第10章模态分析讲解
第10章 支承件设计
第四节 支承件热变形特性
一、支承件热变形
机床和支承件的热变形
机床工作时,存在各种热源,如切削、电动机、液压系统和机械摩擦都会 发热,使各部件因温度分布不均而产生变形,这就是热变形。 热变形可以改变机床各执行器官的相对位置及其位移的轨迹,从而降低加 工精度。 热变形对普通中小机床加工精度影响不太明显,但对自动机床、自动线、 和精密、高精度机床的影响却很明显。
二、改善支承件动态特性和措施
改善支承件的动态特性,提高其抗振性,其关键是提高支承件的动刚度。
1. 单自由度系统的动态特性 提高结构的动刚度,可以采用以下一些办法:提高系统的静刚度;增大系 统中的阻尼比;提高系统的固有角频率;或改变激振角频率,以使二者远离。 2. 改善支承件动态特性的措施 1) 提高静刚度
提高静刚度的途径主要是合理地设计结构的截面形状和尺寸、合理的布置 肋板和肋条、还必须注意结构的整体刚度、局部刚度和接触刚度的匹配等。
2) 增加阻尼 常用的有保留砂芯的方法(常称封砂结构),铸件的砂芯不清与铸件和砂 与砂之间的摩擦耗散振动能量,以提高阻尼。 3) 调整固有频率 增加刚度或减少质量,都可以使固有频率提高,而改变阻尼系数,则固有 频率的变化不大。 4) 采用减振器 采用减振器也是提高抗振性的一种有效方法,其特点是结构轻巧。
接触刚度与自身刚度的不同在于:
1) 接触刚度是指受外载荷对接触平面的平均压强与变形之比,并不是支 承件的自身刚度,接触刚度可表示为:
接触平面受到的平均压强 /接触平面的变形量
2) 接触刚度不是一个固定值,即接触平面受到的平均压强与接触平面的 变形量的关系是非线性的。
第三节 支承件动态特性
动态特性一般包括三方面问题:
整机摇晃振动,振型如图a所示。床身作为一个刚体在弹性基础上做摇晃振 动。整机摇晃的固有频率较低,通常约为数十赫兹。
ansys动力学分析全套讲解
ansys动力学分析全套讲解第一章模态分析§1.1模态分析的定义及其应用模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。
同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。
ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。
前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。
ANSYS产品家族中的模态分析是一个线性分析。
任何非线性特性,如塑性和接触(间隙)单元,即使定义了也将被忽略。
ANSYS提供了七种模态提取方法,它们分别是子空间法、分块Lanczos法、PowerDynamics法、缩减法、非对称法、阻尼法和QR阻尼法。
阻尼法和QR阻尼法允许在结构中存在阻尼。
后面将详细介绍模态提取方法。
§1.2模态分析中用到的命令模态分析使用所有其它分析类型相同的命令来建模和进行分析。
同样,无论进行何种类型的分析,均可从用户图形界面(GUI)上选择等效于命令的菜单选项来建模和求解问题。
后面的“模态分析实例(命令流或批处理方式)”将给出进行该实例模态分析时要输入的命令(手工或以批处理方式运行ANSYS时)。
而“模态分析实例(GUI方式)” 则给出了以从ANSYS GUI中选择菜单选项方式进行同一实例分析的步骤。
(要想了解如何使用命令和GUI选项建模,请参阅<<ANSYS建模与网格指南>>)。
<<ANSYS命令参考手册>>中有更详细的按字母顺序列出的ANSYS命令说明。
§1.3模态提取方法典型的无阻尼模态分析求解的基本方程是经典的特征值问题:其中:=刚度矩阵,=第阶模态的振型向量(特征向量),=第阶模态的固有频率(是特征值),=质量矩阵。
模态分析的相关知识(目的、过程等)
模态分析的好处: • 使结构设计避免共振或以特定频率进行振动(例如扬声器); • 使工程师可以认识到结构对于不同类型的动力载荷是如何响
应的; • 有助于在其它动力分析中估算求解控制参数(如时间步长)。
建议: 由于结构的振动特性决定结构对于各种动力载荷的响应情
况,所以在准备进行其它动力分析之前首先要进行模态分 析。
M2-28
模态分析步骤
观察结果(接上页)
列出自然频率: • 在通用后处理器菜单中选择 “Results Summary”; • 注意,每一个模态都保存在单独的子步中。
典型命令:
/POST1
