七年级奥数练习3质数和合数
质数与合数练习题(经典版)
质数与合数练习题质数基础1.请解释什么是质数?给出至少三个例子,并说明为什么这些数字是质数。
2.列出从1到20的所有质数。
3.什么是1?它被认为是质数吗?为什么或为什么不?4.找出一个大于10的质数,并解释如何确定它是质数而不是合数。
5.如果一个数字只有两个正因子,它是质数还是合数?请提供一个例子。
合数基础6.请解释什么是合数?给出至少三个例子,并说明为什么这些数字是合数。
7.列出从1到20的所有合数。
8.什么是0和负数?它们可以是质数或合数吗?为什么或为什么不?9.找出一个大于10的合数,并解释如何确定它是合数而不是质数。
10.如果一个数字有多于两个正因子,它是质数还是合数?请提供一个例子。
质数与合数的关系11.解释质数与合数之间的主要区别。
12.质数和合数之间是否存在共同点?如果是,列举出来。
13.请找出一个质数和一个合数,它们的和等于20。
提供这两个数字。
14.如果一个数字同时是质数和合数,这种情况是否可能存在?为什么或为什么不?质数与合数的应用15.质数在密码学中有何重要作用?简要解释。
16.如果你想要将一块土地分成尽可能多的正方形花坛,你会选择质数边长还是合数边长?解释你的选择。
17.你认为质数和合数的概念在日常生活中有哪些实际应用?18.假设你需要制作一个能够完全均匀分割一块矩形蛋糕的切割方案。
你会选择质数还是合数的分割线?为什么?19.质数和合数的研究在数学领域有何重要性?解释数学家为什么对它们感兴趣。
20.举例说明一个与质数或合数相关的现实世界问题,并解释如何使用这些概念来解决问题。
质数合数奥数练习题
质数合数奥数练习题质数与合数是数学中非常基础的概念。
无论是在学校还是奥数比赛中,经常会遇到与质数和合数相关的练习题。
下面我们来探讨一些关于质数和合数的奥数练习题,通过解答这些问题,加深我们对质数和合数的理解。
一、判断质数或合数1. 请判断以下数是质数还是合数:17、25、31、39。
答案解析:质数是只能被1和本身整除的数,合数是除了1和本身之外还能被其他数整除的数。
根据这个定义,我们可以逐个判断这些数。
17只能被1和17整除,所以是质数。
25可以被1、5和25整除,所以是合数。
31只能被1和31整除,所以是质数。
39可以被1、3、13和39整除,所以是合数。
二、质数与合数的特性2. 请判断以下说法的对错,并说明理由:①一个数的各个位上的数字之和能被3整除,那这个数一定是合数。
②若一个数的各个位上的数字之和能被9整除,那这个数一定是合数。
③除了2和3之外的所有质数都是奇数。
答案解析:①正确。
一个数的各个位上的数字之和能被3整除,说明这个数能被3整除,即为合数。
②正确。
一个数的各个位上的数字之和能被9整除,说明这个数能被9整除,即为合数。
③错误。
除了2和3之外,质数与奇数无关。
举个例子,5是质数但也是奇数,而2是质数但不是奇数。
因此,除了2之外的质数可以是奇数也可以是偶数。
三、质因数分解3. 将180写成质因数相乘的形式。
答案解析:将一个数表示成质因数相乘的形式,叫做质因数分解。
首先,我们可以试除法找出180的一个质因数2。
180 ÷ 2 = 90。
然后,再次用2试除90。
90 ÷ 2 = 45。
再继续用2试除45。
45 ÷ 2 无法整除。
换用下一个质数3试除45。
45 ÷ 3 = 15。
再继续用3试除15。
15 ÷ 3 = 5。
最后,用质数5试除5。
5 ÷ 5 = 1。
至此,我们得到180的质因数分解形式为:180 = 2 × 2 × 3 × 3 × 5。
【七年级奥数】第21讲 质数和合数(例题练习)
第21讲质数和合数——例题一、第21讲质数和合数1.四个数,一个是最小的奇质数,一个是偶质数,一个是小于30的最大质数,另一个是大于70的最小质数.求它们的和.【答案】解:最小的奇质数是3,唯一的一个偶质数是2,小于30的最大质数是29,大于70的最小质数是71.因此,它们的和为3+2+29+71=105.【解析】【分析】在解有关质数的问题时,知道一些小常识是有用的,如1既非质数又非合数,2是唯一的偶质数,也是最小的质数,3是最小的奇质数等.另外,200以内的质数共有25个,它们为:2、3、5、7、I1、13、17、19、23、29、31、37、41、43、47,53、59、61、67、71、73,791 83、89、97。
2.有7个不同的质数,它们的和是60.其中最小的是多少?【答案】解:若7个不同的质数都是奇质数,则它们的和必为奇数,不可能等于60,所以这7个不同的质数中有偶数,而我们知道2是唯一的偶质数,所以这7个质数中必有2;2又是所有质数中最小的,所以这7个质数中最小的质数就是2.【解析】【分析】本题利用了2是唯一的偶质数和最小的质数这一特性.不难得出这7个质数是2、3、5、7、11、13、19.3.若n为正整数,n+3与n+7都是质数.求n除以3所得的余数.【答案】解:我们知道n除以3所得的余数只可能为0、1、2三种;若余数为0,即n=3k(k是一个非负整数,下同),则n+3=3k+3=3(k+1),所以3|n+3.又3≠n+3,故n+3不是质数,与题设矛盾.若余数为2,即n=3k+2,则n+7=3k+2+7=3(k+3),故3|n+7;n+7不是质数,与题设矛盾.所以,n除以3所得的余数只能为1.【解析】【分析】一个整数除以m后,余数可能为0,1,…,m-1,共m种.将整数按除以m所得的余数分类,可以分成m类.如m=2时,余数只能为0与1,因此可以分为两类,一类是除以2余数为0的整数,即偶数,另一类是除以2余数为1的整数,即奇数.同样,对m=3时,就可将整数分为三类.即除以3余数分别为0、1、2这样的三类.通过余数是否相同来分类是数论中的一种重要思想方法,有着广泛的应用.4.设n1与n2是任意两个大于3的质数,N1=n12−1 , N2=n22−1 ,N1与N2的最大公约数至少为多少?【答案】解:∵n1是大于3的质数,∴n1不是3的倍数,n1 =3k+1或3k+2,在n1 =3k+1时,n1 -1=3k是3的倍数;在n1 =3k+2时,n1 +1=3k+3是3的倍数;无论哪种情况,N1=n1−1=(n1+1)(n1−1) 都是3的倍数.又∵n1是奇数,∴n1=4k+1或4k+3.在n1=4k+1时,n1+1=4k+2是2的倍数,n1-1=4k是4的倍数,所以N1是8的倍数.在n1=4k+3时,同理可得N1是8的倍数.由于3与8互质,故24|N1.同理,24|N2.另外,取n1 =5,则N1=24.综上所述,N1与N2的最大公约数至少为24.【解析】【分析】从上例中,我们可以得到两个重要结论:(1)若n不是3的倍数,则n2除以3,余数为1.(2)若n是奇数,则n2除以8,余数为1.5.有人说:“任何七个连续的整数中一定有质数”.对吗?【答案】解:不对.如90、91、92、93、94、95、96这七个连续整数全部是合数,没有质数.【解析】【分析】合数:因数除了1和它本身之外还有其他因数的数;质数:因数只有1和它本身的数.由此分析即可.6.设自然数n1>n2 ,且有n12−n22=79 ,试求n1与n2的值.【答案】解:依题可得:n12−n22=(n1+n2)(n1−n2)=79 ,∵整数n1>n2,∴n1+n2与n1−n2 都是正整数,又∵79是一个质数,由质数的性质,及n1+n2 > n1-n2得:,解得:.