外啮合不完全齿轮机构的主要参数计算
4种常见的间歇运动机构
在各类机械中,常需要某些构件实现周期性的运动和停歇。
能够将主动件的连续运动转换成从动件有规律的运动和停歇的机构称为间歇运动机构。
而实现间歇运动的四种常用机构分别为:棘轮机构、槽轮机构、凸轮式间歇运动机构和不完全齿轮机构。
一、棘轮机构棘轮机构的类型很多,从工作原理上可分为轮齿啮合式和摩擦式棘轮机构;从结构上可分为外啮合式和内啮合式棘轮机构;从传动方向上分为单向(单动和双动)式和双向式棘轮机构。
棘轮机构是把摇杆的摆动转变为棘轮的间歇回转运动。
其优点轮齿式棘轮机构运动可靠,棘轮转角容易实现有级调节,但在工作过程中棘爪在齿面上滑行,齿尖易磨损并伴有噪音,同时为使棘爪能顺利落入棘轮槽,摇杆摆角应略大于棘轮转角,这样就不可避免地存在空程和冲击,在高速时尤其严重,所以常用在低速、轻载下实现间歇运动。
摩擦式棘轮机构传递运动平稳、无噪声,棘轮转角可作无级调节。
图1 单向轮齿啮合式棘轮但由于运动准确性差,不宜用于运动精度要求高的场合。
在工程实践中,棘轮机构常用于实现间歇送进(如牛头刨床)、止动(如起重和牵引设备中)和超越(如钻床中以滚子楔块式棘轮机构作为传动中的超越离合器,实现自动进给和快速进给功能)等场合。
图2 摩擦式棘轮二、槽轮机构槽轮机构又称马尔他机构或日内瓦机构,也是常用的间歇运动机构之一。
普通平面槽轮机构有外接式槽轮机构(图3)和内接式槽轮机构(图4)两种类型。
它主要是由带有均布的径向开口槽的槽轮2、带有圆柱销A的拔盘1以及机架组成。
图3 外接式槽轮机构图4 内接式槽轮机构槽轮机构的工作过程是:主动拨盘1上的圆柱销A进入槽轮2上的径向槽以前,拔盘上的凸锁止弧α将槽轮上的凹锁止弧β锁住,则槽轮静止不动。
当拔盘圆柱销A进入槽轮径向槽时,凸、凹锁止弧刚好分离,圆柱销可以驱动槽轮转动。
当圆柱销脱离径向槽时,凸锁止弧又将凹锁止弧锁住,从而使槽轮静止不动。
因此,当主动拨盘作连续转动时,槽轮被驱动作单向的间歇转动。
外接式槽轮机构的主动拨盘1与槽轮2转向相反;内接式槽轮机构的主动拨盘1与槽轮2转向相同,且传动平稳、占空间小,槽轮停歇时间较短。
认识不完全齿轮机构
不完全齿轮机构
在自动化生产线中采用了大量的间歇机构,有棘
轮机构、槽轮机构和不完全齿轮机构,那什么是不完
全齿轮机构呢?
1
2 轮机构的类型
三、不完全齿轮机构的特点及应用
一、不完全齿轮机构的组成及其工作原理
◆ 由普通齿轮机构演变而成的间歇运动机构。 ◆ 与齿轮机构区别:主动轮仅有一个或几个齿。从动轮被分
成几个区间,各区间内有与主动轮相应数目的齿槽。
1、机构的组成
•从动轮
•主动轮 •锁止弧
•机架 锁止弧
2、工作原理: 主动轮在有齿部位啮合时 带动从动轮转动,无齿时从动
轮停歇。从动轮停歇时,主动
轮上的锁止弧与从动轮上的锁 止弧互相配合锁住,以保证从
动轮停歇在预定位置上。
二、常用类型:
1、单齿与多齿不完全齿轮机构
例不受机构结构的限制
缺点:从动轮在转动开始及终止时速度突变,冲击较大,一般
仅用于低速、轻载场合
三、特点及应用:
2、应用:
只用于低速、轻载的场合
例1:周期性往复回转机构 主动轴I上装有两个不完全 齿轮A和B, 当主动轴I连续回转时,
从动轴Ⅱ能周期性地输出:
正转——停歇——反转运动
三、特点及应用:
例2:蜂窝煤机工作台间歇转动机构
蜂窝煤机
蜂窝煤机工作台间歇转动机构
单齿不完全齿轮机构
多齿不完全齿轮机构
二、常用类型:
2、外啮合与内啮合不完全齿轮机构
外啮合不完全齿轮机构
主动轮与从动轮转向相反
内啮合不完全齿轮机构
主动轮与从动轮转向相同
二、常用类型:
3、齿轮、齿条不完全啮合机构
主动轮连续转动时,从动齿条作时动时停的往复移动。
不完全齿轮机构和凸轮式间歇机构
外啮合不完全齿轮机构
内啮合不完全齿轮机构
常用外啮合的形式
二、凸轮式间歇机构ห้องสมุดไป่ตู้
图4-14所示是一种圆柱凸轮式间歇运动机构。这种机构的主动 轮l为具有曲线沟槽的圆柱凸轮,从动件2则为均布有柱销3的圆 盘。当主动轮1转动时,拨动柱销3,使从动圆盘2作间歇运动。 这种机构常用在轻载情况下的间歇运动(如火柴包装机),间歇 运动的频率每分钟可高达1500次左右。
不完全齿轮——精选推荐
5.3不完全齿轮机构不完全渐开线齿轮机构能将主动轮的等速连续转动转换为从动轮的间歇运动。
其动停时间比不受机构结构的限制,制造方便,但是从动轮在每次间歇运动的始末有剧烈冲击,故一般只用于低速,轻载及机构冲击不影响正常工作的场所。
若设置缓冲结构可改善机构的动力性能。
5.3.1基本型式与啮合特性不完全齿轮机构分外啮合与内啮合两类(图4-2-82、4-2-83)。
机构由三部分组成:主动轮1与2;一对锁止弧3,主动轮上的凸弧和从动轮上的凹弧可以直接切出或装配而成,也可单独制成一对锁止弧;缓冲结构,用以缓和或消除间歇涌动始.末时的剧烈冲击,改善机构的动力性能。
本节只讨论没有缓冲结构的运动分析与尺寸设计。
不完全齿轮的啮合特性:每一次简谐运动,可以只由一对齿啮合来完成,也可以由若干对齿来完成。
不完全齿轮机构首.末二对齿的啮合过程与完全齿轮机构不同,而中间各对齿的啮合过程与完全齿轮相同。