SET,LIST
2021/10/10
M2-29
模态分析步骤
观察结果 (接上页)
观察振型: • 首先采用“ First Set”、“ Next
章
模态分析
2021/10/10
M2-1
模态分析
第一节: 模态分析的定义和目的 第二节: 对模态分析有关的概念、术语以及模态提取方法的讨论 第三节: 学会如何在ANSYS中做模态分析 第四节: 做几个模态分析的练习 第五节: 学会如何做具有预应力的模态分析 第六节: 学会如何在模态分析中利用循环对称性
的SPIN(旋转速度,弧度/秒)选项来说明陀螺效应; – 计算以复数表示的特征值和特征向量。
• 虚数部分就是自然频率; • 实数部分表示稳定性,负值表示稳定,正值表示不确定。
注意:
• 该方法采用Lanczos算法
• 不执行Sturm序列检查,所以遗漏高端频率
• 不同节点间存在相差
• 响应幅值 = 实部与虚部的矢量和
化:。 – 对振型进行相对于质量矩阵[M]的归一化处理是缺省选项,这种
模态分析方法与步骤
模态分析方法与步骤模态分析方法与步骤一、模态分析包括下列6种方法:1.降阶法(reduced householder method):该方法为一般结构最常用的方法之一。
其原理是在原结构中选取某些重要的节点为自由度,称为主自由度(master degree of freedom),再用该主自由度来定义结构的质量矩阵及刚度矩阵并求出其频率及振动模态,进而将其结果扩展至全部结构。
在解题过程中该方法速度较快,但其答案较不准确。
主自由度的选择依照所探讨的模态、结构负载的情况而定:a. 主自由度的个数至少为所求频率个数的两倍。
b. 选择主自由度的方向为结构最可能振动的方向。
c. 主自由度节点位于较大质量或转动惯量处及刚性较低位置。
d. 如果弯曲模态为主要探讨模态,则可省略旋转自由度。
e. 主自由度的节点位于施力处或非零位移处。
f. 位移限制为零的位置不能选为主自由度节点,因为这种节点具有高刚性的特性。
可以用M命令来定义主自由度。
此外,也可由ANSYS自动选择自由度。
2. 次空间法(subspace method):通常用于大型结构中,仅探讨前几个振动频率,所得到结果较准确,不需要定义主自由度,但需要较多的硬盘空间及CPU时间。
求取的振动模态数应该小于模型全部自由度的一半。
3. 非对称法(unsymmetrical method):该方法用于质量矩阵或刚度矩阵为非对称时,例如转子系统。
其特征值(eigenvalue)为复数,实数部分为自然频率;虚数部分为系统的稳定度,正值表示不稳定,负值表示稳定。
4. 阻尼法(damped method):该方法用于结构系统具有阻尼现象时,其特征值为复数,虚数部分为自然频率;实数部分为系统的稳定度,正值表示不稳定,负值表示稳定。
5. 区块法(block lanczos method):该方法用于大型结构对称的质量及刚度矩阵,和次空间方法相似,但收敛性更快。
6. 快速动力法(power dynamics method):该方法用于非常大的结构(自由度大于100,000)且仅需最小几个模态。
模态分析PPT课件
3、特征值和振型
特征值的平凡根等于结构的固有频率 (rad/s)
ANSYS Workbench输入和输出的固有频率的 单位为Hz,因为输入和输出时候已经除以了 2π。
模态计算中的特征向量表征了结构的模态振型, 如图所示该形状即为假设结构按照频率249Hz 振动时的形状。
第14页/共29页
第19页/共29页
5、模态的提取方法
(2)Iterative-PCG Lanczos -能够处理对称矩阵,但是不用于求解屈曲模态; -适合求解中等到大规模的模态计算问题,提取的模态阶数高于100阶; -适合于网格划分形状较好的三维实体单元; (3)Unsymmetric -能够处理非对称矩阵; -模态计算中使用完整的刚度和质量矩阵; -适合求解K和M为非对称矩阵的问题,如流-固耦合的振动,声学振动; -计算以复数表示的特征值和特征向量: --实数部分就是自然频率; --虚数部分表示稳定性,负值表示稳定,正值表示不确定。
有阻尼模态分析中假设结构没有外力作用,则控制方程变为
M u Cu Ku 0 (1)
设其解为
代入方程(1)得到
{x} {}et
(2)
(2[m] [c] [k]){} [D()]{} {0} (3)
矩阵 [D()]称为系统的特征矩阵。方程(3)是一个“二次特征值”问题,