【解析】【分析】质数:因数只有1和它本身的数,根据质数的性质列出二元一次方程组,解之即可.7.n是不小于40的偶数.试证明:n总可以表示成两个奇合数的和.【答案】证明:因为n是偶数,所以,n的个位数字必为0、2、4、6、8中的某一个.( 1 )若n的个位数字为0,则n=15+5k(k≥5为奇数).( 2 )若n的个位数字为2,则n=27+5k(k≥3为奇数).( 3 )若n的个位数字为4,则n=9+5k(k≥7为奇数).( 4 )若n的个位数字为6,则n=21+5k(k≥5为奇数).( 5 )若n的个位数字为8,则n=33+5k(k≥3为奇数).综上所述,不小于40的任一偶数,都可以表示成两个奇合数之和.【解析】【分析】奇合数:指不能被2整除的合数;即除了偶合数之外的其余合数都是奇合数.根据偶数定义可知n的个位数字必为0、2、4、6、8中的某一个,分情况讨论,即可得证.8.证明有无穷多个n,使多项式n2+3n+7( 1 )表示合数;( 2 )是11的倍数.【答案】证明:只需证(2)当n=11k+1(k≥1)时,多项式n2+3n+7=(11k+1)2+3(11k+1)+7=11(11k2+5k+1).∴是11的倍数.∵11k2+5k+1>1,∴这时n2+3n+7是合数.【解析】【分析】令n=11k+1(k≥1),代入多项式,计算、化简得n=11(11k2+5k+1),从而可得式11的倍数,由11k2+5k+1>1,可得n是表示合数.。
质数合数练习题
质数合数练习题质数合数练习题数学是一门充满乐趣和挑战的学科,其中质数和合数是数学中的重要概念。
质数是只能被1和自身整除的自然数,而合数是除了1和自身外还能被其他数整除的自然数。
在这篇文章中,我们将通过一些练习题来加深对质数和合数的理解。
练习题一:判断质数和合数1. 判断以下数是质数还是合数:13、21、29、35、47。
解析:质数只能被1和自身整除,因此13和29是质数。
合数除了1和自身外还能被其他数整除,因此21、35和47是合数。
2. 判断以下数是质数还是合数:57、61、73、85、97。
解析:质数只能被1和自身整除,因此61和73是质数。
合数除了1和自身外还能被其他数整除,因此57、85和97是合数。
练习题二:质数和合数的因数分解1. 将以下合数进行因数分解:24、36、48、60、72。
解析:因数分解是将一个数表示为几个质数的乘积。
对于24,可以分解为2 × 2 × 2 × 3,即2^3 × 3。
对于36,可以分解为2 × 2 × 3 × 3,即2^2 × 3^2。
对于48,可以分解为2 × 2 × 2 × 2 × 3,即2^4 × 3。
对于60,可以分解为2 × 2 × 3 × 5,即2^2 × 3 × 5。
对于72,可以分解为2 × 2 × 2 × 3 × 3,即2^3 × 3^2。
2. 将以下合数进行因数分解:90、120、150、180、210。
解析:对于90,可以分解为2 × 3 × 3 × 5,即2 × 3^2 × 5。
对于120,可以分解为2 × 2 × 2 × 3 × 5,即2^3 × 3 × 5。
七年级奥数练习3质数和合数
七年级奥数练习3——质数和合数班级 姓名 座号质数,合数有下面常用的性质:性质1、1不是质数,也不是合数;2是惟一的偶质数.性质2、若质数p │ab ,则必有p │a 或p │b .性质3、若正整a 、b 的积是质数p ,则必有a=p 或b=p .性质4、算术基本定理:任意一个大于l 的整数N 能分解成K 个质因数的乘积,若不考虑质因数之间的顺序,则这种分解是惟一的,从而N 可以写成标准分解形式:k k p p p N ααα 2121=其中k p p p <<21,i p 为质数,i a 为非负整数,(i =1,2,…k ).写出100以内的所有质数并熟记.1. (第16届希望杯竞赛题 )一个两位数的个位数字与十位数字变化位置后,所得的数比原来的数大9,这样的两位数中,质数有( ).A.1个B.3个C.5个D.6个2. (第15届江苏省竞赛题 )已知三个不同的质数,满足,那么a+b+c =_________3. (第14届迎春杯初赛题)如果正整数p 、q 都是质数,并且7p +q 与pq +11也都是质数,那么p=_________4.(第五届“华罗庚金杯”少年数学邀请赛复赛)把37拆成若干个不同的质数之和,有多少种不同的拆法?将每一种拆法所拆出的那些质数相乘,得到的乘积中,哪个最小?5.(上海市竞赛题)求这样的质数,当它加上10和14时,仍为质数.6. (第18届江苏省竞赛题)(1)将1、2、3……、2004这2004个数随意排成一个数N。
求证:N一定是合数.(2)若N是大于2的正整数,求证:与至多有一个是质数.7.(第五届加拿大数学奥林匹克试题)如果p和p+2都是大于3的质数,那么请证明:6是p+1的约数.8.(2005年俄罗斯竞赛题)a和b是两个自然数,对它们有以下四个描述:①a+1能被b整除;②a=2b+5;③a+b能被3整除;④a+7b是质数.不过这四个描述中只有三个是正确的,有一个是错误的,试求出a与b所有可能的解.9.对任意正整数n,证明:存在连续n个正整数,它们都是合数.练习:1.(希望杯竞赛题)当x取1到10之间的质数时,四个式子:,,和的值中,共有质数()个A.6B.9C.12D.162.(第17届五羊杯竞赛题)以下关于质数和合数的4中说法中,准确的说法总有()种.①两个质数的和必为合数;②两个合数的和必为合数;③一个质数与一个合数的和必为合数;④一个质数与一个合数的和必为非合数.A.3B.2C.1D.03.(黄冈市竞赛题)若p为质数,5仍是质数,则为()A.质数B.可为质数也可为合数C.合数D.既不是质数也不是合数4.(五羊杯竞赛题)n既不是质数,n可以分解为2个或多于2个质因数的积,每个质因数都大于10,n最小值等于_ __5.(第15届希望杯竞赛题)已知p,q,pq+1都是质数,且,那么满足上述条件的最小质数,6. (希望杯竞赛题)若a,b,c是1998的三个不同的质因数,且,则7. (上海市竞赛题)写出10个连续自然数,它们个个都是合数,这10个数是_________ __________________________________________________.8.(北京市竞赛题)若y,z均为质数,,且满足,则1998x+5y+3z=____________9.(第18届五羊杯竞赛题)如果A,B,C是三个质数,而且A-B=B-C=14,那么A,B,C组成的数组(A,B,C)共有________组.10.(全国初中数学联赛题)设m是不能表示为三个互不相等的合数之和的最大整数,则m=________.11. (五羊杯竞赛题)已知p,p+2,p+6,p+8,p+14,都是质数,则这样的质数p共有多少个?12. (希望杯竞赛题)(1)请你写出不超过30的自然数中的质数之和是________.(2)千位数是1的四位偶自然数共有________个.(3)一个四位偶自然数的千位数字是1,当它分别被四个不同的质数去除时,余数也都是1,满足这些条件的所有自然数中,最大的一个是________.。
奥数质数合数因数倍数
质数合数因数倍数示例(1)A与B是互质数,它们的最大公因数是(),最小公倍数是()。
(2)把自然数A和B分解质因数后分别是A=2×3×7×M,B=2×5×M。