首对齿:从动轮所处的静止位置,应使主动轮旋转时其首齿S能顺利地通过二轮顶圆右侧交点G,从动轮具有锁止弧的齿K啮合(图4-2-84a、b)。
首啮点E由从动轮的静止位置决定,它可能位于从动轮齿顶圆弧GB1上(图b)或啮合线段B1P上(图a)。
首齿开始推动从动轮.锁止弧恰好脱开。
轮齿在GB1段啮合时,从动轮变速转动;E点离B1点越远,则开始啮合时冲击越大;齿轮在B1B2段啮合时,从动轮匀速转动。
如所选参数满足连续传动条件,则第一对齿到B2点终止啮合时,第二对齿已进入啮合。
末对齿:末对齿啮合至B2点时,因无后续齿所以并不立即脱齿,而以主动齿顶尖角与从动末齿根部啮合,经圆弧B2F,最终于二顶圆左侧交点F处分离。
在B2F段啮合过程中,从动轮角速度逐渐降低。
在F点终止啮合时,锁止弧恰好锁住,从动轮突然停止。
中间各对齿开始啮合与B1点,终止啮合于B2点。
仅由一对齿啮合来完成一次间歇运动时,啮合轨迹的前半段EB1P(或EP)与首对齿的前半段相同;后半段PB2F与末对齿的后半段相同。
其余部分为锁止圆弧。当两轮齿进入啮合时,与齿轮传动一样
外啮合不完全齿轮机构
内啮合不完全齿轮机构
铣刀 8
9
6 7
2
球拍
靠模凸轮
不完全齿轮1 不完全齿轮1
5
1
34
乒乓球拍专用靠模铣床
退煤饼
压制
不完全齿轮
锁止弧
填料
填料
锁止弧
蜂窝煤饼压制机
使运动平稳
瞬心线附加杆
§6-4 凸轮式间歇运动机构
1.工作原理及特点 圆柱凸轮连续回转,推动均布有柱销的从动圆盘间
歇转动。 特点:从动圆盘的运动规律取决于凸轮廓线的形状。 优点:可通过选择适当的运动规律来减小动载荷、避
槽顶半径s 槽深h
拨盘轴径d1 槽轮轴径d2 槽顶侧壁厚b
计算公式或依据
由工作要求确定 R
由安装空间确定 R=Lsinφ=Lsin(π /z) r
由受力大小确定 r≈R/6
s=Lcosφ=Lcos(π /z)
s
h≥s-(L-R-r)
d1≤2(L-s) d2≤2(L-R-r)
b=3~5 mm 经验确定
如果想得到k≥0.5的槽轮机构,则可在拨盘上多装几个圆 销,设装有n个均匀分布的圆销,则拨盘转一圈,槽轮 被拨动n次。故运动系数是单圆柱销的n倍,即:
k= n(1/2-1/z) ∵ k≤1 得:n≤2z/ (z -2)
提问:why k≤1? 事实上,当k=1时,槽轮机构已经不具备间歇运动特性了。
槽数z
免冲击、适应高速运转的要求。定位精确、且 结构紧凑。 缺点:凸轮加工较复杂、安装调整要求严格。
2.类型及应用 类型:圆柱凸轮间歇运动机构、蜗杆凸轮间歇运动机构
R2
圆柱凸轮间歇运动机构
封口
灌浆
CB-B6型外啮合齿轮泵齿轮副全参数设计及其绘制(唐柑培)
机械原理综合实训课程设计计算说明书设计题目: 外啮合齿轮泵的设计班级: 2013 级材料一班班学号: 201310112113学生: 唐柑培指导教师: 李玉龙起止日期: 2015 年 5 月 11 日至2015 年 5月 22 日成都学院(成都大学)机械工程学院【机械原理】综合实训课程任务书目录一、外啮合齿轮泵工作原理············二、电机型号以及减速装置的选型········三、齿轮副参数的确定··············四、齿轮绘制·················五、设计小结·················六、参考文献················一、外啮合齿轮泵工作原理外啮合齿轮泵简介图 1 是外啮合齿轮泵的工作原理图。
由图可见,这种泵的壳体内装有一对外啮合齿轮。
由于齿轮端面与壳体端盖之间的缝隙很小,齿轮齿顶与壳体内表面的间隙也很小,因此可以看成将齿轮泵壳体内分隔成左、右两个密封容腔。
齿轮的参数、代号、图解、计算方法
齿轮几何要素的名称、代号齿顶圆:通过圆柱齿轮轮齿顶部的圆称为齿顶圆,其直径用d a表示。
齿根圆:通过圆柱齿轮齿根部的圆称为齿根圆,直径用d f 表示。
齿顶高:齿顶圆d a与分度圆d之间的径向距离称为齿顶高,用h a来表示。
齿根高:齿根圆d f与分度圆d之间的径向距离称为齿根高,用h f表示。
齿顶高与齿根高之和称为齿高,以h表示,即齿顶圆与齿根圆之间的径向距离。
以上所述的几何要素均与模数m、齿数z有关。
齿形角:两齿轮圆心连线的节点P处,齿廓曲线的公法线(齿廓的受力方向)与两节圆的内公切线(节点P处的瞬时运动方向)所夹的锐角,称为分度圆齿形角,以α表示,我国采用的齿形角一般为20°。
传动比:符号i,传动比i为主动齿轮的转速n1(r/min)与从动齿轮的转速n2(r/min)之比,或从动齿轮的齿数与主动齿轮的齿数之比。
即i= n1/n2 = z2/z1中心距:符号a,指两圆柱齿轮轴线之间的最短距离,即:a=(d1+d2)/2=m(z1+z2)/2齿轮几何参数计算压痕法是在被测齿轮的齿顶涂色后,使其在一张纸上滚动,这张纸上就留下了齿顶滚过的痕迹,根据压痕作出齿顶线的延长线及辅助线,然后用量角器测量出齿向角度,该角即为齿轮齿顶处的螺旋角β,然后再根据齿轮其它几何参数,计算出齿轮分度圆处的螺旋角β。
1) 什么是「模数」?模数表示轮齿的大小。
R模数是分度圆齿距与圆周率(π)之比,单位为毫米(mm)。
除模数外,表示轮齿大小的还有CP(周节:Circular pitch)与DP(径节:Diametral pitch)。
【参考】齿距是相邻两齿上相当点间的分度圆弧长。
