数字信号论文

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于LMS自适应滤波器的MATLAB实现摘要:数字滤波器在数字信号处理中的应用广泛,是数字信号处理的重要基础。自适应滤波器可以不必事先给定信号及噪声的自相关函数,它可以利用前一时刻已获得的滤波器参数自动地调节现时刻的滤波器参数使得滤波器输出和未知的输入之间的均方误差最小化,从而它可以实现最优滤波。本论文主要研究了自适应滤波器的基本结构和原理,然后介绍了最小均方误差算法(LMS算法),并完成了一种基于MATLAB平台的自适应LMS自适应滤波器的设计。通过仿真,我们实现了LMS自适应滤波算法,并从结果得知步长和滤波器的阶数是滤波器中很重要的两个参数,并通过修改它们证实了这一点,其中步长影响着收敛时间,而且阶数的大小也会大大地影响自适应滤波器的性能。

关键词:自适应滤波器 MATLAB LMS仿真

The Realization of Adaptive Filter Based on LMS by Applying MATLAB

yinpeng

Abstract: Digital filter which is widely used is the important basement of the digital signal processing. Adaptive filter can adjust its coefficients automatically to minimize the mean-square

error between its output and that of an unknown input, unnecessary to know the autocorrelation functions of signal and noise in advance, hence it can realize linearly optimum filtering.This paper introduces the structure and the principle of the adaptive filter, and then introduces the LMS algorithm, at the same time, it has completed the design of adaptive LMS filter based on MATLAB platform and realized to decrease noise in signal processing. Through the simulations,

we realize the algorithm of adaptive LMS. Moreover, we can understand there exist two very

μand filter order M through the results. We also demonstrate important parameters, step-size

μaffects the convergence rate toward the unknown system, and how the that how the step-size

filter order M affects the performance of adaptive filter by changing these two parameters. Keywords: Adaptive Filter MA TLAB LMS Simulation

第一章研究背景

1.1自适应滤波器

60年代,美国B.Windrow和Hoff首先提出了主要应用于随机信号处理的自适应滤波器算法,从而奠定了自适应滤波器的发展。所谓自适应滤波器,即利用前一时刻已获得的滤波器参数等结果,自动地调节现时刻的滤波器参数,以适应信号与噪声未知的或随时间变化的统计特性,从而实现最优滤波。

自适应信号处理主要是研究结构可变或可调整的系统,它可以通过自身与外界环境的接触来改善自身对信号处理的性能。自适应信号处理的应用领域包括通信、雷达、声纳、地震学、导航系统、生物医学和工业控制等。自适应滤波器是相对固定滤波器而言的,固定滤波器属于经典滤波器,它滤波的频率是固定的,自适应滤波器滤波的频率则是自动适应输入信号而变化的,所以其适用范围更广。

自适应滤波器出现以后,发展很快。由于设计简单、性能最佳,自适应滤波器是目前数字滤波器领域是活跃的分支,也是数字滤波器研究的热点。主要自适应滤波器有:递推最小二乘(RLS)滤波器、最小均方差(LMS)滤波器、格型滤波器、无限冲激响应(IIR)滤波器。

实际情况中,由于信号和噪声的统计特性常常未知或无法获知,这就为自适应滤波器提供广阔的应用空间、系统辨识、噪声对消、自适应谱线增强、通信信道的自适应均衡、线性预测、自适应天线阵列等是自适应滤波器的主要应用领域。

第二章 设计原理

2.1 自适应滤波器设计原理

自适应滤波器是以最小均方误差为准则,由自适应算法通过调整滤波器系数,以达到最优滤波的时变最佳滤波器。设计自适应滤波器时,可以不必预先知道信号与噪声的自相关函数,在滤波过程中,即使噪声与信号的自相关函数随时间缓慢变化,滤波器也能自动适应,自动调节到满足均方误差最小的要求。自适应滤波器主要由参数可调的数字滤波器和调整滤波器系数的自适应算法两部分构成自适应滤波器的一般结构如图2.1所示。

图2.1中d (k )为期望响应,x (k )为自适应滤波器的输入,y (k )为自适应滤波器的输出,e (k )为估计误差,e (k )=d (k )-y (k ),前置级完成跟踪信号的选择,确定是信号还是噪声;后置级根据前置级的不同选择对数字滤波器输出作不同的处理,以得到信号输出。自适应滤波器的滤波器系数受误差信号e (k )控制,e (k )通过某种自适应算法对滤波器参数进行调整,最终使e (k )的均方值最小。因此,实际上,自适应滤波器是一种能够自动调整本身参数的特殊维纳滤波器,在设计时不需要事先知道关于输入信号和噪声的统计特性的知识,它能够在自己的工作过程中逐渐“了解”或估计出所需的统计特性,并以此为依据自动调整自己的参数,以达到最佳滤波效果。一旦输入信号的统计特性发生变化,它又能够跟踪这种变化,自动调整参数,使滤波器性能重新达到最佳。

图2.1 自适应滤波器的基本结构

2.2 LMS 算法

(1)LMS 算法描述

LMS 算法的性能准则是采用瞬时平方误差性能函数()2

k ε代替均方误差性能函数(){}

2k E ε,其实X T (k ) 质是以当前输出误差、当前参考信号和当前权系数求得下个时刻的

相关文档
最新文档