A、B的最大公因数是22,A、B的最小公倍数是()。
(3)有一些果冻,如果把6个装一包少一个,如果把8个装一包也少一个,如果把9个装一包还是少一个。
这些果冻至少有多少个?(4)用120个牙刷和72盒牙膏制成礼盒,并且每个礼盒的牙刷数量都相同,牙膏数量也相同。
每个礼盒牙刷至少几个,牙膏至少几盒?解析:这几道题,主要考查学生对最大公因数和最小公倍数的理解及应用。
最大公因数是两个数全部公有质因数的积。
(1)A与B互质,没有公有质因数,其最大公因数是1,最小公倍数是A与B的乘积AB。
(2)A、B的最大公因数就是A和B全部公有因数的积,即2×M=22,M=11。
A、B的最小公倍数就是A和B全部公有质因数及各自独有质因数的积,而2×3×5×7×M=210×11=2310。
(3)6个一包少一个说明果冻总数比6的倍数少1个,8个一包少一个说明果冻的总数比8的倍数少1个,9个一包少一个说明果冻的总数比9的倍数少1个。
这些果冻的总数就是比6、8、9的公倍数少1的数,问的是至少有多少个果冻,其实就是求它们的最小公倍数。
(6、8、9)=72,72-1=71(个)因此这些果冻至少有71个。
(4)由题意可知,每个礼盒里牙膏总数×礼盒数=72盒牙膏,每个礼盒里牙刷总×礼盒数=120个牙刷,由上面两个等量关系可得,礼盒数应该是72和120的公因数,又因为每个礼盒里牙刷、牙膏最少,也就是礼盒数最多,所以礼盒数是72和120的最大公因数。
72和120的最大公因数是24,所以最多可以制作24个礼盒。
每个礼盒里牙刷数量是120÷24=5(个),牙膏数是72÷24=(3)。
质数和合数练习题
质数和合数练习题质数和合数练习题质数和合数是数学中的基本概念,对于初学者来说,理解和掌握这两个概念是非常重要的。
在这篇文章中,我们将通过一些练习题来帮助读者更好地理解质数和合数的特性和性质。
1. 练习题一:判断质数和合数请判断以下数是否为质数或合数:a) 17b) 25c) 29d) 36e) 41解答:a) 17是质数,因为它只能被1和17整除。
b) 25是合数,因为它可以被1、5和25整除。
c) 29是质数,因为它只能被1和29整除。
d) 36是合数,因为它可以被1、2、3、4、6、9、12、18和36整除。
e) 41是质数,因为它只能被1和41整除。
2. 练习题二:质数和合数的性质a) 证明:任何一个大于1的整数都可以被质数整除。
b) 证明:两个质数的乘积一定是合数。
解答:a) 假设存在一个大于1的整数n,它不能被任何质数整除。
那么n本身就是一个质数。
这与题设矛盾,因此得证。
b) 假设存在两个质数p和q,它们的乘积pq是质数。
根据定义,质数只能被1和它本身整除。
那么pq只能被1和pq整除。
但是,由于p和q是质数,它们都不等于1,所以pq不能被1和pq以外的数整除。
这与题设矛盾,因此得证。
3. 练习题三:质数和合数的应用a) 请列举出100以内的所有质数。
b) 请找出100以内的最大的质数。
解答:a) 100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89和97。
b) 100以内的最大质数是97。
通过以上的练习题,我们可以更深入地理解质数和合数的概念和性质。
质数是只能被1和它本身整除的数,而合数则可以被除了1和它本身以外的数整除。
质数和合数在数学中有着广泛的应用,例如在加密算法和数论等领域中扮演着重要的角色。
对于初学者来说,通过练习题的形式来学习质数和合数是一种有效的方法。
通过解答问题,读者可以巩固对质数和合数的理解,并且能够更好地应用这些知识解决实际问题。
奥数讲义数论专题:3 质数与合数
华杯赛数论专题:3 质数与合数基础知识:1.质数与合数一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数).一个数除了1和它本身,还有别的约数,这个数叫做合数.1不是质数也不是合数,2是唯一的偶质数,3是最小的奇质数.除了2其余的质数都是奇数;除了2和5,其余的质数个位数字只能是1,3,7,9.2.判断一个数是否为质数的方法根据定义如果能够找到一个小于P的质数q(均为整数),使得q能够整除P ,那么P就不是质数,所以我们只要拿所有小于P的质数去除P就可以了;但这样的计算量很大,对于不太大的P ,可以先找一个大于且接近P的平方数,再列出所有不大于K的质数,用这些质数去除P ,如果没有能除尽的,那么P就为质数.3.唯一分解定理每个大于1的自然数均可以分解为有限个素数的乘积,并且具有唯一(不计次序变化)的素数分解形式.例题例1.自然数N是一个两位数,它是一个质数,而且N的个位数字与十位数字都是质数,这样的自然数有几个?【答案】23,37,53,73.【解答】首先,个位数字不能是0,2,4,6,8,5,十位数字只能是3,7,所以满足要求的两位数有四个:23,37 ,53 ,73.例2.把质数373拆开(不改变各数字间的顺序),所有的可能只有3,7,37,73这四个数,它们都是质数. 请找出所有具有这种性质的两位和两位以上的质数.【答案】23,37,53,73,373【解答】用排除法,在所找的数中,各个数位上都不能出现0,1,4,6,8和9,否则拆成一位数时将出现这六个数,都不是质数. 另外除首位外,各位数字都不能出现2和5. 因此,可采用的数字只有3,7,2,5,其中2,5只能出现在首位,并且同一个数字不能连续出现.经检验,满足题意的数只有五个:23,37,53,73和373.例3.老师想了一个三位质数,各位数字都不相同.如果个位数字等于前两个数字的和,那么这个数是几?【答案】167、257、347、527或617中间的任意一个【解答】因为是质数,所以个位数不可能为偶数0,2 ,4 ,6 ,8. 也不可能是奇数5.如果末位数字是3或9,那么数字和将是3或9的两倍,因而能被它们整除,就不是质数了.所以个位数只能是 7.这个三位数可以是167、257、347、527或617中间的任意一个.例4.连续的九个自然数中至多有几个质数?为什么?【答案】4个【解答】如果连续的9个自然数在1到20之间,那么显然其中最多有4个质数(如:1~9中有4个质数2、3、5、7).如果这连续的9个数中最小的不小于3,那么其中的偶数显然为合数,而其中的奇数的个数最多有5个.这5个奇数中必定有一个个位数是5,因而该数为合数.这样,至多另外4个奇数都是质数.综上,连续9个数中最多有4个质数.例5.三个质数的乘积恰好等于它们和的11倍,求这三个质数.【答案】2,11,13或3,7,11【解答】设三个不同质数是a、b、c因为,所以a、b、c中,必定有一个质数是11,不妨设a=11,则故可得<I>b</I>=2,c=13,或<I>b</I>=3,c=7,所以三个质数是2,11,13或3,7,11.例6.质数A、B、C、D满足A+B=C,A+C=D,那么A×C+B×D是 .【答案】31【解答】如果A、B都是奇数,则C=A+B是大于2的偶数,不可能是质数,所以A、B有一个是偶数.同理A、C也有一个是偶数,因此只能是A=2.那么B+2=C,C+2=D,即B、C、D是三个连续奇数,必定有一个是3的倍数,那么只能是B=3,C=5,D=7.因此A×C+B×D=2×5+3×7=31.例7. 将135拆成4个互不相同的质数之和,使得其中两个质数的个位数字分别为1和7. 