2) 什么是「分度圆直径」?分度圆直径是齿轮的基准直径。
决定齿轮大小的两大要素是模数和齿数、分度圆直径等于齿数与模数(端面)的乘积。
过去,分度圆直径被称为基准节径。
最近,按ISO标准,统一称为分度圆直径。
3) 什么是「压力角」?齿形与分度圆交点的径向线与该点的齿形切线所夹的锐角被称为分度圆压力角。
不完全齿轮机构知识讲解
脱离啮合时,从动轮停歇不动。因此,当主 动轮连续转动时,从动轮获得时动时停的间 歇运动。
图5-12a所示为
外啮合不完全齿轮
机构,其主动轮1
转动一周时,从动
轮2转动六分之一
周,从动轮每转一
周停歇6次。当从
图 5- 12
动轮停歇时,主动
轮上的锁止弧与从
动轮上的锁止弧互相配合锁住,以保证从动轮停
歇在预定位置。图b为内啮合不完全齿轮机构。
t2 K(z2)
t1 K 2z
由于运动系数 应小于1,即z2
增加径向槽数z可以增加机构运动的平稳 性,但是机构尺寸随之增大,导致惯性力增 大。所以一般取 z =4~8。
槽轮机构中拨盘上的圆销数、槽轮上的
径向槽数以及径向槽的几何尺寸等均视运动 要求的不同而定。每一个圆销在对应的径向 槽中相当于曲柄摆动导杆机构。因此,该机 构为分析槽轮的速度、加速度带来了方便, 有兴趣的同学可以下去自学。
作业布置
❖ P93 6-2、6-4
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
不完全齿轮机构
它由带有圆 销的主动拨盘1、 具有径向槽从动 槽轮2和机架所组 成。
5 -1 0
当拨盘1以等角速度连 续转动,拨盘上的圆销A 没进入槽轮的径向槽时, 槽轮上的内凹锁止弧被 拨盘上的外凸弧mm卡住, 槽轮静止不动。当拨盘 上的圆销刚开始进入槽 轮径向槽时,锁止弧nn 也刚好被松开槽轮在圆 销A的推动下开始转动。
如图所示为不完全齿轮齿条机构, 当主动轮连续转动时,从动轮作时动时 停的往复移动。
不完全齿轮机构 1
不完全齿轮机构 2
与普通渐开线齿轮机构一样,当主动 轮匀速转动时,其从动轮在运动期间也保 持匀速转动,但在从动轮运动开始和结束 时,即进入啮合和脱离啮合的瞬时,速度 是变化的,故存在冲击。
间歇运动机构(选用)
圆珠笔芯线上的自动送料机构
凸轮-齿轮组合机构
机床校正机构
蜗杆主动,因制造误差使蜗轮运动精度达不到 要求,由误差设计一凸轮机构,经齿轮齿条、 差动机构K使蜗杆得到一附加转动,以校正误差。
凸轮-齿轮组合机构
凸轮-连杆组合机构可实现多种复杂的运动规律 相当于连架杆长度可变的四杆机构。
相当于连杆长度(BD)可变的四杆机构。
卷片槽轮机构
又如图所示的六角车床刀架 的转位槽轮机构, 刀架3上可 装六把刀具并与具有相应的 径向槽的槽轮2固连, 拨盘上 装有一个圆销A。 拨盘每转 一周, 圆销A进入槽轮一次, 驱 使 槽 轮 ( 即 刀 架 ) 转 60°, 从而将下一工序的刀具转换 到工作位置。
刀架转位槽轮机构
5.3 不完全齿轮机构
外啮合槽轮机构
平面槽轮机构
外啮合槽轮机构
内啮合槽轮机构
槽轮机构中拨盘(杆)上的圆柱销数、槽轮上的径向槽数
以及槽的几何尺寸等均可视运动要求的不同而定。
空间槽轮机构
球面棘轮机构
二、槽轮机构的主要参数
槽轮机构的主要参数是槽数z和拨盘圆销 数K。
如右所示,为了使槽轮2在开始和终止转
动时的瞬时角速度为零,以避免圆销与槽发 生撞击,圆销进入或脱出径向槽的瞬时, 槽的中心线O2A应与O1A垂直。设z为均匀 分布的径向槽数目,则槽轮2转过2φ2=2π/z 弧度时,拨盘1的转角2φ1将为
凸轮—连杆机构 可实现预定轨迹。
罐头封口机构,要求 C点沿接合缝运动。
9(凸轮)
8 3
2 1
4
5(上冲头)
10(耐火砖) 压砖机成型机构
6(下冲头) 重物
饼干、香烟包装 机中的推包机构
• 当棘爪与棘轮开始在齿顶P啮合时,棘轮工作齿面对棘爪 的总反力FR相对法向反力FN偏转一摩擦角φ。FN对O1点 的力矩使棘爪滑入棘轮齿根,而齿面摩擦力 f FN有阻止棘 爪滑入棘轮齿根的作用。为使棘爪顺利滑入棘轮齿根并 啮紧齿根,两力对O1点的力矩应满足
齿轮的参数代图解计算方法
两轴平行的齿轮传动直齿圆柱齿轮传动1、两轮轴线互相平行。
2、齿轮的齿长方向与齿轮轴线互相平行。
3、两轮传动方向相反。
4、此种传动形式英勇最广泛。
直齿圆柱齿轮传动1、两轮轴线互相平行。
2、齿轮的齿长方向与齿轮轴线互相平行。
3、两轮传动方向相反;斜齿圆柱齿轮传动1、轮齿齿长方向线与齿轮轴线倾斜一个角度。
2、与直齿圆柱齿轮传动相比,同时啮合的齿数增多,传动平稳,传动的扭矩也比较大。
3、运转时存在轴向力。
4、加工制造比直齿圆柱齿轮传动麻烦。
斜齿圆柱齿轮传动非圆齿轮传动1、目前常见的非圆齿轮有椭圆形、扇形。
2、当主动轮等速转动时从动轮可以实现有规则的不等速转动。
3、此种传动多见于自动化机构。
人字齿轮传动1、具有斜齿圆柱齿轮的优点,同时运转时不产生轴向力。
2、适用于传递功率大,需作正反向运转的机构中。
3、加工制造比斜齿圆柱齿轮麻烦。
两轴相交的齿轮传动交叉轴斜齿轮传动1、两轮轴线不再同一平面上,或者任意交错,或者垂直交错。
2、两轮的螺旋角可以相等,也可以不相等。
3、两轮的螺旋方向可以相同,也可以不相同。
蜗杆传动1、蜗杆轴线与蜗轮轴线成垂直交错。
