“阿波罗尼斯圆”高考现身

合集下载

基于阿波罗尼斯圆的应用

基于阿波罗尼斯圆的应用

基于阿波罗尼斯圆的应用詹建峰(深圳市华侨城高级中学ꎬ广东深圳518053)摘㊀要:阿波罗尼斯圆在高中数学中的应用十分广泛ꎬ它不仅能帮助学生深入理解数学和几何的基本概念ꎬ还能大大简化解题时的计算.掌握阿波罗尼斯圆的基本应用ꎬ对学生数形结合的解题能力的培养有重要作用.关键词:阿波罗尼斯圆ꎻ性质ꎻ题型分类中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2023)31-0047-03收稿日期:2023-08-05作者简介:詹建峰(1982-)ꎬ男ꎬ河南省信阳人ꎬ硕士ꎬ中学一级教师ꎬ从事高中数学教学研究.㊀㊀古希腊数学家阿波罗尼斯ꎬ他证明过这样一个命题:平面内与两定点距离的比为常数的点的轨迹是圆.后人将这个圆称为阿波罗尼斯圆ꎬ简称阿氏圆.近几年ꎬ以阿氏圆为背景的考题不仅在高考中屡次出现ꎬ各地模拟试题中也频繁出现ꎬ文章将对此作详细分析.1阿氏圆定义的证明及性质阿波罗尼斯圆定义:在平面上给定相异两点AꎬBꎬ设点M在同一平面上且满足MAMB=λ(λ>0ꎬλʂ1)时ꎬ点M的轨迹是个圆ꎬ这个圆称之为阿波罗尼斯圆ꎬ简称为阿氏圆.解析㊀设定线段AB的长为2aꎬ以线段AB所在直线为x轴ꎬ线段AB的中垂线为y轴ꎬ建立直角坐标系ꎬ则A(-aꎬ0)ꎬB(aꎬ0)ꎬM(xꎬy).由MAMB=λ(λʂ1)ꎬ得到(x+a)2+y2(x-a)2+y2=λ.化简得(1-λ2)x2+(1-λ2)y2+2a(1+λ2)x+a2(1-λ2)=0.即(x-λ2+1λ2-1a)2+y2=(λλ2-12a)2ꎬ表示的是以(λ2+1λ2-1 aꎬ0)为圆心ꎬ半径为|λλ2-1 2a|的圆.㊀由上面的推导可以发现下列性质:(1)阿波罗尼斯圆上的任意点M满足MAMB=λ(λ>0ꎬλʂ1)ꎻ(2)阿波罗尼斯圆的圆心C在直线AB上ꎬ半径为|λλ2-1|ABꎻ(3)阿波罗尼斯圆的圆心C一定不在AꎬB之间ꎬ且CA CB=r2.2基于阿氏圆的题型分类阿氏圆问题可以拆解成:(1)定点A㊁定点Bꎻ(2)定比λꎻ(3)定圆C.因此可以将阿氏圆有关的题型分解成以下几种类型类型1㊀已知定点A㊁定点B和定比λꎬ求定圆C.例1㊀已知动点M与两个定点O(0ꎬ0)ꎬA(3ꎬ0)的距离之比为12ꎬ求动点M的轨迹方程.解析㊀设点M(xꎬy)ꎬ则x2+y2(x-3)2+y2=12.整理得到x2+y2+2x-3=0.74即(x+1)2+y2=4ꎬ是以(-1ꎬ0)为圆心ꎬ半径为2的圆.类型2㊀已知定点A㊁定点B和定圆Cꎬ求定比λ.例2㊀已知两定点A(2ꎬ0)ꎬB(12ꎬ0)ꎬ点M为圆O:x2+y2=1上任意一点ꎬ试探究|MA||MB|是否为定值.解析㊀由题意设M(xꎬy)ꎬ|MA||MB|=(x-2)2+y2(x-1/2)2+y2=5-4x5/4-x=2ꎬ为定值.此类题对定点要求比较严格ꎬ具有一定的局限性ꎬ所以一般很少见.类型3㊀已知一定点A㊁定比λ和定圆Cꎬ求另一定点B.例3㊀已知点O(0ꎬ0)ꎬ点M是圆(x+1)2+y2=4上任意一点ꎬ问:在平面上是否存在点Aꎬ使得|MO||MA|=12?若存在ꎬ求出点A的坐标ꎬ若不存在ꎬ说明理由.解析㊀假设存在点A(aꎬb)使|MO||MA|=12ꎬ由题意设M(xꎬy)ꎬ则x2+y2(x-a)2+(y-b)2=12.化简ꎬ得x2+y2=a2+b23-2a3x-2b3y.①又点M在圆(x+1)2+y2=4上ꎬ所以x2+y2=3-2x.②对比①②解得a=3ꎬb=0.所以存在点A(3ꎬ0)使|MO||MA|=12.类型4㊀已知一定点A和定圆Cꎬ求另一定点B和定比λ.例4㊀已知M为圆O:x2+y2=1上任意一点ꎬ若存在不同于点E(2ꎬ0)的点F(mꎬn)ꎬ使|ME||MF|为不等于1的常数ꎬ则点F的坐标为.解析㊀由题意设M(xꎬy)ꎬ且|ME||MF|=t(t>0且tʂ1)ꎬ则ME=tMFꎬME2=t2MF2.即(x-2)2+y2=t2[(x-m)2+(y-n)2].所以x2+y2-2mt2-4t2-1x-2nt2t2-1y=4-m2t2-n2t2t2-1.因为M在圆O:x2+y2=1上ꎬ所以2mt2-4=0ꎬ2nt2=0ꎬ4-m2t2-n2t2t2-1=0.ìîíïïïïï解得t=2ꎬm=12ꎬn=0.所以F(12ꎬ0).另解㊀由性质(3)知OE OF=r2ꎬ解得F(12ꎬ0).对比两种解法可以发现ꎬ解题时巧妙运用阿氏圆的性质可以大大减少计算量[1].结论㊀已知圆x2+y2=r2上任意一点M和定点A(x0ꎬ0)(x0ʂ0ꎬx0ʂʃr)ꎬ则x轴上存在唯一点B(r2x0ꎬ0)ꎬ使得MBMA=λ(λʂ1)ꎬ其中λ=rx0为定值.㊀类型5㊀已知定比λ和定圆Cꎬ求定点A和定点B.例5㊀已知M是圆C:x2+y2=4上的任意一点ꎬ求x轴上两定点AꎬBꎬ使得|MA||MB|=12恒成立.解析㊀设A(mꎬ0)ꎬB(aꎬ0)ꎬM(x0ꎬy0)ꎬ由|MA||MB|=12ꎬ得(x0-a)2+y20=4[(x0-m)2+y20].化简ꎬ得3(x20+y20)=(8m-2a)x0+a2-4m2.又x20+y20=4ꎬ可得8m-2a=0ꎬa2-4m2=12ꎬ{解得m=1ꎬa=4{或m=-1ꎬa=-4.{所以两定点分别为(1ꎬ0)ꎬ(4ꎬ0)或(-1ꎬ0)ꎬ(-4ꎬ0).结论㊀对于圆x2+y2=r2上任意一点Mꎬ在x轴上存在不同两点A(aꎬ0)ꎬB(bꎬ0)(aʂ0ꎬbʂ0)ꎬ使得84MBMA=λ(λʂ1)ꎬ且ab=r2ꎬa=ʃrλꎬb=λ2a.类型6㊀已知定点A和定圆Cꎬ求最值或范围.阿氏圆常用于解决形如:MA+k MB(kʂ1)类线段的最值问题:其中M是动点ꎬAꎬB是定点ꎬ且动点M在阿氏圆上运动.例6㊀已知圆O:x2+y2=1和A(-12ꎬ0)ꎬ点B(1ꎬ1)ꎬM为圆O上动点ꎬ则2MA+MB的最小值为.解析㊀令2MA=MCꎬ则MAMC=12.由题意可得圆x2+y2=1是关于点AꎬC的阿波罗尼斯圆ꎬ且λ=12.设点C坐标为Cmꎬn()ꎬ则MAMC=x+1/2()2+y2x-m()2+y-n()2=12.整理ꎬ得x2+y2+2m+43x+2n3y=m2+n2-13.由题意得该圆的方程为x2+y2=1ꎬ所以2m+4=0ꎬ2n=0ꎬm2+n2-13=1ꎬìîíïïïï解得m=-2ꎬn=0.{所以点C的坐标为(-2ꎬ0).所以2MA+MB=MC+MB.因此当点MꎬCꎬB在同一条直线上时ꎬ2MA+MB=MC+MB的值最小ꎬ且为(1+2)2+(1-0)2=10.故2MA+MB的最小值为10.从上面例题中我们可以得到MA+k MB(kʂ1)类问题更加一般性的解题步骤:运用:动点在圆上运动ꎬ两线段(带系数)相加求最小值.形如:MA+k MB(kʂ1)的最小值(k为系数)ꎻ原理:构造共边共角相似ꎬ转移带系数的边ꎬ利用两点间线段最短求最小值.变式㊀在平面直角坐标系中ꎬ已知点A(0ꎬ3)ꎬ圆C:(x-a)2+(y-2a+4)2=1.若圆C上存在点Mꎬ使|MA|=2|MO|ꎬ则实数a的取值范围是.解析㊀由题意设M(xꎬy)ꎬ且|MA|=2|MO|ꎬA(0ꎬ3)ꎬ所以x2+(y-3)2=2x2+y2.化简ꎬ得x2+(y+1)2=4.所以M既在圆C:(x-a)2+(y-2a+4)2=1上ꎬ又在圆D:x2+(y+1)2=4上.所以圆C与圆D有公共交点ꎬ由圆与圆的位置关系知:2-1ɤCDɤ2+1.所以1ɤa2+(2a-3)2ɤ3.解得0ɤaɤ125[2].类型7㊀阿氏圆在复数ꎬ三角等问题中的应用.例7㊀设复数z=x+yi(xꎬyɪR)ꎬ且z-1=2z+1ꎬ则复数z所对应的点的轨迹形状是.解析㊀因为z-1z+1=2ꎬ显然复数z所对应的点到(1ꎬ0)和(-1ꎬ0)的距离之比为定值2ꎬ所求轨迹形状是阿氏圆.例8㊀(2008年江苏高考题)在әABC中ꎬ若AB=2ꎬAC=2BCꎬ求әABC面积的最大值.解析㊀以AB中点为坐标原点ꎬ以AB所在直线为x轴建立直角坐标系ꎬ则A(-1ꎬ0)ꎬB(1ꎬ0).由ACBC=2ꎬ易知C的轨迹为阿氏圆(x-3)2+y2=8(yʂ0)ꎬ记圆心坐标为Mꎬ显然CMʅx轴时ꎬәABC面积最大ꎬ为22.阿氏圆的应用十分广泛ꎬ高中阶段充分掌握阿氏圆的概念及其性质是必要的ꎬ在实际解题中灵活运用会给我们带来意想不到的效果.参考文献:[1]李旭员.基于阿波罗尼斯圆的逆向探究[J].河北理科教学教研ꎬ2014(01):45-47.[2]李宽珍.善辟蹊径㊀深化复习:以阿波罗尼斯圆教学设计为例谈微专题教学[J].中学教研(数学)ꎬ2015(12):28-30.[责任编辑:李㊀璟]94。

