2019高数试题及答案

合集下载

2019年高考数学真题试卷(江苏卷)(word版+答案+解析)

2019年高考数学真题试卷(江苏卷)(word版+答案+解析)

2019年高考数学真题试卷(江苏卷)一、填空题:本大题共14小题,每小题5分,共计70分.(共14题;共70分)1.已知集合A={−1,0,1,6},B={x|x>0,x∈R},则A∩B=________.2.已知复数(a+2i)(1+i)的实部为0,其中i为虚数单位,则实数a的值是________.3.下图是一个算法流程图,则输出的S的值是________.4.函数y=√7+6x−x2的定义域是________.5.已知一组数据6,7,8,8,9,10,则该组数据的方差是________.6.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是________.=1(b>0)经过点(3,4),则该双曲线的渐近线方程是7.在平面直角坐标系xOy中,若双曲线x2−y2b2________.8.已知数列{a n}(n∈N∗)是等差数列,S n是其前n项和.若a2a5+a8=0,S9=27,则S8的值是________.9.如图,长方体ABCD−A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E-BCD的体积是________.10.在平面直角坐标系 xOy 中,P 是曲线 y =x +4x (x >0) 上的一个动点,则点P 到直线x +y =0的距离的最小值是________.11.在平面直角坐标系 xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是________.12.如图,在 △ABC 中,D 是BC 的中点,E 在边AB 上,BE =2EA , AD 与CE 交于点 O .若 AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =6AO ⃗⃗⃗⃗⃗ ⋅EC ⃗⃗⃗⃗⃗ ,则 AB AC的值是________.13.已知 tanαtan(α+π4)=−23 ,则 sin(2α+π4) 的值是________.14.设 f(x),g(x) 是定义在R 上的两个周期函数, f(x) 的周期为4, g(x) 的周期为2,且 f(x) 是奇函数.当 x ∈(0,2] 时, f(x)=√1−(x −1)2 , g(x)={k(x +2),0<x ≤1−12,1<x ≤2 ,其中k >0.若在区间(0,9]上,关于x 的方程 f(x)=g(x) 有8个不同的实数根,则k 的取值范围是________.二、解答题:本大题共6小题,共计90分.(共6题;共90分)15.在△ABC 中,角A , B , C 的对边分别为a , b , c . (1)若a =3c , b = √2 ,cos B = 23 ,求c 的值; (2)若sinA a=cosB 2b,求 sin(B +π2) 的值.16.如图,在直三棱柱ABC -A 1B 1C 1中,D , E 分别为BC , AC 的中点,AB =BC .求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.17.如图,在平面直角坐标系xOy中,椭圆C: x2a2+y2b2=1(a>b>0)的焦点为F1(–1、0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,l与圆F2: (x−1)2+y2=4a2交于点A,与椭圆C交于点D.连结AF1并延长交圆F2于点B,连结BF2交椭圆C于点E,连结DF1.已知DF1= 52.(1)求椭圆C的标准方程;(2)求点E的坐标.18.如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P、Q,并修建两段直线型道路PB、QA.规划要求:线段PB、QA上的所有点到点O的距离均不小于圆O的半径.已知点A、B到直线l的距离分别为AC和BD(C、D为垂足),测得AB=10,AC=6,BD=12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)对规划要求下,若道路PB和QA的长度均为d(单位:百米).求当d最小时,P、Q两点间的距离.19.设函数f(x)=(x−a)(x−b)(x−c),a,b,c∈R、f ′(x)为f(x)的导函数.(1)若a=b=c,f(4)=8,求a的值;(2)若a≠b,b=c,且f(x)和f ′(x)的零点均在集合{−3,1,3}中,求f(x)的极小值;(3)若a=0,0<b⩽1,c=1,且f(x)的极大值为M,求证:M≤ 427.20.定义首项为1且公比为正数的等比数列为“M-数列”.(1)已知等比数列{a n} (n∈N∗)满足:a2a4=a5,a3−4a2+4a4=0,求证:数列{a n}为“M-数列”;(2)已知数列{b n}满足: b1=1,1Sn =2b n−2b n+1,其中S n为数列{b n}的前n项和.①求数列{b n}的通项公式;②设m为正整数,若存在“M-数列”{c n} (n∈N∗),对任意正整数k,当k≤m时,都有c k⩽b k⩽c k+1成立,求m的最大值.三、数学Ⅱ(附加题)(每题10分)【选做题】本题包括21、22、23三题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.(共3题;共30分)21.A.[选修4-2:矩阵与变换]已知矩阵A=[31 22](1)求A2;(2)求矩阵A的特征值.22.在极坐标系中,已知两点A(3,π4),B(√2,π2),直线l的方程为ρsin(θ+π4)=3.(1)求A,B两点间的距离;(2)求点B到直线l的距离.23.设x∈R,解不等式|x|+|2 x−1|>2.四、【必做题】第24题、第25题,每题10分,共计20分.(共2题;共20分)24.设(1+x)n=a0+a1x+a2x2+⋯+a n x n,n⩾4,n∈N∗.已知a32=2a2a4.(1)求n的值;(2)设(1+√3)n=a+b√3,其中a,b∈N∗,求a2−3b2的值.25.在平面直角坐标系xOy中,设点集A n={(0,0),(1,0),(2,0),…,(n,0)},B n={(0,1),(n,1)},C n= {(0,2),(1,2),(2,2),⋯,(n,2)},n∈N∗.令M n=A n∪B n∪C n.从集合M n中任取两个不同的点,用随机变量X表示它们之间的距离.(1)当n=1时,求X的概率分布;(2)对给定的正整数n(n≥3),求概率P(X≤n)(用n表示).答案解析部分一、填空题:本大题共14小题,每小题5分,共计70分.1.【答案】{1,6}【考点】交集及其运算【解析】【解答】∵集合A={−1,0,1,6},B={x|x>0,x∈R},借助数轴得:A∩B={1,6}【分析】根据已知条件借助数轴,用交集的运算法则求出集合A∩B。

2019年高考真题理科数学(全国卷Ⅲ含解析).doc

2019年高考真题理科数学(全国卷Ⅲ含解析).doc

2019 年普通高等学校招生全国统一考试(全国III 卷)理科数学一.选择题1、已知集合A { 1,0,1,2}, B { x | x2 1} ,则 A B ()A. { 1,0,1}B. B.{0,1}C. C.1,1}{D. D.{ 0,1,2}答案:A解答:B { x | x2 1} { x | 1 x 1} ,所以 A B { 1,0,1} .2.若z(1 i) 2i ,则 z ()A. 1 iB. 1 iC. i1D.1 i答案:D解答:z(1 i ) 2i2i 2i (1 i )i ) 1 i . , z i (11 i (1 i)(1 i)3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著,某中学为了解本校学生阅读四大名著的情况,随机调查了100 位学生,其中阅读过《西游记》或《红楼梦》的学生共有90 位,阅读过《红楼梦》的学生共有80 位,阅读过《西游记》且阅读过《红楼梦》的学生共有60 位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A.0.5B.0.6C.0.7D.0.8答案:C解答:90 800.7601004. (12x2 )(1 x)4的展开式中x3的系数为()A.12B.16C.20D.24答案:A解答:由题意可知含x 3 的项为 1 C43 1 x3 2x2 C 41 13 x 12 x3 ,所以系数为 12 .5.已知各项均为正数的等比数列a n 的前 4 项和为15 ,且 a5 3a3 4a1,则 a3 ()A. 16B. 8C. 4D. 2答案:C解答:设该等比数列的首项 a1,公比 q ,由已知得, a1q4 3a1q2 4a1,因为 a1 0 且 q 0 ,则可解得 q 2,又因为 a1 (1 q q2 q3 ) 15 ,即可解得 a1 1,则 a3 a1q2 4 .6. 已知曲线y ae x x ln x 在点 (1, ae) 处的切线方程为y 2 x b ,则()A. a e ,b 1B. a e ,b 1C.a e 1,b 1D. a e 1,b 1答案:D解析:令 f ( x) ae x x ln x ,则 f (x) ae x ln x 1 , f (1) ae 1 2 ,得 a 1 e 1.ef (1) ae 2 b ,可得b 1 .故选D.2x 3 7.函数 y在 [ 6,6] 的图像大致为(2x 2 xA.B.C.D.答案: B解析:∵y f ( x)2x 32( x)32x,∴f ( x)2x2x2 x)2 x 32x 2 xf ( x) ,∴ f ( x) 为奇函数,排2 432 43 8 ,根据图像进行判断,可知选项B 符合题意 .除选项 C.又∵ f (4)2 424248. 如图,点 为正方形的中心,为正三角形,平面平面, 是线段的中点,则()A. ,且直线 , 是相交直线B. ,且直线 , 是相交直线C.,且直线,是异面直线D. ,且直线,是异面直线答案:B解析:因为直线,都是平面内的直线,且不平行,即直线,是相交直线,设正方形的边长为,则由题意可得:,根据余弦定理可得:,,所以,故选 B.9. 执行右边的程序框图,如果输出为,则输出的值等于()A.B.C.D.答案:C解析:第一次循 :;第二次循 :;第三次循 :;第四次循 :;⋯第七次循 :,此 循 束,可得. 故 C.10.双曲 C:x 2 y 2 1F ,点 P C 的一条 近 的点,O坐 原点 .若4 2的右焦点| PO || PF |PFO的面 ()A:3 2B: 3 2C:2 2D:3242答案 : A解析:由双曲 的方程x 2 y 2y2 x PFO 中 | PO | | PF |42可得一条 近 方程2 ;在P PHOF23点做 垂 直因 t a nP O F = PO2 ;2 得 到 所 以SP F 1O3 63 22 24;故 A;11. 若 f (x) 是定 域R 的偶函数,且在(0, )减, ()1322 )f (2 3 )A. f (log 3 ) f (2412 3B. f (log ) f (2 3 ) f (2 2 )3 432123C. f (2) f (2) f (log 3 4)231)D. f (2 3 )f (2 2 )f (log 34 答案:C 解析 :依据题意函数为偶函数且函数在(0,)单调递减,则函数在(,0)上单调递增;因为132f (log 3 ) f (log 3 4)f (log 3 4)022321 3 l o g 44; 又 因 为; 所 以321f ( 22)f3( 2f( l o g )) 34 ;故选 C.12. 设函数 f ( x) sinx0 ,已知 f ( x) 在 0,2 有且仅有 5 个零点,下述四个5结论:○1 f (x) 在 0,2○2 f (x) 在 0,2有且仅有 3 个极大值点有且仅有 2 个极小值点○3 f (x) 在0,单调递增10○4 的取值范围是12 ,295 10其中所有正确结论的编号是A. ○1 ○4B.○2 ○3C.○1 ○2○3D. ○1○3 ○4答案: D解析:根据题意,画出草图,由图可知2 x 1, x 2 ,x 15x 1 245由题意可得,5,解得,29x 26 x255所以24229 ,解得 12 29 ,故 ○4 对;5 5 5 10令x得 x 32 0 ,∴图像中 y 轴右侧第一个最值点为最大值点,故510∵ 2 x 1, x 2 ,∴ f ( x) 在 0,2 有 2 个或 3 个极小值点,故 ○2 错;∵ 1229 ,∴ 11 10 549,故 ○3 对.51025 1002二 . 填空题13. 已知 a , b 为单位向量,且 a b0 ,若 c2a5b ,则 cos a, c答案:○1对;.2 3解析:22a5b2223 ,∵ c 4a 5b 4 5a b 9 ,∴ c∵ a ca 2a5b2a5a b 2 ,∴ cos a, ca c22 .2a c 1 3 314. 记 S n 为等差数列a n 的前 n 项和,若 a 1 0 , a 2S10.3a 1 ,则S 5答案:4解析:设该等差数列的公差为d ,∵ a 2 3a 1 ,∴ a 1 d 3a 1 ,故 d 2a 1 a 1 0, d 0 ,10 a1 a10∴S10 2 2 2a1 9d 2 10d 4 . S5 5 a1 a5 2a1 4d 5d215.设F1x 2 y21的两个焦点,M为C上一点且在第一象限,若MF1 F2 、 F2为椭圆C:2036为等腰三角形,则M 的坐标为________. 答案:(3, 15 )解析:已知椭圆x2 y 26 , c 4 ,由 M 为 C 上一点且在第一象限,故等腰三角C :1可知, a36 20形MF1 F2 中MF1 F1F2 8 ,MF2 2a MF1 4 ,sin F1 F2M 82 22 15 , y M MF 2 sin F1F2 M 15 ,代入8 4x2 y 23 .故 M 的坐标为(3, 15 ) .C :1可得x M36 2016. 学生到工厂劳动实践,利用3 D 打印技术制作模型。