请写出两种满足要求拆分的方法:135=________=________.【答案】135=2+5+31+97=2+5+61+67【解答】四个质数不可能同为奇数,至少有一个偶质数,即为2,因此个位数字为1、2、7,所以第四个数字的个位数字是5且是质数,只能是5,所以原题变为把128拆成个位数字为1和7的两个质数之和,128=31+97=61+67,所以135=2+5+31+97=2+5+61+67.例8.已知两个质数与一个合数的和是293,乘积是10336,那么这三个数中最大的是.【答案】272【解答】因为,其中三个数分别为2、19、272满足要求,故最大的数是 272.例9.请在下列算式中的每个方框内填入一个质数数字,使得等式成立,共有______种.□□+□=□□×□-□=□□-□□=□□÷□+□【答案】4种【解答】第一个算式:32+7或37+2第二个算式:22×2-5或23×2-7第三个算式:72-33第四个算式:72÷2+3例10.4个一位数的乘积是360,并且其中只有一个合数,那么在这4个数字所能组成的四位数中,最大的是多少?【答案】8533【解答】将360分解质因数得,它是6个质因数的乘积.因为题述的四个数中只有一个合数,所以该合数必至少为个质因数之积.而只有3个2相乘才小于10,所以这四个数为3、3、5、8,所能组成的最大四位数是8533.例11.把下面八个数分成两组,使这两组数的乘积相等.14、55、21、30、75、39、143、169【答案】(55、30、169、21);(143、75、14、39)【解答】先把每个数都分解质因数如下:14=2×7 21=3×7 30=2×3×5 39=3×13 55=5×11 75=3×5×5 143=11×13 169=13×13,观察因子得到分组为:(55、30、169、21);(143、75、14、39).例12.5个连续质数的乘积是一个形如□△□□△□的六位数,其中□和△各代表一个数字,那么这个六位数是多少?【答案】323323【解答】因为□△□□△□=□△□×1001=□△□×7×11×13,又□△□为两个质数的乘积,所以□△□=17×19=323,故六位数为323323.例13.幼儿园王老师带216元去买皮球,预计正好花光. 可实际上所购皮球价格比预计的便宜2元,个数比原计划的多9个,仍然恰好花光。
质数和合数奥术练习题
质数和合数奥术练习题
质数和合数奥术练习题
一、填空题
1.在一位的自然数中,既是奇数又是合数的有_____;既不是合数又不是质数的有_____;既是偶数又是质数的有
_____.
2.最小的质数与最接近100的质数的乘积是_____.
3.两个自然数的和与差的积是41,那么这两个自然数的积是_____.
4.在下式样□中分别填入三个质数,使等式成立.
□+□+□=50
5.三个连续自然数的积是1716,这三个自然数是_____、
_____、_____.
6.找出1992所有的不同质因数,它们的和是_____.
7.如果自然数有四个不同的质因数,那么这样的自然数中最小的是_____.
8.9216可写成两个自然数的积,这两个自然数的和最小可以达到_____.
9.从一块正方形的木板上锯下宽为3分米的一个木条以后,剩下的面积是108平方分米.木条的面积是_____平方分米.
10.今有10个质数:17,23,31,41,53,67,79,83,101,103.如果将它们分成两组,每组五个数,并且每组的五个数之和相等,那么把含有101的这组数从小到大排列,第二个数应是。
质数和合数练习
质数和合数练习(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、工作计划、演讲致辞、策划方案、合同协议、规章制度、条据文书、诗词鉴赏、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work summaries, work plans, speeches, planning plans, contract agreements, rules and regulations, doctrinal documents, poetry appreciation, teaching materials, other sample essays, etc. If you want to learn about different sample formats and writing methods, please stay tuned!质数和合数练习质数和合数练习(通用3篇)质数和合数练习篇1一、分一分(把下列数填入合适的圆圈内)1.4、5、11、18、23、45、73、128、116、417、87、2001、345奇数偶数质数合数2.24的因数有()在这些因数中:奇数有()合数有()质数有()偶数有()3.在自然数1~20中,哪些数符合下列条件:(1)既是奇数又是合数()。
质数与合数(含答案)
第3讲质数与合数阿拉伯数字无疑是人类历史上最伟大的发明之一,其本身蕴含的规律更是数学学科中最璀璨的明珠!质数和合数的分类产生了哥德巴赫猜想等世界着名的命题,学习质数和合数,窥探数字的奥秘!对于自然数a 和b (0b ≠),若a b ÷没有余数,则a 是b 的倍数,b 是a 的约数。
特殊地,0是任意非零自然数的倍数。
质数:除了1和本身,没有其他约数的自然数叫质数。
合数:除了1和本身,还有其他约数的自然数叫合数。
特殊地,1既不是质数也不是合数。
最小的合数是4,最小的质数是2,且2是唯一的偶质数。
质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数。
互质数:公约数只有1的两个自然数,叫做互质数。
分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
编写说明知识要点【例1】对7个不同质数求和,和为58,则最大的质数是多少【分析】七个质数若全部是奇数,则和一定是奇数,而58是偶数,则七个质数中必定含有唯一的偶质数2,所以最小的质数是2,从2开始,最小的七个连续质数是2,3,5,7,11,13,17,和为58,所以题中的七个质数只能是从2开始的七个连续质数,最大为17。
【温馨提示】2是唯一的偶质数,是偶数中的“叛徒”,所以质数也经常与奇偶性相结合,主要考察“2”.【拓展】已知a、b、c、d都是质数,且130959179+=+=+=+,求a、b、c、d的值。
a b c d【分析】959179+=+=+,所以b、c、d应该都是奇数,所以a是唯一的偶质数2,依此可求得:b c dc=,53b=,41d=.a=,372【例2】从小到大写出5个质数,使后面数都比前面的数大12。
这样的数有几组【分析】考虑到质数中除了2以外其余都是奇数,因此这5个质数中不可能有2;又质数中除了2和5,其余质数的个位数字只能是1、3、7、9。
若这5个质数中最小的数其个位数字为1,则比它大24的数个位即为5,不可能是质数;若最小的数其个位数字为3,则比它大12的数个位即为5,也不可能为质数;由此可知最小的数其个位数字也不可能是7和9,因此最小的数只能是5,这5个数依次是5,17,29,41,53。
质数合数练习题及答案
质数合数练习题及答案1、最小的自然数是,最小的质数是,最小的合数是,最小的奇数是。