要(3)式有非零解的充要条件为 [D()] 2[m] [c] [k] 0
第1页/共29页
1、模态分析简介
模态计算的假设和限制条件 -结构是线性的,即具有恒定的总体质量矩阵和总体刚度矩阵 -结构没有外载荷(力,温度,压力等),即结构是自由振
注意:因为模态计算能够反映出结构的基本动力学特性,因此建议用户在进行其 他类型的动力学计算之前,首先进行结构的模态分析。
模态分析法
桥梁结构动态评估的模态分析法文献综述郑大青一、模态分析在桥梁健康监测中的意义;二、模态分析的基本原理及分类;三、模态参数识别研究现状分析;四、模态分析损伤识别现状分析;五、目前模态分析在桥梁监测中存在的问题和不足。
一、模态分析在桥梁健康监测中的意义:桥梁是国家基础设施的重要组成部分,关系到人们的生命和财产安全。
因此,对桥梁进行监测并确定其结构健康状况具有重要的经济和社会意义。
传统的桥梁结构健康监测主要依靠无损检测技术或人工经验对某个特定的结构部件进行检测、查找,判断是否有损伤及损伤的程度,或者测量与桥梁结构性能相关的参数,比如变形、挠度、应变、裂缝等等,通过对这些参数分析,进而判定桥梁结构健康状况。
在应用上面这些方法时存在一些缺陷,如测量之前需知道损伤的大体范围,或者被检测的结构部分是仪器可接近的;在对大跨度桥梁等体量大、构件多的结构监测时,存在不能测量桥梁内部等隐蔽部分、测量工作量大、工作效率相对较低、不能获取桥梁整体信息等不足。
为此,一些专家学者提出了基于模态分析的桥梁健康监测方法,如图1。
此方法将结构动力学领域中的模态分析技术应用到桥梁健康监测中来,以多学科交叉研究为基础的,通过测试桥梁整个结构在外载作用下的响应来分析结构的固有频率、阻尼和模态振型等动力特性,进而诊断结构损伤位置和程度。
因此,模态参数识别和之后的模态分析损伤识别是整个健康监测中2个重要的组成部分。
图1 模态分析健康监测流程图测量桥梁结构激励、响应等信息 进行桥梁模态参数识别(固有频率、阻尼和模态振型等) 用模态分析损伤识别法进行安全评估模态分析监测方法克服了传统监测法存在的一些缺点,它不受结构规模和隐蔽的限制;具有多学科交叉优势,能对结构全局进行检测,从而能够评价桥梁结构的整体健康状态。
近年来,该方法发展迅速,日趋成熟。
事实上,它已经成为桥梁结构在线健康监测的核心技术之一。
因此,模态分析对桥梁健康监测具有重要意义。
二、模态分析的基本原理及分类:由振动理论知:一个线性振动系统,当它按自身某一阶固有频率作自由谐振时,整个系统将具有确定的振动形态(简称振型或模态)。
高等结构振动学-第10章-模态综合方法
(10-23)
{F (t)} [S]T {P(t)}
(10-24)
在模态综合法中,为了描述结构在空间的运动和变形状态,采用两类广义坐
标来描述,分别为“物理(几何)坐标”和“模态坐标”,物理坐标描述结构各
节点的几何坐标位置,而模态坐标则表示物理坐标响应中各个模态成份大小的
量。
对于模态综合法中的“模态”一词,它比“振型”具有更加广义的内涵,它
(1)按结构特点划分子结构 (2)计算并选择分支模态进行第一次模态坐标变换 (3)在全部模态坐标中,选择不独立的广义坐标 (4)由位移对接条件,形成广义坐标的约束方程,得到独立坐标变换阵 [S ] (5)对组集得到的质量矩阵、刚度矩阵进行合同变换,得到独立坐标下的质量
矩阵,刚度矩阵,形成整个系统的振动方程 (6)根据坐标变换关系,再现子结构物理参数
(10-5)
通常,[ ], [ ] 的个数远少于对应子结构的自由度数。
记:
{
p}
p p
[
M
]
[
M 0
]
0 [M ]
[
K
]
[
K 0
]
0 [K ]
(10-6)
[M ] [ ]T [m ][ ] [M ] [ ]T [m ][ ]
[]T [K ][] diag[2]
(10-38)
子结构柔度矩阵为:
[G] [K ]1 [](diag[2 ])1[]T [k ](diag[k2 ])1[k ]T [d ](diag[d2 ])1[d ]T
(10-15)
{
p}
模态分析最新
1
目录
1.模态分析定义与概述 2.模态分析的方法 3.模态试验中注意事项
2
1.模态分析定义与概述
模态是机械结构的固有振动特性,每一个模态具有特定的 固有频率、阻尼比和模态振型。这些模态参数可以由计算或试 验分析取得,这样一个计算或试验分析过程称为模态分析。模 态参数有:模态频率、模态质量、模态向量、模态刚度和模态 阻尼等。 模态分析的经典定义:将线性定常系统振动微分方程组中
28