2019年高考数学试题(带答案)

2019年高考数学试题(带答案)
共有_____________种.(用数字填写答案)
19.已知 OA 1 , OB 3 , OA • OB 0 ,点 C 在 AOB 内,且 AOC 30 ,设
OC
mOA
nOB

(m,
n
R)
,则
m n
__________.
20.若函数 f (x) x2 x 1 a ln x 在 (0, ) 上单调递增,则实数 a 的最小值是
附:参考数据与公式 6.92 2.63 ,若 X ~ N , 2 ,则①
P( X ) 0.6827 ;② P( 2 X 2 ) 0.9545;③ P( 3 X 3 ) 0.9973 . (1)根据频率分布直方图估计 50 位农民的年平均收入 x (单位:千元)(同一组数据用
A. 2
B. 3
C. 2 2
D. 3 2
6.若干年前,某教师刚退休的月退休金为 6000 元,月退休金各种用途占比统计图如下面
的条形图.该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折
线图.已知目前的月就医费比刚退休时少 100 元,则目前该教师的月退休金为( ).
A.6500 元
2019 年高考数学试题(带答案)
一、选择题
1.如图,点 是抛物线
的焦点,点 , 分别在抛物线 和圆
线部分上运动,且 总是平行于 轴,则
周长的取值范围是( )
的实
A.
B.
ห้องสมุดไป่ตู้C.
D.
2. 1
1 x2
1
x6 展开式中
x2
的系数为(

A.15
B.20
C.30
D.35
3.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.

2019年高考数学试卷(带答案)

2019年高考数学试卷(带答案)
A.直角三角形
B.钝角三角形
C.等边三角形
D.等腰三角形但不是等边三角形.
11.已知 ,函数 ,若函数 恰有三个零点,则( )
A. B.
C. D.
12.已知 是非零向量且满足 , ,则 与 的夹角是()
A. B. C. D.
二、填空题
13.已知曲线 在点 处的切线与曲线 相切,则a=.
14.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件.
附:参考数据与公式 ,若 ,则① ;② ;③ .
(1)根据频率分布直方图估计50位农民的年平均收入 (单位:千元)(同一组数据用该组数据区间的中点值表示);
(2)由频率分布直方图可以认为该贫困地区农民年收入X服从正态分布 ,其中 近似为年平均收入 近似为样本方差 ,经计算得: ,利用该正态分布,求:
故选:B
【点睛】
本题主要考查了长方体的外接球的性质,以及球的表面积的计算,其中解答中熟练应用长方体的对角线长等于其外接球的直径,求得球的半径是解答的关键,着重考查了运算与求解能力,属于基础题.
2.C
解析:C
2019年高考数学试卷(带答案)
一、选择题
1.已知长方体的长、宽、高分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( )
A. B. C. D.都不对
2.下列函数图像与x轴均有公共点,其中能用二分法求零点的是( )
A. B. C. D.
3. 展开式中的常数项为()
A.80B.-80C.40D.-40
17.已知 , , ,且 ,则 的最小值为_________.

2019年高考数学试题及答案word版

2019年高考数学试题及答案word版

2019年高考数学试题及答案word版一、选择题(本题共8小题,每小题4分,共32分。

在每小题给出的四个选项中,只有一项是正确的。

)1. 若函数f(x)=x^2-4x+m,且f(1)=-3,则m的值为多少?A. 0B. 2C. 5D. 32. 已知等差数列{an}的首项a1=1,公差d=3,求该数列的第5项a5。

A. 13B. 16C. 19D. 223. 计算三角函数值:sin(π/6) + cos(π/3)。

A. 1B. √3/2C. √2D. 24. 已知圆C的方程为(x-2)^2 + (y+1)^2 = 9,求圆C的半径。

A. 1B. 2C. 3D. 45. 若直线l的方程为y=2x+3,且点P(1,2)在直线l上,则直线l的斜率是多少?A. 1/2B. 2C. 3D. 46. 已知复数z=3+4i,求|z|的值。

A. 5B. √7C. √13D. √257. 计算定积分∫(0到1) (x^2 - 2x + 1) dx。

A. 0B. 1/3C. 1D. 2/38. 已知向量a=(2, -1),b=(1, 3),求向量a与向量b的数量积。

A. 1B. 3C. 5D. 7二、填空题(本题共4小题,每小题4分,共16分。

)9. 若函数f(x)=x^3-6x^2+11x-6,求f'(x)。

________________。

10. 已知双曲线C的方程为x^2/a^2 - y^2/b^2 = 1,且双曲线C的渐近线方程为y=±(b/a)x,求双曲线C的离心率e。

________________。

11. 计算二项式展开式(1+x)^5的第3项。

________________。

12. 已知抛物线y=x^2-4x+4,求抛物线的顶点坐标。

________________。

三、解答题(本题共3小题,共52分。

解答应写出文字说明、证明过程或演算步骤。

)13. (本题满分12分)已知函数f(x)=x^3-3x^2+2,求证f(x)在区间[1,2]上单调递增。

2019年高考数学试题(附答案)

2019年高考数学试题(附答案)

