第19讲 一元一次方程 的解法(基础课程讲义例题练习含答案)

合集下载

六年级下册数学试题-小升初数学思维拓展第19讲 方程(含答案解析)

六年级下册数学试题-小升初数学思维拓展第19讲  方程(含答案解析)

小升初数学思维拓展第19讲 方程一、知识地图⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎨⎪⎧⎪⎨⎪⎩⎪⎩一元一次方程一元一次方程的解法二元一次方程一元一次方程的应用不定方程等式基本性质(基本数量关系)一元一次方程的解法一元一次方程的应用方程今有上禾三秉,中禾二秉,下禾一秉,实三十九斗;上禾二秉,中禾三秉,下禾一秉,实三十四斗;上禾一秉,中禾二秉,下禾三秉,实二十六斗,问上、中、下禾实一秉各几何?答曰:上禾一秉九斗四分斗之一,中禾一秉四斗四分斗之一,下禾一秉二斗四分斗之三。

——《九章算术》这是我国历史上一道三元一次方程组的经典名题,具有传统意义的方程概念及解法,由此可见前人在方程领域的研究和造诣。

百鸡问题今有鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一。

凡百钱买百鸡,问鸡翁母雏各几何?答曰:鸡翁四,值钱二十,鸡母十八,值钱五十四,鸡雏七十八,值钱二十六; 又答:鸡翁八,值钱四十,鸡母十一,值钱三十三,鸡雏八十一,值钱二十七; 又答:鸡翁十二,值钱六十,鸡母四,值钱十二,鸡雏八十四,值钱二十八。

术曰:鸡翁每增四,鸡母每减七,鸡雏每益三即得。

——《张丘建算经》百鸡问题是我国历史上的一道数学名题,百鸡问题标志中国对不定方程理论有了系统研究。

秦九韶的大衍求一术将不定方程与同余理论联系起来。

我国著名数学家陈景润在1978年所著的《初等数论》中也给出了百鸡问题的解法,实际上就是一个二元一次不定方程。

二、基础知识(一)等式的基本性质(1) 等式:表示相等关系的式子;如:2+3=5,A B B A ⨯=⨯,…(2) 等式基本性质1:等式两边同时加上同一个数或减去同一个数,等式性质不变; 即如果A =B ,那么A ±m =B ±m 。

(3) 等式基本性质2:等式两边同时乘以同一个数或除以同一个不等于零的数,等式性质不变;即如果A =B ,那么Am =Bm 或A B n n =(m 、n 为两个数,n ≠0)。

(二)一元一次方程(1) 方程:含有未知数的等式;如:37x +=,2113a b +=,326255p q +=,… (2) 一元一次方程:含有一个未知数,并且未知数的指数是1的方程;如:37x +=,71539q +=,214682m +=,… (3) 一元一次方程的解:能使一元一次方程左右两边相等的未知数的值;如:4x =是方程37x +=的解, 247q =是方程71539q +=的解,… (4) 解一元一次方程的步骤:去分母、去括号、移项、合并同类项、化未知数系数为1。