3.5.6.5 点击OMAS工作模态分析系统的左下方的模态识别 按钮。
a. 选择模态识别菜单栏中的峰值法,
b. 点击下一步,增加光标,有几个峰值,就添加几个光标。 c. 点击下一步,进入识别结果栏,点击保存按钮。
d. 点击完成,退出。
29
3.5.6.6 查看模态结果 a. 打开OMAS工作模态分析系统几何图形部分。
a. 点击建模菜单栏中的手动建模型。
b. 点击添加部件按钮,通常部件的坐标为默认值。 c. 点击下一步,开始添加节点,将每一个通道对应的传感
器的坐标输入。
d. 点击下一步,开始添加连线,将相应的点连接。 e. 点击保存,退出。 f. 点击文件菜单栏中的保存几何文件,格式为*.geo。 g. 打开文件菜单栏中的工程管理窗口,在选择导入文件的 下拉菜单中选择几何文件,将*.geo文件导入。
求,试验台上有60个螺栓孔与转接法兰盘相配合,前者垂直方 向最高孔定义为基准孔,其垂直轴线为0度,是试验坐标系Y轴。
叶片基准定义为气动基准弦线(36m处36000T52剖面)方向,后
缘向上,前缘向下,θ正值表示从叶根向叶尖看逆时针旋转,θ负 值表示从叶根向叶尖看顺时针旋转。叶片安装到试验台后,叶
【结构动力学】第10章 多自由度体系2020
0
0
N
其中,ωn— 第n阶自振频率,{φ}n—第 n阶振型。
[Φ]和[Ω]也分别称为振型矩阵和谱矩阵。
13
5 DOF with uniform mass and stiffness
5 DOF Base Isolated 14
15
5 DOF with uniform mass and stiffness
k22 2m22 k2N 2m2n 0
k N1 2mN1 k N 2 2mN 2 k NN 2mNN
10
对于N个自由度的稳定结构体系,频率方程是关于ω2的 N次方程,
a N ( 2 ) N a N 1 ( 2 ) N 1 a1 2 a 0 0
由此可以解得N个正实根(ω12<ω22<ω32…<ωN2)。 ωn(n=1, 2, …, N)即为体系的自振频率。其中量值最小的 频率ω1叫基本频率(相应的周期T1=2π/ω1叫基本周期)。 从以上分析可知,多自由度体系只能按一些特定的频 率即按自振频率做自由振动。按某一自振频率振动时,结 构将保持一固定的形状,称为自振振型,或简称振型。
上述齐次方程组有非零解条件为:系数行列式为零
A [I ] 0
N×N矩阵[A]一般将有N个特征值,对应N个特征向量
6
§10-2 多自由度体系的自由振动
多自由度体系无阻尼自由振动的方程为:
M u K u 0
其中:[M]、[K]为N×N阶的质量和刚度矩阵 {u}和{ü}是N阶位移和加速度向量 {0}是N阶零向量
11
把相应的自振频率ωn代入运动方程的特征方程得到振型
K n 2 M n 0
{φ}n={φ1n, φ2n , …, φNn }T—体系的第n阶振型 。 ➢ 由于特征方程的齐次性(线性方程组是线性相关的),振型向量 是不定的,只有人为给定向量中的某一值,例如令φ1n=1,才能确 定其余的值。 ➢ 实际求解时就是令振型向量中的某一分量取定值后才能求解。 虽然令不同的分量等于不同的量,得到的振型在量值上会不一样, 但其比例关系是不变的。
模态分析的基础理论-PPT精品文档109页
k
m
c x
kx c·x
m F0 cos t
简谐强迫振动
系数
B
2
x
2 0
x0
n d
x0
tan 1 x0 n x0 d x0
X
A
1
(
n
)
2
2
2
n
2
ET
U1kA2 2
12(x02x02n2)
ET UE
Rayleigh商 动能系数
能量关系
T1mA2 2
12mxm 2ax
n2
k m
Umax T
阻尼自由振动
方程
mxcxkx 0 x(0) x0, x0(0) 0
x2nxn2x 0
自激振动:输电线的舞动 1940年美国塔可马(Tacoma Narrows)吊桥在中速
风载作用下,因桥身发生扭转振动和上下振动造 成坍塌事故 1972年日本海南的一台66×104kW汽轮发电机组, 在试车过程中发生异常振动而全机毁坏; 步兵在操练时,不能正步通过桥梁,以防发生共 振现象造成桥梁坍塌
x ( t) e n t( c 1 c o sd t c 2 s ind t)
x (t)X e n tco s(dt)
c 1 x 0 ,c 2 (xn x 0)/ d
阻尼自由振动
对数衰减率
x1 x2
X Xeenntt12ccooss((ddtt11)