(完整版)高考数学文化题目:阿波罗尼斯圆问题

(完整版)高考数学文化题目:阿波罗尼斯圆问题

高考数学文化内容预测三:阿波罗尼斯圆问题一、高考考试大纲数学大纲分析及意义:普通高考考试大纲数学修订,加强了对数学文化的考查。

针对这一修订提出以下建议:建议教师对数学文化这一概念认真学习,结合教材内容学习,特别是教材中渗透数学文化的内容要充分重视,重点研究;结合近年新课标试题中出现的与数学文化有关的试题进行学习,重点关注题源、考法命题形式。

其主要意义为:(1)增加中华优秀传统文化的考核内容,积极培育和践行社会主义核心价值观,充分发挥高考命题的育人功能和积极导向作用.(2)能力要求:经命题专家精细加工,再渗透现代数学思想和方法;在内涵方面,增加了基础性、综合性、应用性、创新性的要求.二、往年新课标高考实例解析及2017年高考数学文化试题预测:往年新课标高考实例分析:分析一:古代数学书籍《九章算术》、《数书九章》等为背景近年来在全国高考数学试题中,从《九章算术》中选取与当今高中数学教学相映的题材背景.(1)2015年高考全国卷Ⅰ,此题源于《九章算术》卷第五《商功》之[二五],将古代文化“依垣”和现代教育元素“圆锥”结合.(2)2015年高考全国卷Ⅱ,此题源于《九章算术》卷第一《方田》之[六]:“又有九十一分之四十九.问约之得几何?”“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也.以等数约之”,后人称之为“更相减损术”.(3)2015年高考湖北卷,此题背景源于《九章算术》卷第五《商功》之[一五].今有阳马,广五尺,袤七尺,高八尺.问积几何;之[一六]今有鳖臑,下广五尺,无袤;上袤四尺,无广,高七尺.问积几何.考题将“阳马”,“鳖臑”相结合,以《选修2-1》P109例4为源进行有机整合.巧妙嫁接,精典设问,和谐优美的考题呼之即出.分析二:课后阅读或课后习题如阿波罗尼圆为背景从2005-2013年多次涉及考题,全国卷2011年16题以此为命题背景的其他省市:江苏:2008年13题、2013年17题.2009-2013年湖北高考连续出现等等.数学文化题型背景预测:预测1:古代数学书籍《九章算术》、《数书九章》等数为背景的数学文化类题目.预测2:高等数学衔接知识类题目.如微积分、初等数学和高等数学的桥梁,由高中向大学的知识过渡衔接.预测3:课本阅读和课后习题的数学文化类题目.如必修3中,辗转相除法、更相减损术、秦九韶算法、二进制、割圆术等。

利用阿波罗尼斯圆性质解决高考问题

利用阿波罗尼斯圆性质解决高考问题

利用阿波罗尼斯圆性质解题1、课本呈现(人教A 版124页B 组第3题)已知点M 与两个定点O(0,0),A(3,0)点距离的比为 ,求点M 的轨迹方程 。

(人教A 版144页B 组第2题)已知点M 与两个定点 , 距离的比是一个正数m,求点M 的轨迹方程,并说明轨迹是什么图形(考虑m=1和m 两种情形)。

2、定义:一般的平面内到两顶点A ,B 距离之比为常数 ( )的点的轨迹 为圆,此圆称为阿波罗尼斯圆性质:①当1>λ时,点'A 在圆O 内,点A 在圆O 外;当10<<λ时,点A 在圆O 内,点'A 在圆O 外。

②所作出的阿波罗尼斯圆的半径为|AA'|1r λλ=-,圆心为⎪⎪⎭⎫ ⎝⎛'⋅+0,1-122A A λλ ③'OA r r OA ==λ λ越大,圆越小. 例题1、满足条件AB = 2,AC = BC 的∆ABC 的面积的最大值是( )变式1、在等腰 ABC 中,AB=AC ,D 为AC 的中点,BD=3,则 ABC 面积的最大值为2、在 ABC 中,AC=2,AB=mBC(m>1),恰好当B= 时 ABC 面积的最大,m=例2、 已知圆C: 定点 其中P 为圆C 上的动点,则 PO+PB 的最小值为变式1、已知P 在边长为2的正三角形ABC 的内切圆上运动,则BP AP 2+的最小值是_______2、已知点P 在圆4:22=+y x O 上运动,)4,4(),0,4(B A ,求BP AP 2+的最小 值例题3、在ABC ∆中,AD AC AB ,2=是A ∠的平分线,且.kAC AD =①求k 的取值范围;②若ABC ∆的面积为1,求k 为何值时,BC 最短.4、在ABC ∆中,AD 、BE 分别为中线,若b a 35=,则BEAD 的取值范围 .5、已知△ABC 的面积为1,∠A 的角平分线交对边BC 于D ,AB=2AC ,且AD=kAC ,则当k=________时,边BC 的长度最短.6、(2015湖北理科卷14题)如图,圆C 与x 轴相切与点()0,1T ,与y 轴正半轴交于两点B A ,(B 在A 的上方),2=AB①圆C 的标准方程为 .②过点A 任作一条直线与圆1:22=+y x O 相较于N M ,两点,下列三个结论: 其中正确结论的序号是 。

一个解几高考题与阿波罗尼斯圆

一个解几高考题与阿波罗尼斯圆
设A1(z1,y1),B1(zz,y2),
z1+3yl一9

(1+2k2)z2+4k(1--k)x-k(2k2—4k一2)一0,
点Q符合题意,即点A关于直线QP的对称点
.—/
.f
广
商一(z。一i6,y。一吾), 所以Al,B、Q共线等价于二鱼L#堕兰×





\\堡!Z

汰 /犬x

即丝!堕j坠型×堕[—掣一
——————————————————————————一-
2志zlz2-4-(口--b)(z1+z2)一志(口+6)
ZlZ2

等价于是QA+忌oB一0. 当z为坐标轴时,结论成立.
万方数据
38
数学通报 若m>o,过点P(m,0)任意作直线交抛物线
2016年
第55卷
第7期
数,a为直线Z的倾斜角.
y2—2px(p>O)于A、B两点,P关于Y轴的对称
设过P的其它(除去上述两特殊情形外)位 置的直线方程为y—k(z一1)-t-1(当斜率不存在
时'删-I㈨QA rI础),
fy—k(x一1)-I-1
由1譬+等一1
消去y整理得
\0
厂 j殊
\|
\\堡!Z




肌,h一笔茅,,3L'13ff2一鬻…・① 7(垫学,半)与B、Q共线. 因为萌一(苎掣,一4
Hale Waihona Puke 综上,存在与点P不同的定点Q(i6,i7),使得
丽IQAI一][,PABlIf…谳….
万方数据
2016年
第55卷
第7期
数学通报
37
说明:一个具体问题的探讨,计算量竟如此之 大,一般性的探讨和证明如参照例1的做法势必 更复杂. 在二次曲线中的推广 由例1可推测在椭圆中可能有更一般性的结 论,在一般的非退化二次曲线中如何呢? 为叙述方便,我们约定:过P作直线交二次 曲线I、于A、B两不同的点,若P为线段AB的中 点,则称线段AB为点P的中点弦. 经探讨,有 命题1 设r为一非退化的二次曲线,点P

浅谈阿波罗尼斯圆在高中几何的应用

浅谈阿波罗尼斯圆在高中几何的应用

这是 我们 数学必修 2教材《圆的方 程》的一 道课后 习
题 ,如果把 以上 的题 目推 广到 一般 情形 那 么就是 阿波 罗
尼斯 圆.其 实在教 材的复 习参 考题 中 ,是 以如下表 述形 式
出 现 的 :
已知点 M( ,Y)与 两个定 点 M。, 距离 的 比是一个
正数 m,求点 的轨迹方 程 ,并 说 明轨迹是 什 么 图形 (考
而且在 高中几何 中有 广泛的应用.
关 键 词 :阿 波 罗尼 斯 圆 ;几何 ;应 用
中图分类号 :G632
文献标识码 :A
文章编号 :1008—0333(2018)04—0037一O2
阿波罗尼斯圆在我们 的教材 习题 以及 课外 练习 中经

常 出现 ,甚 至有些 难 题如 果我 们能 够看 到 它背后 命 题 的 本质是 阿波罗 尼斯 圆 ,那 么就 会 给我们 解题 带来 很 大 的
略解 由立体 几何 的知识 可
以把 条件 转 化 得 到 BP=2AP,显
然 点 P 的 轨 迹 就 是 阿 波 罗 尼 斯 圆.因 此 我 们 建 系 得 到 方 程
图1
( +5) + =16 y≤4....SAABp- ̄ 1 ·l y l·1 8o[=
二 、阿 波 罗 尼 斯 圆在 平面 几 何 的 应 用
例 2 满 足条件 AB=2,AC= ̄y8c的三 角形 ABC的
面积的最大值是