一元一次方程解法及例题

一元一次方程解法及例题

一)知识要点:1.一元一次方程的概念:只含有一个未知数,并且未知数的次数是1,系数不为0的方程叫做一元一次方程.一元一次方程的标准形式是:ax+b=0 (其中x是未知数,a,b是已知数,且a≠0),它的解是x=- .我们判断一个方程是不是一元一次方程要看它化简后的最简形式是不是标准形式ax+b=0 (a≠0).例如方程3x2+5=8x+3x2,化简成8x-5=0是一元一次方程;而方程4x-7=3x-7+x表面上看有一个未知数x,且x的次数是一次,但化简后为0x=0,不是一元一次方程.2.解一元一次方程的一般步骤:(1)方程含有分母时要先去分母,使过程简便,具体做法为:在方程的两边都乘以各分母的最小公倍数.要注意不要漏掉不含分母的项,如方程 x+ =3,去分母得10x+3=3就错了,因为方程右边忘记乘以6,造成错误.(2)去括号:按照去括号法则先去小括号,再去中括号,最后去大括号.特别注意括号前是负号时,去掉负号和括号,括号里的各项都要变号.括号前有数字因数时要注意使用分配律.(3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边.注意移项要变号.(4)合并项:把方程化成最简形式ax=b (a≠0).(5)把未知数的系数化成1:在方程两边都除以未知数的系数a,得到方程的解x= .解方程时上述步骤有些可能用不到,并且也不一定按照上述顺序,要根据方程的具体形式灵活安排求解步骤.(二)例题:例1.解方程 (x-5)=3- (x-5)分析:按常规此方程应先去分母,去括号,但发现方程左右两边都含有x-5项,所以可以把它们看作一个整体,移项,合并,使运算简便.移项得: (x-5)+ (x-5)=3合并得:x-5=3∴ x=8.例2.解方程2x-3(x+1)/6 =4/3 -(x+2)/3因为方程含有分母,应先去分母.去分母:12x-3(x+1)=8-2(x+2) (注意每一项都要乘以6)去括号:12x-3x-3=8-2x-4 (注意分配律及去括号法则)移项:12x-3x+2x=8-4+3合并:11x=7系数化成1:x=7/11 .例3. 1/9{1/7[1/5((x+2)/3 +4)+6]+8}=1解法1:从外向里逐渐去括号,展开求去大括号得: 1/7[1/5((x+2)/3+4)+6]+8=9去中括号得: 1/5((x+2)/3+4)+6+56=63整理得: 1/5((x+2)/3+4)=1去小括号得: (x+2)/3+4=5去分母得:x+2+12=15移项,合并得:x=1.解一元一次方程并不一定要严格按照前面说的步骤一步一步来,可以按照具体的题目灵活运用方法.例4.解方程 3/5[ 5/3( x/4-1)-2]-2x=3分析:此方程含括号,因为× =1,所以先去中括号简便.去中括号:( x/4-1)-6/5-2x=3去小括号:x/4 -1-6/5-2x=3去分母:5x-20-24-40x=60移项:5x-40x=60+44合并项:-35x=104系数化成1得:x=-104/35 .例5.解方程 0.6(4x+9)/0.1-0.1(3-2x)/0.01-15(x-5)=0分析:本方程分子、分母中都含有小数,如果直接去分母,会使运算繁琐.但如果利用分数的性质,即分子分母同乘以不等于零的数分数的值不变的性质,使方程左边前两项分子、分母中的小数都化成整数,就能使运算简便.利用分数的性质(即左边第一项分子、分母同乘以10,第二项分子、分母同乘以100),原方程可化为:6(4x+9)-10(3-2x)-15(x-5)=0去分母:6(4x+9)-10(3-2x)-15(x-5)=0去括号:24x+54-30+20x-15x+75=0移项得:24x+20x-15x=-54+30-75合并得:29x=-99系数化成1:x=-99/29 .例6.在公式S= (a+b)h中,已知:a=5, S=44, h=8,求b的值.分析:这是梯形面积公式,四个量S,a, b, h中知道任意3个量的值,都可以求出第四个量的值.解法1:把a=5, S=44, h=8代入公式得44= (5+b)×8 这是关于b的一元一次方程化简得:b+5=11移项,合并得:b=6.解法2:先把b看作未知数,把其它量都看作已知数,将公式变形,用其它三个量来表示b,然后再代入已知数的值求出b.S= (a+b)h去分母:2S=(a+b)h去括号:2S=ah+bh移项:2S-ah=bh 即bh=2S-ah系数化成1:∵ h≠0,∴ b= -a (一定不要忘记条件h≠0)当a=5, S=44,h=8时,b= -5=11-5=6∴ b=6.例7.当x=2时,式子x2+bx+4的值为0,求当x=3时,x2+bx+4的值.分析:这仍是一元一次方程的应用的例子,要求x2+bx+4的值,先求出b的值,最后求当x=3时,x2+bx+4的值.∵当x=2时,x2+bx+4的值为0,∴ 4+2b+4=0 (得到关于b的一元一次方程)解这个方程得2b=-8,∴ b=-4,∴ x2+bx+4为x2-4x+4,当x=3时,x2-4x+4=32-4×3+4=9-12+4=1,∴当x=3时,这个式子值为1.例8.解绝对值方程:(1) |2x-1|=8 (2) =4 (3) =4(4) |3x-1|+9=5 (5) |1-|x||=2说明:解绝对值方程也是一元一次方程的应用,它的解法主要是:①先把|ax+b|看作一个整体,把绝对值方程看作是以|ax+b|为未知数的一元一次方程,变形成|ax+b|=c的形式;②对|ax+b|=c进行讨论,当c>0时,正确去掉绝对值,得到ax+b=c或ax+b=-c两个一元一次方程,从而求出x的值;当c=0时,得到ax+b=0一个一元一次方程,从而求出x;当c。

(完整word)七年级数学一元一次方程(教师讲义带答案)

(完整word)七年级数学一元一次方程(教师讲义带答案)