单自由度系统
自由振动 简谐振动 非周期强迫振动
模态分析理论 (2)
模态分析指的是以振动理论为基础、以模态参数为目标的分析方法。
首先建立结构的物理参数模型,即以质量、阻尼、刚度为参数的关于位移的振动微分方程;其次是研究其特征值问题,求得特征对(特征值和特征矢量),进而得到模态参数模型,即系统的模态频率、模态矢量、模态阻尼比、模态质量、模态刚度等参数。
特征根问题以图3所示的三自由度无阻尼系统为例,设123m =m =m =m ,123k =k =k =k ,图 1 三自由度系统其齐次运动方程为:(8)其中分别为系统的质量矩阵和刚度矩阵,123m 00m 00m=0m 0=0m 000m 00m ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,11212221k -k 0k -k 0k=-k k +k -k =-k 2k -k 0-k k 0-k k ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,则运动方程展开式为: ¨11¨22¨33z m 00k k 0z 00m 0z k 2k k z 000m 0k k z 0z ⎡⎤⎢⎥-⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+--=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦(9)定义主振型由于是无阻尼系统,因此系统守恒,系统存在振动主振型。
主振型意味着各物理坐标振动的相位角不是同相(相差0o )就是反相位(相差180o ),即同时达到平衡位置和最大位置。
主振型定义如下:()i ij ωt+i i sin ωt+=Im(e)φφi mi mi z =z z (10)其中为第i阶频率下,各自有度的位移矢量,为第i 个特征矢量,表示第i 阶固有频率下的振型,i ω为第i 阶频率下的第i 个特征值,i φ为初始相位。
对于三自由度系统,在第i 阶频率下,等式可以写成1m1i 2m2i i i 3m3i z z z =z sin(ωt+)z z φ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(11)mki z 表示第k 个自由度在第i 阶模态下的模态矩阵。
模态分析入门教程ppt课件
定义
图解
是一种坐标变换。目的在于把原在物理坐标系统中描述的响应向 量,放到所谓“模态坐标系统”中来描述。运用这一坐标的好处是:利用各特征向量之间的正交特性,可使描述响应向量的各个坐标互相独立而无耦合。换句话讲,在这一坐标系统中,振动方程是一组互无耦合的方程,每一个坐标均可单独求解。
实验梁的力锤敲击信号:
(5)数据预处理 调节采样数据 采样完成后,对采样数据重新检查并再次回放计算频响函数数据。一通道的力信号加力窗,在力窗窗宽调整合适。对响应信号加指数窗。设置完成后,回放数据重新计算频响函数数据。
力信号加力窗
响应信号加指数窗
启动回放
(6)模态分析 l 几何建模:自动创建矩形模型,输入模型的长宽参数以及分段数;打开结点信息窗口,编写测点号;
DHMA模态软件分析方法及应用领域
应用
大型建筑物:
大型桥梁:
DHMA模态分析软件功能
几何建模 读入CAD平面图形、ANSYS有限元模型文件;可以直接在界面上完成部件、结点、连线的填加、删除、移动、复制、粘贴以及参数修改等;可自动生成规则模型;为了更接近实际结构,测点之间可插入非测量结点,软件自动根据周围测点数据编写非测点的约束方程。对模型可以进行平移、旋转、放大缩小、线条颜色修改、背景颜色修改、四视图单独或同时显示;
(2)仪器连接 仪器连接如下图所示,其中力锤上的力传感器接动态采集分析仪的第一通道,DH201加速度传感器接第二通道。
(3)打开仪器电源,启动DHDAS控制分析软件, 选择分析/频响函数分析功能。
实验梁平面图
在菜单“ 分析(N) ”选择分析模式“单输入频响”。 在新建的四个窗口内,分别单击右键,在“信号选择”对话框中设定四个窗口依次为:频响函数数据、1-1通道的时间波形、相干函数数据和1-2通道的时间波形,如下图。
模态分析理论基础PPT课件
v( ) f ()
• 三者之间的关系
H a ( )
a( ) f ()
Ha () jHv () ( j)2 Hd () 2Hd ()
• 动刚度(位移阻抗) Z (s) ms 2 cs k