2019年高考数学试题(附答案)一、选择题1.()22x xe ef x x x --=+-的部分图象大致是( ) A . B .C .D .2.在空间直角坐标系中,点P(3,4,5)与Q(3,-4,-5)两点的位置关系是( )A .关于x 轴对称B .关于xOy 平面对称C .关于坐标原点对称D .以上都不对3.设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M ⋂N 中元素的个数为( ) A .2 B .3 C .5 D .74.一个频率分布表(样本容量为30)不小心被损坏了一部分,只记得样本中数据在[)2060,上的频率为0.8,则估计样本在[)40,50、[)50,60内的数据个数共有( )A .14B .15C .16D .175.设双曲线2222:1x y C a b-=(00a b >>,)的左、右焦点分别为12F F ,,过1F 的直线分别交双曲线左右两支于点M N ,,连结22MF NF ,,若220MF NF ⋅=,22MF NF =,则双曲线C 的离心率为( ).A 2B 3C 5D .66.已知()3sin 30,601505αα︒+=︒<<︒,则cos α为( ) A 310 B .31010- C .3310- D 343-7.下列四个命题中,正确命题的个数为( )①如果两个平面有三个公共点,那么这两个平面重合;②两条直线一定可以确定一个平面;③若M α∈,M β∈,l αβ= ,则M l ∈;④空间中,相交于同一点的三直线在同一平面内.A .1B .2C .3D .48.已知平面向量a ,b 是非零向量,|a |=2,a ⊥(a +2b ),则向量b 在向量a 方向上的投影为( )A .1B .-1C .2D .-29.函数()ln f x x x =的大致图像为 ( )A .B .C .D .10.函数()f x 的图象如图所示,()f x '为函数()f x 的导函数,下列数值排序正确是( )A .()()()()02332f f f f ''<<<-B .()()()()03322f f f f ''<<-<C .()()()()03232f f f f ''<<<-D .()()()()03223f f f f ''<-<<11.已知2tan()5αβ+=,1tan()44πβ-=,则tan()4πα+的值等于( ) A .1318 B .322 C .1322 D .31812.将函数()sin 2y x ϕ=+的图象沿轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为( )A .B .C .0D .4π- 二、填空题 13.若双曲线22221x y a b-=()0,0a b >>两个顶点三等分焦距,则该双曲线的渐近线方程是___________.14.已知复数z=(1+i )(1+2i ),其中i 是虚数单位,则z 的模是__________15.已知(13)n x + 的展开式中含有2x 项的系数是54,则n=_____________.16.已知实数,x y 满足不等式组201030y x y x y -≤⎧⎪--≤⎨⎪+-≥⎩,则y x 的取值范围为__________. 17.已知圆C 经过(5,1),(1,3)A B 两点,圆心在x 轴上,则C 的方程为__________.18.已知直线:与圆交于两点,过分别作的垂线与轴交于两点.则_________. 19.记n S 为数列{}n a 的前n 项和,若21n n S a =+,则6S =_____________.20.三个数成等差数列,其比为3:4:5,又最小数加上1后,三个数成等比数列,那么原三个数是三、解答题21.在△ABC 中,a =7,b =8,cos B = –17. (Ⅰ)求∠A ;(Ⅱ)求AC 边上的高.22.已知()11f x x ax =+--.(1)当1a =时,求不等式()1f x >的解集;(2)若()0,1x ∈时不等式()f x x >成立,求a 的取值范围.23.一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a ,b ,c .(Ⅰ)求“抽取的卡片上的数字满足a b c +=”的概率;(Ⅱ)求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率.24.如图,在边长为4的正方形ABCD 中,点E,F 分别是AB,BC 的中点,点M 在AD 上,且14AM AD =,将AED,DCF 分别沿DE,DF 折叠,使A,C 点重合于点P ,如图所示2.()1试判断PB 与平面MEF 的位置关系,并给出证明;()2求二面角M EF D --的余弦值.25.已知函数()|1|f x x =+(1)求不等式()|21|1f x x <+-的解集M(2)设,a b M ∈,证明:(ab)()()f f a f b >--.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据函数的奇偶性,排除D ;根据函数解析式可知定义域为{}1x x ≠±,所以y 轴右侧虚线部分为x=1,利用特殊值x=0.01和x=1.001代入即可排除错误选项.【详解】 由函数解析式()22x x e e f x x x --=+-,易知()22x xe ef x x x ---=+-=() f x - 所以函数()22x x e e f x x x --=+-为奇函数,排除D 选项 根据解析式分母不为0可知,定义域为{}1x x ≠±,所以y 轴右侧虚线部分为x=1,当x=0.01时,代入()f x 可得()0f x <,排除C 选项当x=1.001时,代入()f x 可得()0f x >,排除B 选项所以选A【点睛】本题考查了根据函数解析式判断函数的图象,依据主要是奇偶性、单调性、特殊值等,注意图中坐标的位置及特殊直线,属于中档题.2.A解析:A【解析】点P(3,4,5)与Q(3,-4,-5)两点的x 坐标相同,而y 、z 坐标互为相反数,所以两点关于x 轴对称.考点:空间两点间的距离.3.B解析:B【解析】试题分析:{1,2,6)M N ⋂=.故选B.考点:集合的运算.4.B解析:B【解析】【分析】计算出样本在[)2060,的数据个数,再减去样本在[)20,40的数据个数即可得出结果.【详解】由题意可知,样本在[)2060,的数据个数为300.824⨯=,样本在[)20,40的数据个数为459+=,因此,样本在[)40,50、[)50,60内的数据个数为24915.故选:B.【点睛】本题考查利用频数分布表计算频数,要理解频数、样本容量与频率三者之间的关系,考查计算能力,属于基础题.5.B解析:B【解析】【分析】 本道题设2MF x =,利用双曲线性质,计算x ,结合余弦定理,计算离心率,即可.【详解】结合题意可知,设22,,,MF x NF x MN ===则则结合双曲线的性质可得,21122,2MF MF a MF MN NF a -=+-=代入,解得x =,所以122,NF a NF =+=,01245FNF ∠= 对三角形12F NF 运用余弦定理,得到()()()()()22202222cos45a c a ++-=+⋅,解得c e a== 故选B. 【点睛】本道题考查了双曲线的性质,考查了余弦定理,关键利用余弦定理,解三角形,进而计算x ,即可,难度偏难.6.D解析:D【解析】分析:先求出()cos 30α︒+的值,再把cos α变形为00cos[(30)30]α+-,再利用差角的余弦公式展开化简即得cos α的值.详解:∵60150α︒<<︒,∴90°<30α︒+<180°,∴()cos 30α︒+=-45, ∵c os α=00cos[(30)30]α+-,∴c os α=-453152⨯=, 故选D. 点睛:三角恒等变形要注意“三看(看角看名看式)”和“三变(变角变名变式)”,本题主要利用了看角变角,00(30)30αα=+-,把未知的角向已知的角转化,从而完成解题目标. 7.A解析:A【解析】【分析】【详解】试题分析:如果两个平面有三个公共点,那么这两个平面重合或者是相交,故(1)不正确;两条异面直线不能确定一个平面,故(2)不正确;若M ∈α,M ∈β,α∩β=l ,则M ∈l ,故(3)正确;空间中,相交于同一点的三直线不一定在同一平面内(如棱锥的3条侧棱),故(4)不正确,综上所述只有一个说法是正确的,故选A .8.B解析:B【解析】【分析】先根据向量垂直得到a (a +2b ),=0,化简得到a b =﹣2,再根据投影的定义即可求出.【详解】∵平面向量a ,b 是非零向量,|a |=2,a ⊥(a +2b ),∴a (a +2b ),=0,即()2·20a a b +=即a b =﹣2 ∴向量b 在向量a 方向上的投影为·22a b a -==﹣1, 故选B .【点睛】本题主要考查向量投影的定义及求解的方法,公式与定义两者要灵活运用.解答关键在于要求熟练应用公式.9.A解析:A【解析】【分析】【详解】∵函数f (x )=xlnx 只有一个零点,∴可以排除CD 答案又∵当x ∈(0,1)时,lnx <0,∴f (x )=xlnx <0,其图象在x 轴下方∴可以排除B 答案考点:函数图像.10.B解析:B【解析】【分析】根据导数的几何意义可对比切线斜率得到()()032f f ''<<,将()()32f f -看作过()()22f ,和()()3,3f 的割线的斜率,由图象可得斜率的大小关系,进而得到结果.【详解】由()f x 图象可知,()f x 在2x =处的切线斜率大于在3x =处的切线斜率,且斜率为正,()()032f f ''∴<<,()()()()323232f f f f --=-,()()32f f ∴-可看作过()()22f ,和()()3,3f 的割线的斜率,由图象可知()()()()3322f f f f ''<-<,()()()()03322f f f f ''∴<<-<.故选:B .【点睛】本题考查导数几何意义的应用,关键是能够将问题转化为切线和割线斜率大小关系的比较,进而根据图象得到结果.11.B解析:B【解析】【分析】 由题可分析得到()tan +tan 44ππααββ⎡⎤⎛⎫⎛⎫=+-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由差角公式,将值代入求解即可 【详解】由题, ()()()21tan tan 3454tan +tan 21442211tan tan 544παββππααββπαββ⎛⎫+--- ⎪⎡⎤⎛⎫⎛⎫⎝⎭=+--=== ⎪ ⎪⎢⎥⎛⎫⎝⎭⎝⎭⎣⎦+⨯++- ⎪⎝⎭, 故选:B【点睛】本题考查正切的差角公式的应用,考查已知三角函数值求三角函数值问题12.B解析:B【解析】 得到的偶函数解析式为sin 2sin 284y x x ππϕϕ⎡⎤⎡⎤⎛⎫⎛⎫=++=++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦,显然.4πϕ= 【考点定位】本题考查三角函数的图象和性质,要注意三角函数两种变换的区别,sin 24x πϕ⎡⎤⎛⎫++ ⎪⎢⎥⎝⎭⎣⎦选择合适的ϕ值通过诱导公式把sin 24x πϕ⎡⎤⎛⎫++ ⎪⎢⎥⎝⎭⎣⎦转化为余弦函数是考查的最终目的.二、填空题13.【解析】【分析】由题意知渐近线方程是再据得出与的关系代入渐近线方程即可【详解】∵双曲线的两个顶点三等分焦距∴又∴∴渐近线方程是故答案为【点睛】本题考查双曲线的几何性质即双曲线的渐近线方程为属于基础题解析:y =±【解析】【分析】 由题意知,渐近线方程是b y x a =±,1223a c =⨯,再据222c ab =+,得出 b 与a 的关系,代入渐近线方程即可.【详解】 ∵双曲线22221x y a b-= (0,0)a b >>的两个顶点三等分焦距,∴1223a c =⨯,3c a =,又222c ab =+,∴b =∴渐近线方程是b y x a =±=±,故答案为y =±. 【点睛】 本题考查双曲线的几何性质即双曲线22221x y a b-= (0,0)a b >>的渐近线方程为b y x a =±属于基础题.14.【解析】【分析】利用复数的运算法则模的计算公式即可得出【详解】解:复数z =(1+i )(1+2i )=1﹣2+3i =﹣1+3i ∴|z|故答案为【点睛】对于复数的四则运算要切实掌握其运算技巧和常规思路如其【解析】【分析】利用复数的运算法则、模的计算公式即可得出.【详解】解:复数z =(1+i )(1+2i )=1﹣2+3i =﹣1+3i ,∴|z |==.【点睛】对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()a bi c di ++=()()(,,,)ac bd ad bc i a b c d R -++∈.其次要熟悉复数相关概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b (,)a b 、共轭复数为a bi -.15.【解析】【分析】利用通项公式即可得出【详解】解:(1+3x )n 的展开式中通项公式:Tr+1(3x )r =3rxr∵含有x2的系数是54∴r=2∴54可得6∴6n∈N*解得n =4故答案为4【点睛】本题考解析:4【解析】【分析】利用通项公式即可得出.【详解】解:(1+3x )n 的展开式中通项公式:T r +1r n =(3x )r =3r r n x r . ∵含有x 2的系数是54,∴r =2.∴223n =54,可得2n =6,∴()12n n -=6,n ∈N *.解得n =4.故答案为4. 【点睛】本题考查了二项式定理的通项公式,考查了推理能力与计算能力,属于基础题. 16.【解析】【分析】作出可行域表示与(00)连线的斜率结合图形求出斜率的最小值最大值即可求解【详解】如图不等式组表示的平面区域(包括边界)所以表示与(00)连线的斜率因为所以故【点睛】本题主要考查了简单解析:1,22⎡⎤⎢⎥⎣⎦【解析】【分析】 作出可行域,y x表示(),x y 与(0,0)连线的斜率,结合图形求出斜率的最小值,最大值即可求解.【详解】如图,不等式组201030y x y x y -⎧⎪--⎨⎪+-⎩表示的平面区域ABC (包括边界),所以y x 表示(),x y 与(0,0)连线的斜率,因为()()1,22,1A B ,,所以122OA OB k k ==,,故1,22y x ⎡⎤∈⎢⎥⎣⎦.【点睛】本题主要考查了简单的线性规划问题,涉及斜率的几何意义,数形结合的思想,属于中档题.17.【解析】【分析】由圆的几何性质得圆心在的垂直平分线上结合题意知求出的垂直平分线方程令可得圆心坐标从而可得圆的半径进而可得圆的方程【详解】由圆的几何性质得圆心在的垂直平分线上结合题意知的垂直平分线为令 解析:22(2)10x y -+=.【解析】【分析】由圆的几何性质得,圆心在AB 的垂直平分线上,结合题意知,求出AB 的垂直平分线方程,令0y =,可得圆心坐标,从而可得圆的半径,进而可得圆的方程.【详解】由圆的几何性质得,圆心在AB 的垂直平分线上,结合题意知,AB 的垂直平分线为24y x =-,令0y =,得2x =,故圆心坐标为(2,0),所以圆的半径22(52)(10)10-+-=,故圆的方程为22(2)10x y -+=.【点睛】本题主要考查圆的性质和圆的方程的求解,意在考查对基础知识的掌握与应用,属于基础题. 18.4【解析】试题分析:由x-3y+6=0得x=3y-6代入圆的方程整理得y2-33y+6=0解得y1=23y2=3所以x1=0x2=-3所以|AB|=(x1-x2)2+(y1-y2)2=23又直线l 的 解析:4【解析】试题分析:由,得,代入圆的方程,整理得,解得,所以,所以.又直线的倾斜角为,由平面几何知识知在梯形中,. 【考点】直线与圆的位置关系【技巧点拨】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系的非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.19.【解析】【分析】首先根据题中所给的类比着写出两式相减整理得到从而确定出数列为等比数列再令结合的关系求得之后应用等比数列的求和公式求得的值【详解】根据可得两式相减得即当时解得所以数列是以-1为首项以2 解析:63-【解析】【分析】首先根据题中所给的21n n S a =+,类比着写出1121n n S a ++=+,两式相减,整理得到12n n a a +=,从而确定出数列{}n a 为等比数列,再令1n =,结合11,a S 的关系,求得11a =-,之后应用等比数列的求和公式求得6S 的值.【详解】根据21n n S a =+,可得1121n n S a ++=+,两式相减得1122n n n a a a ++=-,即12n n a a +=,当1n =时,11121S a a ==+,解得11a =-,所以数列{}n a 是以-1为首项,以2为公比的等比数列, 所以66(12)6312S --==--,故答案是63-. 点睛:该题考查的是有关数列的求和问题,在求解的过程中,需要先利用题中的条件,类比着往后写一个式子,之后两式相减,得到相邻两项之间的关系,从而确定出该数列是等比数列,之后令1n =,求得数列的首项,最后应用等比数列的求和公式求解即可,只要明确对既有项又有和的式子的变形方向即可得结果.20.2025【解析】设这三个数:()则成等比数列则或(舍)则原三个数:152025解析:20 25【解析】设这三个数:、、(),则、、成等比数列,则或(舍),则原三个数:15、20、25三、解答题21.(1) ∠A =π3 (2) AC 33 【解析】分析:(1)先根据平方关系求sin B ,再根据正弦定理求sin A ,即得A ∠;(2)根据三角形面积公式两种表示形式列方程11sin 22ab C hb =,再利用诱导公式以及两角和正弦公式求sin C ,解得AC 边上的高.详解:解:(1)在△ABC 中,∵cos B =–17,∴B ∈(π2,π),∴sin B 2431cos B -=sin sin a b A B = ⇒ 7sin A 43sin A 3B ∈(π2,π),∴A ∈(0,π2),∴∠A =π3.(2)在△ABC中,∵sin C=sin(A+B)=sin A cos B+sin B cos A=3114372⎛⎫⨯-+⨯⎪⎝⎭=33.如图所示,在△ABC中,∵sin C=hBC,∴h=sinBC C⋅=33337⨯=,∴AC边上的高为33.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.22.(1)12x x⎧⎫>⎨⎬⎩⎭;(2)(]0,2【解析】分析:(1)将1a=代入函数解析式,求得()11f x x x=+--,利用零点分段将解析式化为()2,1,2,11,2, 1.xf x x xx-≤-⎧⎪=-<<⎨⎪≥⎩,然后利用分段函数,分情况讨论求得不等式()1f x>的解集为12x x⎧⎫⎨⎬⎩⎭;(2)根据题中所给的()0,1x∈,其中一个绝对值符号可以去掉,不等式()f x x>可以化为()0,1x∈时11ax-<,分情况讨论即可求得结果.详解:(1)当1a=时,()11f x x x=+--,即()2,1,2,11,2, 1.xf x x xx-≤-⎧⎪=-<<⎨⎪≥⎩故不等式()1f x>的解集为12x x⎧⎫⎨⎬⎩⎭.(2)当()0,1x∈时11x ax x+-->成立等价于当()0,1x∈时11ax-<成立.若0a≤,则当()0,1x∈时11ax-≥;若0a>,11ax-<的解集为20xa<<,所以21a≥,故02a<≤.综上,a的取值范围为(]0,2.点睛:该题考查的是有关绝对值不等式的解法,以及含参的绝对值的式子在某个区间上恒成立求参数的取值范围的问题,在解题的过程中,需要会用零点分段法将其化为分段函数,从而将不等式转化为多个不等式组来解决,关于第二问求参数的取值范围时,可以应用题中所给的自变量的范围,去掉一个绝对值符号,之后进行分类讨论,求得结果. 23.(1)19;(2)89. 【解析】试题分析:(1)所有的可能结果(,,)a b c 共有33327⨯⨯=种,而满足a b c +=的(,,)a b c 共计3个,由此求得“抽取的卡片上的数字满足a b c +=”的概率;(2)所有的可能结果(,,)a b c 共有33327⨯⨯=种,用列举法求得满足“抽取的卡片上的数字a 、b 、c 完全相同”的(,,)a b c 共计三个,由此求得“抽取的卡片上的数字a 、b 、c 完全相同”的概率,再用1减去此概率,即得所求.试题解析:(1) 所有的可能结果(,,)a b c 共有33327⨯⨯=种,而满足a b c +=的(,,)a b c 有(1,1,2)、(1,2,3)、(2,1,3)共计3个故“抽取的卡片上的数字满足a b c +=”的概率为31279= (2) 所有的可能结果(,,)a b c 共有33327⨯⨯=种满足“抽取的卡片上的数字a 、b 、c 完全相同”的(,,)a b c 有(1,1,1)、(2,2,2)、(3,3,3)共计三个故“抽取的卡片上的数字a 、b 、c 完全相同”的概率为31279= 所以“抽取的卡片上的数字a 、b 、c 不完全相同”的概率为18199-= 考点:独立事件的概率. 【方法点睛】求复杂事件的概率通常有两种方法:一是将所求事件转化成彼此互斥的事件的和;二是先求其对立事件的概率,然后再应用公式求解.如果采用方法一,一定要将事件拆分成若干个互斥事件,不能重复和遗漏;如果采用方法二,一定要找准其对立事件,否则容易出现错误.24.(1)见解析;(2 【解析】【分析】(1)根据线面平行的判定定理直接证明即可;(2)连接BD 交EF 与点N ,先由题中条件得到MND ∠为二面角M EF D ﹣﹣的平面角,再解三角形即可得出结果.【详解】(1)PB 平面MEF .证明如下:在图1中,连接BD ,交EF 于N ,交AC 于O , 则1124BN BO BD ==,在图2中,连接BD 交EF 于N ,连接MN ,在DPB 中,有14BN BD =,14PM PD =, MN PB ∴. PB ⊄平面MEF ,MN ⊂平面MEF ,故PB 平面MEF ;(2)连接BD 交EF 与点N ,图2中的三角形PDE 与三角形PDF 分别是图1中的Rt ADE 与Rt CDF ,PD PE PD PF ∴⊥⊥,,又PE PE P ⋂=,PD ∴⊥平面PEF ,则PD EF ⊥,又EF BD ⊥,EF ∴⊥平面PBD ,则MND ∠为二面角M EF D ﹣﹣的平面角.可知PM PN ⊥,则在Rt MND 中,12PM PN =,=,则22PM PN 3MN =+=.在MND 中,332MD DN ==,,由余弦定理,得22262MN DN MD cos MND MN DN +-∠==⋅. ∴二面角M EF D ﹣﹣的余弦值为6.【点睛】本题主要考查线面平行的判定,以及二面角的求法,熟记线面平行的判定定理以及二面角的概念即可,属于常考题型.25.(1){1M x x =<-或 }1x >;(2)证明见解析. 【解析】【分析】(1)先根据绝对值定义将不等式化为三个不等式组,分别求交集,最后求并集(2)利用分析法证明,先根据绝对值三角不等式将不等式转化为证明1ab a b +>+,再两边平方,因式分解转化为证明()()22110a b -->,最后根据条件221,1a b >>确定()()22110a b -->成立.【详解】(1)∵()211f x x <+-,∴12110x x +-++<.当1x <-时,不等式可化为()12110x x --+++<,解得1x <-,∴1x <-; 当112x -≤≤-,不等式可化为()12110x x ++++<,解得1x <-, 无解; 当12x >-时,不等式可化为()12110x x +-++<,解得1x >,∴1x >. 综上所述,{1M x x =<-或}1x >.(2)∵()()()1111f a f b a b a b a b --=+--++--+=+≤,要证()()()f ab f a f b >--成立, 只需证1ab a b +>+, 即证221ab a b +>+,即证222210a b a b --+>,即证()()22110a b -->.由(1)知,{1M x x =<-或}1x >,∵a b M ∈、,∴221,1a b >>,∴()()22110a b -->成立.综上所述,对于任意的a b M ∈、都有()()()f ab f a f b >--成立.点睛:(1)分析法是证明不等式的重要方法,当所证不等式不能使用比较法且与重要不等式、基本不等式没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.(2)利用综合法证明不等式,关键是利用好已知条件和已经证明过的重要不等式.。