、20以内的质数有,20以内的偶数有,0以内的奇数有。
、20以内的数中不是偶数的合数有,不是奇数的质数有。
4、在5和25中,是的倍数,是的约数,能被整除。
5、在15、36、45、60、135、96、120、180、570、588这十个数中:能同时被2、3整除的数有,能同时被2、5整除的数有,能同时被2、3、5整除的。
6、下面是一道有余数的整数除法算式:A÷B=C??R若B是最小的合数,C是最小的质数,则A最大是 ,最小是.7、三个连续奇数的和是87,这三个连续的奇数分别是、、。
二)判断题,对的在括号里写“√”,错的写“×”。
1、1既不是质数也不是合数。
、个位上是3的数一定是3的倍数。
3、所有的偶数都是合数。
、所有的质数都是奇数。
5、两个数相乘的积一定是合数。
质数、合数练习题二1. 下面的数中,哪些是合数,哪些是质数。
1、13、24、29、41、57、63、79、87合数有:质数有:2. 写出两个都是质数的连续自然数。
3. 写出两个既是奇数,又是合数的数。
4. 判断:任何一个自然数,不是质数就是合数。
偶数都是合数,奇数都是质数。
7的倍数都是合数。
20以内最大的质数乘以10以内最大的奇数,积是171。
只有两个约数的数,一定是质数。
两个质数的积,一定是质数。
2是偶数也是合数。
1是最小的自然数,也是最小的质数。
.9、除2以外,所有的偶数都是合数。
最小的自然数,最小的质数,最小的合数的和是7。
5. 在内填入适当的质数。
10=+ 10=×20=++8=××6. 分解质因数。
669 13510937. 两个质数的和是18,积是65,这两个质数分别是8. 一个两位质数,交换个位与十位上的数字,所得的两位数仍是质数,这个数是。
9. 用10以内的质数组成一个三位数,使它能同时被3、5整除,这个数最小是,最大是。
【七年级奥数】第21讲 质数和合数(例题练习)
第21讲质数和合数——练习题一、第21讲质数和合数(练习题部分)1.三个正整数,一个是最小的奇质数,一个是最小的奇合数,另一个既不是质数,也不是合数.求这三个数的积.2.三个数,一个是偶质数,一个是大于50的最小的质数,一个是100以内最大的质数.求这三个数的和.3.两个质数的和是49.求这两个质数的积.4.设p1与p2是两个大于2的质数.证明p1 + p2是一个合数.5.p是质数,p2+3也是质数.求证:p3+3是质数.6.若p与p+2都是质数,求p除以3所得的余数.(p>3).7.若自然数n1>n2且n12−n22−2n1−2n2=19 ,求n1与n2的值.8.有四个不同质因数的正整数,最小是多少?9.求2000的所有不同质因数的和.10.试证明:形如111111+9×10k(k是非负整数)的正整数必为合数.11.若n是正整数,n+3与n+7都是质数,求n除以6所得的余数.12.n是自然数,试证明10|n5-n.13.证明有无穷多个n,使n2+n+41( 1 )表示合数;( 2 )为43的倍数.14.试证明:自然数中有无穷多个质数.15. 9个连续的自然数,都大于80.其中最多有多少个质数?答案解析部分一、第21讲质数和合数(练习题部分)1.【答案】解:依题可得:最小的奇质数为3,最小的奇合数是9,既不是质数,也不是合数是1,∴这三个数的积是:1×3×9=27.【解析】【分析】奇质数:既是奇数又是合数的数;奇合数:不能被2整除的合数;根据定义分别写出这三个整数,计算即可.2.【答案】解:依题可得:偶质数是2,大于50的最小质数是:53,100以内最大的质数是97,∴这三个数的和为2+53+97=152.【解析】【分析】质数:因数只有1和它本身的数,根据题意写出满足的条件的三个数,计算即可.3.【答案】解:依题可得:49=2+47,∴2×47=94.∴这两个质数的积为94.【解析】【分析】根据质数定义结合已知条件可得这两个数,列式计算即可.4.【答案】证明:∵p1与p2是两个大于2的质数,∴p1、p2都是奇数,∴p1 + p2是偶数,且大于2 ,∴p1 + p2是大于2的偶数,即为合数.【解析】【分析】根据题意可知p1、p2都是奇数,由奇+奇=偶即可得证.5.【答案】证明:∵p是质数,当p>2时,∴p2+3被4整除,又∵p2+3也是质数,与已知矛盾,∴必有p=2,∴p3+3=11,是质数.【解析】【分析】由于2是最小的质数,先假设当p>2时得出p2+3被4整除,此时与已知条件矛盾,故p=2时,代入即可得证.6.【答案】解:∵p是质数,∴①p=3k时,∵p>3且是质数,∴不存在这样的p;②p=3k+1时,∴p+2=3k+1+2=3(k+1),此时与p+2为质数矛盾;③p=3k+2时,∴p+2=3k+2+2=3(k+1)+1,符合题意;∴p除以3所得的余数为2.【解析】【分析】根据题意分情况讨论:①p=3k时,②p=3k+1时,③p=3k+2时,再根据p+2为质数解答即可.7.【答案】解:∵n12−n22−2n1−2n2=19 ,∴(n1+n2)(n1-n2)-2(n1+n2)=19,即(n1+n2)(n1-n2 -2)=19,又∵19是质数,n1+n2>n1-n2,∴,解得:.【解析】【分析】先将原多项式分解因式,再由19是质数,根据质数性质列出方程,解之即可. 8.【答案】解:根据质因数的定义可得最小的四个质数分别为:2,3,5,7;依题可得:2×3×5×7=210.∴有四个不同质因数的最小正整数为210.【解析】【分析】质数:因数只有1和它本身的数,根据质数定义可得最小的四个质数,计算即可.9.【答案】解:∵2000=24×53,∴2000的所有不同质因数的和为:2+5=7.【解析】【分析】先将2000写成几个质因数积的形式,再找出不同的质因数,相加即可.10.【答案】解:111111+9×10k=3×37037+3×3×10k=3×(37037+3×10k),∴这个数除了1和它本身之外,还有因数3,∴形如111111+9×10k(k是非负整数)的正整数必为合数.【解析】【分析】先将原式分解成3×(37037+3×10k),由此可看出除了因数1和它本身之外,还有3这个因数,根据合数定义即可得证.11.【答案】解:依题可得:①n=6k时,∴n+3=6k+3=3(2k+1),与n+3为质数矛盾;②n=6k+1时,∴n+3=6k+1+3=2(3k+2),与n+3为质数矛盾;③n=6k+2时,∴n+7=6k+2+7=3(2k+3),与n+7为质数矛盾;④n=6k+3时,∴n+3=6k+3+3=6(k+1),与n+3为质数矛盾;⑤n=6k+4时,∴n+3=6k+4+3=6(k+1)+1,为质数;∴n+7=6k+4+7=6(k+2)-1,为质数;⑥n=6k+5时,∴n+7=6k+5+7=3(2k+4),与n+7为质数矛盾;∴n除以6所得的余数为4.【解析】【分析】根据题意分情况讨论:①n=6k时,②n=6k+1时,③n=6k+2时,④n=6k+3时,⑤n=6k+4时,⑥n=6k+5时,将n的值分别代入n+3或n+7,验证是否为质数,逐一分析即可.12.【答案】证明:∵n5-n=n(n4-1)=n(n+1)(n-1)(n2+1),开始讨论:要使n5-n被10整除,只要该式能够同时被2、5整除即可;∵该式中因式n(n+1)是连续的两个自然数,一定有一个是偶数,∴该式可以被2整除;下面讨论能否被5整除.