•
动柔度(位移导纳)
H (s)
1 ms2 cs k
12/26
• 质量阻抗、阻尼阻抗、刚度阻抗(位移、速度、加速度) • 质量导纳、阻尼导纳、刚度导纳(位移、速度、加速度)
解析模态分析可用有限元计算实现,而试验模态分析则是对结构进行 可测可控的动力学激励,由激振力和响应的信号求得系统的频响函数 矩阵,再在频域或转到时域采用多种识别方法求出模态参数,得到结 构固有的动态特性,这些特性包括固有频率、振型和阻尼比等。
1/26
有限元分析软件(如ANSYS、NASTRAN、SAP、MAC等)在结
• 幅频图
20/26
+ 实频图与虚频图
21/26
•Nyquist图
22/26
• 不同激励下频响函数的表达式
– 要点 • 频响函数反映系统输入输出之间的关系 • 表示系统的固有特性 • 线性范围内它与激励的型式与大小无关 • 在不同类型激励力的作用下其表达形式常不相同
– 简谐激励 • 激励力 • 响应
HR 1, 2
(
)
4k
1
(1
)
2
1
g
2
半功率带宽反映阻尼大小 阻尼越大,半功率带宽
越大,反之亦然
16/26
• 虚频图
•
H
I
( )
g
k[(1 2 )2
g2]
(结构阻尼)
•
H
I
( )
Nastran静力分析第10章
变换法
1)对于维数小、元素满的矩阵,且需求全部或大 对于维数小、元素满的矩阵, 部分特征值问题有效 MSC/NASTRAN提供变换法有 吉文斯( Givens) 提供变换法有: 2 ) MSC/NASTRAN 提供变换法有 : 吉文斯 ( Givens ) 法(GIV),修正吉文斯法(MGIV),郝斯厚 GIV) 修正吉文斯法(MGIV) 德(HOU)法和修正郝斯厚德(MHOU)法 (HOU)法和修正郝斯厚德(MHOU)法 法和修正郝斯厚德(MHOU) 吉文斯(GIV) 法要求[M] 3)吉文斯(GIV)法和郝斯厚德 (HOU) 法要求[M] 阵正定。修正吉文斯法(MGIV) 阵正定。修正吉文斯法(MGIV)与修正郝斯厚 德法(MHOU)允许[M]奇异, 德法(MHOU)允许[M]奇异,从而可求解刚体模 (MHOU)允许[M]奇异 态。 4)变换法用模型数据卡EIGR描述,用情况控制指 变换法用模型数据卡EIGR描述, EIGR描述 令METHOD选取 METHOD选取
跟踪法
1)对仅求几个特征值(或固有频率)问题有效 对仅求几个特征值(或固有频率) 2)对求解大型稀疏质量和刚度阵的大型特征值问题有效 MSC/NASTRAN中 提供两种解法。即为逆幂法(INV) 3 ) MSC/NASTRAN 中 , 提供两种解法 。即为逆幂法( INV ) 和移位逆幂 SINV) 法(SINV) 逆幂法和移位逆幂法均用模型数据卡EIGR定义, EIGR定义 4 ) 逆幂法和移位逆幂法均用模型数据卡EIGR 定义 ,用情况控制指令 METHOD选取 选取。 METHOD选取。
2)F1和F2的单位为赫兹(HZ) 的单位为赫兹(HZ) 赫兹 继序卡可以省略, 3)继序卡可以省略,此时特征向量正则化为对质量矩阵 正则化 4)使用METHOD = SINV 时,若F2为空白,则只计算出一 SINV”时 F2为空白 为空白, 使用METHOD =“SINV 个大于F1 F1的特征根 个大于F1的特征根
第10讲:模态分析
一、步进式正弦激励法
步进式正弦激励法是一种测量频响函数 的经典方法。在预先选定的频率范围内,从 最低频到最高频选定足够数目的离散频率值, 每次用一个频率给出激励信号,测出该激励 的稳定响应,再步进到下一个频率,进行同 样的测量。直到所有预先设定的离散点全都 步进完毕。
对于复杂的空间结构,一般情况下将表 现为三维空间变形。这就要求在结构上一个 几何点测量三个方向的响应。在这种情况下, 测量点数和几何点数并不相等。所有测点均 应在测量之前在结构上编号注明。
三、试验频段的选择
试验频段的选择应考虑机械或机构在正 常运行条件下激振力的频率范围。通常认为, 远离振源频带的模态对结构实际振动响应的 贡献较小,甚至认为低频激励激出的响应不 含高阶模态的贡献。实际上,高频模态的贡 献的大小除了与激励频带有关外,还与激振 力的分布状态有关。因此,试验频段应适当 高于振源频段。
五、激振器的支承
1. 当激振器外壳刚性固接于地面时,由 于支承刚度很大,可使激振系统的固有频率
远高于结构的弹性振动频率b>>s,适于用
来激振固有频率较低的结构。
2. 若将激振器外壳通过软弹簧接地,或