第三章 一元一次方程(韩老师)本章知识网络结构图3.1一元一次方程的概念和性质【本讲主要内容】1. 等式与方程表示相等关系的式子叫做等式。

含有未知数的等式叫做方程。

可见方程必须具备两个条件:一是必须含有未知数,二是必须是一个等式。

2. 等式的性质等式的性质1:等式两边加(减)同一个数(式子)。

结果仍相等。

等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

应用等式的性质对等式进行变形时,必须注意“同”字。

要对等式进行变形,就要保证等式两边始终相等,也就是说,运用等式的性质时,等式两边必须同时进行变形。

3. 一元一次方程的概念我们把含有一个未知数,并且未知数的指数都是1的方程叫做一元一次方程。

一元一次方程的最简形式是b ax =(≠a 0)。

方程中的未知数叫做“元”,一个方程中有几个未知数,就称这个方程为几元方程。

方程中含未知数的项的最高次数叫做方程的次数,这一点和多项式的次数有类似的地方。

例如27x 3-=-是一元一次方程,4y 4y 2y 2-=+是一元二次方程,0y x 3=-是二元一次方程,6y 4x 32-=+是二元二次方程。

4. 方程的解与解方程方程是一个有待研究的等式,即研究这个等式中的未知数取什么值时等式才成立。

解方程就是确定使方程中等号左右两边相等的未知数的值,我们把这样的未知数的值叫做方程的解。

这样的值可能有一个或多个,也可能没有,所以方程可能有一个解、多个解,也可能无解。

如方程3x-5=4x+3只有一个解x=-8。

方程2x-7=5x-(3x+7)有无数个解,而方程2x-3=2x+2无解。

求方程的解或判定方程无解的过程叫做解方程。

利用等式的性质,对方程进行一系列的变形,就可以求出方程的解。

5. 思想方法(本单元常用到的数学思想方法小结)⑴建模思想:通过对实际问题中的数量关系的分析,抽象成数学模型,建立一元一次方程的思想.⑵方程思想:用方程解决实际问题的思想就是方程思想.⑶化归思想:解一元一次方程的过程,实质上就是利用去分母、去括号、移项、合并同类项、未知数的系数化为1等各种同解变形,不断地用新的更简单的方程来代替原来的方程,最后逐步把方程转化为x=a 的形式. 体现了化“未知”为“已知”的化归思想.⑷数形结合思想:在列方程解决问题时,借助于线段示意图和图表等来分析数量关系,使问题中的数量关系很直观地展示出来,体现了数形结合的优越性.⑸分类思想:在解含字母系数的方程和含绝对值符号的方程过程中往往需要分类讨论,在解有关方案设计的实际问题的过程中往往也要注意分类思想在过程中的运用.【典型例题】例1. 已知方程2x m -3+3x=5是一元一次方程,则m= .解析:由一元一次方程的定义可知m -3=1,解得m=4.或m -3=0,解得m=3所以m=4或m=3警示:很多同学做到这种题型时就想到指数是1,从而写成m=1,这里一定要注意x 的指数是(m -3).例2. 已知2x =-是方程ax 2-(2a -3)x+5=0的解,求a 的值.解析:∵x=-2是方程ax 2-(2a -3)x+5=0的解∴将x=-2代入方程,得 a·(-2)2-(2a -3)·(-2)+5=0化简,得 4a+4a -6+5=0∴ a=81 点拨:要想解决这道题目,应该从方程的解的定义入手,方程的解就是使方程左右两边值相等的未知数的值,这样把x=-2代入方程,然后再解关于a 的一元一次方程就可以例3.已知a 、b 为定值,无论k 为何值,关于x 的一元一次方程26bk x 3a kx 3=--+的解总是1,试求a 、b 的值。

人教版七年级上册数学 一元一次方程(基础篇)(Word版 含解析)

人教版七年级上册数学 一元一次方程(基础篇)(Word版 含解析)

一、初一数学一元一次方程解答题压轴题精选(难)1.如图,数轴上 A、B 两点所对应的数分别是 a 和 b,且(a+5)2+|b﹣7|=0.(1)求 a,b;A、B 两点之间的距离.(2)有一动点 P 从点 A 出发第一次向左运动 1 个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照如此规律不断地左右运动,当运动到 2019次时,求点P所对应的数.(3)在(2)的条件下,点P在某次运动时恰好到达某一个位置,使点P到点B的距离是点 P 到点 A 的距离的3倍?请直接写出此时点 P所对应的数,并分别写出是第几次运动.【答案】(1)解:∵(a+5)2+|b﹣7|=0,∴a+5=0,b﹣7=0,∴a=﹣5,b=7;∴A、B两点之间的距离=|﹣5|+7=12;(2)解:设向左运动记为负数,向右运动记为正数,依题意得:﹣5﹣1+2﹣3+4﹣5+6﹣7+…+2018﹣2019=﹣5+1009﹣2019=﹣1015.答:点P所对应的数为﹣1015(3)解:设点P对应的有理数的值为x,①当点P在点A的左侧时:PA=﹣5﹣x,PB=7﹣x,依题意得:7﹣x=3(﹣5﹣x),解得:x=﹣11;②当点P在点A和点B之间时:PA=x﹣(﹣5)=x+5,PB=7﹣x,依题意得:7﹣x=3(x+5),解得:x=﹣2;③当点P在点B的右侧时:PA=x﹣(﹣5)=x+5,PB=x﹣7,依题意得:x﹣7=3(x+5),解得:x=﹣11,这与点P在点B的右侧(即 x>7)矛盾,故舍去.综上所述,点P所对应的有理数分别是﹣11和﹣2.所以﹣11和﹣2分别是点P运动了第11次和第6次到达的位置.【解析】【分析】(1)由绝对值和平方的非负性可得a与b的值,相减得两点间的距离。