3 i Y f≤12. 变 式练 习 1 在三棱锥.P—ABC中 ,AB上BC,AB=6,
BC= ,0为 AC的中点 ,过 C作 BO的垂 线 ,交 BO、AB
收 稿 日期 :2017—11—01 作者简介 :曾信 源(2001.7一),男,在 校学生

2020高考数学专项训练《16阿波罗尼斯圆问题梳理及其运用》(有答案)

2020高考数学专项训练《16阿波罗尼斯圆问题梳理及其运用》(有答案)

专题16阿波罗尼斯圆问题梳理及其运用例题:在△ABC中,若AB=2,AC=2BC,求△ABC面积的最大值.变式1在平面直角坐标系xOy中,已知圆O:x2+y2=1,O1:(x-4)2+y2=4,动点P 在直线x+3y-b=0上,过P分别作圆O,O1的切线,切点分别为A,B,若满足PB=2PA 的点P有且只有两个,则实数b的取值范围为________________.变式2已知点A(-2,0),B(4,0),圆C:(x+4)2+(y+b)2=16,点P是圆C上任意一点,若PAPB为定值,则b的值为________________.串讲1已知A(0,1),B(1,0),C(t,0),点D是直线AC上的动点,若AD≤2BD恒成立,则最小正整数t的值为________________.串讲2已知点P 是圆O :x 2+y 2=25上任意一点,平面上有两个定点M(10,0),N(132,3),则PN +12PM 的最小值为________________.(2018·南京、盐城、连云港二模)调查某地居民每年到商场购物次数m 与商场面积S 、到商场距离d 的关系,得到关系式m =k ×Sd 2(k 为常数).如图,某投资者计划在与商场A 相距10km 的新区新建商场B ,且商场B 的面积与商场A 的面积之比为λ(0<λ<1).记“每年居民到商场A 购物的次数”,“每年居民到商场B 购物的次数”分别为m 1,m 2,称满足m 1<m 2的区域叫作商场B 相对于A 的“更强吸引区域”.(1)已知P 与A 相距15km ,且∠PAB =60°.当λ=12时,居住在点P 处的居民是否在商场B 相对于A 的“更强吸引区域”内?请说明理由;(2)若要使与商场B 相距2km 以内的区域(含边界)均为商场B 相对于A 的“更强吸引区域”,求λ的取值范围.在平面直角坐标系xOy 中,已知圆C 经过A(0,2),O(0,0),D(t ,0)(t>0)三点,M是线段AD 上的动点,l 1,l 2是过点B(1,0)且互相垂直的两条直线,其中l 1交y 轴于点E ,l 2交圆C 于P ,Q 两点.(1)若t =PQ =6,求直线l 2的方程;(2)若t 是使AM ≤2BM 恒成立的最小正整数,求三角形EPQ 的面积的最小值.答案:(1)4x -3y -4=0.;(2)152.解析:(1)由题意可知,圆C 的直径为AD ,所以圆C 方程为(x -3)2+(y -1)2=10.1分设l 2方程为y =k(x -1),则(2k -1)21+k 2+32=10,解得k 1=0,k 2=43.3分当k =0时,直线l 1与y 轴无交点,不合题意,舍去.4分所以k =43,此时直线l 2的方程为4x -3y -4=0.6分(2)设M(x ,y),由点M 在线段AD 上,得x t +y2=1,即2x +ty -2t =0.由AM ≤2BM ,得x -43+y +23≥209.8分由AD 位置知,直线AD x -432+y +23=209至多有一个公共点,故|83-83t |4+t 2≥253,解得t ≤16-10311或t ≥16+10311.10分因为t 是使AM ≤2BM 恒成立的最小正整数,所以t =4.11分所以,圆C 方程为(x -2)2+(y -1)2=5.①当直线l 2:x =1时,直线l 1的方程为y =0,此时,S △EPQ =2;12分②当直线l 2的斜率存在时,设l 2的方程为y =k(x -1)(k ≠0),则l 1的方程为y =-1k(x -1),点E 0,1k .所以BE =1+1k2.圆心C 到l 2的距离为|k +1|1+k 2.所以PQ =25-|k +1|1+k2224k 2-2k +41+k2.14分故S △EPQ =12BE·PQ =121+1k 2·24k 2-2k +41+k 2=4k 2-2k +4k 2=4k 2-2k +4≥152.因为152<2,所以(S △EPQ )min =152.16分专题16例题答案:2 2.解法1设BC =x ,则AC =2x ,根据面积公式得S △ABC =12AB·BC sin B =12×2x 1-cos 2B ,根据余弦定理得cos B =AB 2+BC 2-AC 22AB ·BC=4+x 2-(2x )24x =4-x 24x ,代入上式得:S △ABC =x1-(4-x 24x)2=128-(x 2-12)216,+x>2,2>2x22-2<x<22+2,故当x =23时,S △ABC 取得最大值2 2.解法2以AB 的中点为原点,AB 所在直线为x 轴,建立平面直角坐标系xOy ,则A(-1,0),B(1,0),C(x ,y),由AC =2BC 得(x +1)2+y 2=2·(x -1)2+y 2,化简得x 2+y 2-6x +1=0,即(x -3)2+y 2=8,于是点C 的轨迹是以D(3,0)为圆心,22为半径的圆,所以点C 到AB 的距离的最大值为半径22,故S △ABC 的最大值为S =12×2×|y C |≤22.变式联想变式1-203,解析:依题意,PA 2=PO 2-12,PB 2=PO 12-22,因为PB =2PA ,所以PB 2=4PA 2,所以PO 12-4=4(PO 2-12),可得PO 12=4PO 2,设P(x ,y),可得(x -42)+y 2=4(x 2+y 2)化简得(x +43)2+y 2=649.所以满足条件的点P 在以(-43,0)为圆心,83为半径的圆上,又因为点P 在直线x +3y -b =0上,且恰有两个点,所以直线和圆应该相交,所以|-43-b|1+3<83,解得-203<b<4.变式2答案:0.解析:设P(x ,y),PAPB=k ,则(x +2)2+y 2(x -4)2+y 2=k ,整理得(1-k 2)x 2+(1-k 2)y 2+(4+8k 2)x +4-16k 2=0,又P 是圆C 上的任意一点,故k ≠1,圆C 的一般方程为x 2+y 2+8x +2by +b 2=0,因此2b =0,4+8k 21-k 2=8,4-16k 21-k2=b 2,解得b =0.串讲激活串讲1答案:4.解法1由A(0,1),C(t ,0),得l :y =-1t x +1,D(x ,-1t x +1).又AD ≤2BD ,故x 2+x 2t2≤2(x -1)2+(1-x t )2,化简得(3+3t 2)x 2-(8+8t)x +8≥0对任意x 恒成立,则(8+8t )2-4×8×(3+3t 2)≤0,化简得t 2-4t +1≥0,解得t ≥2+3或0<t ≤2-3,因此最小正整数t 的值为4.解法2设D(x ,y),当AD =2BD 时,有x 2+(y -1)2=4[(x -1)2+y 2],化简得(x -43)2+(y +13)2=89直线AC 的方程为y =-1t x +1,即x +ty -t =0.因为AD ≤2BD ,所以直线AC 与圆(x -43)2+(y +13)2=89相切或相离,故|43-13t -t|t 2+1≥89,即t 2-4t +1≥0,解得t ≤2-3或t ≥2+3,所以最小正整数t 的值为4.串讲2答案:5.解析:设x 轴上一定点Q(m ,0),记PM ∶PQ =λ,P(x ,y),由PM ∶PQ =λ得(x -10)2+y 2=λ2[(x -m)2+y 2],化简得(λ2-1)x 2+(λ2-1)y 2+(20-2mλ2)x +(λ2m 2-100)=0,因为x 2+y 2=25,所以0,25,解得m =52,λ=2,所以PM ∶PQ =2,从而PN +12PM =PN +PQ ≥QN =5.新题在线答案:(1)居住在点P 处的居民不在商场B 相对于A 的“更强吸引区域”内.(2)(116,1)解析:设商场A ,B 的面积分别为S 1,S 2,点P 到A ,B 的距离分别为d 1,d 2,则S 2=λS 1,m 1=kS 1d 12,m 2=k S 2d 22,k 为常数,k>0.(1)在△PAB 中,AB =10,PA =15,∠PAB =60°,由余弦定理,得d 22=PB 2=AB 2+PA 2-2AB·PA cos 60°=102+152-2×10×15×12=175.又d 12=PA 2=225,此时,m 1-m 2=k S 1d 12-k S 2d 22=k S 1d 12-k λS 1d 22=kS 1(1d 12-λd 22),将λ=12,d 12=225,d 22=175代入,得m 1-m 2=kS 1(1225-1350).因为kS 1>0,所以m 1>m 2.即居住在点P 处的居民不在商场B 相对于A 的“更强吸引区域”内.(2)解法1以AB 所在直线为x 轴,A 为原点,建立如图所示的平面直角坐标系,则A(0,0),B(10,0),设P(x ,y),由m 1<m 2得,kS 1d 12<k S 2d 22,将S 2=λS 1代入,得d 22<λd 12.代入坐标,得(x -10)2+y 2<λ(x 2+y 2),化简得(1-λ)x 2+(1-λ)y 2-20x +100<0.因为0<λ<1,配方得(x -101-λ)2+y 2<(10λ1-λ)2,所以商场B 相对于A 的“更强吸引区域”是圆心为C(101-λ,0),半径为r 1=10λ1-λ的圆的内部.与商场B 相距2km 以内的区域(含边界)是圆心为B(10,0),半径为r 2=2的圆的内部及圆周.由题设,圆B 内含于圆C ,即BC<|r 1-r 2|.因为0<λ<1,所以101-λ-10<10λ1-λ-2,整理得4λ-5λ+1<0,解得116<λ<1.所以,所求λ的取值范围是(116,1).解法2要使与商场B 相距2km 以内的区域(含边界)均为商场B 相对于A 的“更强吸引区域”,则当d 2≤2时,不等式m 1<m 2恒成立.由m 1<m 2,得k S 1d 12<k S 2d 22=k λS 1d 22,化简得λd 12>d 22.此时,“当d 2≤2时,不等式m 1<m 2恒成立”可转化为“当d 2≤2时,不等式λd 12>d 22恒成立”.所以当d 2≤2时,不等式恒成立,因为点P 在以点B 为圆心,2为半径的圆的内部,且AB =10,所以8=AB -2≤PA ≤AB +2=12.欲使得不等于λPA>2恒成立,则有8λ>2,解得λ>116,又0<λ<1,所以λ的取值范围是(116,1).________________________________________________________________________ ________________________________________________________________________ ______________________________________________________________________。