采用悬吊支承时,将有b<<s,适用于激振 固有频率较高的结构;为了尽量降低b,可
将重物附加在激振器上,以增加激振系统的 质量。
m1=20m2, 1:2=1 : 20,则二自由度系统
的第二阶固有频率与试件固有频率仅相差 1.2%,可近似为试件接地状态。
近似接地支承方法及等效二自由度系统
二 测点及测量方法的安排 测点位置、测点数量及测量方向的选定 应考虑以下两方面的要求: (1) 能够明确显示在试验频段内的所有模 态的变形特征及各模态间的变形区别; (2) 保证所关心的结构点(如在总装时要与 其他部件连接的点)都在所选的测量点之中。
第10章-动力学分析介绍
第10章动力学分析介绍在实际工程结构的设计工作中,动力学设计和分析是必不可少的一部分。
几乎现代的所有工程结构都面临着动力问题。
在航空航天、船舶、汽车等行业,动力学问题更加突出,在这些行业中将会接触大量的旋转结构例如:轴、轮盘等等结构。
这些结构一般来说在整个机械中占有及其重要的地位,它们的损坏大部分都是由于共振引起较大振动应力而引起的。
同时由于处于旋转状态,它们所受外界激振力比较复杂,更要求对这些关键部件进行完整的动力设计和分析。
10.1 动力分析简介通常动力分析的工作主要有系统的动力特性分析(即求解结构的固有频率和振型),和系统在受到一定载荷时的动力响应分析两部分构成。
根据系统的特性可分为线性动力分析和非线性动力分析两类。
根据载荷随时间变化的关系可以分为稳态动力分析和瞬态动力分析。
谐响应分析是用于确定线性结构在承受随时间按正弦(简谐)规律变化的载荷时稳态响应的一种技术。
可以用瞬态动力学分析确定结构在静载荷,瞬态载荷,和简谐载荷的随意组合作用下的随时间变化的位移,应变,应力及力。
而谱分析主要用于确定结构对随机载荷或随时间变化载荷的动力响应情况。
ANSYS6.1提供了强大的动力分析工具,可以很方便地进行各类动力分析问题:模态分析、谐响应分析、瞬态动力分析和谱分析。
10.2 动力学分析分类动力学分析根据载荷形式的不同和所有求解的内容的不同我们可以将其分为:模态分析、谐响应分析、瞬态动力分析和谱分析。
下面将逐个给予介绍。
10.2.1 模态分析模态分析在动力学分析过程中是必不可少的一个步骤。
在谐响应分析、瞬态动力分析动分析过程中均要求先进行模态分析才能进行其他步骤。
10.2.1.1 模态分析的定义模态分析用于确定设计机构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。
同时,也可以作为其他动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析。
其中模态分析也是进行谱分析或模态叠加法谱响应分析或瞬态动力学分析所必需的前期分析过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5
10.2 模态分析的方法
• ANSYS14.5提拱了6种模态提取方法,它们分别是 分块Lanczos法 PCG Lanczos法 非对称法 阻尼法 QR阻尼法 超节点法。
6
10.2 模态分析的方法
图10-1 模态分析方法
7
10.2 模态分析的方法
(1)分块Lanczos法(Block Lanczos) • 分块Lanczos法特征值求解器是ANSYS默认的求解器。 采用 Lanczos 算法,Lanczos 算法是用一组向量来实现 Lanczos 递归计算。分块Lanczos法采用的是稀疏矩阵方 程求解器。 • 当计算某系统特征值谱所包含一定范围的固有频率时,采 用分块Block Lanczos法提取模态特别有效。计算时,求 解从频率谱中间位置到高频端范围内的固有频率时的求解 收敛速度和求解低阶频率时基本上一样快。求解速度高, 计算速度快,提取大模型的多阶模态(40阶以上),适用 于大型对称特征值求解问题,尤其适合于由壳或壳与实体 组成的模型。
8
10.2 模态分析的方法
(2)PCG Lanczos法 • PCG Lanczos法适用于非常大的对称特征值问题(50万 自由度以上),在求解最低阶模态时尤其有用,这种方法 采用PCG求解器。
9
10.2 模态分析的方法
(3)非对称法(Unsymmetic) • Unsymmetric 法用于系统矩阵为非对称矩阵的问题,采 用完整的[K]和[M]矩阵和Lanczos矩阵。如果系统是非保 守的,非对称法将解得复特征值和特征向量。特征值的实 部表示固有频率,虚部是系统稳定性的量度,由李雅普诺 夫稳定性得,负值表示系统是稳定的,正值表示系统是不 稳定的,常用于声学及其他非对称刚度和质量矩阵等问题 。该方法不进行Sturm序列检查,因此有可能遗漏一些高 频端模态。