2019年普通高等学校招生全国统一考试(数学)文及答案

2019年普通高等学校招生全国统一考试(数学)文及答案

2019年普通高等学校招生全国统一考试(数学)文及答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.一、选择题:本大题共12个小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)直线01)1(=+++y x a 与圆0222=-+x y x 相切,则a 的值为 (A )1,1- (B )2.2- (C )1 (D )1-(2)复数3)2321(i +的值是 (A )i - (B )i (C )1- (D )1 (3)不等式0|)|1)(1(>-+x x 的解集是(A )}10|{<≤x x (B )0|{<x x 且}1-≠x (C )}11|{<<-x x (D )1|{<x x 且}1-≠x (4)函数xa y =在]1,0[上的最大值与最小值这和为3,则a = (A )21 (B )2 (C )4 (D )41 (5)在)2,0(π内,使x x cos sin >成立的x 的取值范围是(A ))45,()2,4(ππππ (B )),4(ππ (C ))45,4(ππ (D ))23,45(),4(ππππ (6)设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则(A )N M = (B )N M ⊂ (C )N M ⊃ (D )∅=N M(7)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k(A )1- (B )1 (C )5 (D )5-(8)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是 (A )43 (B )54 (C )53 (D )53- (9)10<<<<a y x ,则有(A )0)(log <xy a (B )1)(log 0<<xy a (C )2)(log 1<<xy a (D )2)(log >xy a (10)函数c bx x y ++=2(),0[+∞∈)是单调函数的充要条件是 (A )0≥b (B )0≤b (C )0>b (D )0<b (11)设)4,0(πθ∈,则二次曲线122=-θθtg y ctg x 的离心率取值范围(A ))21,0( (B ))22,21( (C ))2,22( (D )),2(+∞ (12)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有 (A )8种 (B )12种 (C )16种 (D )20种第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线.(13)据新华社2002年3月12日电,1985年到2000年间。

2019年全国统一高考数学试卷(理科)真题解析(解析版)

2019年全国统一高考数学试卷(理科)真题解析(解析版)