高考数学二轮复习考点知识与题型专题讲解48---隐圆(阿波罗尼斯圆)问题

高考数学二轮复习考点知识与题型专题讲解48---隐圆(阿波罗尼斯圆)问题

高考数学二轮复习考点知识与题型专题讲解第48讲 隐圆(阿波罗尼斯圆)问题隐圆问题近几年在高考题和各地模拟题中都出现过,难度为中高档,在题设中没有明确给出圆的相关信息,而是隐含在题目中,要通过分析、转化、发现圆(或圆的方程),从而最终利用圆的知识来求解,我们称这类问题为“隐圆问题”.考点一 利用圆的定义、方程确定隐形圆例1 (1)(2022·滁州模拟)已知A ,B 为圆C :x 2+y 2-2x -4y +3=0上的两个动点,P 为弦AB 的中点,若∠ACB =90°,则点P 的轨迹方程为( ) A .(x -1)2+(y -2)2=14B .(x -1)2+(y -2)2=1C .(x +1)2+(y +2)2=14D .(x +1)2+(y +2)2=1 答案 B解析 圆C 即(x -1)2+(y -2)2=2,半径r =2,因为CA ⊥CB , 所以|AB |=2r =2, 又P 是AB 的中点,所以|CP |=12|AB |=1,所以点P 的轨迹方程为(x -1)2+(y -2)2=1.(2)(2022·茂名模拟)已知向量a ,b 满足|a |=1,|b |=2,a ·b =0,若向量c 满足|a +b -2c |=1,则|c |的取值范围是( ) A .[1,5-1] B.⎣⎢⎡⎦⎥⎤3-12,3+12C.⎣⎢⎡⎦⎥⎤5-12,5+12 D.⎣⎢⎡⎦⎥⎤5+12,52答案 C解析 |a |=1,|b |=2,a ·b =0,以a 为y 轴,b 为x 轴,建立平面直角坐标系, 设OA →=a =(0,1),OB →=b =(2,0), OC →=c =(x ,y ),所以a +b -2c =(2-2x ,1-2y ), 由|a +b -2c |=1,可得(2-2x )2+(1-2y )2=1, 化简可得(x -1)2+⎝⎛⎭⎫y -122=⎝⎛⎭⎫122, 所以点C 的轨迹是以⎝⎛⎭⎫1,12为圆心,以r =12为半径的圆,原点(0,0)到⎝⎛⎭⎫1,12的距离为d =12+⎝⎛⎭⎫122=52, 所以|c |=x 2+y 2的取值范围是[d -r ,d +r ],即⎣⎢⎡⎦⎥⎤5-12,5+12.规律方法 对于动点的轨迹问题,一是利用曲线(圆、椭圆、双曲线、抛物线等)的定义识别动点的轨迹,二是利用直接法求出方程,通过方程识别轨迹.跟踪演练1 (2022·平顶山模拟)已知M ,N 为圆C :x 2+y 2-2x -4y =0上两点,且|MN |=4,点P 在直线l :x -y +3=0上,则|PM →+PN →|的最小值为( )A .22-2B .2 2C .22+2D .22- 5 答案 A解析 设线段MN 的中点为D ,圆C :x 2+y 2-2x -4y =0的圆心为C (1,2),半径为 5.则圆心C 到直线MN 的距离为(5)2-⎝⎛⎭⎫422=1,所以|CD |=1,故点D 的轨迹是以C 为圆心,半径为1的圆,设点D 的轨迹为圆D ,圆D 上的点到直线l 的最短距离为t =|1-2+3|2-1=2-1.所以|PM →+PN →|=|2PD →|=2|PD →|≥2t =22-2.考点二 由圆周角的性质确定隐形圆例2 (1)已知点P (2,t ),Q (2,-t )(t >0),若圆C :(x +2)2+(y -3)2=1上存在点M ,使得∠PMQ =90°,则实数t 的取值范围是( ) A .[4,6] B .(4,6)C .(0,4]∪[6,+∞)D .(0,4)∪(6,+∞) 答案 A解析 由题意知,点P (2,t ),Q (2,-t )(t >0), 可得以PQ 为直径的圆的方程为(x -2)2+y 2=t 2, 则圆心C 1(2,0),半径R =t , 又由圆C :(x +2)2+(y -3)2=1, 可得圆心C (-2,3),半径r =1,两圆的圆心距为|CC 1|=(2+2)2+(0-3)2=5,要使得圆C :(x +2)2+(y -3)2=1上存在点M ,使得∠PMQ =90°,即两圆存在公共点,则满足⎩⎪⎨⎪⎧R +r ≥5,R -r ≤5,即⎩⎪⎨⎪⎧t +1≥5,t -1≤5,解得4≤t ≤6,所以实数t 的取值范围是[4,6].(2)(2022·长沙雅礼中学质检)已知直线l :x -y +4=0上动点P ,过P 点作圆x 2+y 2=4的两条切线,切点分别为C ,D ,记M 是CD 的中点,则直线CD 过定点________,点M 的轨迹方程为______________________________. 答案 (-1,1) ⎝⎛⎭⎫x +122+⎝⎛⎭⎫y -122=12 解析 如图,连接PO ,CO ,DO ,因为PD ⊥DO ,PC ⊥CO ,所以P ,D ,O ,C 在以PO 为直径的圆上, 设P (x 0,x 0+4),则以OP 为直径的圆的方程为⎝⎛⎭⎫x -x 022+⎝⎛⎭⎫y -x 0+422=x 20+(x 0+4)24, 化简得x 2-x 0x -(x 0+4)y +y 2=0, 与x 2+y 2=4联立,可得CD 所在直线的方程为x 0x +(x 0+4)y =4⇒x 0(x +y )=4(1-y )⇒⎩⎪⎨⎪⎧ 1-y =0,x +y =0⇒⎩⎪⎨⎪⎧y =1,x =-1,直线CD 过定点Q (-1,1),又OM ⊥CD ,所以OM ⊥MQ ,所以点M 在以OQ 为直径的圆上, 所以点M 的轨迹为⎝⎛⎭⎫x +122+⎝⎛⎭⎫y -122=12. 规律方法 利用圆的性质,圆周角为直角,即可得到:若P A ⊥PB 或∠APB =90°,则点P 的轨迹是以AB 为直径的圆.注意轨迹中要删除不满足条件的点.跟踪演练2 (2022·北京海淀区模拟)在平面直角坐标系中,直线y =kx +m (k ≠0)与x 轴和y 轴分别交于A ,B 两点,|AB |=22,若CA ⊥CB ,则当k ,m 变化时,点C 到点(1,1)的距离的最大值为( ) A .4 2 B .3 2 C .2 2 D. 2 答案 B解析 由y =kx +m (k ≠0)得A ⎝⎛⎭⎫-mk ,0,B (0,m ), 因为CA ⊥CB ,所以点C 的轨迹是以AB 为直径的圆,其方程为⎝⎛⎭⎫x +m 2k 2+⎝⎛⎭⎫y -m 22=m 24k 2+m24, 设该动圆的圆心为(x ′,y ′),则x ′=-m 2k ,y ′=m2,整理得k =-y ′x ′,m =2y ′,代入到⎝⎛⎭⎫-mk 2+m 2=8中,得x ′2+y ′2=2, 即点C 轨迹的圆心在圆x ′2+y ′2=2上,故点(1,1)与该圆上的点(-1,-1)的连线的距离加上圆的半径即为点C 到点(1,1)的距离的最大值,最大值为[1-(-1)]2+[1-(-1)]2+2=3 2.考点三 阿波罗尼斯圆例3(多选)古希腊著名数学家阿波罗尼斯发现“若A ,B 为平面上相异的两点,则所有满足:|P A ||PB |=λ(λ>0,且λ≠1)的点P 的轨迹是圆,后来人们称这个圆为阿波罗尼斯圆.在平面直角坐标系中,A (-2,0),B (4,0),若λ=12,则下列关于动点P 的结论正确的是( )A .点P 的轨迹方程为x 2+y 2+8x =0B .△APB 面积的最大值为6C .在x 轴上必存在异于A ,B 的两定点M ,N ,使得|PM ||PN |=12D .若点Q (-3,1),则2|P A |+|PQ |的最小值为5 2 答案 ACD解析 对于选项A ,设P (x ,y ),因为P 满足|P A ||PB |=12,所以(x +2)2+y 2(x -4)2+y 2=12,化简得x 2+y 2+8x =0,故A 正确; 对于选项B ,由选项A 可知, 点P 的轨迹方程为x 2+y 2+8x =0,即(x +4)2+y 2=16,所以点P 的轨迹是以(-4,0)为圆心,4为半径的圆, 又|AB |=6,且点A ,B 在直径所在直线上,故当点P 到圆的直径所在直线的距离最大时,△P AB 的面积取得最大值, 因为圆上的点到直径的最大距离为半径,即△P AB 的高的最大值为4, 所以△P AB 面积的最大值为12×6×4=12,故B 错误;对于选项C ,假设在x 轴上存在异于A ,B 的两定点M ,N ,使得|PM ||PN |=12,设M (m ,0),N (n ,0),故(x -m )2+y 2(x -n )2+y 2=12,即(x -n )2+y 2=2(x -m )2+y 2, 化简可得x 2+y 2-8m -2n 3x +4m 2-n 23=0,又点P 的轨迹方程为x 2+y 2+8x =0, 可得⎩⎨⎧-8m -2n3=8,4m 2-n23=0,解得⎩⎪⎨⎪⎧ m =-6,n =-12或⎩⎪⎨⎪⎧m =-2,n =4(舍去), 故存在异于A ,B 的两定点M (-6,0),N (-12,0), 使得|PM ||PN |=12,故C 正确;对于选项D ,因为|P A ||PB |=12,所以2|P A |=|PB |,所以2|P A |+|PQ |=|PB |+|PQ |,又点P 在圆x 2+8x +y 2=0上,如图所示,所以当P ,Q ,B 三点共线时2|P A |+|PQ |取得最小值,此时(2|P A |+|PQ |)min =|BQ | =[4-(-3)]2+(0-1)2=52,故D 正确.