(2)设向左运动记为负数,向右运动记为正数,并在-5的基础上把得到的数据相加即可。

(3)设点P对应的有理数的值为x,分别表示PA和PB的长,列方程求解即可。

一元一次方程的解法及其应用(含答案)初中数学

一元一次方程的解法及其应用(含答案)初中数学

一元一次方程的解法及其应用[教学目标]1. 经历从具体问题中的数量相等关系,列出方程的过程,体会并认识到方程是刻画现实世界的一个有效的数学模型。

2. 了解方程、一元一次方程以及方程的解等基本概念,了解方程的基本变形及其在解方程中的作用。

3. 会解一元一次方程,并经历和体会解方程中“转化”的过程和思想,了解一元一次方程解法的一般步骤,并能正确、灵活运用。

4. 会根据具体问题中的数量关系列出一元一次方程并求解,能根据问题的实际意义检验所得结果是否合理。

5. 通过实践与探索过程,体会数学建模思想,提高分析和解决实际问题的能力。

【典型例题】例1. 已知()||m x m +=-320032是关于x 的一元一次方程,求m 的值。

解:由一元一次方程的定义可知: ||m m -=+2130,且≠由||||m m m -===2133,得,则± 又由m m +-303≠,得≠ ∴m =3小结:方程ax b a a b +=00()≠,且、为已知数是关于x 的一元一次方程,这里包含有(1)未知数只有一个,且未知数的最高次数是“1”。

(2)未知数的系数合并后不能为零。

(3)它必须是等式。

例2. 已知x =23是一元一次方程334325()m x x m-+=的解,则m 的值是多少? 解:因为x =23是方程334325()m x x m-+=的解,所以3342332235()m m -+=××即33215m m -+=解得m =-14小结:方程的解是指满足方程两边相等的未知数的值,x =23是原方程的解,则把原方程中的x 换成23后等式仍然成立。

从而可以得到另一个关于m 的方程求解。

例3. 解下列方程:(1)5263x x +=-(2)0408613...x x -=- (3)30%70%(440%x x x ++=-)(4)32234122[()]xx ---= (5)97352775x x +=-(6)21431233436()()()x x x -+-=-+ (7)x x +--=-40230516...解:(1)5263x x +=-移项得: 2365+=-x x 合并同类项得:5=x ∴x =5(2)由方程0408613...x x -=-两边同时乘以10得: 486013x x -=-413608x x +=+ 1768x = x =4(3)30%70%(440%x x x ++=-) 方程两边都乘以100得: 3070440x x x ++=-()3744x x x ++=-() 372840x x x +++= 1428x =- x =-2(4)32234122[()]xx ---=去中括号得:()xx 4132---=xx 4132---= x x --=1648 -=324x x =-8 (5)97352775x x +=-97273575x x -=--x =-2(6)21431233436()()()x x x -+-=-+ 21431233436()()()x x x -----=()()x ---=321412346436()x -=4126x -= 418x =x =92(7)x x +--=-40230516...545022320516().()..x x +--=-××5202616x x +-+=-. 3276x =-. x =-92.例 4. 如果关于x 的方程23523331432x x n x n n -=--=+-与()的解相同,求()n -3582的值。

解一元一次方程(讲义)(含答案)

解一元一次方程(讲义)(含答案)

解一元一次方程➢ 课前预习1. 含有_______的_______叫做方程.2. 等式的基本性质性质1:等式两边同时加上(或减去)_________,所得结果仍是等式.性质2:等式两边同时乘___________(或_____________________),所得结果仍是等式.3. 已知a ,b ,x ,y 都是未知数,给出下列式子:①21x +;②325+=;③231x +≠;④321a +=;⑤531a b +=;⑥23x y =;⑦251x x =+.其中是方程的有_________________.(填序号)4. 解下列方程:(1)192x -=; (2)36248a +=.➢ 知识点睛1. 一元一次方程的定义:只含有__________ ,______________,等号两边都是_______的方程叫做一元一次方程.2. 使方程中等号左右两边________的___________叫做方程的解.3. 等式的基本性质:①等式两边加(或减)同一个__________结果仍___________;②等式两边乘同一个数,或除以同一个_________的数,结果仍___________.4. 解方程的五个步骤:①______________;②______________;③_____________;④______________;⑤_______________.➢ 精讲精练1. 下列各式中,是一元一次方程的为_________(填序号).①210x +=;②3x -5y =1;③21x x +=;④3+7=10.2. 若(1)6aa x -=-是关于x 的一元一次方程,则a =______.3. 如果x =2是方程5ax =的解,那么a =__________.4. 解下列方程:(1)1036x x +=-;解:移项,得合并同类项,得系数化为1,得(2)3653x x x --=+;(3)2(10)52(1)x x x x -+=+-;解:去括号,得移项,得合并同类项,得系数化为1,得(4)37(1)32(3)x x x --=-+;(5)15233 442x x+=-;解:去分母,得移项,得合并同类项,得系数化为1,得(6)111 3312x x+=-;(7)11051 2442x xx x+--=+;解:去分母,得去括号,得移项,得合并同类项,得系数化为1,得(8)1511 36x x+--=;(9)1337y y --=;(10)14126110312--=+--x x x ;(11)4 1.5 1.250830.50.12x x x ----=+; 解:原方程可化为 去分母,得去括号,得移项,得合并同类项,得系数化为1,得(12)0.89 1.33511.20.20.3x x x --+-=.5. m 为何值时,代数式3152--m m 的值与代数式27m -的值的和等于5?【参考答案】➢ 课前预习1. 未知数 等式2. 同一个数 同一个数 除以同一个不为0的数3. ④⑤⑥⑦4. (1)21x = (2)6a =➢ 知识点睛1. 一个未知数 未知数的次数都是1 整式2. 相等 未知数的值3. 数(或式子),相等不为0,相等4. 去分母 去括号 移项 合并同类项 系数化为1 ➢ 精讲精练1. ①2. -13. 2.54. (1)8x =;(2)3x =-; (3)43x =-; (4)5x =; (5)8x =;(6)58x =; (7)43x =-; (8)1x =-; (9)47y =;(10)12x =; (11)2x =-;(12)1x =-. 5. 7m =-。