不妨设:①n=5k,显然原式能被5整除;②n=5k+1时,则n-1=5k,显然原式能被5整除;③n=5k+2时,则n2+1=(5k+2)2+1=25k2+20k+5=5(5k2+4k+1),∴能被5整除,显然原式能被5整除;④n=5k+3时,则n2+1=(5k+3)2+1=25k2+30k+10=5(5k2+6k+2),∴能被5整除,显然原式能被5整除;⑤n=5k+4时,则n+1能被5整除;综上所述:无论n为何值,原式能被5整除.∴10|n5-n【解析】【分析】先将代数式分解因式,即n5-n=n(n+1)(n-1)(n2+1),原题等价于要使n5-n被10整除,只要该式能够同时被2、5整除即可;因为因式中n(n+1)是连续的两个自然数,一定有一个是偶数,从而可得该式可以被2整除;再来讨论能否被5整除,根据被5整除的余数分成5种情况:①n=5k,②n=5k+1,③n=5k+2,④n=5k+3,⑤n=5k+4,分析计算即可得证.13.【答案】证明:当n=43k+1(k≥1)时,∴n2+n+41=(43k+1)2+(43k+1)+41,=43(43k2+3k+1).∴是43的倍数.∵43k2+3k+1>1,∴这时n2+n+41是合数.【解析】【分析】令n=43k+1(k≥1),代入多项式,计算、化简得n=43(43k2+3k+1),从而可得式43的倍数,由43k2+3k+1>1,可得n是表示合数.14.【答案】证明:假设质数有有限多个,最大的一个质数是p;构造出正整数N=2×3×5×……×p+1显然N除以2、3、5、……、p都不能整除,有余数1;∴N要么是质数,要么包括一个大于p的质数,这与“最大的一个质数是p”矛盾;∴不存在最大的质数,假设不成立,∴自然数中有无穷多个质数.【解析】【分析】此题用反证法来证明,假设质数有有限多个,最大的一个质数是p;构造出正整数N=2×3×5×……×p+1,根据整除的性质分析,可知N要么是质数,要么包括一个大于p的质数,这与“最大的一个质数是p”矛盾;从而可得假设不成立,原命题成立.15.【答案】解:∵9个连续的自然数,∴末尾数字可能是0—9,①当末尾是0,2,4,6,8的数一定能被2整除;②当末尾是5的数一定能被5整除;∴只有末尾是1,3,7,9的数可能是质数;∴至少有4个偶数,5个连续的奇数,∵大于80的质数必为奇数(偶质数只有一个2),又∵每连续三个自然数中一定有一个是3的倍数,∴质数只可能在这5个连续的奇数中,∴质数个数不能超过4,即9个连续的自然数,都大于80.其中最多有4个质数.【解析】【分析】根据题意大于80的9个连续的自然数中末尾数字可能是0—9;根据被2或5整除的数的特性可知只有末尾是1,3,7,9的数可能是质数;即至少有4个偶数,5个连续的奇数,再根据情况分析即可得出答案.。
奥数题质数与合数问题
奥数题质数与合数问题
奥数题质数与合数问题
国际数学奥林匹克(International Mathematical Olympiads)简称IMO,是一项以数学为内容,以中学生为对象的国际性竞赛活动,至今已有30余年的.历史。
下面是店铺整理的奥数题质数与合数问题的内容,一起来看看吧。
2,3,5,7,11,…都是质数,也就是说每个数只以1和它本身为约数。
已知一个长方形的长和宽都是质数个单位,并且周长是36个单位。
问这个长方形的面积至多是多少个平方单位?
考点:合数与质数。
分析:根据周长先求出长与宽的和,再把和写成两个质数的和,两个质数的积最大者即为答案。
解答::由于长+宽是36÷2=18,
将18表示为两个质数和18=5+13=7+11,
所以长方形的面积是5×13=65或7×11=77,
故长方形的面积至多是77平方单位。
【奥数题质数与合数问题】。
质数与合数练习题(经典版)
质数与合数练习题部分A:基本概念
1.什么是质数?什么是合数?请提供示例。
2.列出前十个质数。
3.列出前十个合数。
4.质数和合数之间有什么区别?
部分B:判断题
在每个陈述后标记“对”或“错”。
5.()1是质数。
6.()2是质数。
7.()10是质数。
8.()15是合数。
9.()质数只有两个因数。
10.()12是质数。
部分C:质数判定
11.检查数字27是否是质数。
12.检查数字41是否是质数。
13.检查数字50是否是质数。
部分D:分解因式
14.将数字36分解成质因数。
15.将数字48分解成质因数。
16.将数字90分解成质因数。
部分E:质数和合数的应用
17.如果一个农场有72头牛,你如何知道这个数字是合数?
18.如果你有60个糖果,你如何知道这个数字是合数?
19.一座城市有49个公园,你如何知道这个数字是合数?
部分F:挑战题
20.证明:不存在大于5的质数是偶数。
21.证明:任何大于2的质数都不能被整除。
22.证明:合数的因数一定大于1且小于或等于自身。
部分G:实际应用
23.如果你是一名数学老师,你会如何向学生解释什么是质数和合数,并为他们提供生活中的实际例子?
24.你能提供一个质数和合数的实际应用场景吗?。
质数合数练习题及答案
质数合数练习题及答案质数和合数是数学中的基本概念,通过练习题的形式可以加深我们对这两个概念的理解。
本文将介绍一些关于质数和合数的练习题,并给出相应的答案。
练习题一:质数判断1. 13是质数还是合数?2. 50是质数还是合数?3. 97是质数还是合数?4. 100是质数还是合数?答案:1. 13是质数。
2. 50是合数。
3. 97是质数。
4. 100是合数。
解析:质数是指大于1且只能被1和本身整除的数。
13只能被1和13整除,所以是质数;50可以被2、5和10整除,不符合质数的定义,所以是合数;97只能被1和97整除,是质数;100可以被2、4、5、10、20、25、50和100整除,不符合质数的定义,所以是合数。
练习题二:质数因子1. 12的质数因子是什么?2. 36的质数因子是什么?3. 45的质数因子是什么?4. 50的质数因子是什么?答案:1. 12的质数因子是2和3。
2. 36的质数因子是2和3。
3. 45的质数因子是3和5。
4. 50的质数因子是2和5。
解析:质数因子是指能够整除该数的质数。
12可以被2和3整除,所以质数因子是2和3;36可以被2和3整除,所以质数因子是2和3;45可以被3和5整除,所以质数因子是3和5;50可以被2和5整除,所以质数因子是2和5。
练习题三:质数和合数之间的关系1. 质数和质数相乘的结果是质数还是合数?2. 质数和合数相乘的结果是质数还是合数?3. 合数和合数相乘的结果是质数还是合数?答案:1. 质数和质数相乘的结果是合数。
2. 质数和合数相乘的结果是合数。
3. 合数和合数相乘的结果是合数。
解析:质数的定义是只能被1和本身整除的数,而合数是可以被除了1和本身之外的其他数整除的数。
两个质数相乘时,除了1和本身以外没有其他因子,所以结果是合数;一个质数和一个合数相乘时,合数的质因子中一定包含质数本身,所以结果也是合数;两个合数相乘时,两个合数的质因子会相乘,不会只剩下1和本身,所以结果是合数。
七年级数学竞赛题:质数与合数