规律方法 “阿波罗尼斯圆”的定义:平面内到两个定点A (-a ,0),B (a ,0)(a >0)的距离之比为正数λ(λ≠1)的点的轨迹是以C ⎝ ⎛⎭⎪⎫λ2+1λ2-1a ,0为圆心,⎪⎪⎪⎪2aλλ2-1为半径的圆,即为阿波罗尼斯圆.跟踪演练3 若平面内两定点A ,B 间的距离为2,动点P 满足|P A ||PB |=3,则|P A |2+|PB |2的最大值为( )A .16+83B .8+4 3C .7+43D .3+ 3 答案 A解析 由题意,设A (-1,0),B (1,0),P (x ,y ), 因为|P A ||PB |=3,所以(x +1)2+y 2(x -1)2+y 2=3,即(x -2)2+y 2=3,所以点P 的轨迹是以(2,0)为圆心,半径为3的圆,因为|P A |2+|PB |2=(x +1)2+y 2+(x -1)2+y 2=2(x 2+y 2+1),其中x 2+y 2可看作圆(x -2)2+y 2=3上的点(x ,y )到原点(0,0)的距离的平方, 所以(x 2+y 2)max =(2+3)2=7+43,所以[2(x 2+y 2+1)]max =16+83, 即|P A |2+|PB |2的最大值为16+8 3.专题强化练1.已知圆O :x 2+y 2=1,圆M :(x -a )2+(y -2)2=2.若圆M 上存在点P ,过点P 作圆O 的两条切线,切点为A ,B ,使得P A ⊥PB ,则实数a 的取值范围为( ) A .[0,2] B .[-52,1] C .[-2,2] D .[-2,2] 答案 D解析 由题意可知四边形P AOB 为正方形, |OP |=2,∴点P 在以O 为圆心,以2为半径的圆上,其方程为x 2+y 2=2, 若圆M 上存在这样的点P ,则圆M 与x 2+y 2=2有公共点, 则有2-2≤a 2+4≤2+2, 解得-2≤a ≤2.2.已知点A (-5,-5)在动直线mx +ny -m -3n =0上的射影为点B ,若点C (5,-1),那么|BC |的最大值为( )A .16B .14C .12D .10 答案 C解析 由动直线方程化为m (x -1)+n (y -3)=0,可知其恒过定点Q (1,3). 又∵点A (-5,-5)在动直线mx +ny -m -3n =0上的射影为点B , ∴∠ABQ =90°,则点B 的轨迹是以AQ 为直径的圆, ∴圆心为AQ 的中点M (-2,-1), 圆的半径r =12|AQ |=5.又|MC |=(5+2)2+(-1+1)2=7>r =5,∴点C (5,-1)在圆M 外,故|BC |的最大值为r +|MC |=7+5=12.3.(2022·武汉模拟)已知O 为坐标原点,点A (cos α,sin α),B ⎝⎛⎭⎫cos ⎝⎛⎭⎫α+π3,sin ⎝⎛⎭⎫α+π3,以OA ,OB 为邻边作平行四边形AOBP ,Q (-2,0),则∠PQO 的最大值为( ) A.π6 B.π4 C.π3 D.π2 答案 C解析 已知圆O :x 2+y 2=1,A ,B 是圆O 上两动点,且∠AOB =π3,所以△AOB 为等边三角形, 又|AB |=|OA |=1, 取AB 的中点M ,则|OM |=32, 所以|OP |=3,所以点P 的轨迹方程为x 2+y 2=3, 当PQ 与x 2+y 2=3相切时,∠PQO 最大, 此时sin ∠PQO =32, 则∠PQO =π3.4.已知△ABC 是等边三角形,E ,F 分别是AB 和AC 的中点,P 是△ABC 边上一动点,则满足PE →·PF →=BE →·CF →的点P 的个数为( ) A .1 B .2 C .3 D .4 答案 D解析 以BC 的中点O 为坐标原点,BC ,OA 所在直线为x 轴、y 轴,建立如图所示的平面直角坐标系.设△ABC 的边长为4,则B (-2,0),C (2,0),A (0,23),E (-1,3), F (1,3),BE →=(1,3),CF →=(-1,3), 设P (x ,y ),则PE →=(-1-x ,3-y ), PF →=(1-x ,3-y ), 由PE →·PF →=BE →·CF →得,(-1-x ,3-y )·(1-x ,3-y ) =(1,3)·(-1,3), 所以x 2+(y -3)2=3,即点P 的轨迹是以(0,3)为圆心,3为半径的圆,也就是以AO 为直径的圆,易知该圆与△ABC 的三边有4个公共点.5.(多选)已知AB 为圆O :x 2+y 2=49的弦,且点M (4,3)为AB 的中点,点C 为平面内一动点,若AC 2+BC 2=66,则( ) A .点C 构成的图象是一条直线 B .点C 构成的图象是一个圆 C .OC 的最小值为2 D .OC 的最小值为3 答案 BC解析 ∵点M (4,3)为AB 的中点,∴OM ⊥AB ,|OM |=42+32=5,∴|AM |=|BM |=49-52=26,∵AC 2+BC 2=66,∴AC →2+BC →2=66,则(AM →+MC →)2+(BM →+MC →)2=66,即AM →2+2AM →·MC →+MC →2+BM →2+2BM →·MC →+MC →2=66,∵AM →=-BM →,则可得2AM →2+2MC →2=66,可解得|MC |=3,∴点C 构成的图象是以M 为圆心,3为半径的圆,故A 错误,B 正确;∴可得OC 的最小值为|OM |-3=5-3=2,故C 正确,D 错误.6.(多选)(2022·福州模拟)已知A (-3,0),B (3,0),动点C 满足|CA |=2|CB |,记C 的轨迹为Γ.过A 的直线与Γ交于P ,Q 两点,直线BP 与Γ的另一个交点为M ,则( )A .Q ,M 关于x 轴对称B .△P AB 的面积的最大值为6 3C .当∠PMQ =45°时,|PQ |=4 2D .直线AC 的斜率的范围为[-3,3]答案 AC解析 设C (x ,y ),由|CA |=2|CB |得,(x +3)2+y 2=2(x -3)2+y 2,整理得Γ的方程为(x -5)2+y 2=16,其轨迹是以D (5,0)为圆心,半径r =4的圆.由图可知,由于AB =6,所以当DP 垂直于x 轴时,△P AB 的面积有最大值,所以(S △P AB )max =12|AB |·r =12×6×4=12, 选项B 错误;因为|P A |=2|PB |,|MA |=2|MB |,所以|P A ||MA |=|PB ||MB |,所以∠P AB =∠MAB , 又C 的轨迹Γ关于x 轴对称,所以Q ,M 关于x 轴对称,选项A 正确;当∠PMQ =45°时,∠PDQ =45°×2=90°,则△DPQ 为等腰直角三角形,|PQ |=2r =42,选项C 正确;当直线AC 与圆D 相切时,CD ⊥AC ,此时|AD |=8=2r=2|CD |,所以sin ∠DAC =12, 所以切线AC 的倾斜角为30°和150°,由图可知,直线AC 的斜率的取值范围为⎣⎡⎦⎤-33,33,选项D 错误.7.已知等边△ABC 的边长为2,点P 在线段AC 上,若满足P A →·PB →-2λ+1=0的点P 恰有两个,则实数λ的取值范围是______________.答案⎝⎛⎦⎤38,12解析 如图,以AB 的中点O 为坐标原点,AB ,OC 所在直线为x 轴、y 轴,建立平面直角坐标系,则A (-1,0),B (1,0),设P (x ,y ).则P A →·PB →-2λ+1=0,即为(-1-x )(1-x )+y 2-2λ+1=0,化简得x 2+y 2=2λ(λ>0),故所有满足P A →·PB →-2λ+1=0的点P 在以O 为圆心,2λ为半径的圆上.过点O 作OM ⊥AC ,垂足为点M ,由题意知,线段AC 与圆x 2+y 2=2λ有两个交点,所以|OM |<2λ≤|OA |, 即32<2λ≤1,解得38<λ≤12. 8.已知⊙M :x 2+y 2-2x -2y -2=0,直线l :2x +y +2=0,P 为l 上的动点,过点P 作⊙M 的切线P A ,PB ,切点为A ,B ,当|PM |·|AB |取得最小值时,直线AB 的方程为________________. 答案 2x +y +1=0解析 ⊙M :(x -1)2+(y -1)2=4,①则圆心M (1,1),⊙M 的半径为2.如图,由题意可知PM ⊥AB ,∴S 四边形P AMB =12|PM |·|AB | =|P A |·|AM |=2|P A |,∴|PM |·|AB |=4|P A |=4|PM |2-4.当|PM |·|AB |最小时,|PM |最小,此时PM ⊥l .故直线PM 的方程为y -1=12(x -1), 即x -2y +1=0.由⎩⎪⎨⎪⎧ x -2y +1=0,2x +y +2=0,得⎩⎪⎨⎪⎧x =-1,y =0, ∴P (-1,0).依题意知P ,A ,M ,B 四点共圆,且PM 为圆的直径,∴该圆方程为x 2+⎝⎛⎭⎫y -122=54,② 由①-②整理得2x +y +1=0,即直线AB 的方程为2x +y +1=0.。