一元一次方程的解法(附练习和答案)

一元一次方程的解法(附练习和答案)

一元一次方程的解法(附练习和答案)一元一次方程的三个特点:(1)该方程为整式方程。

(2)该方程有且只含有一个未知数。

(3)该方程中未知数的最高次数是1。

【解法步骤】:一、去分母做法:在方程两边各项都乘以各分母的最小公倍数;依据:等式的性质二二、去括号一般先去小括号,再去中括号,最后去大括号,可根据乘法分配律(记住如括号外有减号或除号的话一定要变号)依据:乘法分配律三、移项做法:把方程中含有未知数的项都移到方程的一边(一般是含有未知数的项移到方程左边,而把常数项移到右边)依据:等式的性质一四、合并同类项做法:把方程化成ax=b(a≠0)的形式;依据:乘法分配律(逆用乘法分配律)五、系数化为1做法:在方程两边都除以未知数的系数a,得到方程的解x=b/a。

依据:等式的性质二.附:一元一次方程全章综合测试(含答案)(时间90分钟,满分100分)一、填空题.(每小题3分,共24分)1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.2.若x=-1是方程2x-3a=7的解,则a=_______.3.当x=______时,代数式x-1和的值互为相反数.4.已知x的与x的3倍的和比x的2倍少6,列出方程为________.5.在方程4x+3y=1中,用x的代数式表示y,则y=________.6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.7.已知三个连续的偶数的和为60,则这三个数是________.8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,•则需________天完成.二、选择题.(每小题3分,共30分)9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为().A.0 B.1 C.-2 D.-10.方程│3x│=18的解的情况是().A.有一个解是6 B.有两个解,是±6C.无解D.有无数个解11.若方程2ax-3=5x+b无解,则a,b应满足().A.a≠,b≠3 B.a= ,b=-3C.a≠,b=-3 D.a= ,b≠-312.把方程的分母化为整数后的方程是().13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,•两人同地、同时、同向起跑,t分钟后第一次相遇,t等于().A.10分B.15分C.20分D.30分14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额().A.增加10% B.减少10% C.不增也不减D.减少1%15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=(•)厘米.A.1 B.5 C.3 D.416.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是().A.从甲组调12人去乙组B.从乙组调4人去甲组C.从乙组调12人去甲组D.从甲组调12人去乙组,或从乙组调4人去甲组17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,•一个队打了14场比赛,负了5场,共得19分,那么这个队胜了()场.A.3 B.4 C.5 D.618.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?()A.3个B.4个C.5个D.6个三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)19.解方程:-9.5.20.解方程:(x-1)- (3x+2)= - (x-1).21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,•这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.•已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.23.据了解,火车票价按“”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:车站名A B C D E F G H各站至H站里程数(米)1500 1130 910 622 402 219 72 0例如:要确定从B站至E站火车票价,其票价为=87.36≈87(元).(1)求A站至F站的火车票价(结果精确到1元).(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员:•“我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).24.某公园的门票价格规定如下表:购票人数1~50人51~100人100人以上票价5元4.5元4元某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?(2)两班各有多少名学生?(提示:本题应分情况讨论)答案:一、1.32.-3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)3.(点拨:解方程x-1=- ,得x= )4.x+3x=2x-6 5.y= - x6.525 (点拨:设标价为x元,则=5%,解得x=525元)7.18,20,228.4 [点拨:设需x天完成,则x(+ )=1,解得x=4]二、9.D10.B (点拨:用分类讨论法:当x≥0时,3x=18,∴x=6当x100∴每张门票按4元收费的总票额为103×4=412(元)可节省486-412=74(元)(2)∵甲、乙两班共103人,甲班人数>乙班人数∴甲班多于50人,乙班有两种情形:①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得5x+4.5(103-x)=486解得x=45,∴103-45=58(人)即甲班有58人,乙班有45人.②若乙班超过50人,设乙班x人,则甲班有(103-x)人,根据题意,得4.5x+4.5(103-x)=486∵此等式不成立,∴这种情况不存在.故甲班为58人,乙班为45人.。