2、可以实现大的传动比,传动平稳,噪声小,有自锁。
3、传动效率较低,蜗杆线速度受一定限制。
直齿锥齿轮传动1、两轮轴线相交于锥顶点,轴交角α有三种,α〉90°,α=90°(正交),α〈90°。
2、轮齿齿线的延长线通过锥点。
斜齿锥齿轮传动1、轮齿齿线呈斜向,或者说,齿线的延长线不通过锥点,而是与某一圆相切。
2、两轮螺旋角相等,螺旋方向相反。
弧齿锥齿轮传动1、轮齿齿线呈弧形。
2、两轮螺旋角相等,螺旋方向相反。
3、与直齿锥齿轮传动相比,同时参加啮合的齿数增多,传动平稳,传动的扭矩较大。
齿轮几何要素的名称、代号齿顶圆:通过圆柱齿轮轮齿顶部的圆称为齿顶圆,其直径用d a表示。
齿根圆:通过圆柱齿轮齿根部的圆称为齿根圆,直径用d f 表示。
齿顶高:齿顶圆d a与分度圆d之间的径向距离称为齿顶高,用h a来表示。
其他常用机构
第九章其他常用机构(了解)有级变速机构原理:通过改变机构中某一级的传动比的大小来实现转速的变换。
特点:优点—①传动可靠②传动比准确③结构紧凑缺点—①高速回转时不够平稳②变速时有噪声(了解)无级变速机构原理:依靠摩擦传动传递转矩,改变主动件和从动件的传动半径,使输出轴的转速在一定范围内无级变化。
特点:优点—①传动平稳②有过载保护缺点—①传动比不准确,传动不可靠(了解)无极变速机构常用类型及工作特点①滚子平盘式无级变速机构:结构简单,制造方便,但存在较大的相滑动,磨损严重。
②锥轮—端面盘式无级变速机构:传动平稳,噪声小,结构紧凑,变速范围大。
③分离锥轮式无级变速机构:传动平稳,变速较可靠。
(了解)常见的换向机构类型及工作特点①三星轮换向机构:利用惰轮来实现从动件回转方向的变换的;应用:卧式车床走刀系统。
②离合器锥齿轮换向机构(掌握)齿式棘轮机构※※齿式棘轮机构棘轮转角的调整①改变棘爪的运动范围。
改变摇杆摆角常可通过改变曲柄AB的长度来实现。
②利用覆罩盖。
计算公式:θ=360°×K/z※※齿式棘轮应用特点优点:①结构简单②制造方便③运动可靠④棘轮转角调节方便缺点:①存在刚性冲击(棘爪与棘轮接触和分离的瞬间)②运动平稳性差③会产生噪声④齿尖磨损快。
应用场合:不适于高速传动,常用于主动件速度不大、从动件行程需要改变的场合,如机床的自动进给、送料、自动计时、制动、超越等。
※※常见的应用举例①牛头刨床的横向进给机构②自行车后轴的齿式棘轮超越机构③防逆转棘轮机构(起重设备中)(掌握)摩擦式棘轮机构原理:靠偏心楔块和棘轮间的楔紧所产生的摩擦力来传递动力的。
特点:传动平稳、无噪声;动程可无级调节。
但因靠摩擦力传动,承载能力较小,会出现打滑现象,虽然可起到安全保护作用,但是传动精度不高。
适用场合:适用于低速轻载的场合。
(常做超越离合器)(掌握)槽轮机构基本组成:槽轮、带圆销的拨盘和机架组成。
工作原理:主动拨盘连续匀速转动时,其上的圆销进入槽轮的径向槽时,驱动槽轮转过相应的角度,当圆销退出槽轮的径向槽时,由于拨盘的锁止凸弧与槽轮的锁止凹弧接触锁住而使槽轮静止不动。
齿轮各参数计算公式
齿轮各参数计算公式模数齿轮计算公式:名称代码计算公式模数mm=p/π=d/z=da/(z+2)(d为分度圆直径,z为齿数)齿距pp=πm=πd/z齿数zz=d/m=πd/p分度圆直径dd=mz=da-2m齿顶圆直径dada=m(z+2)=d+2m=p(z+2)/π齿根圆直径dfdf=d-2.5m=m(z-2.5)=da-2h=da-4.5m齿顶高haha=m=p/π齿根高hfhf=1.25m齿高hh=2.25m齿厚ss=p/2=πm/2中心距aa=(z1+z2)m/2=(d1+d2)/2跨测齿数kk=z/9+0.5公法线长度ww=m[2.9521(k-0.5)+0.014z]13-1什么是毕业圈?标准齿轮的分度圆在哪里?13-2一渐开线,其基圆半径rb=40mm,试求此渐开线压力角?=20°处的半径r和曲率半径ρ的大小。
13-3有一个标准渐开线直齿圆柱齿轮,测量其齿顶圆直径da=106.40mm,齿数z=25,问是哪一种齿制的齿轮,基本参数是多少?13-4对于两个标准正齿轮,测量的齿数ZL=22和Z2=98,小齿轮顶圆直径DAL=240mm,大齿轮的全齿高H=22.5MM。
试着判断两个齿轮是否能正确啮合和驱动?13-5有一对正常齿制渐开线标准直齿圆柱齿轮,它们的齿数为z1=19、z2=81,模数m=5mm,压力角?=20°。
如果安装为“=250mm”的齿轮传动,能否实现无齿隙啮合?为什么?此时顶部间隙(径向间隙)C为多少?13-6已知C6150车床主轴箱中有一个外啮合标准直齿圆柱齿轮,齿数Z1=21,Z2=66,模数M=3.5mm,压力角?=20°,正常牙齿。
尽量确定齿轮副的传动比、分度圆直径、齿顶圆直径、全齿高、中心距、分度圆齿厚和分度圆齿槽宽。
13-7众所周知,标准渐开线直齿轮的顶圆直径为dal=77.5mm,齿数Z1=29。
现在需要设计一个与之啮合的大齿轮,变速器的安装中心距为a=145mm。
外啮合齿轮参数计算
外啮合齿轮参数计算外啮合齿轮是一种常见的传动装置,广泛应用于工程机械、汽车、船舶等领域。
在设计和计算外啮合齿轮参数时,需要考虑的主要因素有齿轮齿数、模数、参考直径、齿轮啮合系数等。
下面将详细介绍外啮合齿轮参数的计算方法。
