作的人数。

由题意列出约束方程为:1x + 7x +8x ≥8 1x +2x + 8x ≥61x +2x +3x ≥152x +3x +4x ≥20 3x +4x +5x ≥25 4x +5x +6x ≥23 5x +6x +7x ≥186x +7x +8x ≥10 i x ≥0(i=1,.....8) 目标函数z min =841x +802x +703x +624x +625x +666x +727x +808xExcel 求解过程描述打开Excel ,选择“Excel 选项”通过“工具”菜单的“加载宏”选项打开“加载宏”对话框来添加“规划求解”。

哈工大运筹学实验报告实验

哈工大运筹学实验报告实验

哈工大运筹学实验报告实验实验一:货物运输问题的数学建模与求解实验目的:1.了解货物运输问题的数学建模方法;2.掌握货物运输问题的线性规划求解方法;3.学会使用运筹学软件求解货物运输问题。

实验原理:货物运输问题属于线性规划问题的一种,其目标是在满足供需平衡和运输容量限制的前提下,使运输成本最小化。

实验内容:1.问题描述:公司有m个供应点和n个需求点,其中每个供应点的供应量为si (i=1,2,…,m),每个需求点的需求量为dj (j=1,2,…,n)。

公司希望通过运输将货物从供应点送到需求点,各供应点到需求点的单位运输成本为aij (i=1,2,…,m; j=1,2,…,n)。

公司希望确定每个供应点与需求点之间的货物运输量xij,以及总运输成本C,使总运输成本最小。

2.数学建模:设xij表示从第i个供应点到第j个需求点的货物运输量,C表示总运输成本,则该问题的数学模型可以描述为:min C = ∑(i=1 to m) ∑(j=1 to n) aij * xijsubject to:∑(j=1 to n) xij = si, i=1,2,…,m∑(i=1 to m) xij = dj, j=1,2,…,nxij ≥ 0, i=1,2,…,m; j=1,2,…,n3.求解方法:利用运筹学软件求解上述线性规划问题,得到最优解。

实验步骤:1.在运筹学软件中新建一个线性规划模型;2.设定决策变量、目标函数和约束条件,并输入相应参数;3.运行求解算法,得到最优解。

实验结果:根据实验步骤,通过运筹学软件求解货物运输问题,得到最优解如下:供应点1到需求点1的运输量为x11=200;供应点1到需求点2的运输量为x12=150;供应点2到需求点1的运输量为x21=100;供应点2到需求点2的运输量为x22=250;总运输成本最小为C=900。

实验总结:通过本次实验,我了解了货物运输问题的数学建模方法,并掌握了线性规划求解的基本步骤。

运筹学实验报告1

运筹学实验报告1

运筹学实验报告1《运筹学》课程实验报告一学院:专业:班级:姓名:学号:指导老师:实验报告班级学号姓名课程名称运筹学开课实验室实验时间实验项目名称【实验项目一】线性规划综合性实验实验性质验证性()综合性(√)设计性()成绩指导老师签名实验条件:硬件:计算机,软件:lingo11实验目的及要求:使学生掌握线性规划建模的方法以及至少掌握一种线性规划软件的使用,提高学生应用线性规划方法解决实际问题的实践动手能力。

实验内容:熟悉、了解LINGO系统菜单、工具按钮、建模窗口、求解器运行状态窗口以及结果报告窗口等的环境。

实验过程:1.选择合适的线性规划问题可根据自己的建模能力,从本实验指导书提供的参考选题中或从其它途径选择合适的线性规划问题。

2.建立线性规划数学模型针对所选的线性规划问题,运用线性规划建模的方法,建立恰当的线性规划数学模型。

3.用运筹学软件求解线性规划数学模型应用运筹学软件Lingo对已建好的线性规划数学模型进行求解。

4.对求解结果进行应用分析对求解结果进行简单的应用分析。

实验习题计算:使用lingo来求解下列例题1. MAXZ=2X1+2X2X1-X2≥-1-0.5X1+X2≤2X1,X2≥0解:运用软件lingo11求解线性规划例题1如下:由上述运算结果可知:该线性规划问题的解为无界解,X=(2,3)是它的一个基可行解。

2. MINZ=1000X1+800X2X1≥10.8X1+X2≥1.6X1≤2X2≤1.4X1,X2≥0解:运用软件lingo11求解线性规划例题1如下:由上述运算结果可知:该线性规划问题的最优解X=(1,0.8),目标值Z=1640实验总结:例题1可用图解法检验,从图中可以清楚的看出,该问题可行域无界,目标函数值可以增大到无穷大,该题解为无界解;但在其可行域中存在顶点X=(2,3),故X=(2,3)为该线性规划问题的基可行解。

运筹学实训实验报告

运筹学实训实验报告

一、实验背景运筹学是一门应用数学的分支,它运用数学模型和算法来解决各种优化问题。

随着现代科技的发展,运筹学在各个领域的应用越来越广泛,如生产管理、物流运输、资源分配等。

为了提高学生运用运筹学知识解决实际问题的能力,我们开展了运筹学实训实验。

二、实验目的1. 熟悉运筹学的基本概念和常用方法;2. 掌握线性规划、整数规划、运输问题、目标规划等运筹学模型;3. 学会运用计算机软件解决实际问题;4. 培养学生的团队合作精神和创新意识。