【精选】人教版七年级上册数学 一元一次方程(基础篇)(Word版 含解析)

【精选】人教版七年级上册数学 一元一次方程(基础篇)(Word版 含解析)

一、初一数学一元一次方程解答题压轴题精选(难)1.如图,已知点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+3|+(b﹣2)2=0.(1)求A、B两点的对应的数a、b;(2)点C在数轴上对应的数为x,且x是方程2x+1= x﹣8的解.①求线段BC的长;②在数轴上是否存在点P,使PA+PB=BC?求出点P对应的数;若不存在,说明理由.【答案】(1)解:∵|a+3|+(b﹣2)2=0,∴a+3=0,b﹣2=0,解得,a=﹣3,b=2,即点A表示的数是﹣3,点B表示的数是2 。

(2)解:①2x+1= x﹣8解得x=﹣6,∴BC=2﹣(﹣6)=8即线段BC的长为8;②存在点P,使PA+PB=BC理由如下:设点P的表示的数为m,则|m﹣(﹣3)|+|m﹣2|=8,∴|m+3|+|m﹣2|=8,当m>2时,解得 m=3.5,当﹣3<m<2时,无解当x<﹣3时,解得m=﹣4.5,即点P对应的数是3.5或﹣4.5【解析】【分析】(1)根据绝对值及平方的非负性,几个非负数的和为零则这几个数都为零从而得出解方程组得出a,b的值,从而得出A,B两点表示的数;(2)①解方程2x+1= x﹣8 ,得出x的值,从而得到C点的坐标,根据两点间的距离得出BC的长度;②存在点P,使PA+PB=BC理由如下:设点P的表示的数为m,根据两点间的距离公式列出方程|m﹣(﹣3)|+|m﹣2|=8,然后分类讨论:当m>2时,解得m=3.5,当﹣3<m<2时,无解,当x<﹣3时,解得m=﹣4.5,即点P对应的数是3.5或﹣4.5 。

2.用“ ”规定一种新运算:对于任意有理数 a 和b,规定.如:.(1)求的值;(2)若=32,求的值;(3)若,(其中为有理数),试比较m、n的大小.【答案】(1)解:∵∴ =(2)解:∵=32,∴可列方程为;解方程得:x=1(3)解:∵ = ,;∴;∴【解析】【分析】(1)利用规定的运算方法直接代入计算即可;(2)利用规定的运算方法得出方程,求得方程的解即可;(3)利用规定的运算方法得出m、n,再进一步作差比较即可.3.约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:如图1,即4+3=7,观察图2,求:(1)用含x的式子分别表示m和n;(2)当y=-7时,求n的值。