首先,需要确定齿轮齿数。
齿轮齿数是决定齿轮传动比和啮合条件的重要参数。
在一对啮合齿轮中,输入齿轮齿数N1和输出齿轮齿数N2之间的传动比为i=N2/N1、传动比决定了齿轮转速比,对于同步传动,必须满足输入齿轮的转速和输出齿轮的转速之间的关系。
其次,需要选择合适的模数。
模数是齿轮通过啮合关系传递的角度与齿轮轴线投影之比的常量。
选择合适的模数可以满足强度和精度要求。
常见的模数有0.5、0.8、1、1.25、1.5等。
接下来,需要计算参考直径。
参考直径是齿轮齿数和模数的函数,用来计算齿轮的尺寸。
参考直径可以通过以下公式计算:D=N*m其中,D为参考直径,N为齿数,m为模数。
最后,需要计算齿轮啮合系数。
齿轮啮合系数是齿轮啮合条件的重要指标,它反映了齿轮啮合的顺利性和平稳性。
齿轮啮合系数可以通过以下公式计算:C1=ha1*ha2*hv其中,C1为齿轮啮合系数,ha1和ha2为齿轮1和齿轮2的啮合危险系数,hv为齿轮的接触比例系数。
在实际应用中,设计师还需考虑齿轮的强度和传动效率。
齿轮的强度应满足弯曲强度和接触强度的要求,传动效率应尽量高。
这些参数的计算和优化需要借助专业的齿轮设计软件和经验。
总而言之,外啮合齿轮参数的计算需要考虑齿轮齿数、模数、参考直径、齿轮啮合系数等因素,并结合实际应用需求进行优化设计。
机械原理认知试验
2 机械原理认知实验2 机械原理认知实验2.1 概述机械是机器和机构的统称,机器是由各种机构组成,一部机器由一种或者多种机构组成,如内燃机是由曲柄滑块机构、齿轮机构、凸轮机构等组合而成。
机构的运动形式也是多种多样的,但都是由一些常见的基本机构通过各种组合形式来协调实现的。
随着自动化以及机械向着高精度、高速度、高效率的趋势发展,要求设计出更多的新机构与之相适应。
通过本实验中可动机构的展示,让学生了解机构的组成原理、机构特点和应用场合,以及运动的传递过程。
同时对课程相关的知识点进行回顾,加深印象,也为后面进一步进行机构创新实验开阔思路。
2.2 相关理论知识所谓机械就是机构与机器的总称。
(1)机构。
机构是用来传递运动和力或运动形式转换的多件实物(机件)的组合体。
它可以变换和传递机器之间的运动形式(往复移动变为转动)及速度(高速变低速),如自行车要通过链条传动把脚踏的旋转运动变为后轮的旋转运动,链条就是一种机构;指针手表通过齿轮保持时、分、秒针之间的比例关系,齿轮也是一种机构;折叠式家具及门铰链1机械原理实验指导大多采用的是连杆机构;还有一定功率下电机的输出力矩很小,不能直接使用,通过采用齿轮机构来获得所需的力矩。
常见的机构有带传动机构、链传动机构、齿轮机构、凸轮机构、连杆机构、曲柄滑块机构、蜗轮蜗杆传动机构、螺旋机构等。
(2)机器。
机器是根据某种具体使用要求而设计的多件实物(机件)的组合体。
由原动部分、传动部分(机构)、执行部分和控制部分组成的执行机械运动的装置,它可以转换和传递能量、物料和信息。
如缝纫机可以缝合衣服,它是机器;汽车可以运送物料,它也是机器;打印机可以把电子信息变为纸上可见的信息,它还是机器。
这些机器的共同点就是它们都是由多个机构组成的,且都是通过做功来完成机械运动的。
机器虽然是由多个构件组成的,但就内部结构而言,它又都是通过原动机(如电机)带动常用的传动机构(连杆、凸轮、链、同步带、齿轮或行星齿轮)来执行运动的。
外啮合不完全齿轮机构
棘爪斜高h1 、齿斜高h’ 棘轮齿根圆角半径rf 棘爪尖端圆角半径r1
棘爪长度L
h1=h’ ≈h/cosα
rf =1.5 mm r1 =2 mm 一般取 L=2p
L
p
o2
h1 a
h’ a1α
da
o1
h
60°~80
齿槽角 ° r1
rf
棘轮机构
棘轮机构
槽轮机构
组成:带圆销的拨盘、带有径向槽的 槽轮。拨盘和槽轮上都有锁止弧:槽 轮上的凹圆弧、拨盘上的凸圆弧,起 锁定作用。
若要求螺旋具有自锁性或具有较大的减速比(微动)时,宜 选用单头螺旋,宜选用较小的导程及导程角,但效率较低。
若要求传递大的功率或快速运动的螺旋机构时,宜采用具有 较大导程角的多头螺旋。
螺旋机构
不完全齿轮机构
1.工作原理及特点 工作原理:在主动齿轮只做出一个或几个齿,根据运 动时间和停歇时间的要求在从动轮上做出与主动轮相 啮合的轮齿。其余部分为锁止圆弧。当两轮齿进入啮 合时,与齿轮传动一样,无齿部分由锁止弧定位使从 动轮静止。
(2)螺旋机构的特点 主要优点 能获得很多的减速比和刀的增益;选择合适的螺
旋机构导程角,可获得机构的自锁性。 主要缺点 效率较低,特别是具有自锁性的螺旋机构效率低
于50%。 因此,螺旋机构常用于起重机、压力机以及功率不大的进给
系统和微调装置中。
螺旋机构
螺旋机构的运动分析
当螺杆转过φ时,螺母沿其轴向移动的距离为:
棘轮几何尺寸计算公式
棘轮参数
计算公式或取值
齿数z
12~25
模数m
1、1.5、2、2.5、3、 3.5、4、5、6、8、10
顶圆直径da 齿间距p
外啮合不完全齿轮机构的主要参数计算
间的夹角
B2
=arcsi n
(丄Jin
z2令2h am
S 2)= 13.8374°
25
主动轮的运动角
B =
Q+ Q (当zi = 1时)
B*
=Qe+ Q+ e = 145.5525°(当〉1时)
26
动停比和运动系数
K =
B-N