七年级数学竞赛题:质数与合数一个大于l 的自然数如果只能被1和本身整除,就叫做质数(也叫素数)如果能被l 和本身以外的自然数整除,就叫做合数,自然数1既不是质数也不是合数,叫做单位数,于是自然数可以分为三类:质数、合数和单位数.关于质数、合数有下列重要性质:1.质数有无穷多个,最小的质数是2,但不存在最大的质数,最小的合数是4;2.在所有质数中,只有2这个偶数,其余均为奇数;3.算术基本定理:任意一个大于l 的整数N 能唯一地分解成k 个质因数的乘积(不考虑质因数之问的顺序关系): ‘,2121akk a a P P P N =,这里k P P 21P 、为不同的质数,k a a a 21、为自然数. 定理说明,如果不计质因数的次序,只有一种方法可以把一个合数分解成质因数的连乘积.例1 已知三个质数a 、b 、c 满足以a+b+c+abc=99那么a c c b b a -+-+-的值等于_____________. (2002年江苏省初一年级数学竞赛题)解题思路运用质数性质,结合奇偶性分析,推出a 、b 、c 的值.例2若p 为质数,53+p 仍为质数,则75+p 为( ) (湖北省黄冈市竞赛题)(A)质数 (B)可为质数也可为合数(c)合数 (D)既不是质数也不是合数解题思路 从简单情形人手,实验、归纳与猜想.例3求这样的质数,当它加上10和14时,仍为质数. (上海市竞赛题)解题思路 由于质数的分布不规则,不妨从最小的质数开始进行实验,这样的质数是否唯一?需按剩余类加以深入讨论.例4在l ,0交替出现且以l 打头和结尾的所有整数(如101,10101,1010101……)中有多少质数?并请证明你的论断. (2001年北京市竞赛题) 解题思路 101是质数,对于,n ≥2,这串数形如位12011010101+=n A 的这串数中还有没有质数?关键是对A 进行拆分变形,运用质数合数定义判断.例5 41名运动员所穿运动衣号码是1,2,…40,41这41个自然数,问:(1)能否使这41名运动员站成一排,使得任意两个相邻运动员的号码之和是质数?(2)能否让这41名运动员站成一圈,使得任意两个相邻运动员的号码之和都是质数?若能办到,请举一例;若不能办到,请浣明理由. (北京市竞赛题) 解题思路要使相邻两数的和都是质数,显然它们只能都是奇数,运用奇偶数性质分析.A 级1.若a 、b 、c 、d 为整数,1997))((2222=++d c b a ,则______2222=+++d c b a 2在1,2,3,…n 这n 个自然数中,已知共有p 个质数,q 个合数,k 是个奇数,m 个偶数,则._________)()(=-+-k p m q .3.设a ,b 为自然数,满足1176a=3b ,则a 的最小值为_______.(“希望杯”邀请赛试题)4.已知p 是质数,并且36+p 也是质数,则4811-p 的值为_______.(北京市竞赛题)5.任意调换12345各数位上数字的位置,所得的五位数中质数的个数是( ).(A)4 (B)8 (C)12 (D)06.所有形如abcabc 的六位数,(a 、b 、c 分别是0~9这10个数之一,可以相同且a ≠O)的最大公约数是( ).(A)1001 (B)101 (C)13 (D)117.当整数n>1时,形如4n +4的数是( ).(A)质数 (B)合数 (C)合数且为偶数 (D)完全平方数8.设x 是正数,<x>表示不超过x 的质数的个数,如(5.1)=3,即不超过5.1的质数有2,3,5共3个,那么<<19>+<93>+(4)×(1)×<8>>的值是( ).(A)12 (B)11 (C)10 (D)99、是否存在两个质数,它们的和等于数1201111个?若存在,请举一例;若不存在,说明理由. 10.写出十个连续的自然数,使得个个都是合数. (上海市竞赛题)11.在黑板上写出下面的数2,3,4,…1994,甲先擦去其中的一个数,然后乙再擦去一个数,如此轮流下去,若最后剩下的两个数互质,则甲胜;若最后剩下的两个数不互质,则乙胜,你如果想胜,应当选甲还是选乙?说明理由. (五城市联赛题)B 级1.若质数m ,n 满足5m+7n=129,则m+n 的值为______.2.已知P 、q 均为质数,并且存在两个正整数m ,n 使得p=m+n,q=m ×n,则m n qp nm q p ++的值为___________.3.自然数a 、b 、c 、d 、e 都大于1,其乘积2000=abcde ,则其和a+b+c+d+e 的最大值为______,最小值为_____。
初中数学竞赛精品标准教程及练习03质数合数
初中数学竞赛精品标准教程及练习03质数合数初中数学竞赛是一项重要的学科竞赛,对学生的逻辑思维能力、问题解决能力以及数学基础知识的掌握程度进行考核。
其中,质数和合数是数论中的重要概念,理解和掌握它们的性质和特点对于解决数论相关问题至关重要。
下面是关于质数和合数的精品标准教程及练习,希望对初中生的数学竞赛备考有所帮助。
一、质数的概念及性质1.质数的定义:质数是指大于1且只能被1和本身整除的自然数。
例如,2、3、5、7、11都是质数。
2.质数的判断方法:要判断一个数是否为质数,可以尝试将它除以小于它的平方根的所有质数,如果都不能整除,则该数为质数。
3.质数的性质:质数只有1和本身两个因数。
4.质数的无穷性:质数是无穷多个。
这个证明可以通过反证法来进行推导。
二、合数的概念及性质1.合数的定义:合数是指大于1且能够被除了1和本身外的其他数整除的自然数。
例如,4、6、8、9、10都是合数。
2.合数的判断方法:要判断一个数是否为合数,可以尝试将它除以小于它的平方根的所有自然数,如果存在至少一个能够整除,则该数为合数。
3.合数的性质:合数可以有多个因数,且除了1和本身外,还有其他的因数。
4.合数的分解:合数可以被分解为多个质数的乘积。
这个分解称为质因数分解。
三、质数和合数的关系1.质数和合数是互补的关系。
一个数要么是质数,要么是合数,不可能既是质数又是合数。
2.质数可以被质数和合数整除,合数只能被合数整除。
3.两个质数的乘积一定是合数。
四、质数和合数在竞赛中的应用1.判断是否为质数或合数:在一些数论问题中,需要判断一个数是否为质数或合数,掌握质数和合数的判断方法十分重要。
2.质因数分解:在解决一些关于因数的问题时,需要对给定的数进行质因数分解,以便更好地了解其因数的性质。
3.问题求解:理解质数和合数的性质有助于解决一些数论中的问题,如最大公约数、最小公倍数、奇偶性判断等。
五、练习题目:1.请判断下列数是质数还是合数:15、17、20、23、27、292.请将下列数进行质因数分解:36、45、60、753.求任意两个相邻质数之和为100的质数。
初中数学竞赛精品标准教程及练习03质数合数
初中数学竞赛精品标准教程及练习03质数合数数学竞赛是培养学生数学思维和解决问题能力的重要途径之一、在数学竞赛的学习过程中,掌握质数和合数的性质是非常重要的,因为它们是数论中的基础知识。
以下是一份关于质数合数的精品标准教程及练习,供初中学生提升数学竞赛能力。
一、质数合数概念1.质数:指大于1且只能被1和自身整除的自然数。
2.合数:指大于1且能够被其他数整除的自然数。
3.注意:1既不是质数,也不是合数。
二、质数合数的性质1.质数的性质:(1)质数的因数只有1和它本身。
(2)任意一个整数都可以唯一地分解为质数的乘积。
(3)任意两个不同的质数的最大公因数为1(4)质数与合数之间不存在其他因数。
2.合数的性质:(1)合数可以分解为两个或两个以上的质数的乘积。
(2)合数的因数至少有1和它本身以外的数。