第二节 一元一次方程的解法(含答案)...七年级数学 学而思

第二节  一元一次方程的解法(含答案)...七年级数学 学而思

第二节 一元一次方程的解法1.一元一次方程的基本解法去分母、去括号、移项、合并同类项、x 项系数化为1.注:①去分母时,方程两边要同时乘以分母的最小公倍数,常数项不要漏乘;②去括号时,括号前的系数要与括号里的每一项都要相乘;③移项的时候要变号;④方程的解的形式要写成x 在等号左边的形式. 2.解一元一次方程的技巧小数化为整数、整体思想、裂项、凑项. 3.含绝对值的一元方程运用分类讨论法去绝对值,转化成一元一次方程后,再求解. 4.求含参方程的解的情况对原方程整理后,可化为ax =b (a 和b 为参数,x 为未知数)的形式.求此类方程的解时需要对a 和b 的取值分类讨论. 5.同解方程两个方程的解相同的方程. 6.整数解方程解为整数的方程.1.解一元一次方程的技巧(1)整体思想:方程中重复出现内容相同的括号时,可考虑将括号当成整体;(2)小数化整数:方程中,若分数的分子或分母中有小数出现,则利用分数的性质将分子分母同时扩大若干倍使分子或分母化为整数后再计算;(3)若方程中出现明显的裂项法的特征,则考虑裂项后消项,把方程化为简单形式后再求方程的解. 2.求含参方程的解的情况(1)先把方程整理成b ax =的形式; (2)分类讨论:①当0=/a 时,,abx =原方程有唯一解;②当0=a 且0=b 时.原方程有无数解: ③当a 0=且,0=/b 原方程无解. 3.同解方程问题(1)普通方程和含参方程的解相同:①解出普通方程的解;②将普通方程的解代入含参方程中; ③求出参数值;(2)两个含参方程的解相同:①将其中一个方程的解用参数表示出来;②将①中的解代入另一个方程中,消去未知数; ③求出参数值. 4.方程的 整数解问题①将方程整理成b ax =的形式; ②解方程,得⋅=ab x ③求出满足条件的参数值,常用枚举法或分离常数法.例1.解方程:⋅-=--05.035.22.04x x检测1.(四川雁江区期末)解方程:.2.15.023.01=+--x x 例2.解方程:.2016201720161262=⨯++++xx x x ΛΛ检测2.解方程:⋅=⨯++⨯+⨯+⨯2019120192017755331x x x x ΛΛ 例3.(广东普宁市期末)阅读下列解方程的过程,并完成(1)(2)小题的解答.解方程:.2|1|=-x解:当,01<-x 即1<x 时,原方程可化为:,2)1(=--x 解得,1-=x当≥-1x ,0即1≥x 时,原方程可化为:,21=-x 解得,3=x 综上所述,方程2|1|=-x 的解为1-=x 或.3=x (1)解方程:;8|32|=+x (2)解方程:.1|1||32|=--+x x检测3.解方程:.1|21|=--x x例4.(1)已知关于x 的方程)2(2)1(2--=-+m m x 的解比方程1)1(41)1(5+-=-+x x 的解大2,求m 的值;(2)已知方程1324+=+x m x 和方程1623+=+x m x 的解相同. ①求m 的值; ②求20202019)572()2(-⋅+m m 的值.检测4.(湖北黄冈期末)如果方程22834+-=--x x 的解与方程126)13(4-+=+-a x a x 的解相同,求式子a a 1-的值.例5.已知关于x 的方程b x ax -=+56有无数个解,试求b a +2的值.检测5.讨论关于x 的方程b x x a +-=-12的解的情况,其中a ,b 为已知数.例6.已知关于x 的方程),2(2)1(--=+x k x k 求当k 是取什么整数值时,方程的解是整数.检测6.(北京海淀区期末)已知关于x 的方程x kx -=7有正整数解,则整数k 的值为 例7.我们规定,若关于x 的一元一次方程b ax =的解为a b -则称该方程为定解方程,例如:293=x 的解为,23329=-则该方程293=x 就是定解方程.请根据上边规定解下列问题: (1)若x 的一元一次方程m x =2是定解方程,则=m(2)若x 的一元一次方程a ab x +=2是定解方程,它的解为a ,则=a (3)若x 的一元一次方程m mn x +=2和n mn x +=-2是定解方程,求代数式]2)[(21])[(3)24(222n m mn m m mn m ++-++++-的值,检测7.(福建永春县期末)对于两个不相等的有理数a ,b ,我们规定符号},max{b a 表示a ,b 中的较大值,如:,4}4,2max{=按照这个规定解决下列问题: =--}2,3max{)1((2)方程23},max{+=-x x x 的解为第二节 一元一次方程的解法(建议用时 35分钟)实战演练1.(1)(湖南株洲中考)在解方程21331+=+-x x x 时,方程两边同时乘以6,去分母后,正确的是( ) )13(3612.+=+-x x x A )13(36)1(2.+=+-x x x B )13(3)1(2.C +=+-x x x )1(3)1.(+=+-x x x D(2)(四川富顺县模拟)下列解方程过程中,变形正确的是( )A .由312=-x 得132-=xB .由2.11.01314++=+x x 得12110314++=+x x C .由7675=-x 得7675-=xD.由123=-xx 得632=-x x2.已知,1=/a 则关于x 的方程a x a -=-1)1(的解是( )0.=x A 1.=x B 1.-=x C D .无解3.(山东滕州市期末)规定一种计算法则为,c b d a db ca ⨯-⨯=如--⨯=-)2(12201,202-=⨯依此法则计算2423-=-x 中的x 值为4.a .b 互为相反数,c ,d 互为倒数,则关于x 的方程02)1(3)(2=--++x x cd x b a 的解为=x 5.马小哈在解一元一次方程923)x (+=-•x 时,一不小心将墨水泼在作业本上了,其中未知数x 前的系数看不清了,他便问邻桌,邻桌不愿意告诉他,并用手遮住解题过程,但邻桌的最后一步“所以,原方程的解为x=-2”(邻桌的答案是正确的)露在手外被马小哈看到了,马小哈由此就知道了被墨水遮住的系数,请你帮马小哈算一算,被墨水遮住的系数是6.已知关于x 的方程439+=-kx x 有整数解,那么满足条件的整数k 有 个 7.(四川岳池县期末)解方程:.14126110312-+=+--x x x 8.解方程:.02}2]2)231(31[31{31=----x9.解方程:⋅+=-++03.002.001.0355.09.05.0xx x10.已知方程,21)20191(541=-+x 求代数式)20191(203-+x 的值.11.(江苏东台市期末)我们定义一种新运算:ab b a b a +-=2*(等号右边为通常意义的运算):(1)计算:)3(*2-的值;(2)解方程:.*21*3x x =12.解方程:.2020202032132121=+++++++++++ΛΛx x x x 13.(山东牡丹区期末)阅读下面的解题过程:解方程:.2|3|=+x解:当03≥+x 时,原方程可化成为,23=+x 解得,1-=x 经检验1-=x 是方程的解;当,03<+x 原方程可化为,,2)3(=+-x 解得,5-=x 经检验5-=x 是方程的解.所以原方程的解是.5,1-=-=x x 解答下面的两个问题: (1)解方程:;04|23|=--x(2)探究:当a 为何值时,方程,|2|a x =-①无解;②只有一个解;③有两个解.14.当m 为何值时,关于x 的方程524+=-x m x 的解比1)2(3)(2--=-x m x 的解小2. 15.(湖南祁阳县期末)方程0)1(32=+-x 的解与关于x 的方程x k xk 2232=--+的解互为倒数,求k 的值. 16.已知:关于x 的方程b x a x a 3)5()1(2+-=-有无数多解,求a ,b 的值 17.解方程:.121115236362-=---xx x拓展创新18.若a ,b ,c 是正数,解方程:.3=--+--+--bac x a c b x c b a x 拓展1.若a ,b ,c 是正数,解方程:⋅++=-+-+-)111(222Cb a b cab xa bc a x c abc x拓展2.若a ,b ,c ,d 是正数且,1=abcd 解方程:⋅+++=+++)1111(||||||||2222dC b a d x abc b x acd a x bcd c x abd极限挑战19.若,1=abc 解方程:.1121212=++++++++c ca cxb bc bx a ab ax课堂答案培优答案11。