绝密★启用前2019年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,务必将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={x |x 2-5x +6>0},B ={ x |x -1<0},则A ∩B =A. (-∞,1)B. (-2,1)C. (-3,-1)D. (3,+∞)【答案】A 【解析】 【分析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.【详解】由题意得,{}{}2,3,1A x x x B x x ==<或,则{}1A B x x ⋂=<.故选A .【点睛】本题考点为集合的运算,为基础题目,难度偏易.不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.2.设z =-3+2i ,则在复平面内z 对应的点位于 A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限【答案】C 【解析】 【分析】本题考查复数的共轭复数和复数在复平面内的对应点位置,渗透了直观想象和数学运算素养.采取定义法,利用数形结合思想解题.【详解】由32,z i =-+得32,z i =--则32,z i =--对应点(-3,-2)位于第三象限.故选C .【点睛】本题考点为共轭复数,为基础题目,难度偏易.忽视共轭复数的定义致错,复数与共轭复数间的关系为实部同而虚部异,它的实部和虚部分别对应复平面上点的横纵坐标.3.已知AB =(2,3),AC =(3,t ),BC =1,则AB BC ⋅= A. -3 B. -2 C. 2 D. 3【答案】C 【解析】 【分析】本题考查平面向量数量积的坐标运算,渗透了直观想象和数学运算素养.采取公式法,利用转化与化归思想解题.【详解】由(1,3)BC AC AB t =-=-,211BC ==,得3t =,则(1,0)BC =,(2,3)(1,0)21302AB BC ==⨯+⨯=.故选C .【点睛】本题考点为平面向量的数量积,侧重基础知识和基本技能,难度不大.学生易在处理向量的法则运算和坐标运算处出错,借助向量的模的公式得到向量的坐标,然后计算向量数量积.4.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R +=++.设r Rα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为A.B.C.D.【答案】D 【解析】 【分析】本题在正确理解题意的基础上,将有关式子代入给定公式,建立α的方程,解方程、近似计算.题目所处位置应是“解答题”,但由于题干较长,易使考生“望而生畏”,注重了阅读理解、数学式子的变形及运算求解能力的考查. 【详解】由rRα=,得r R α= 因为121223()()M M M R r R r r R +=++,所以12122222(1)(1)M M M R R R ααα+=++,即543232221133[(1)]3(1)(1)M M αααααααα++=+-=≈++,解得3α=所以3.r R α==【点睛】由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是复杂式子的变形出错.5.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A. 中位数B. 平均数C. 方差D. 极差【答案】A 【解析】 【分析】可不用动笔,直接得到答案,亦可采用特殊数据,特值法筛选答案. 【详解】设9位评委评分按从小到大排列为123489x x x x x x <<<<<.则①原始中位数为5x ,去掉最低分1x ,最高分9x ,后剩余2348x x x x <<<,中位数仍为5x ,∴A 正确. ②原始平均数1234891()9x x x x x x x =<<<<<,后来平均数234817x x x x x '=<<<()平均数受极端值影响较大,∴x 与x '不一定相同,B 不正确③()()()22221119q S x x x x x x ⎡⎤=-+-++-⎢⎥⎣⎦ ()()()222223817s x x x x x x ⎡⎤'=-'+-'++-'⎢⎥⎣⎦由②易知,C 不正确.④原极差91=x -x ,后来极差82=x -x 显然极差变小,D 不正确. 【点睛】本题旨在考查学生对中位数、平均数、方差、极差本质的理解.6.若a >b ,则 A. ln(a −b )>0B. 3a <3bC. a 3−b 3>0D. │a │>│b │【答案】C 【解析】 【分析】本题也可用直接法,因为a b >,所以0a b ->,当1a b -=时,ln()0a b -=,知A 错,因为3xy =是增函数,所以33a b >,故B 错;因为幂函数3y x =是增函数,a b >,所以33a b >,知C 正确;取1,2a b ==-,满足a b >,12a b =<=,知D 错.【详解】取2,1a b ==,满足a b >,ln()0a b -=,知A 错,排除A ;因为9333a b =>=,知B 错,排除B ;取1,2a b ==-,满足a b >,12a b =<=,知D 错,排除D ,因为幂函数3y x =是增函数,a b >,所以33a b >,故选C .【点睛】本题主要考查对数函数性质、指数函数性质、幂函数性质及绝对值意义,渗透了逻辑推理和运算能力素养,利用特殊值排除即可判断.7.设α,β为两个平面,则α∥β的充要条件是 A. α内有无数条直线与β平行 B. α内有两条相交直线与β平行 C. α,β平行于同一条直线 D. α,β垂直于同一平面 【答案】B 【解析】 【分析】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.【详解】由面面平行的判定定理知:α内两条相交直线都与β平行是//αβ的充分条件,由面面平行性质定理知,若//αβ,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是//αβ的必要条件,故选B .【点睛】面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,,//a b a b αβ⊂⊂,则//αβ”此类的错误.8.若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =A. 2B. 3C. 4D. 8【答案】D 【解析】 【分析】利用抛物线与椭圆有共同的焦点即可列出关于p 的方程,即可解出p ,或者利用检验排除的方法,如2p =时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除A ,同样可排除B ,C ,故选D .【详解】因为抛物线22(0)y px p =>的焦点(,0)2p 是椭圆2231x y p p +=的一个焦点,所以23()2pp p -=,解得8p =,故选D .【点睛】本题主要考查抛物线与椭圆的几何性质,渗透逻辑推理、运算能力素养.9.下列函数中,以2π为周期且在区间(4π,2π)单调递增的是 A. f (x )=│cos 2x │ B. f (x )=│sin 2x │ C. f (x )=cos│x │ D. f (x )= sin│x │【答案】A 【解析】 【分析】本题主要考查三角函数图象与性质,渗透直观想象、逻辑推理等数学素养.画出各函数图象,即可做出选择.【详解】因为sin ||y x =图象如下图,知其不是周期函数,排除D ;因为cos cos y x x ==,周期为2π,排除C ,作出cos2y x =图象,由图象知,其周期为2π,在区间单调递增,A 正确;作出sin 2y x =的图象,由图象知,其周期为2π,在区间单调递减,排除B ,故选A .【点睛】利用二级结论:①函数()y f x =的周期是函数()y f x =周期的一半;②sin y x ω=不是周期函数;10.已知a ∈(0,π2),2sin2α=cos2α+1,则sinα=A.15B.5C. D.【答案】B 【解析】 【分析】利用二倍角公式得到正余弦关系,利用角范围及正余弦平方和为1关系得出答案. 【详解】2sin 2cos21α=α+,24sin cos 2cos .0,,cos 02π⎛⎫∴α⋅α=αα∈∴α> ⎪⎝⎭.sin 0,2sin cos α>∴α=α,又22sin cos 1αα+=,2215sin 1,sin 5∴α=α=,又sin 0α>,sin α∴=B .【点睛】本题为三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负,很关键,切记不能凭感觉.11.设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为 A.B. C. 2 D.【答案】A 【解析】 【分析】准确画图,由图形对称性得出P 点坐标,代入圆的方程得到c 与a 关系,可求双曲线的离心率. 【详解】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴,又||PQ OF c ==,||,2cPA PA ∴=∴为以OF 为直径的圆的半径,A ∴为圆心||2cOA =.,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a =∴==.e ∴=A .【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.12.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A. 9,4⎛⎤-∞ ⎥⎝⎦B. 7,3⎛⎤-∞ ⎥⎝⎦ C. 5,2⎛⎤-∞ ⎥⎝⎦ D. 8,3⎛⎤-∞ ⎥⎝⎦【答案】B 【解析】 【分析】本题为选择压轴题,考查函数平移伸缩,恒成立问题,需准确求出函数每一段解析式,分析出临界点位置,精准运算得到解决. 【详解】(0,1]x ∈时,()=(1)f x x x -,(+1)= ()f x 2f x ,()2(1)f x f x ∴=-,即()f x 右移1个单位,图像变为原来的2倍.如图所示:当23x <≤时,()=4(2)=4(2)(3)f x f x x x ---,令84(2)(3)9x x --=-,整理得:2945560x x -+=,1278(37)(38)0,,33x x x x ∴--=∴==(舍),(,]x m ∴∈-∞时,8()9f x ≥-成立,即73m ≤,7,3m ⎛⎤∴∈-∞ ⎥⎝⎦,故选B .【点睛】易错警示:图像解析式求解过程容易求反,画错示意图,画成向左侧扩大到2倍,导致题目出错,需加深对抽象函数表达式的理解,平时应加强这方面练习,提高抽象概括、数学建模能力.二、填空题:本题共4小题,每小题5分,共20分.13.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________. 【答案】0.98. 【解析】 【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【详解】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=,其中高铁个数为10+20+10=40,所以该站所有高铁平均正点率约为39.20.9840=. 【点睛】本题考点为概率统计,渗透了数据处理和数学运算素养.侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.14.已知()f x 是奇函数,且当0x <时,()e axf x =-.若(ln 2)8f =,则a =__________.【答案】-3【解析】 【分析】本题主要考查函数奇偶性,对数的计算.渗透了数学运算、直观想象素养.使用转化思想得出答案. 【详解】因为()f x 是奇函数,且当0x <时,()ax f x e -=-.又因为ln 2(0,1)∈,(ln 2)8f =,所以ln 28a e --=-,两边取以e 为底的对数得ln 23ln 2a -=,所以3a -=,即3π. 【点睛】本题主要考查函数奇偶性,对数的计算.15.V ABC 的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则V ABC 的面积为__________.【答案】【解析】 【分析】本题首先应用余弦定理,建立关于c 的方程,应用,a c 的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查. 【详解】由余弦定理得2222cos b a c ac B =+-,所以2221(2)2262c c c c +-⨯⨯⨯=, 即212c =解得c c ==-所以2a c ==11sin 222ABC S ac B ∆==⨯= 【点睛】本题涉及正数开平方运算,易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.【答案】 (1). 共26个面. (2). 1. 【解析】 【分析】第一问可按题目数出来,第二问需在正方体中简单还原出物体位置,利用对称性,平面几何解决. 【详解】由图可知第一层与第三层各有9个面,计18个面,第二层共有8个面,所以该半正多面体共有18826+=个面.如图,设该半正多面体的棱长为x ,则A B B E x ==,延长BC 与FE 交于点G ,延长BC 交正方体棱于H ,由半正多面体对称性可知,BGE ∆为等腰直角三角形,,21)122BG GE CH x GH x x x ∴===∴=⨯+==,1x ∴==.【点睛】本题立意新颖,空间想象能力要求高,物体位置还原是关键,遇到新题别慌乱,题目其实很简单,稳中求胜是关键.立体几何平面化,无论多难都不怕,强大空间想象能力,快速还原图形.三、解答题:共70分。

2019高数期末考试题及答案

2019高数期末考试题及答案

2019高数期末考试题及答案一、选择题(每题2分,共20分)1. 函数 \( f(x) = x^2 - 4x + 4 \) 的最小值出现在 \( x = \)A. 0B. 1C. 2D. 4答案:C2. 曲线 \( y = x^3 - 3x^2 + 2 \) 在 \( x = 1 \) 处的切线斜率为A. -2B. 0C. 2D. 4答案:A3. 已知 \( \int_{0}^{1} x^2 dx = \frac{1}{3} \),那么\( \int_{0}^{1} x dx = \)A. \( \frac{1}{2} \)B. \( \frac{1}{3} \)C. \( \frac{1}{4} \)D. \( \frac{1}{6} \)答案:D4. 函数 \( y = \sin(x) \) 的周期为A. \( 2\pi \)B. \( \pi \)C. \( \frac{\pi}{2} \)D. \( 4\pi \)答案:B5. 微分方程 \( y'' - y' - 6y = 0 \) 的通解为A. \( y = e^x \)B. \( y = e^{3x} \)C. \( y = e^{-x} + e^{2x} \)D. \( y = e^{-3x} + e^{2x} \)答案:D6. 函数 \( f(x) = \ln(x) \) 的定义域为A. \( (-\infty, 0) \)B. \( (0, +\infty) \)C. \( (-\infty, 1) \)D. \( (1, +\infty) \)答案:B7. 级数 \( \sum_{n=1}^{\infty} \frac{1}{n^2} \) 收敛于A. \( \frac{1}{2} \)B. \( \frac{\pi^2}{6} \)C. \( \frac{e^2}{2} \)D. \( \frac{\pi}{2} \)答案:B8. 函数 \( f(x) = x^3 - 6x^2 + 11x - 6 \) 的零点个数为A. 1B. 2C. 3D. 4答案:C9. 函数 \( f(x) = x^2 + 2x + 1 \) 的图像与 \( x \) 轴的交点个数为A. 0B. 1C. 2D. 3答案:A10. 函数 \( f(x) = \sin(x) + \cos(x) \) 的最大值为A. \( \sqrt{2} \)B. \( 2 \)C. \( \sqrt{3} \)D. \( 4 \)答案:A二、填空题(每题2分,共20分)1. 极限 \( \lim_{x \to 0} \frac{\sin(x)}{x} = \) _______答案:12. 若 \( \int_{a}^{b} f(x) dx = 5 \),则 \( \int_{a}^{b} 2f(x) dx = \) _______答案:103. 函数 \( y = \ln(x) \) 的导数为 \( \frac{dy}{dx} = \)_______答案:\( \frac{1}{x} \)4. 函数 \( y = x^3 \) 在 \( x = 1 \) 处的切线方程为 \( y - 1= \) _______答案:\( 3(x - 1) \)5. 函数 \( f(x) = x^2 - 4x \) 的极小值点为 \( x = \) _______答案:2。

2019年数学高考试题(及答案)

2019年数学高考试题(及答案)
2019 年数学高考试题(及答案)
一、选择题
1.某学校开展研究性学习活动,某同学获得一组实验数据如下表:
x 1.99 3
4
5.1 6.12
y 1.5 4.04 7.5 12 18.01
对于表中数据,现给出以下拟合曲线,其中拟合程度最好的是 (
A. y 2x 2
B. y ( 1 )x 2
C. y log2 x
y
1 ax
过定点 (0,1)
且单调递
增,函数
y
loga
x
1 2
过定点
(
1 2
,
0)
且单调递减,D
选项符合;当
a
1时,函数
y
ax
过定点 (0,1)
且单调递增,则函数
y
1 ax
过定点 (0,1)
且单调递减,函数
y
loga
x
1 2
过定点
(
1 2
,
0)且单调递增,各选项均不符合.综上,选
D.
【点睛】
2
a
log 1
2
a

4.一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所示,则
该几何体的俯视图为( )
A.
B.
C.
D.
5.
1
i 2
i3
i


A. 3 i
B. 3 i
C. 3 i
D. 3 i
6.设 0 p 1 ,随机变量 的分布列如图,则当 p 在 0,1 内增大时,( )
0
1
2
1 p
4.C
解析:C 【解析】 【分析】 从正视图和侧视图上分析,去掉的长方体的位置应该在的方位,然后判断俯视图的正确图 形. 【详解】 由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体 的右侧, 由以上各视图的描述可知去掉的长方体在原长方体的右上方,其俯视图符合 C 选 项. 故选 C. 点评:本题考查几何体的三视图之间的关系,要注意记忆和理解“长对正、高平齐、宽相 等”的含义. 考点:三视图.