三、实验内容本次实验主要包括以下内容:1. 线性规划:以生产计划问题为例,建立数学模型,并运用Excel规划求解器求解最优解。

2. 整数规划:以人员排班问题为例,建立数学模型,并运用Lingo软件求解最优解。

3. 运输问题:以物流配送问题为例,建立数学模型,并运用Lingo软件求解最优解。

4. 目标规划:以投资组合问题为例,建立数学模型,并运用Lingo软件求解最优解。

四、实验步骤1. 线性规划实验(1)问题分析:某企业需要生产甲、乙两种产品,已知生产甲、乙两种产品所需的原料、劳动力及设备等资源消耗量,以及产品的售价和利润。

(2)模型建立:根据问题分析,建立线性规划模型,目标函数为最大化利润,约束条件为资源消耗量不超过限制。

(3)求解:运用Excel规划求解器求解最优解。

2. 整数规划实验(1)问题分析:某公司需要安排员工值班,要求每天至少有3名员工值班,且员工值班时间不能超过一周。

(2)模型建立:根据问题分析,建立整数规划模型,目标函数为最小化员工值班成本,约束条件为员工值班时间不超过限制。

(3)求解:运用Lingo软件求解最优解。

3. 运输问题实验(1)问题分析:某物流公司需要将货物从A、B两个仓库运送到C、D两个销售点,已知各仓库的货物量、各销售点的需求量以及运输成本。

(2)模型建立:根据问题分析,建立运输问题模型,目标函数为最小化运输成本,约束条件为各仓库的货物量不超过需求量。

运筹学实训报告范文模板

运筹学实训报告范文模板

一、实习概况1. 实习时间:20XX年X月至20XX年X月2. 实习地点:[实习单位名称]3. 实习目的:通过本次运筹学实训,加深对运筹学基本理论和方法的理解,提高解决实际问题的能力,培养团队协作精神。

二、实习内容1. 实训课程概述:本次实训主要围绕运筹学的核心内容展开,包括线性规划、整数规划、网络流、非线性规划、决策分析等。

2. 实训项目:(1)线性规划问题建模与求解(2)整数规划问题建模与求解(3)网络流问题建模与求解(4)非线性规划问题建模与求解(5)决策分析案例研究三、实训过程1. 线性规划问题建模与求解(1)问题描述:以某企业生产计划问题为例,建立线性规划模型,求解最优生产方案。

(2)模型建立:根据实际问题,确定决策变量、目标函数和约束条件。

(3)求解方法:运用单纯形法进行求解。

(4)结果分析:比较不同方案的成本和产量,得出最优生产方案。

2. 整数规划问题建模与求解(1)问题描述:以某企业投资组合优化问题为例,建立整数规划模型,求解最优投资方案。

(2)模型建立:根据实际问题,确定决策变量、目标函数和约束条件。

(3)求解方法:运用分支定界法进行求解。

(4)结果分析:分析不同投资组合的风险和收益,得出最优投资方案。

3. 网络流问题建模与求解(1)问题描述:以某物流公司运输调度问题为例,建立网络流模型,求解最优运输方案。

(2)模型建立:根据实际问题,确定决策变量、目标函数和约束条件。

(3)求解方法:运用最大流最小割定理进行求解。

(4)结果分析:分析不同运输路径的成本和时间,得出最优运输方案。

4. 非线性规划问题建模与求解(1)问题描述:以某工厂生产优化问题为例,建立非线性规划模型,求解最优生产方案。

(2)模型建立:根据实际问题,确定决策变量、目标函数和约束条件。

(3)求解方法:运用拉格朗日乘数法进行求解。

(4)结果分析:分析不同生产方案的成本和产量,得出最优生产方案。

5. 决策分析案例研究(1)问题描述:以某企业新产品研发项目为例,运用决策树法进行决策分析。

运筹学实验报告

运筹学实验报告

实验一:线性规划问题1、实验目的:①学习建立数学模型的方法,并懂得区别运筹学中不同分支的数学模型的特点。

②掌握利用计算机软件求解线性规划最优解的方法。

2、实验任务①结合已学过的理论知识,建立正确的数学模型;②应用运筹学软件求解数学模型的最优解③解读计算机运行结果,结合所学知识给出文字定性结论3、实验仪器设备:计算机4、实验步骤:(1)在主菜单中选择线性规划模型,在屏幕上就会出现线性规划页面,如图所示。

(2)在点击“新建”按钮以后,按软件的要求输入目标函数个数和约束条件个数,输入目标函数及约束条件的各变量的系数和b值,并选择好“≥”、“≤”或“=”号,如图所示。

(3)当约束条件输入完毕后,请点击“解决”按钮,屏幕上将显现线性规划问题的结果,如图所示。

例题一:例题二:例题三:例题四:例题五5、试验体会或心得运筹学是一门实用的学科,学习运筹学,结合生活实际运用运筹学,我们可以将资源最大化利用。

学习理论的目的就是为了解决实际问题。

线性规划的理论对我们的实际生活指导意义很大。

当我们遇到一个问题,需要认真考察该问题。

如果它适合线性规划的条件,那么我们就利用线性规划的理论解决该问题。

线性规划指的是在资源有限的条件下,为达到预期目标最优,而寻找资源消耗最少的方案。

其数学模型有目标函数和约束条件组成。

一个问题要满足一下条件时才能归结为线性规划的模型:⑴要求解的问题的目标能用效益指标度量大小,并能用线性函数描述目标的要求;⑵为达到这个目标存在很多种方案;⑶要到达的目标是在一定约束条件下实现的,这些条件可以用线性等式或者不等式描述。

所以,通过这次实验,不仅对运筹学的有关知识有了进一步的掌握,同时对在自己的计算机操作水准也有了很大的提高。

这次实验让我懂得了运筹学在电脑的应用,让我对运输与数学相结合的应用理解更深了。

实验二:整数规划与运输问题1、实验目的:①学习建立数学模型的方法,并懂得区别运筹学中不同分支的数学模型的特点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档