11
10.2 模态分析的方法
• ANSYS报告的特征值结果实际上是被2 除过的,单位为 Hz。 • 在有阻尼系统中,不同节点上的响应可能存在相位差。对 于任何节点,幅值应是特征向量实部和虚部分量的矢量和 。
12
10.2 模态分析的方法
(5)QR阻尼法(QR Damped) • QR Damped (QR 阻尼)法具有分块Lanczos的优点,以线 性合并无阻尼系统少量数目的特征向量近似表示前几阶复 阻尼特征值。采用实特征值求解无阻尼振型之后,运动方 程将转化到模态坐标系。然后,采用 QR 阻尼法,一个相 对较小的特征值问题就可以在特征子空间中求解出来了。 • 该方法能够很好地求解大阻尼系统模态解。由于该方法的 计算精度取决于提取的模态数目,所以建议提取足够多的 基频模态,阻尼较大的系统更如此,这样才能保证得到好 的计算结果。QR阻尼法不建议用于提取临界阻尼或过阻 尼的模态。此法输出实部和虚部的特征值,只输出实特征 向量。
13
10.2 模态分析的方法
(6)超节点法(supernode) • 超节点法适用于一次性求解高达10000阶的模态,可用于 模态叠加法或PSD分析的模态提取,以求解结构的高频响 应。
14
10.3 矩阵缩减技术和主自由度选择准则
1.矩阵缩减技术 • 矩阵缩减是通过缩减模型矩阵的大小以实现快速、简便的 分析过程的方法。主要适用于动力学分析,如模态分析, 谐响应分析和瞬态动力学分析。矩阵缩减也在子结构分析 中用于生成超单元。
10
10.2 模态分析的方法
(4)阻尼法(Damped) • Damped 法用于阻尼不可忽略的问题,例如轴承问题。阻 尼法使用完整的刚度矩阵[K]、质量矩阵[M]、阻尼阵[C]。 采用Lanczos算法并计算得到复数特征值和特征向量。阻 尼法也不能不进行Sturm序列检查,因此有可能遗漏一些 高频端模态。 • 特征值的实部代表系统的稳定性,虚部代表系统的稳态角 频率。如果实部小于零,系统的位移幅度将EXP指数规律 递减,稳定响应;如果实部大于零,位移幅度将按指数规 律递减,不稳定响应。如果不存在阻尼,特征值的实部将 为零。
15
10.3 矩阵缩减技术和主自由度选择准则
• 矩阵缩减可以按照静力学分析相同的方法建立一个详细的 模型,在有动力学特征的部分用于动力学分析。可以通过 辨识定义为主自由度的关键自由度来选择模型的动力学特 征部分,所选取的主自由度应该足以描述系统的动力学行 为。ANSYS程序根据主自由度来计算缩减矩阵和缩减自 由度解,然后通过执行扩展处理将解扩展到完整的自由度 集上。矩阵缩减的主要优点是,可以大大节省CPU计算时 间。
3
10.1 模态分析的定义及应用
• 模态分析用于确定结构的振动特性,得到构件的固有频率 和振型。固有频率与振型是承受动载荷结构设计中的重要 参数。模态分析可以是瞬态动力学分析、谐响应分析或者 谱分析的出发点,例如通过模态叠加法进行谐响应或瞬态 动力学分析时模态分析是其必要的前处理过程。通过模态 分析,可以在结构设计上减少共振,使设计者了解结构对 于不同类型的动载荷的响应情况;有利于在其他分析中估 算出求解控制参数,优化参数,缩短计算时间。 • ANSYS中的模态分析属于线性分析,对于非线性分析, 即使定义相关参数也会被忽略,它们将被当做是线性的。 例如,如果分析中包含了接触单元,则系统取其初始状态 的刚度值并且不再改变。
第10章
模态分析
模态分析
• 模态分析属于动力学的范畴,主要用于确定机构的振动特 性,同时也是其他动力学分析的基础。在工程中,常常需 要对机构求解其结构的固有频率与模态,得到固有频率可 以进一步优化结构,从而使机构达到最佳状态。
2
模态分析
10.1 10.2 10.3 10.4 10.5 模态分析的定义及应用 模态分析的方法 矩阵缩减技术和主自由度选择准则 模态分析过程 综合实例——梁的模态分析
10.2 模态分析的方法
• 首先,让我们先了解一下模态分析的几个基本概念: (1)模态提取(No. of modes to extract) 用于描述特征值和特征向量的计算。 (2)模态扩展(No. of modes to expand) 将模态阵型写入结果文件。 (3)参与系数 在给定方向上给定模态参与的程度。