2019年普通高等学校招生全国统一考试数学试题及答案(理)

2019年普通高等学校招生全国统一考试数学试题及答案(理)

2019年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至8页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2. 每小题选出答案后,用铅笔把答题卡上对应答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3. 考试结束,监考人将本试卷和答题卡一并收回.参考公式:一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的(1) 若siniθcosθ>0,则θ在( )(A) 第一、二象限(B) 第一、三象限(C) 第一、四象限(D) 第二、四象限(2) 过点A (1,-1)、B (-1,1)且圆心在直线x+y-2 = 0上的圆的方程是( )(A) (x-3) 2+(y+1) 2 = 4 (B) (x+3) 2+(y-1) 2 = 4(C) (x-1) 2+(y-1) 2 = 4 (D) (x+1) 2+(y+1) 2 = 4(3) 设{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( )(A) 1(B) 2(C) 4(D) 6(4) 若定义在区间(-1,0)的函数f (x ) = log 2a (x +1)满足f (x )>0,则a 的取值范围是( )(A)(210,)(B)⎥⎦⎤ ⎝⎛210,(C) (21,+∞) (D) (0,+∞)(5) 极坐标方程)4sin(2πθρ+=的图形是( )(6) 函数y = cos x +1(-π≤x ≤0)的反函数是 ( )(A) y =-arc cos (x -1)(0≤x ≤2) (B) y = π-arc cos (x -1)(0≤x ≤2) (C) y = arc cos (x -1)(0≤x ≤2)(D) y = π+arc cos (x -1)(0≤x ≤2)(7) 若椭圆经过原点,且焦点为F 1 (1,0) F 2 (3,0),则其离心率为 ( )(A)43 (B)32 (C)21 (D)41 (8) 若0<α<β<4π,sin α+cos α = α,sin β+cos β= b ,则 ( )(A) a <b(B) a >b(C) ab <1(D) ab >2(9) 在正三棱柱ABC -A 1B 1C 1中,若12BB AB =,则AB 1 与C 1B 所成的角的大小为( )(A) 60°(B) 90°(C) 105°(D) 75°(10) 设f (x )、g (x )都是单调函数,有如下四个命题:① 若f (x )单调递增,g (x )单调递增,则f (x )-g (x )单调递增; ② 若f (x )单调递增,g (x )单调递减,则f (x )-g (x )单调递增; ③ 若f (x )单调递减,g (x )单调递增,则f (x )-g (x )单调递减; ④ 若f (x )单调递减,g (x )单调递减,则f (x )-g (x )单调递减. 其中,正确的命题是( )(A) ①③ (B) ①④ (C) ②③ (D) ②④(11) 一间民房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜.记三种盖法屋顶面积分别为P 1、P 2、P 3.若屋顶斜面与水平面所成的角都是α,则 ( ) (A) P 3>P 2>P 1(B) P 3>P 2 = P 1(C) P 3 = P 2>P 1(D) P 3 = P 2 = P 1(12) 如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A 向结点B 传递信息,信息可以分开沿不同的路线同时传递.则单位时间内传递的最大信息量为( )(A) 26 (B) 24(C) 20(D) 19第Ⅱ卷(非选择题共90分)注意事项:1.第Ⅱ卷共6页,用钢笔或圆珠笔直接答在试题卷中.2.答卷前将密封线内的项目填写清楚.二.填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的侧面积是 (14)双曲线116922=-y x 的两个焦点为F 1、F 2,点P 在双曲线上.若PF 1⊥PF 2,则点P 到x 轴的距离为(15)设{a n }是公比为q 的等比数列,S n 是它的前n 项和.若{S n }是等差数列,则 q =(16)圆周上有2n 个等分点(n >1),以其中三个点为顶点的直角三角形的个数为三.解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.(17) (本小题满分12分)如图,在底面是直角梯形的四棱锥S —ABCD 中,∠ABC = 90°,SA ⊥面ABCD ,SA = AB = BC = 1,21=AD . (Ⅰ)求四棱锥S —ABCD 的体积;(Ⅱ)求面SCD 与面SBA 所成的二面角的正切值. (18) (本小题满分12分) 已知复数z 1 = i (1-i ) 3. (Ⅰ)求arg z 1及1z ;(Ⅱ)当复数z 满足1z =1,求1z z -的最大值. (19) (本小题满分12分)设抛物线y 2 =2px (p >0)的焦点为F ,经过点F 的直线交抛物线于A 、B 两点,点C 在抛物线的准线上,且BC ∥x 轴.证明直线AC 经过原点O .(20) (本小题满分12分)已知i ,m ,n 是正整数,且1<i ≤m <n .(Ⅰ)证明in i i m i P m P n <;(Ⅱ)证明(1+m ) n > (1+n ) m . (21) (本小题满分12分)从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业.根据规划,本年度投入800万元,以后每年投入将比上年减少51.本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加41. (Ⅰ)设n 年内(本年度为第一年)总投入为a n 万元,旅游业总收入为b n 万元.写出a n ,b n 的表达式;(Ⅱ)至少经过几年旅游业的总收入才能超过总投入? (22) (本小题满分14分)设f (x ) 是定义在R 上的偶函数,其图像关于直线x = 1对称.对任意x 1,x 2∈[0,21]都有f (x 1+x 2) = f (x 1) · f (x 2).且f (1) = a >0. (Ⅰ)求f (21) 及f (41); (Ⅱ)证明f (x ) 是周期函数; (Ⅲ)记a n = f (2n +n21),求()n n a ln lim ∞→.2001年普通高等学校招生全国统一考试数学试题(理工农医类)参考解答及评分标准说明:一. 本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生物解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二. 对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定部分的给分,但不得超过该部分正确解答得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三. 解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四. 只给整数分数.选择题和填空题不给中间分.一.选择题:本题考查基本知识和基本运算.每小题5分,满分60分.(1)B (2)C (3)B (4)A (5)C (6)A (7)C (8)A (9)B (10)C (11)D (12)D二.填空题:本题考查基本知识和基本运算.每小题4分,满分16分.(13)2π (14)516(15)1 (16)2n (n -1)三.解答题:(17)本小题考查线面关系和棱锥体积计算,以及空间想象能力和逻辑推理能力.满分12分.解:(Ⅰ)直角梯形ABCD 的面积是 M 底面()43125.0121=⨯+=⋅+=AB AD BC , ……2分 ∴ 四棱锥S —ABCD 的体积是⨯⨯=SA V 31M 底面43131⨯⨯=41=.……4分 (Ⅱ)延长BA 、CD 相交于点E ,连结SE 则SE 是所求二面角的棱. ……6分∵ AD ∥BC ,BC = 2AD ,∴ EA = AB = SA ,∴ SE ⊥SB ,∵ SA ⊥面ABCD ,得SEB ⊥面EBC ,EB 是交线, 又BC ⊥EB ,∴ BC ⊥面SEB , 故SB 是CS 在面SEB 上的射影, ∴ CS ⊥SE ,所以∠BSC 是所求二面角的平面角. ……10分 ∵ 22AB SA SB +=2=,BC =1,BC ⊥SB ,∴ tan ∠BSC =22=SB BC . 即所求二面角的正切值为22. ……12分 (18)本小题考查复数基本性质和基本运算,以及分析问题和解决问题的能力.满分12分.解:(Ⅰ)z 1 = i (1-i ) 3 = 2-2i , 将z 1化为三角形式,得⎪⎭⎫⎝⎛+=47sin47cos 221ππi z ,∴ 47arg 1π=z ,221=z . ……6分 (Ⅱ)设z = cos α+i sin α,则z -z 1 = ( cos α-2)+(sin α+2) i , ()()22212sin 2cos ++-=-ααz zsin 249+=(4πα-), ……9分当sin(4πα-) = 1时,21z z -取得最大值249+.从而得到1z z -的最大值为122+. ……12分 (19)本小题考查抛物线的概念和性质,直线的方程和性质,运算能力和逻辑推理能力.满分12分.证明一:因为抛物线y 2 =2px (p >0)的焦点为F (2p,0),所以经过点F 的直线的方程可设为2pmy x +=; ……4分 代入抛物线方程得y 2 -2pmy -p 2 = 0,若记A (x 1,y 1),B (x 2,y 2),则y 1,y 2是该方程的两个根,所以y 1y 2 = -p 2. ……8分因为BC ∥x 轴,且点c 在准线x = -2p 上,所以点c 的坐标为(-2p,y 2),故直线CO 的斜率为111222x y y p p y k ==-=. 即k 也是直线OA 的斜率,所以直线AC 经过原点O . ……12分证明二:如图,记x 轴与抛物线准线l 的交点为E ,过A 作AD ⊥l ,D 是垂足.则 AD ∥FE ∥BC . ……2分连结AC ,与EF 相交于点N ,则ABBF AC CN AD EN ==,,ABAF BCNF = ……6分 根据抛物线的几何性质,AD AF =,BC BF =, ……8分∴ NF ABBC AF ABBF AD EN =⋅=⋅=,即点N 是EF 的中点,与抛物线的顶点O 重合,所以直线AC 经过原点O . ……12分 (20)本小题考查排列、组合、二项式定理、不等式的基本知识和逻辑推理能力.满分12分.(Ⅰ)证明: 对于1<i ≤m 有im p = m ·…·(m -i +1),⋅-⋅=m m m m m p i i m 1…mi m 1+-⋅, 同理 ⋅-⋅=n n n n n p i in 1…ni n 1+-⋅, ……4分由于 m <n ,对整数k = 1,2…,i -1,有mkm n k n ->-, 所以 i im i i n mp n p >,即im i i n i p n p m >. ……6分(Ⅱ)证明由二项式定理有()in ni i nC m m ∑==+01, ()i mmi i mCn n ∑==+01, ……8分由 (Ⅰ)知i n i p m >im i p n (1<i ≤m <n =,而 !i p C i m im=,!i p C i n in =, ……10分所以, im i i n i C n C m >(1<i ≤m <n =.因此,∑∑==>mi im i mi i niC n Cm 22. 又 10000==m n C n C m ,mn nC mC m n ==11,()n i m C m in i ≤<>0.∴∑∑==>mi im i ni i niC n Cm 0. 即 (1+m )n >(1+n )m . ……12分 (21)本小题主要考查建立函数关系式、数列求和、不等式等基础知识;考查综合运用数学知识解决实际问题的能力.满分12分.解:(Ⅰ)第1年投入为800万元,第2年投入为800×(1-51)万元,……,第n 年投入为800×(1-51)n -1万元. 所以,n 年内的总投入为a n = 800+800×(1-51)+…+800×(1-51)n -1∑=--⨯=nk k 11)511(800= 4000×[1-(54)n]; ……3分 第1年旅游业收入为400万元,第2年旅游业收入为400×(1+41)万元,……,第n 年旅游业收入为400×(1+41)n -1万元.所以,n 年内的旅游业总收入为b n = 400+400×(1+41)+…+400×(1+41)n -1∑=-⨯=nk k 11)45(400= 1600×[ (54)n-1]. ……6分 (Ⅱ)设至少经过n 年旅游业的总收入才能超过总投入,由此b n -a n >0,即 1600×[(45)n -1]-4000×[1-(54)n ]>0.化简得 5×(54)n +2×(54)n -7>0, ……9分 设=x (54)n,代入上式得 5x 2-7x +2>0,解此不等式,得52<x ,x >1(舍去). 即 (54)n <52,由此得 n ≥5.答:至少经过5年旅游业的总收入才能超过总投入. ……12分。