h
2n・B
N=严
T
T =
B-N
0.4043(当z 1
t
22
主动轮首末两齿中心线间的
w =
2n⑵・1) o
-158.440 °
zi
23
过主动轮锁止弧中心点
Qe
(1)
z(Z2+
,0
2) sin・'
E的向径隹与首齿中线
田丁-乙>a a2- a ,ji = arcian(”
(Zi + Z2)-(
inv a as- inv aci = 0.6699
/0丿十屮
Z2 +2) COSA
26
动停比和运动系数
K
K=3N
2n-3
N =
-1.5275
T
3*N
T= 2n
0.6043(当z仁
:1时,3 = 3C)
外啮合不完全齿轮机构
序号
参数
符V
计算式及结果
1
假想齿数
Z1
Zf =50
乙
Z< =50
2
模数
m
m=1.5
3
压力角
a
a=20°
4
主,从动轮齿顶咼系数
hal*
齿轮啮合参数
齿轮啮合参数:
齿轮啮合的基本参数主要包括以下几点:
1.模数(m):模数是齿轮几何尺寸计算的一个最基本参数,它是决定齿轮大小的主
要因素。
模数越大,则齿轮所能传递的转矩也越大,反之则越小。
模数还有另一个重要意义,那就是它决定了齿轮应力的大小,模数越大则齿轮的应力也越大。
2.齿数(z):齿数是指齿轮上的轮齿数量。
闭式齿轮传动一般转速较高,为了提高传
动的平稳性,减小冲击振动,以齿数多一些为好,小齿轮的齿数可取为z1=20~40。
开式(半开式)齿轮传动,由于轮齿主要为磨损失效,为使齿轮不致过小,故小齿轮不宜选用过多的齿数,一般可取z1=17~20。
3.压力角(α):它是指在齿轮传动中,受力方向和运动方向所夹的锐角。
压力角是决
定齿轮齿形的参数。
即齿轮的齿形(压力角)决定了轮齿的受力情况。
分度圆上的压力角称为标准压力角,我国标准齿轮取20°。
4.齿顶高系数(ha*)和顶隙系数(c*):齿顶高系数决定了齿顶高的大小,顶隙系数
决定了齿隙的大小。
这两个参数主要影响齿轮啮合时的重合度和齿廓的干涉情况。
标准齿轮的齿顶高系数为1,顶隙系数为0.25。
5.齿宽(b):齿宽是指齿轮齿槽垂直于齿轮旋转轴线的宽度。
齿宽的大小决定了齿轮
的承载能力和传动的平稳性。
一般来说,齿宽越大,齿轮的承载能力越强,但过大的齿宽也会增加齿轮的重量和制造成本。
外啮合不完全齿轮机构的主要参数计算
外啮合不完全齿轮机构1的主要参数计算序号参数符号计算式及结果1 假想齿数z1’z2’z1’=50 z2’=502 模数m m=1.53 压力角αα=20°4 主,从动轮齿顶高系数ha1*h a2* h a1*=1 h a2*=15 中心距 a6 主动轮转一周,从动轮的间歇运动次数N 17 主,从动轮齿顶压力角αa1αa28 从动轮顶圆齿间所对应的中心角2γ9 在一次间歇运动中,从动轮转过的角度所包含的齿距数z22510 在一次间歇运动中,主动轮仅一个齿时,从动轮转过角度所包含的齿距数K 311 从动轮相邻两锁止弧间的齿槽数,即在一次间歇运动中,主动轮转过的齿数z112 在一尺间歇运动中,从动轮的转角δδ’13 主动轮末齿齿顶高系数ham* =13.5456°=23.3221=0.462214 主动轮首齿齿顶高系数has* h as*< h am*=0.350015 主动轮首齿和末齿的齿顶压力角αasαam16 首齿重合度ε617 锁止弧半径R 16.108818 主动轮齿顶圆半径ra119 主动轮首齿齿顶圆半径ras120 主动轮末齿齿顶圆半径ram121 从动轮齿顶圆半径ra222 主动轮首末两齿中心线间的夹角ψ23 过主动轮锁止弧中心点E的向径与首齿中线间的夹角Q E(1) 由于=9.2110(2)24 过主动轮锁止弧起始点S的向径与末齿中线间的夹角Q S25 主动轮的运动角ββ’(当)(当)=181.5525°26 动停比和运动系数κτ=1.1074(当,)=0.5043外啮合不完全齿轮机构2的主要参数计算序号参数符号计算式及结果1 假想齿数z1’z2’z1’=50z2’=502 模数m m=1.53 压力角αα=20°4 主,从动轮齿顶高系数ha1*h a2*h a1*=1h a2*=15 中心距 a6 主动轮转一周,从动轮的间歇运动次数N 17 主,从动轮齿顶压力角αa1αa28 从动轮顶圆齿间所对应的中心角2γ9 在一次间歇运动中,从动轮转过的角度所包含的齿距数z23010 在一次间歇运动中,主动轮仅一个齿时,从动轮转过角度所包含的齿距数K 311 从动轮相邻两锁止弧间的齿槽数,即在一次间歇运动中,主动轮转过的齿数z112 在一尺间歇运动中,从动轮的转角δδ’13 主动轮末齿齿顶高系数ham*14 主动轮首齿齿顶高系数has* h as*< h am*=0.3500 15 主动轮首齿和末齿的齿顶压力角αasαam16 首齿重合度ε17 锁止弧半径R °18 主动轮齿顶圆半径ra119 主动轮首齿齿顶圆半径ras120 主动轮末齿齿顶圆半径ram121 从动轮齿顶圆半径ra2=3922 主动轮首末两齿中心线间的夹角ψ23 过主动轮锁止弧中心点E的向径与首齿中线间的夹角Q E(2)(2)24 过主动轮锁止弧起始点S的向径与末齿中线间的夹角Q S°25 主动轮的运动角ββ’(当)(当) 26 动停比和运动系数κτ(当,)外啮合不完全齿轮机构3的主要参数计算序号参数符号计算式及结果1 