2022年高考数学圆中鬼魅,阿波罗尼斯圆

2022年高考数学圆中鬼魅,阿波罗尼斯圆
(3) 13;方法类似,具体过程略.
8.3 角平分线 vs 阿波罗尼斯圆

(1)(2016
台州一模)已知
C
是线段
AB
上的一点,AC
2CB
,MAMC
MBMC

MA
MB
则 MAM2B 的最小值范围为

AB
(2)(2016
杭州一模)已知
OA 、OB
是非零不共线的向量,设
OC
r
1
OA 1
r
r
NB MB r OB
NA
③都正确.
例 (1) 已知点 P 在边长为 2 的正方形 ABCD 的内切圆上运动,则 AP 2BP 的最小值 是_______.
(2) 已知 P 在边长为 2 的正三角形 ABC 的内切圆上运动,则 AP 2BP 的最小值是 _______.
解 (1) 有圆 O 和一个定点(A 或 B),由于 OA OB ,故不妨取 A 为定点,设另一个
NB MB
NA MB
NA MB
其中正确结论的序号是
.(写出所有正确结论的序号)
y
B
C
N
MA
O
x
解 (1) (x 1)2 ( y 2)2 2 ;
(2) 显然圆 O 是以 A、B 为定点的阿波罗尼斯圆,易得 A(0 , 2 1) , B(0 , 2 1) ,阿
波罗尼斯圆的半径 r 1,故 NA MA OA r 2 1 , NB 2 1,因此,①②
xOy
中,已知圆
x2
y2
r2 (r 0)
,两个定点
A
r 3
,
0

B(a
,

高中数学 阿波罗尼斯圆问题梳理及其运用

高中数学 阿波罗尼斯圆问题梳理及其运用

阿波罗尼斯圆问题梳理及其运用动点的轨迹问题是高考中的一个热点和重点,尤其是阿波罗尼斯圆在高考中频频出例题:在△ABC 中,若AB =2,AC =2BC ,求△ABC 面积的最大值.变式1在平面直角坐标系xOy 中,已知圆O :x 2+y 2=1,O 1:(x -4)2+y 2=4,动点P在直线x +3y -b =0上,过P 分别作圆O ,O 1的切线,切点分别为A ,B ,若满足PB =2PA 的点P 有且只有两个,则实数b 的取值范围为________________.变式2已知点A(-2,0),B(4,0),圆C :(x +4)2+(y +b)2=16,点P 是圆C 上任意一点,若PAPB为定值,则b 的值为________________.串讲1已知A(0,1),B(1,0),C(t ,0),点D 是直线AC 上的动点,若AD ≤2BD 恒成立,则最小正整数t 的值为________________.串讲2已知点P 是圆O :x 2+y 2=25上任意一点,平面上有两个定点M(10,0),N(132,3),则PN +12PM 的最小值为________________.(2018·南京、盐城、连云港二模)调查某地居民每年到商场购物次数m 与商场面积S 、到商场距离d 的关系,得到关系式m =k ×Sd 2(k 为常数).如图,某投资者计划在与商场A 相距10 km 的新区新建商场B ,且商场B 的面积与商场A 的面积之比为λ(0<λ<1).记“每年居民到商场A 购物的次数”,“每年居民到商场B 购物的次数”分别为m 1,m 2,称满足m 1<m 2的区域叫作商场B 相对于A 的“更强吸引区域”.(1)已知P 与A 相距15 km ,且∠PAB =60°.当λ=12时,居住在点P 处的居民是否在商场B 相对于A 的“更强吸引区域”内?请说明理由;(2)若要使与商场B 相距2 km 以内的区域(含边界)均为商场B 相对于A 的“更强吸引区域”,求λ的取值范围.在平面直角坐标系xOy 中,已知圆C 经过A(0,2),O(0,0),D(t ,0)(t>0)三点,M 是线段AD 上的动点,l 1,l 2是过点B(1,0)且互相垂直的两条直线,其中l 1交y 轴于点E ,l 2交圆C 于P ,Q 两点.(1)若t =PQ =6,求直线l 2的方程;(2)若t 是使AM ≤2BM 恒成立的最小正整数,求三角形EPQ 的面积的最小值.答案:(1)4x -3y -4=0.;(2)152. 解析:(1)由题意可知,圆C 的直径为AD ,所以圆C 方程为(x -3)2+(y -1)2=10.1分 设l 2方程为y =k(x -1),则(2k -1)21+k 2+32=10,解得k 1=0,k 2=43.3分 当k =0时,直线l 1与y 轴无交点,不合题意,舍去.4分 所以k =43,此时直线l 2的方程为4x -3y -4=0.6分(2)设M(x ,y),由点M 在线段AD 上,得x t +y2=1,即2x +ty -2t =0.由AM ≤2BM ,得⎝⎛⎭⎫x -432+⎝⎛⎭⎫y +232≥209.8分 由AD 位置知,直线AD 和圆⎝⎛⎭⎫x -432+⎝⎛⎭⎫y +232=209至多有一个公共点, 故⎪⎪⎪⎪83-83t 4+t 2≥253,解得t ≤16-10311或t ≥16+10311.10分因为t 是使AM ≤2BM 恒成立的最小正整数,所以t =4.11分所以,圆C 方程为(x -2)2+(y -1)2=5.①当直线l 2:x =1时,直线l 1的方程为y =0,此时,S △EPQ =2;12分 ②当直线l 2的斜率存在时,设l 2的方程为y =k(x -1)(k ≠0), 则l 1的方程为y =-1k (x -1),点E ⎝⎛⎭⎫0,1k .所以BE =1+1k2. 圆心C 到l 2的距离为|k +1|1+k 2.所以PQ =25-⎝ ⎛⎭⎪⎫|k +1|1+k 22=24k 2-2k +41+k 2.14分故S △EPQ =12BE·PQ =121+1k2·24k 2-2k +41+k 2=4k 2-2k +4k 2=4k 2-2k +4≥152. 因为152<2,所以(S △EPQ )min =152.16分例题 答案:2 2.解法1设BC =x ,则AC =2x ,根据面积公式得S △ABC =12AB·BC sin B =12×2x 1-cos 2B ,根据余弦定理得cos B =AB 2+BC 2-AC 22AB ·BC=4+x 2-(2x )24x =4-x 24x ,代入上式得:S △ABC = x1-(4-x 24x )2=128-(x 2-12)216,由三角形三边关系有⎩⎨⎧2x +x>2,x +2>2x22-2<x<22+2,故当x =23时,S △ABC 取得最大值2 2.解法2以AB 的中点为原点,AB 所在直线为x 轴,建立平面直角坐标系xOy ,则A(-1,0),B(1,0),C(x ,y),由AC =2BC 得(x +1)2+y 2=2·(x -1)2+y 2,化简得x 2+y 2-6x +1=0,即(x -3)2+y 2=8,于是点C 的轨迹是以D(3,0)为圆心,22为半径的圆,所以点C 到AB 的距离的最大值为半径22,故S △ABC 的最大值为S =12×2×|y C |≤2 2.变式联想变式1答案:⎝⎛⎭⎫-203,4. 解析:依题意,PA 2=PO 2-12,PB 2=PO 12-22,因为PB =2PA ,所以PB 2=4PA 2,所以PO 12-4=4(PO 2-12),可得PO 12=4PO 2,设P(x ,y),可得(x -42)+y 2=4(x 2+y 2)化简得(x +43)2+y 2=649.所以满足条件的点P 在以(-43,0)为圆心,83为半径的圆上,又因为点P 在直线x +3y -b =0上,且恰有两个点,所以直线和圆应该相交,所以|-43-b|1+3<83,解得-203<b<4.变式2 答案:0.解析:设P(x ,y),PAPB=k ,则 (x +2)2+y 2(x -4)2+y 2=k ,整理得(1-k 2)x 2+(1-k 2)y 2+(4+8k 2)x +4-16k 2=0,又P 是圆C 上的任意一点,故k ≠1,圆C 的一般方程为x 2+y 2+8x +2by +b 2=0,因此2b =0,4+8k 21-k 2=8,4-16k 21-k2=b 2,解得b =0.串讲激活串讲1答案:4.解法1由A(0,1),C(t ,0),得l :y =-1t x +1,D(x ,-1t x +1).又AD ≤2BD ,故x 2+x 2t2≤2(x -1)2+(1-x t )2,化简得(3+3t 2)x 2-(8+8t)x +8≥0对任意x 恒成立,则(8+8t )2-4×8×(3+3t 2)≤0,化简得t 2-4t +1≥0,解得t ≥2+3或0<t ≤2-3,因此最小正整数t 的值为4.解法2设D(x ,y),当AD =2BD 时,有x 2+(y -1)2=4[(x -1)2+y 2],化简得 (x -43)2+(y +13)2=89.直线AC 的方程为y =-1t x +1,即x +ty -t =0.因为AD ≤2BD ,所以直线AC 与圆(x -43)2+(y +13)2=89相切或相离,故|43-13t -t|t 2+1≥89,即t 2-4t +1≥0, 解得t ≤2-3或t ≥2+3,所以最小正整数t 的值为4. 串讲2 答案:5.解析:设x 轴上一定点Q(m ,0),记PM ∶PQ =λ,P(x ,y),由PM ∶PQ =λ得(x -10)2+y 2=λ2[(x -m)2+y 2],化简得(λ2-1)x 2+(λ2-1)y 2+(20-2mλ2)x +(λ2m 2-100)=0,因为x 2+y 2=25,所以⎩⎪⎨⎪⎧20-2mλ2=0,100-λ2m 2λ2-1=25,解得m =52,λ=2,所以PM ∶PQ =2,从而PN +12PM =PN +PQ ≥QN =5.新题在线答案:(1)居住在点P 处的居民不在商场B 相对于A 的“更强吸引区域”内. (2)(116,1) 解析:设商场A ,B 的面积分别为S 1,S 2,点P 到A ,B 的距离分别为d 1,d 2,则S 2=λS 1,m 1=k S 1d 12,m 2=k S 2d 22,k 为常数,k>0.(1)在△PAB 中,AB =10,PA =15,∠PAB =60°,由余弦定理,得d 22=PB 2=AB 2+PA 2-2AB·PA cos 60°=102+152-2×10×15×12=175.又d 12=PA 2=225,此时,m 1-m 2=k S 1d 12-k S 2d 22=k S 1d 12-k λS 1d 22=kS 1(1d 12-λd 22),将λ=12,d 12=225,d 22=175代入,得m 1-m 2=kS 1(1225-1350). 因为kS 1>0,所以m 1>m 2.即居住在点P 处的居民不在商场B 相对于A 的“更强吸引区域”内.(2)解法1以AB 所在直线为x 轴,A 为原点,建立如图所示的平面直角坐标系,则A(0,0), B(10,0),设P(x ,y),由m 1<m 2得,k S 1d 12<k S 2d 22,将S 2=λS 1代入,得d 22<λd 12.代入坐标,得(x -10)2+y 2<λ(x 2+y 2), 化简得(1-λ)x 2+(1-λ)y 2-20x +100<0. 因为0<λ<1,配方得(x -101-λ)2+y 2<(10λ1-λ)2, 所以商场B 相对于A 的“更强吸引区域”是圆心为C(101-λ,0),半径为r 1=10λ1-λ的圆的内部.与商场B 相距2 km 以内的区域(含边界)是圆心为B(10,0),半径为r 2=2的圆的内部及圆周.由题设,圆B 内含于圆C ,即BC<|r 1-r 2|.因为0<λ<1,所以101-λ-10<10λ1-λ-2,整理得4λ-5λ+1<0,解得116<λ<1.所以,所求λ的取值范围是(116,1).解法2要使与商场B 相距2 km 以内的区域(含边界)均为商场B 相对于A 的“更强吸引区域”,则当d 2≤2时,不等式m 1<m 2恒成立.由m 1<m 2,得kS 1d 12<k S 2d 22=k λS 1d 22,化简得λd 12>d 22. 此时,“当d 2≤2时,不等式m 1<m 2恒成立”可转化为“当d 2≤2时,不等式λd 12>d 22恒成立”.所以当d 2≤2时,不等式恒成立,因为点P 在以点B 为圆心,2为半径的圆的内部,且AB =10,所以8=AB -2≤PA ≤AB +2=12.欲使得不等于λPA>2恒成立,则有8λ>2,解得λ>116,又0<λ<1,所以λ的取值范围是(116,1).。