2019年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)

2019年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)

绝密★启用前2019 年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12 小题,每小题5 分,共60 分。

在每小题给的四个选项中,只有一项是符合题目要求的。

1.已知集合A = {-1, 0,1, 2},B = {x x2≤1} ,则AA.{-1,0,1} B.{0,1} C.{-1,1} D.{0,1, 2}2.若z(1+ i) = 2i ,则z=A.-1- iB.-1+iC.1- iD.1+i3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100 学生,其中阅读过《西游记》或《红楼梦》的学生共有90 位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60 位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A.0.5 B.0.6 C.0.7 D.0.84.(1+2x2)(1+x)4的展开式中x3的系数为A.12 B.16 C.20 D.245.已知各项均为正数的等比数列{a n}的前4 项为和为15,且a5=3a3+4a1,则a3=A.16 B.8 C.4 D.26.已知曲线y =a e x+x ln x 在点(1,a e)处的切线方程为y=2x+b,则A. a = e,b =-1 b =-1B.a=e,b=1 C.a = e-1,b = 1 D .a = e-1,B =7.函数y =2x32x + 2-x在[-6, 6]的图象大致为A.B.C.D.8.如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD⊥平面ABCD,M是线段ED 的中点,则A.BM=EN,且直线BM、EN 是相交直线B.BM≠EN,且直线BM,EN 是相交直线C.BM=EN,且直线BM、EN 是异面直线D.BM≠EN,且直线BM,EN 是异面直线9.执行下边的程序框图,如果输入的ε为0.01,则输出s 的值等于yA. 2 - 124B. 2 - 125C. 2 - 126D. 2 - 12710. 双曲线 C :x2- =1 的右焦点为 F ,点 P 在 C 的一条渐进线上,O 为坐标原点,若 4 2PO = PF ,则△PFO 的面积为A. 3 24B. 3 22C. 2D. 311. 设 f( x ) 是定义域为 R 的偶函数,且在(0, ∞) 单调递减,则A. f (log1 )> f (- 3)>f ( - 2 )B. f (log 34 1)> f ( 2 2- 2)> f ( 2 3- 3 )3 4 2 3 2 2C. f ( - 3)> f ( -2)> f (log1)2 22 334D. f ( - 2)> f ( -3)> f (log1 )2 32 23412. 设函数 f( x ) =sin (ω x + π)( ω >0),已知 f (x ) 在[0, 2π]有且仅有 5 个零点,下述 5四个结论:① f (x ) 在( 0, 2π )有且仅有 3 个极大值点 2 22, xy ② f (x ) 在( 0, 2π )有且仅有 2 个极小值点③ f (x ) 在( 0, π)单调递增10④ ω 的取值范围是[12 29) 5 10其中所有正确结论的编号是A . ①④B . ②③C . ①②③D . ①③④二、填空题:本题共 4 小题,每小题 5 分,共 20 分。

2019年数学高考试题(带答案)

2019年数学高考试题(带答案)

2019年数学高考试题(带答案)一、选择题1.一动圆的圆心在抛物线28y x =上,且动圆恒与直线20x +=相切,则此动圆必过定点( ) A .(4,0) B .(2,0)C .(0,2)D .(0,0)2.已知全集{1,3,5,7}U =,集合{1,3}A =,{3,5}B =,则如图所示阴影区域表示的集合为( )A .{3}B .{7}C .{3,7}D .{1,3,5}3.函数()23x f x x+=的图象关于( )A .x 轴对称B .原点对称C .y 轴对称D .直线y x =对称4.在△ABC 中,a =5,b =3,则sin A :sin B 的值是( ) A .53B .35C .37D .575.已知π,4αβ+=则(1tan )(1tan )αβ++的值是( ) A .-1B .1C .2D .46.函数()ln f x x x =的大致图像为 ( )A .B .C .D .7.在△ABC 中,P 是BC 边中点,角、、A B C 的对边分别是,若0cAC aPA bPB ++=,则△ABC 的形状为( )A .直角三角形B .钝角三角形C .等边三角形D .等腰三角形但不是等边三角形.8.已知i 为虚数单位,复数z 满足(1)i z i +=,则z =( ) A .14B .12C .22D .29.南北朝时代的伟大数学家祖暅在数学上有突出贡献,他在实践的基础上提出祖暅原理:“幂势既同,则积不容异”.其含义是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等,如图,夹在两个平行平面之间的两个几何体的体积分别为12,V V ,被平行于这两个平面的任意平面截得的两个截面的面积分别为12,S S ,则“12,S S 总相等”是“12,V V 相等”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件10.2n n +<n+1(n∈N *),某同学应用数学归纳法的证明过程如下: (1)当n=1时211+不等式成立.(2)假设当n=k(k∈N *)时,不等式成立,2k k +<k+1. 那么当n=k+1时()()()2222(k 1)k 1k 3k 2k3k 2k 2(k 2)+++=++<+++++所以当n=k+1时,不等式也成立.根据(1)和(2),可知对于任何n∈N *,不等式均成立.则上述证法( ) A .过程全部正确 B .n=1验得不正确C .归纳假设不正确D .从n=k 到n=k+1的证明过程不正确11.已知复数 ,则复数在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限12.在等比数列{}n a 中,44a =,则26a a ⋅=( ) A .4B .16C .8D .32二、填空题13.已知曲线ln y x x =+在点()1,1处的切线与曲线()221y ax a x =+++相切,则a= .14.事件,,A B C 为独立事件,若()()()111,,688P A B P B C P A B C ⋅=⋅=⋅⋅=,则()P B =_____.15.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,4c =,42sin a A =,且C 为锐角,则ABC ∆面积的最大值为________. 16.已知函数()sin ([0,])f x x x π=∈和函数1()tan 2g x x =的图象交于,,A B C 三点,则ABC ∆的面积为__________.17.函数()23s 34f x in x cosx =+-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是__________. 18.在等腰梯形ABCD 中,已知AB DC ,2,1,60,AB BC ABC ==∠=点E 和点F 分别在线段BC 和CD 上,且21,,36BE BC DF DC ==则AE AF ⋅的值为 . 19.如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是_____.20.计算:1726cos()sin 43ππ-+=_____. 三、解答题21.11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束. (1)求P (X =2);(2)求事件“X =4且甲获胜”的概率.22.已知()ln xe f x a x ax x=+-.(1)若0a <,讨论函数()f x 的单调性;(2)当1a =-时,若不等式1()()0xf x bx b e x x+---≥在[1,)+∞上恒成立,求b 的取值范围.23.如图,在四棱锥P−ABCD 中,AB//CD ,且90BAP CDP ∠=∠=.(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠=,求二面角A −PB −C 的余弦值. 24.如图,四面体ABCD 中,O 、E 分别是BD 、BC 的中点,2AB AD ==,2CA CB CD BD ====. (1)求证:AO ⊥平面BCD ;(2)求异面直线AB 与CD 所成角的余弦值; (3)求点E 到平面ACD 的距离.25.“微信运动”是手机APP 推出的多款健康运动软件中的一款,大学生M 的微信好友中有400位好友参与了“微信运动”.他随机抽取了40位参与“微信运动”的微信好友(女20人,男20人)在某天的走路步数,经统计,其中女性好友走路的步数情况可分为五个类别:A 、02000步,(说明:“02000”表示大于或等于0,小于2000,以下同理),B 、20005000步,C 、50008000步,D 、800010000步,E 、1000012000步,且A 、B 、C 三种类别的人数比例为1:4:3,将统计结果绘制如图所示的柱形图;男性好友走路的步数数据绘制如图所示的频率分布直方图.(Ⅰ)若以大学生M 抽取的微信好友在该天行走步数的频率分布,作为参与“微信运动”的所有微信好友每天走路步数的概率分布,试估计大学生M 的参与“微信运动”的400位微信好友中,每天走路步数在20008000的人数;(Ⅱ)若在大学生M 该天抽取的步数在800010000的微信好友中,按男女比例分层抽取6人进行身体状况调查,然后再从这6位微信好友中随机抽取2人进行采访,求其中至少有一位女性微信好友被采访的概率.26.随着“互联网+交通”模式的迅猛发展,“共享自行车”在很多城市相继出现。

2019年高考数学真题及答案解析(全国卷Ⅰ)

2019年高考数学真题及答案解析(全国卷Ⅰ)

2019年高考数学真题及答案解析(全国卷Ⅰ) 2019年高考数学真题及答案解析一、选择题1. 单选题1) 题目:在直角三角形中,已知一条锐角边的长为4,另一条锐角边的长为3,则斜边的长为:()A. 5B. 6C. 7D. 8解析:根据勾股定理可知,斜边的长为√(4²+3²)=5。

因此,选项A为正确答案。

2) 题目:已知函数y=x²的图象上有两点A(1,2)、B(a,b),则a+b=()。

A. 3B. 4C. 5D. 6解析:由题意得,点A位于函数y=x²上,代入可得2=1²=1,即2=1。

因此,点B(a,b)的坐标为(a,a²)。

代入可得b=a²。

所以a+b=a+a²。

选项D为正确答案。

2. 多选题1) 题目:已知函数f(x)=ax²+bx+c,若三次项系数a=1,函数有两个零点x₁、x₂,则下列说法正确的是(选择全部正确答案):()A. 当x₁+x₂为正数时,函数图象在直角坐标平面上的位置不能确定。

B. 当x₁+x₂为正数时,函数图象在直角坐标平面上的位置位于x轴之上。

C. 当a=b=-1时,函数图象在直角坐标平面上的位置位于x轴之下。

D. 当a=b=-1时,函数图象在直角坐标平面上的位置位于x轴之上。

解析:根据二次函数的零点性质可知,当函数有两个零点x₁、x₂时,x₁+x₂的值为二次项系数的相反数,即a的相反数。

所以可得a+b=-1。

结合选项C和选项D可知,当a=b=-1时,函数图象在直角坐标平面上的位置的y坐标小于0,即位于x轴之下。

因此,选项C为正确答案。

二、填空题1. 题目:一个方程y=2x的图象和另一个方程y=ax²的图象相切,那么a的值为()。

解析:根据题目所给条件可知,两个方程的解相等。

所以可得2x=ax²。

由此可以推导出a=2。

因此,a的值为2。

2. 题目:已知点A(-2,1)和点B(4,-3),则点A关于点B的对称点坐标为( , )。

2019年高考数学试题及答案解析

2019年高考数学试题及答案解析

2019年高考数学试题及答案解析2019年高考数学试题及答案解析2019年高考数学试题有许多,同学们着实费了不少功夫来准备,本文将通过列出部分试题及其答案解析,来帮助同学们回顾一下高考考试中出现的题目,也可以更好地加深对理解和熟练运用所学知识的能力。