假想齿数z1’z2’z1’=50z2’=502 模数m m=1.53 压力角αα=20°4 主,从动轮齿顶高系数ha1*h a2*h a1*=1h a2*=15 中心距 a6 主动轮转一周,从动轮的间歇运动次数N 17 主,从动轮齿顶压力角αa1αa2°8 从动轮顶圆齿间所对应的中心角2γ9 在一次间歇运动中,从动轮转过的角度所包含的齿距数z21010 在一次间歇运动中,主动轮仅一个齿时,从动轮转过角度所包含的齿距数K 311 从动轮相邻两锁止弧间的齿槽数,即在一次间歇运动中,主动轮转过的齿数z112 在一尺间歇运动中,从动轮的转角δδ’13 主动轮末齿齿顶高系数ham*14 主动轮首齿齿顶高系数has* h as*< h am*=0.350015 主动轮首齿和末齿的齿顶压力角αasαam16 首齿重合度ε17 锁止弧半径R=36.5926 18 主动轮齿顶圆半径ra119 主动轮首齿齿顶圆半径ras120 主动轮末齿齿顶圆半径ram121 从动轮齿顶圆半径ra222 主动轮首末两齿中心线间的夹角ψ23 过主动轮锁止弧中心点E的向径与首齿中线间的夹角Q E(3)(4)16.7133°(2)=1.493324 过主动轮锁止弧起始点S的向径与末齿中线间的夹角Q S25 主动轮的运动角ββ’(当)(当)26 动停比和运动系数κτ(当,)。
齿轮传动参数计算
齿轮传动参数计算齿轮传动是一种常见的机械传动形式,广泛应用于各种机械设备中。
在设计齿轮传动时,需要进行一系列的参数计算,以确保齿轮传动的工作正常、可靠。
本文将介绍齿轮传动的参数计算方法及其相关知识,以帮助读者更好地了解和应用齿轮传动。
首先,需要计算齿轮的传动比。
传动比是指齿轮的转速之比,用于确定输入轴和输出轴的转速关系。
传动比的计算公式为:传动比=输出齿轮的齿数/输入齿轮的齿数传动比决定了输出齿轮的转速是输入齿轮转速的多少倍。
通常情况下,齿轮传动是通过调整齿数比例来实现所需的传动比。
接下来,需要计算齿轮的模数(module)。
齿轮的模数是指齿轮齿条上的齿距在径向方向上的投影长度。
模数的计算公式为:模数=齿轮的齿数/齿轮的直径模数决定了齿轮的尺寸和齿形,是齿轮传动设计的重要参数之一除了传动比和模数,还需要计算齿轮的径向力和轴向力。
径向力是齿轮齿条与齿轮轴线之间的力,用于计算齿轮的轴向受力情况。
轴向力是齿轮轴线方向的力,用于计算齿轮轴的强度和稳定性。
齿轮的径向力和轴向力的计算涉及到齿轮齿条的几何参数和受力分析。
在计算径向力时,需要考虑齿轮齿距、齿厚、齿顶宽度等参数。
在计算轴向力时,需要考虑齿轮齿条的齿形和齿距角等参数。
最后,还需要进行齿轮传动的强度计算。
齿轮传动的强度计算是指通过计算齿轮的受力情况和材料强度,来确定齿轮的承载能力和寿命。
强度计算通常涉及到齿轮的材料特性、齿数、载荷、接触比、接触应力等参数。
以上是齿轮传动参数计算的基本内容。
在实际的齿轮传动设计中,还需要考虑一系列的实际情况和使用要求,如齿轮材料的选择、润滑条件、噪声和振动等方面的要求。
因此,在进行参数计算时,还需要综合考虑这些因素,以确保齿轮传动的工作性能和可靠性。
总之,齿轮传动参数计算是齿轮传动设计中的基础工作,通过计算传动比、模数、径向力、轴向力和强度等参数,可以为设计者提供必要的数据和依据,以确保齿轮传动的性能和寿命。
除了上述介绍的内容,齿轮传动参数计算还涉及到齿轮的几何特征、材料力学性能、接触应力和齿轮失效分析等方面的知识。
齿轮计算公式范文
齿轮计算公式范文齿轮的计算公式主要包括齿轮的几何参数计算公式和齿轮的传动参数计算公式两部分。
一、齿轮的几何参数计算公式:1.齿轮的模数(m)计算公式:m=d/z其中,m为齿轮的模数,d为齿轮的分度圆直径,z为齿数。
2.齿轮的分度圆直径(d)计算公式:d=m*z其中,d为齿轮的分度圆直径,m为齿轮的模数,z为齿数。
3.齿轮的齿宽(b)计算公式:b=K*m其中,b为齿轮的齿宽,K为齿宽系数,m为齿轮的模数。
4.齿轮的螺旋角(γ)计算公式:γ = atan(tan(α)/cosβ)其中,γ为齿轮的螺旋角,α为齿侧角,β为齿轮的压力角。
5.齿轮的模位角(θm)计算公式:θm = atan(tanβ/cosγ)其中,θm为齿轮的模位角,β为齿轮的压力角,γ为齿轮的螺旋角。
6. 齿轮的圆椎距(ha)计算公式:ha = m*(cosα - cosβ)其中,ha为齿轮的圆椎距,m为齿轮的模数,α为齿侧角,β为齿轮的压力角。
7. 齿轮的齿顶高(hf)计算公式:hf = 1.25*m其中,hf为齿轮的齿顶高,m为齿轮的模数。
8. 齿轮的齿根高(hg)计算公式:hg = 1.35*m其中,hg为齿轮的齿根高,m为齿轮的模数。
9. 齿轮的齿顶圆直径(da)计算公式:da = d + 2*hf其中,da为齿轮的齿顶圆直径,d为齿轮的分度圆直径,hf为齿轮的齿顶高。
10. 齿轮的齿根圆直径(db)计算公式:db = d - 2*hg其中,db为齿轮的齿根圆直径,d为齿轮的分度圆直径,hg为齿轮的齿根高。
二、齿轮的传动参数计算公式:1.齿轮的传动比(i)计算公式:i=z2/z1其中,i为齿轮的传动比,z1为主动齿轮的齿数,z2为从动齿轮的齿数。