微专题16 阿波罗尼斯圆问题梳理及其运用

微专题16 阿波罗尼斯圆问题梳理及其运用

3 2 8 x 2 (x-1) +(1- t ) , 化简得(3+t2)x -(8+ t )x
2
+8≥0 对任意 x 恒成立, 82 3 2 则(8+ t ) -4×8×(3+t2)≤0, 化简得 t -4t+1≥0, 解得 t≥2+ 3 或 0<t≤2- 3, 因此最小正整数 t 的值为 4.
解法 2 设 D(x,y),当 AD=2BD 时,有 x +(y-1) =4[(x-1) +y ],化 42 12 8 1 简得(x-3) +(y+3) =9.直线 AC 的方程为 y=- t x+1,即 x+ty -t=0.因为 AD≤2BD, 4 1 | 3 - 3 t- t| 42 12 8 所以直线 AC 与圆 (x - 3 ) + (y + 3 ) = 9 相切或相离 , 故 t 2+ 1 ≥ 8 2 , 即 t - 4 t + 1 ≥ 0 , 9 解得 t≤2- 3或 t≥2+ 3,所以最小正整数 t 的值为 4.
变式 1 在平面直角坐标系 xOy 中,已知圆 O:x2+y2=1,O1:(x-4)2 +y2=4,动点 P 在直线 x+ 3y-b=0 上,过 P 分别作圆 O,O1 的切线,切点分别为 A,B,若满足 PB=2PA 的点 P 有且只有两 20 个,则实数 b 的取值范围为 - ,4 . 3
2 2 2 2
4 8 点 P 在以(-3,0)为圆心,3为半径的圆上,又因为点 P 在直线 x+ 3y 4 |-3-b| 8 -b=0 上,且恰有两个点,所以直线和圆应该相交,所以 <3, 1+ 3 20 解得- 3 <b<4.
变式 2 已知点 A(-2,0),B(4,0),圆 C:(x+4) +(y+b) =16,点 P PA 是圆 C 上任意一点,若PB为定值,则 b 的值为 0 .

2025年新人教版高考数学一轮复习讲义 第八章 培优点10 阿波罗尼斯圆与蒙日圆

2025年新人教版高考数学一轮复习讲义  第八章 培优点10 阿波罗尼斯圆与蒙日圆

例2 (1)(2023·抚松模拟)蒙日圆涉及的是几何学中的一个著名定理,该
定理的内容为:椭圆上两条互相垂直的切线的交点必在一个与椭圆同心 的圆上,该圆称为原椭圆的蒙日圆,若椭圆C:a+x2 2+ya2=1(a>0)的蒙日 圆的方程为x2+y2=4,则a等于
√A.1
B.2
C.3
D.4
∵椭圆上两条互相垂直的切线的交点必在一个与椭圆同心的圆上, 找两个特殊点分别为(0, a),( 2+a,0), 则两条切线分别是 x= 2+a,y= a, 这两条切线互相垂直,且两条直线的交点为 P( 2+a, a), 而 P 在蒙日圆上,∴( 2+a)2+( a)2=4,解得 a=1.
故△AMN 的面积的取值范围为[2 3,4].
思维升华
蒙日圆在双曲线、抛物线中的推广 双曲线 ax22-by22=1(a>b>0)的两条互相 垂直的切线PA,PB交点P的轨迹是蒙 日圆:x2+y2=a2-b2(只有当a>b时才 有蒙日圆). 抛物线 y2=2px(p>0)的两条互相垂直的切线 PA,PB 交点 P 的轨迹是该抛 物线的准线:x=-p2(可以看作半径无穷大的圆).
例1 (1)古希腊数学家阿波罗尼斯的著作《圆锥曲线论》是古代世界光辉
的科学成果.他证明过这样一个命题:平面内与两定点距离的比为常数
k(k>0且k≠1)的点的轨迹是圆,后人将之称为阿波罗尼斯圆.现有椭圆T: Eax2,2+Fby分22 =别1为(a椭>b圆>0T)的,左A,、B右为焦椭点圆,T长动轴点的M端满点足,||MMCEF,|| =D2为,椭△圆MTA短B面轴积的的端最点, 大值为4 6 ,△MCD面积的最小值为 2 ,则椭圆T的离心率为
因为|PA|2+|PB|2=(x+1)2+y2+(x-1)2+y2=2(x2+y2+1),其中x2+ y2可看作圆(x-2)2+y2=3上的点(x,y)到原点(Байду номын сангаас,0)的距离的平方,