三、判断质数合数的方法1.筛选法:对于给定的自然数n,从2开始顺序地判断n是否能被2到√n之间的自然数整除,如果存在能整除的数,则n为合数,否则为质数。
2.循环判断法:对于给定的自然数n,如果能被2到n-1之间的任意一个数整除,则n为合数,否则为质数。
四、质数合数的应用1.分解质因数:将一个合数分解成若干个质数的乘积。
2.最大公因数和最小公倍数:利用质数和合数的性质求两个数的最大公因数和最小公倍数。
3. 素数定理:当n趋向无穷大时,质数的个数约为n/ln(n)。
五、练习题1.判断下列数是质数还是合数:11,20,31,100。
2.将360分解成质数的乘积。
3.求24和36的最大公因数和最小公倍数。
4.证明:不存在大于2的偶数是质数。
答案解析:1.11是质数,20和100是合数,31是质数。
2.360=2^3×3^2×53.24的因数有1、2、3、4、6、8、12、24,36的因数有1、2、3、4、6、9、12、18、36,最大公因数为12,最小公倍数为724.偶数必然能被2整除,所以大于2的偶数不可能只有1和自身两个因数,因此不可能是质数。
717.质数与合数-奥数精讲与测试7年级1117[宝典]
例1.已知p、q为质数,且p+q=2 005,求p qq p的值。
例2.如果三个质数之积恰好是这三个质数之和的11倍,求这三个质数。
例3.当p是不小于5的任意一个质数时,试判断24是否总能整除p2−1。
例4.求所有的正整数组(x,y,z),满足x、y、z都是质数,且x2+xy=120+z。
例5.求不能表示成两个合数之和的最大正整数。
例6.证明:存在无穷多个正整数a,使得对于一切正整数n,数N=n4+a 不是质数。
例7.对于任意的正整数n,是否存在连续的n个合数。
例8.⑴求1800的正约数的个数;⑵求恰好有10个正约数的最小正整数n。
A卷01.求所有的三位数ABC,满足A、B、C、AB、BC和ABC都是质数。
02.已知a、b、c是质数,且a+b+c=86,ab+bc+ca=971,求abc的值。
03.已知p、p+8、p+16都是质数,求它们的平方和。
04.已知p是不小于5的质数,2p+1也是质数,求证:4p+1是合数。
05.求出使p+10、p+14都是质数的所有质数p。
06.已知n是大于1的正整数,求证:n4+4是合数。
B卷01.已知自然数a使得a4−3a2+9是质数,求这个质数。
02.已知p是质数,8p2+1也是质数,求8p2−p+2的值。
03.不能写成两个奇合数之和的最大偶数是多少?04.不能用三个不同的合数之和表示的最大奇数是多少?05.⑴求2160的正约数的个数;⑵求不大于200的恰有15个正约数的所有正整数。
06.已知质数x、y、z满足xyz =5(x+y+z),求x2+y2+z2的值。
C卷01.已知p为自然数,且2p−1为质数,求证:p为质数。
02.求证:对任意自然数n,19×8n+17是合数。
03.已知p是质数,x为整数,求证:存在无穷多个正整数n,使得n2≠x2+p。
04.求证:正整数中有无穷多个质数。
05.已知n是正整数,求证:形如3n+2的质数有无穷多个。
06.已知n是正整数,n>2,求证:在n与n!之间一定有一个质数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级奥数练习3——质数和合数
班级 姓名 座号
质数,合数有下面常用的性质:
性质1、1不是质数,也不是合数;2是惟一的偶质数.
性质2、若质数p │ab ,则必有p │a 或p │b .
性质3、若正整a 、b 的积是质数p ,则必有a=p 或b=p .
性质4、算术基本定理:任意一个大于l 的整数N 能分解成K 个质因数的乘积,若不考虑质因数之间的顺序,则这种分解是惟一的,从而N 可以写成标准分解形式:
k k p p p N α
αα 2121=
其中k p p p <<21,i p 为质数,i a 为非负整数,(i =1,2,…k ).
写出100以内的所有质数并熟记.
1. (第16届希望杯竞赛题 )一个两位数的个位数字与十位数字变化位置后,所得的数比原来的数大9,这样的两位数中,质数有( ).
A.1个
B.3个
C.5个
D.6个
2. (第15届江苏省竞赛题 )已知三个不同的质数
,满足,那么a+b+c =_________
3. (第14届迎春杯初赛题)如果正整数p 、q 都是质数,并且7p +q 与pq +11也都是质数,那么p=_________
4.(第五届“华罗庚金杯”少年数学邀请赛复赛)把37拆成若干个不同的质数之和,有多少种不同的拆法?将每一种拆法所拆出的那些质数相乘,得到的乘积中,哪个最小?
5.(上海市竞赛题)求这样的质数,当它加上10和14时,仍为质数.
6. (第18届江苏省竞赛题)
(1)将1、2、3……、2004这2004个数随意排成一个数N。
求证:N一定是合数.
(2)若N是大于2的正整数,求证:与至多有一个是质数.
7.(第五届加拿大数学奥林匹克试题)如果p和p+2都是大于3的质数,那么请证明:6是
p+1的约数.
8.(2005年俄罗斯竞赛题)a和b是两个自然数,对它们有以下四个描述:①a+1能被b整除;②a=2b+5;③a+b能被3整除;④a+7b是质数.
不过这四个描述中只有三个是正确的,有一个是错误的,试求出a与b所有可能的解.
9.对任意正整数n,证明:存在连续n个正整数,它们都是合数.
练习:
1.(希望杯竞赛题)当x取1到10之间的质数时,四个式子:,,和
的值中,共有质数()个
A.6
B.9
C.12
D.16
2.(第17届五羊杯竞赛题)以下关于质数和合数的4中说法中,准确的说法总有()种.
①两个质数的和必为合数;②两个合数的和必为合数;③一个质数与一个合数的和必为合数;④一个质数与一个合数的和必为非合数.
A.3
B.2
C.1
D.0
3.(黄冈市竞赛题)若p为质数,5仍是质数,则为()
A.质数
B.可为质数也可为合数
C.合数
D.既不是质数也不是合数
4.(五羊杯竞赛题)n既不是质数,n可以分解为2个或多于2个质因数的积,每个质因数都大于10,n最小值等于_ __
5.(第15届希望杯竞赛题)已知p,q,pq+1都是质数,且,那么满足上述条件的最小质数,
6. (希望杯竞赛题)若a,b,c是1998的三个不同的质因数,且,则
7. (上海市竞赛题)写出10个连续自然数,它们个个都是合数,这10个数是_________ __________________________________________________.
8.(北京市竞赛题)若y,z均为质数,,且满足,则
1998x+5y+3z=____________
9.(第18届五羊杯竞赛题)如果A,B,C是三个质数,而且A-B=B-C=14,那么A,B,C组成的数组(A,B,C)共有________组.
10.(全国初中数学联赛题)设m是不能表示为三个互不相等的合数之和的最大整数,则m=________.
11. (五羊杯竞赛题)已知p,p+2,p+6,p+8,p+14,都是质数,则这样的质数p共有多少个?
12. (希望杯竞赛题)(1)请你写出不超过30的自然数中的质数之和是________.
(2)千位数是1的四位偶自然数共有________个.
(3)一个四位偶自然数的千位数字是1,当它分别被四个不同的质数去除时,余数也都是1,满足这些条件的所有自然数中,最大的一个是________.。