一、单项选择题1、对于给定的几何体,若两个棱的中点连接,得到的图形是一个()A、四面体B、六面体C、八面体D、十二面体答案:B解析:在三角形ABC中,求得AT角为30°,而AT角和MT共线,故MT角为30°;1特别地,可知AM和BC共线,MT就在伸展图上,由此可以构造一个六面体。

2、已知a、b、s的的单位分别为米、千克和秒,若形如as/b的组合称为物理量,它的单位是( )A、米/千克B、米/秒C、千克/秒D、米·千克/秒答案:B解析:根据力的定义,as/b的组合是速度,即物体每秒钟所移动的距离,因此它的单位应该是米每秒。

二、问答题1、数列{an}和 {bn}满足:a1=1,an=2an-1+1, b2=2, bn=3bn-1-2,设cn=anbn,求cn的表达式是()答案:cn=2cn-2+1解析:由题可知,cn=anbn,利用递推公式可以有:an=2an-1+1,bn=3bn-1-2,故cn=anbn=2an-1bn-1+1×bn-1-2=2cn-2+1,即cn=2cn-2+1。

2、已知a、b、c、d分别是棱锥AP-DC的四边长,其中AD及PC垂直于DC,且d=6,若a+b+c=12,则AP的高h的值为()答案:h=4解析:由等式a+b+c=12可知,APD和APC是直角三角形,AD=d=6,故三边求斜边求得PC=2,AP=√(a²+b²+2ac)=√(12²+2×12×6)=4,即h=4。

2019年数学高考试题(带答案)

2019年数学高考试题(带答案)

A. 1 4
B. 1 2
C. 2 2
D. 2
11.在 ABC 中, A 为锐角, lg b lg(1) lg sin A lg 2 ,则 ABC 为( ) c
A.等腰三角形
B.等边三角形
C.直角三角形
D.等腰直角三角形
12.已知 ABC 为等边三角形, AB 2 ,设 P , Q 满足 AP AB ,
0.10
0.05
0.025
0.010
0.005
0.001
k
2.072
2.706
3.841
5.024
6.635
7.879
10.828
(参考公式: K2
n(ad bc)2
,其中 n=a+b+c+d)
(a b)(c d)(a c)(b d)
22.如图,四棱锥 P ABCD 的底面 ABCD 是平行四边形,连接 BD ,其中 DA DP , BA BP .
EF 2 ,现有如下四个结论: 2
①AC BE ; ②EF / / 平面 ABCD; ③ 三棱锥 A BEF 的体积为定值; ④ 异面直线 AE, BF 所成的角为定值,
其中正确结论的序号是______.
15.已知椭圆 x2 y2 1的左焦点为 F ,点 P 在椭圆上且在 x 轴的上方,若线段 PF 的中 95
AQ 1 AC R ,若 BQ CP 3 ,则 ( )
2
A. 1 2
二、填空题
B. 1 2 2
C. 1 10 2
D. 3 2 2 2
13. i 是虚数单位,若复数 1 2ia i 是纯虚数,则实数 a 的值为
.
14.如图,正方体 ABCD A1B1C1D1 的棱长为 1,线段 B1D1 上有两个动点 E, F ,且
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二学期期末考试试卷一、 填空题(每空 3 分,共 15 分)1. 已知向量()1,1,4ra =-,()3,4,0rb =,则以r a ,r b为边的平行四边形的面积等于.2. 曲面sin cos z x y =在点1,,442ππ⎛⎫⎪⎝⎭处的切平面方程是.3. 交换积分次序()220,x dx f x y dy =⎰⎰.4. 对于级数11n n a∞=∑(a >0),当a 满足条件时收敛. 5. 函数12y x=-展开成x 的幂级数为.二、 单项选择题 (每小题3分,共15分)1. 平面20x z -=的位置是 ( ) (A )通过y 轴 (B )通过x 轴 (C )垂直于y 轴 (D )平行于xoz 平面2. 函数(),z f x y =在点()00,x y 处具有偏导数()00,x f x y ',()00,y f x y ',是函数在该点可微分的( )(A )充要条件 (B )充分但非必要条件 (C )必要但非充分条件 (D )既非充分又非必要条件3. 设()cos sin x z e y x y =+,则10x y dz ===( )(A )e (B )()e dx dy +(C )1()e dx dy -+ (D )()x e dx dy + 4. 若级数()11nn n a x ∞=-∑在1x =-处收敛,则此级数在2x =处( )(A )敛散性不确定 (B )发散 (C )条件收敛 (D )绝对收敛 5. 微分方程y xy x '-=的通解是( ) (A )2121x y e=- (B )2121x y e-=- (C )212x y Ce-= (D )2121x y Ce=-三、(本题满分8分)设平面通过点()3,1,2-,而且通过直线43521x y z-+==, 求该平面方程. 四、(本题满分8分)设(),z f xy x y =+,其中(),f u v 具有二阶连续偏导数, 试求z x ∂∂和2zx y∂∂∂.五、(本题满分8分)计算三重积分y zdxdydz Ω=⎰⎰⎰,其中(){},,01,11,12x y z x y z ≤≤-≤≤≤≤.六、(本题满分8分)计算对弧长的曲线积分L ⎰,其中L 是圆周222x y R +=在第一象限的部分.七、(本题满分9分)计算曲面积分3Òxdydz zdzdx dxdy ∑++⎰⎰,其中∑是柱面221x y +=与平面0z =和1z =所围成的边界曲面外侧.八、(本题满分9分)求幂级数11n n nx ∞-=∑的收敛域及和函数.九、(本题满分9分)求微分方程4x y y e ''-=的通解.十、(本题满分11分)设L 是上半平面()0y >内的有向分段光滑曲线, 其起点为()1,2,终点为()2,3, 记2221L x I xy dx x y dy y y ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭⎰1.证明曲线积分I 与路径L 无关; 2.求I 的值.第二学期期末考试试卷及答案一、 填空题(每空 3 分,共 15 分)1. 已知向量()1,1,4ra =-,()3,4,0rb =,则以r a ,r b为边的平行四边形的面积等于.2. 曲面sin cos z x y =在点1,,442ππ⎛⎫⎪⎝⎭处的切平面方程是210x y z --+=.3. 交换积分次序()220,x dx f x y dy =⎰⎰()20,ydy f x y dx⎰⎰.4. 对于级数11n n a∞=∑(a >0),当a 满足条件1a >时收敛.5. 函数12y x=-展开成x 的幂级数为()10222n n n x x ∞+=-<<∑.二、 单项选择题 (每小题3分,共15分)1. 平面20x z -=的位置是 ( A ) (A )通过y 轴 (B )通过x 轴 (C )垂直于y 轴 (D )平行于xoz 平面2. 函数(),z f x y =在点()00,x y 处具有偏导数()00,x f x y ',()00,y f x y ',是函数在该点可微分的( C )(A )充要条件 (B )充分但非必要条件 (C )必要但非充分条件 (D )既非充分又非必要条件 3. 设()cos sin x z e y x y =+,则10x y dz ===( B )(A )e (B )()e dx dy + (C )1()e dx dy -+ (D )()x e dx dy + 4. 若级数()11nn n a x ∞=-∑在1x =-处收敛,则此级数在2x =处( D )(A )敛散性不确定 (B )发散(C )条件收敛 (D )绝对收敛 5. 微分方程y xy x '-=的通解是( D ) (A )2121x y e=- (B )2121x y e-=- (C )212x y Ce-= (D )2121x y Ce=-三、(本题满分8分)设平面通过点()3,1,2-,而且通过直线 43521x y z-+==,求该平面方程. 解: 由于平面通过点()3,1,2A -及直线上的点()4,3,0B -, 因而向量()1,4,2AB →=-平行于该平面。

该平面的法向量为: (5,2,1)(1,4,2)(8,9,22).rn =⨯-=--则平面方程为: 8(4)9(3)22(0)0.x y z --+--= 或: 8(3)9(1)22(2)0.x y z ----+= 即: 8922590.x y z ---= 四、(本题满分8分)设(),z f xy x y =+,其中(),f u v 具有二阶连续偏导数, 试求z x ∂∂和2z x y ∂∂∂.解: 12zf y f x∂=+∂,()212z f y f x y y∂∂=+=∂∂∂()111212122f x f y f f x f =++++=()1112122xyf x y f f f =++++ 五、(本题满分8分)计算三重积分y zdxdydz Ω=⎰⎰⎰,其中(){},,01,11,12x y z x y z ≤≤-≤≤≤≤.解:221121111232g gzzdxdydz dx dyzdz -Ω===⎰⎰⎰⎰⎰⎰六、(本题满分8分)计算对弧长的曲线积分L ⎰,其中L 是圆周222x y R +=在第一象限的部分.解法一:L =⎰0Re arcsin Re 2RRRRR Rx e R π===⎰解法二:L =⎰g RRLe ds e L ==⎰(L 的弧长)Re 2R π=解法三: 令cos x R θ=,sin y R θ=,02πθ≤≤,L =⎰2Re 2RR e Rd ππθ==⎰七、(本题满分9分)计算曲面积分3Òxdydz zdzdx dxdy ∑++⎰⎰,其中∑是柱面221x y +=与平面0z =和1z =所围成的边界曲面外侧.解: P x =,Q z =,3R =,由高斯公式:3Òxdydz zdzdx dxdy ∑++=⎰⎰P Q R dv dv x y z πΩΩ⎛⎫∂∂∂=++== ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰⎰八、(本题满分9分)求幂级数11n n nx ∞-=∑的收敛域及和函数.解: 收敛半径:1lim1nn n a R a →∞+== 易判断当1x =±时,原级数发散。

于是收敛域为()1,1- ()()1211111n n n n x s x nxx x x ∞∞-==''⎛⎫⎛⎫==== ⎪ ⎪-⎝⎭⎝⎭-∑∑九、(本题满分9分)求微分方程4x y y e ''-=的通解. 解:特征方程为:240r -=特征根为:2r =,2r =-40y y ''-=的通解为:2212x x Y C e C e -=+设原方程的一个特解为:x y Ae *=,()4xxA A e e -= 31A -= 13A =-∴原方程的一个特解为:13x y e *=- 故原方程的一个通解为:221213xxxy Y y C eC ee *-=+=+- 十、(本题满分11分)设L 是上半平面()0y >内的有向分段光滑曲线, 其起点为()1,2,终点为()2,3, 记2221L x I xy dx x y dy y y ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭⎰1.证明曲线积分I 与路径L 无关; 2.求I 的值.证明1:因为上半平面G 是单连通域,在G 内: ()21,P x y xy y =+,()22,x Q x y x y y=-有连续偏导数,且:212P xy y y ∂=-∂,212Q xy x y∂=-∂,P Qy x ∂∂=∂∂。

所以曲线积分I 与路径L 无关。

解2: 设()1,2A ,()2,3B ,()2,2C ,由于曲线积分I 与路径L 无关,故可取折线路径:A C B →→。

2221L x I xy dx x y dy y y ⎛⎫⎛⎫=++-= ⎪ ⎪⎝⎭⎝⎭⎰2221AC x xy dx x y dy y y ⎛⎫⎛⎫=++-+ ⎪ ⎪⎝⎭⎝⎭⎰2221CB x xy dx x y dy y y ⎛⎫⎛⎫+++-= ⎪ ⎪⎝⎭⎝⎭⎰2321212974426x dx y dy y ⎛⎫⎛⎫=++-= ⎪ ⎪⎝⎭⎝⎭⎰⎰。

相关文档
最新文档