2.齿轮的转速比(ω)计算公式:ω=n2/n1其中,ω为齿轮的转速比,n1为主动齿轮的转速,n2为从动齿轮的转速。
3.齿轮的齿垂度计算公式:ε=[(c1-c2)/m]/z其中,ε为齿轮的齿垂度,c1为主动齿轮的垂距,c2为从动齿轮的垂距,m为齿轮的模数,z为齿数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14
主动轮首齿齿顶高系数
has*
has*< ham*=0.3500
15
主动轮首齿和末齿的齿顶压力角
αas
αam
16
首齿重合度
ε
6
17
锁止弧半径
R
16.1088
18
主动轮齿顶圆半径
ra1
19
主动轮首齿齿顶圆半径
ras1
20
主动轮末齿齿顶圆半径
ram1
21
从动轮齿顶圆半径
ra2
22
主动轮首末两齿中心线间的夹角
ψ
23
过主动轮锁止弧中心点E的向径 与首齿中线间的夹角
QE
(1)由于 =9.2110
(2)
24
过主动轮锁止弧起始点S的向径 与末齿中线间的夹角
QS
25
主动轮的运动角
β
β’
(当 )
(当 )=181.5525°
26
动停比和运动系数
κ
τ
=1.1074
(当 , )=0.5043
外啮合不完全齿轮机构2的主要参数计算
主动轮转一周,从动轮的间歇运动次数
N
1
7
主,从动轮齿顶压力角
αa1
αa2
°
8
从动轮顶圆齿间所对应的中心角
2γ
9
在一次间歇运动中,从动轮转过的角度所包含的齿距数
z2
10
10
在一次间歇运动中,主动轮仅一个齿时,从动轮转过角度所包含的齿距数
K
3
11
从动轮相邻两锁止弧间的齿槽数,即在一次间歇运动中,主动轮转过的齿数
2γ
9
在一次间歇运动中,从动轮转过的角度所包含的齿距数
z2
25
10
在一次间歇运动中,主动轮仅一个齿时,从动轮转过角度所包含的齿距数
K
3
11
从动轮相邻两锁止弧间的齿槽数,即在一次间歇运动中,主动轮转过的齿数
z1
12
在一尺间歇运动中,从动轮的转角
δ
δ’
13
主动轮末齿齿顶高系数
ham*
=13.5456°
=23.3221
αas
αam
16
首齿重合度
ε
17
锁止弧半径
R
°
18
主动轮齿顶圆半径
ra1
19
主动轮首齿齿顶圆半径
ras1
20
主动轮末齿齿顶圆半径
ram1
21
从动轮齿顶圆半径
ra2
=39
22
主动轮首末两齿中心线间的夹角
ψ
23
过主动轮锁止弧中心点E的向径 与首齿中线间的夹角
QE
(2)
(2)
24
过主动轮锁止弧起始点S的向径 与末齿中线间的夹角
z1
12
在一尺间歇运动中,从动轮的转角
δ
δ’
13
主动轮末齿齿顶高系数
ham*
14
主动轮首齿齿顶高系数
has*
has*< ham*=0.3500
15
主动轮首齿和末齿的齿顶压力角
αas
αam
16
首齿重合度
ε
17
锁止弧半径
R
=36.5926
18
主动轮齿顶圆半径
ra1
19
主动轮首齿齿顶圆半径
ras1
20
主动轮末齿齿顶圆半径
ram1
21
从动轮齿顶圆半径
ra2
22
主动轮首末两齿中心线间的夹角
ψ
23
过主动轮锁止弧中心点E的向径 与首齿中线间的夹角
QE
(3)
(4)
16.7133°
(2)
=1.4933
24
过主动轮锁止弧起始点S的向径 与末齿中线间的夹角
QS
25
主动轮的运动角
β
β’
(当 )
(当 )
26
动停比和运动系数
κ
τ
(当 , )
序号
参数
符号
计算式及结果
1
假想齿数
z1’
z2’
z1’=50
z2’=50
2
模数
m
m=1.5
3
压力角
α
α=20°
4
主,从动轮齿顶高系数
ha1*
ha2*
ha1*=1
ha2*=1
5
中心距
a
6
主动轮转一周,从动轮的间歇运动次数
N
1
7
主,从动轮齿顶压力角
αa1αa28Fra bibliotek从动轮顶圆齿间所对应的中心角
2γ
9
在一次间歇运动中,从动轮转过的角度所包含的齿距数
QS
°
25
主动轮的运动角
β
β’
(当 )
(当 )
26
动停比和运动系数
κ
τ
(当 , )
外啮合不完全齿轮机构3的主要参数计算
序号
参数
符号
计算式及结果
1
假想齿数
z1’
z2’
z1’=50
z2’=50
2
模数
m
m=1.5
3
压力角
α
α=20°
4
主,从动轮齿顶高系数
ha1*
ha2*
ha1*=1
ha2*=1
5
中心距
a
6
z2
30
10
在一次间歇运动中,主动轮仅一个齿时,从动轮转过角度所包含的齿距数
K
3
11
从动轮相邻两锁止弧间的齿槽数,即在一次间歇运动中,主动轮转过的齿数
z1
12
在一尺间歇运动中,从动轮的转角
δ
δ’
13
主动轮末齿齿顶高系数
ham*
14
主动轮首齿齿顶高系数
has*
has*< ham*=0.3500
15
主动轮首齿和末齿的齿顶压力角
外啮合不完全齿轮机构1的主要参数计算
序号
参数
符号
计算式及结果
1
假想齿数
z1’
z2’
z1’=50
z2’=50
2
模数
m
m=1.5
3
压力角
α
α=20°
4
主,从动轮齿顶高系数
ha1*
ha2*
ha1*=1
ha2*=1
5
中心距
a
6
主动轮转一周,从动轮的间歇运动次数
N
1
7
主,从动轮齿顶压力角
αa1
αa2
8
从动轮顶圆齿间所对应的中心角