从课本中的阿波罗尼斯圆问题

从课本中的阿波罗尼斯圆问题

从课本中的阿波罗尼斯圆问题探讨数学文化在教学中的渗透靖江市第一高级中学 数学组 印栋E-mail: yde2003@ 邮编:214500克莱因在其名著《西方文化中的数学》中指出:数学是一种精神,一种理性的精神.正是这种精神,激发、促进、鼓舞并驱使人类的思维得以运用到最完善的程度,亦正是这种精神,试图决定性地影响人类的物质、道德和社会生活;试图回答有关人类自身存在提出的问题;努力去理解和控制自然;尽力去探求和确立已经获得知识的最深刻的和最完美的内涵.因此,美国数学学会主席魏尔德说:“数学是一种会不断进化的文化”.正是数学与文化以及数学文化的不断交融及相互促进,才使数学在人类文明的发展中起到了举足轻重的作用并获得了如此多的赞誉.在新课程改革中,数学文化不再是被孤立的装饰品,而是渗透在相关模块和专题中.新课标《苏教版·必修2》在第2章平面解析几何初步第2.2节圆与方程介绍了圆的标准方程和一般方程后编排了这样一道习题:习题2.2(1)10.已知点)(y x M ,与两个定点)03()00(,,,A O 的距离之比为2/1,那么点M 的坐标应满足什么关系?画出满足条件的点M 所形成的曲线.分析:由于有了课上推导圆标准方程的过程可作为参照,大部分学生不需费太多的气力就可以解出上述的问题,解法如下.解析:由题知2/1/=MA MO ,将距离公式代入可得12=, 化简整理即得到该曲线的方程为: 4)1(22=++y x .因此,所求点M 所形成的曲线是以(-1,0)为圆心,2为半径的圆(图略).这道题实际上源自约公元前262~前190的古希腊人阿波罗尼斯(Apollonius of Perga ,也有文献上将其名字翻译为“阿波罗尼奥斯”)在其巨著《圆锥曲线论》给出的一个著名的几何问题:“在平面上给定两点A 、B ,设P 点在同一平面上且满足λ=PB PA /,当λ大于0且λ≠1时,P 点的轨迹是个圆”,这个圆我们称之为“阿波罗尼斯圆”,这个结论称作“阿波罗尼斯轨迹”.同上题一样,我们用解析法完全可以证明:与A 、B 距离之比等于λ的动点轨迹为圆.但如果每题都先用解析法求出圆的方程,再根据圆心及半径作出圆,显然很费事,特别是对一些选择题或填空题如此解法实在小题大做,能否找出阿波罗尼斯圆的简捷作法?下述定理可给出明确答案. 定理:A 、B 为两已知点,P 、Q 分别为线段A B 的定比为λ(λ≠1)的内、外分点,则以P 、Q 为直径的⊙O 上任意点到A 、B 两点的距离之比等于常数λ.证明:不妨以λ>1为例.设a AB =,过B 作⊙O 的与直径PQ 垂直的弦CD ,则1+=λλa AP ,1+=λa PB ,1-=λλa AQ ,1-=λa BQ . 由相交弦定理及勾股定理有,,1111·1·222222222222-=-+=+=-=-+==λλλλλλa a a BC AB AC a a a BQ PB BC 于是,,1122-=-=λλλa AC a BC 且λ=BC AC . 从而,C Q P 、、同时在到A 、B 两点距离之比等于λ的曲线(即圆)上,而不共线的三点所确定的圆是唯一的,因此,⊙O 上任意点到B A 、两点的距离之比等于常数.根据以上过程,关于阿波罗尼斯圆我们还有如下一些显然的性质(证明略).①因AQ AP AC ⋅=2,故AC 为⊙O 的一条切线;②点C 为⊙O 的切线AC 的切点,CP 、CQ 分别为ACB ∠的内、外角平分线;③当λ>1时,点B 在⊙O 内,点A 在⊙O 外;当0<λ<1时,点A 在⊙O 内,点B 在⊙O 外; ④所作出的阿波罗尼斯圆的直径为122-=λλa PQ ,圆的面积为221⎪⎭⎫ ⎝⎛-λλπa ; ⑤过点B 作⊙O 的不与CD 重合的弦EF ,则AB 平分EAF ∠.因为BO AB BF BE BC ··2==,所以E O F A 、、、四点共圆,AB 平分EAF ∠.结合其中的部分性质,我们可以尝试一些应用:应用1 在x 轴正半轴上是否存在两个定点A 、B ,使得圆422=+y x 上任意一点到A 、B 两点的距离之比为常数2/1?如果存在,求出点A 、B 坐标;如果不存在,请说明理由.解:假设在x 轴正半轴上存在两个定点A 、B ,使得圆422=+y x 上任意一点到A 、B 两点的距离之比为常数2/1,设)(y x P ,、)0(1,x A 、)0(2,x B ,其中210x x >>. 由题12=对满足422=+y x 的任何实数对)(y x ,恒成立,整理得222212212(4)43()x x x x x x y -+-=+,将422=+y x 代入得:2212212(4)412x x x x x -+-=, 这个式子对任意[]22,-∈x 恒成立,所以一定有:12222140412x x x x -=⎧⎨-=⎩,因为012>>x x ,所以解得11=x 、42=x .所以,在x 轴正半轴上是否存在两个定点)01(,A 、)04(,B ,使得圆422=+y x 上任意一点到A 、B 两点的距离之比为常数2/1.应用2 铁路线上线段100=AB km ,工厂C 到铁路的距离20=CA km .现要在A 、B 之间某一点D 处,向C 修一条公路.已知每吨货物运输1km 的铁路费用与公路费用之比为5:3,为了使原料从供应站B 运到工厂C 的费用最少,点D 应选在何处?解:以点A 为原点,AB 所在直线为x 轴,过点C 垂直AB 的直线为y 轴建立直角坐标系,则),(00A ,),(200C .先求到定点A 、C 的距离之比为53的动点)(y x P ,的轨迹方程,即35=,整理即得动点)(y x P ,的轨迹方程:2244909000x y y ++-=,令0=y ,得15±=x (舍去正值)即得点)015(,-D ,15=DA ,25=DC .下面证明此点D 即为所求点:自点B 作CD 延长线的垂线,垂足为E ,在线段BA 上任取点1D ,连接1CD ,再作BE E D ⊥11于1E .设每吨货物运输1km 的铁路费用为)0(3>k k ,则每吨货物运输1km 的公路费用为k 5,如果选址在1D 处,那么总运输费用为111135(35)y kBD kDC BD DC k =+=+,而11D BE ∆∽BED ∆∽CAD ∆,∴351525111===AD CD D E BD ,∴11153D E BD =, 那么总费用 11111(35)()5()55y BD DC k E D DC k CD DE k kCE =+=+≥+=,当且仅当点C 、1D 、1E 共线时取等号.综上所述,点D 即为所求点.此外,阿波罗尼斯圆也在历年高考中频频出现:(1)(2003年北京春季高考卷)设A (c -,0),B (c ,0)(c >0)为两定点,动点P 到点A 的距离与到点B 的距离的比为定值a (a >0),求点P 的轨迹.(2)(2005年高考数学江苏卷)⊙1O 与⊙2O 的半径都是1,⊙1O 与⊙2O 切线PN PM 、(N M 、 分别是切点),使得PM =2PN ,试建立适当的坐标系,并求动点P 的轨迹方程.(3)(2008年高考数学江苏卷)满足条件2=AB ,BC AC 2=的ABC ∆的面积的最大值. 以上试题体现了新课标的要求:了解概念、结论等产生的背景、应用,获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,体会其中所蕴涵的数学思想和方法.通过不同形式的自主学习、探究活动,体验数学发现和创造的历程.此外,对像阿波罗尼斯圆这样经典的数学文化课题的研究,还有利于学生进一步丰富自己的探索体验,进一步完善自己的知识体系,为后续的学习留下发展的空间.比如,阿波罗尼斯圆上的任意一点到两个定点的距离之商为定值,什么图上任意一点到两个定点距离之和为定值呢?到两个定点距离之差为定值的动点的轨迹是什么呢?能否判断到两个定点距离之积为定值的动点轨迹是什么图像呢?教育是文化的一部分,是文化赖以延续和发展的基础,也是文化不断创新的发展的动力.新课改教材在相关章节中都附有以数学文化内容渗透为目的的阅读素材,这正是数学文化教育发展趋势的体现.如何处理好这些内容,不断发掘数学文化的教学价值,是每个数学教师的光荣使命,也是我们青年教师成长的努力方向.。

高考数学一轮专项复习ppt课件-阿波罗尼斯圆与蒙日圆(北师大版)

高考数学一轮专项复习ppt课件-阿波罗尼斯圆与蒙日圆(北师大版)
√A.椭圆C的蒙日圆的方程为x2+y2=3b2 →→ B.对直线l上任意一点P,PA·PB >0 C.记点A到直线l的距离为d,则d-|AF2|的最小值为 433b
√D.若矩形MNGH的四条边均与椭圆C相切,则矩形MNGH面积的最大值为6b2
对于A,过点Q(a,b)可作椭圆的两条互相垂直的切线x=a,y=b, ∴点Q(a,b)在蒙日圆上, ∴蒙日圆方程为x2+y2=a2+b2, 由 e=ac= 1-ba22= 22得 a2=2b2,
例2 (1)(2023·抚松模拟)蒙日圆涉及的是几何学中的一个著名定理,该
定理的内容为:椭圆上两条互相垂直的切线的交点必在一个与椭圆同心 的圆上,该圆称为原椭圆的蒙日圆,若椭圆C:a+x2 2+ya2=1(a>0)的蒙日 圆的方程为x2+y2=4,则a等于
√A.1
B.2
C.3
D.4
∵椭圆上两条互相垂直的切线的交点必在一个与椭圆同心的圆上, 找两个特殊点分别为(0, a),( 2+a,0), 则两条切线分别是 x= 2+a,y= a, 这两条切线互相垂直,且两条直线的交点为 P( 2+a, a), 而 P 在蒙日圆上,∴( 2+a)2+( a)2=4,解得 a=1.
性质 3 kOA·kPA=-ba22,kOB·kPB=-ba22(垂径定理的推广). 性质4 PO平分椭圆的切点弦AB. 性 质 5 延 长 PA , PB 交 蒙 日 圆 O 于 两 点 C , D , 则 CD∥AB. 性质 6 S△AOB 的最大值为a2b,S△AOB 的最小值为aa2+2b2b2. 性质 7 S△APB 的最大值为a2+a4 b2,S△APB 的最小值为a2+b4 b2.
由A知,a2=2b2,则c2=a2-b2=b2,即c=b, ∴F1 到直线 l 的距离 d′=|-bca-2+a2b-2 b2|=|-b2-32bb2-b2|=433b, ∴(d-|AF2|)min=433b-2a,C 错误; 对于D,当矩形MNGH的四条边均与椭圆C相切时,蒙日圆为矩形 MNGH的外接圆,

以阿波罗尼斯圆为背景的试题探究

以阿波罗尼斯圆为背景的试题探究

以阿波罗尼斯圆为背景的试题探究
刘瑞富
【期刊名称】《中学数学研究》
【年(卷),期】2017(000)004
【摘要】在近十年的高考中,以阿波罗尼斯圆为背景的考题不断出现,备受命题者的青睐,本文通过列举近几年的高考及竞赛试题,讲解与阿波罗尼斯圆有关的一些结论,进一步加强对与此圆与关的试题的认识.
【总页数】3页(P16-18)
【作者】刘瑞富
【作者单位】浙江省衢州第二中学 324000
【正文语种】中文
【相关文献】
1.解法对比变式拓展反思提升——以阿波罗尼斯圆为背景的一类中考最值问题探究[J], 朱宸材;杨峰
2.以阿波罗尼斯圆为背景的立体几何试题命制 [J], 张剑洪;杨苍洲;
3.以“阿波罗尼斯圆”为背景的考题探究 [J], 张森国
4.以阿波罗尼斯圆为背景的立体几何试题命制 [J],
5.解法对比变式拓展反思提升——以阿波罗尼斯圆为背景的一类中考最值问题探究 [J], 朱宸材[1];杨峰[2]
因版权原因,仅展示原文概要,查看原文内容请购买。

以阿波罗尼斯圆为背景的考题研究与欣赏

以阿波罗尼斯圆为背景的考题研究与欣赏

以阿波罗尼斯圆为背景的考题研究与欣赏
周建
【期刊名称】《数学学习与研究:教研版》
【年(卷),期】2017(000)005
【摘要】近年来,高考考题中对于书本知识的考查愈加重视,来源于书本,但又高于书本的题型层出不穷,一来符合课改的思想,二来也是回归书本,回归数学本质的需要,同时,也是考查学生发散性思维和扎实基本功的重要手段,本文从一个高考题入手,与读者探讨阿波罗尼斯圆在高考模考中的应用与变化.
【总页数】2页(P141-141,143)
【作者】周建
【作者单位】浙江省柯桥中学,浙江绍兴312030
【正文语种】中文
【中图分类】G634.8
【相关文献】
1.以阿波罗尼斯圆为背景的立体几何试题命制
2.以“阿波罗尼斯圆”为背景的考题探究
3.以阿波罗尼斯圆为背景的立体几何试题命制
4.基于阿波罗尼斯圆背景下的高考数学
5.基于阿波罗尼斯圆背景下的高考数学
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档