一元一次方程的解(含答案)

一元一次方程的解(含答案)

一元一次方程的解一.解答题(共10小题)1.已知关于x 的方程3(x −1)=3m −6与2x −5=−1的解互为相反数,求(m +12)3的值.2.已知关于x 的方程2(x +1)−m =−m−22的解比方程5(x −1)−1=4(x −1)+1的解大2. (1)求第二个方程的解; (2)求m 的值.3.已知关于x 的方程2x −a =1与方程2x−12=x+a 3−a 的解的和为114,求a 的值.4.如果方程5(x −3)=4x −10的解与方程4x −(3a +1)=6x +2a −1的解互为相反数,求a 的值.5.已知关于x的方程2(x+1)−m=−2(m−2)的解比方程5(x+1)−1=4(x−1)+1的解大2,求m的值.6.已知关于x的方程3x+a=0的解比方程2x−3=x+5的解大2,求a值.7.方程x2+m3=x−4与方程12(x−16)=−6的解互为相反数,求m的值.8.m为何值时,关于x的方程4x−m=2x+5的解比2(x﹣m)=3(x−2)−1的解小2.9.求k为何值时,关于x的方程34+8x=7k+6x的解比关于x的方程x−12+1=x3的解大3.10.当m为何值时,关于x的方程5m+3x=1+x的解比关于x的方程2x+m= 5m的解大2?一元一次方程的解参考答案与试题解析一.解答题(共10小题)1.已知关于x的方程3(x﹣1)=3m﹣6与2x﹣5=﹣1的解互为相反数,求(m+)3的值.【解答】解:解方程2x﹣5=﹣1得:x=2,∵关于x的方程3(x﹣1)=3m﹣6与2x﹣5=﹣1的解互为相反数,∴把x=﹣2代入方程3(x﹣1)=3m﹣6得:m=﹣1,∴(m+)3=﹣.2.已知关于x的方程2(x+1)﹣m=﹣的解比方程5(x﹣1)﹣1=4(x﹣1)+1的解大2.(1)求第二个方程的解;(2)求m的值.【解答】解:(1)5(x﹣1)﹣1=4(x﹣1)+1,5x﹣5﹣1=4x﹣4+1,5x﹣4x=﹣4+1+1+5,x=3;(2)由题意得:方程2(x+1)﹣m=﹣的解为x=3+2=5,把x=5代入方程2(x+1)﹣m=﹣得:2(5+1)﹣m=﹣,12﹣m=﹣,m=22.3.已知关于x的方程2x﹣a=1与方程=﹣a的解的和为,求a的值.【解答】解:解2x﹣a=1得x=,解=﹣a,得x=.由题知+=,解得a=﹣3.4.如果方程5(x﹣3)=4x﹣10的解与方程4x﹣(3a+1)=6x+2a﹣1的解互为相反数,求a的值.【解答】解:解方程5(x﹣3)=4x﹣10得x=5,解方程4x﹣(3a+1)=6x+2a﹣1得x=﹣a,∴﹣a=﹣5,∴a=2,5.已知关于x的方程2(x+1)﹣m=﹣2(m﹣2)的解比方程5(x+1)﹣1=4(x ﹣1)+1的解大2,求m的值.【解答】解:5(x+1)﹣1=4(x﹣1)+1,解得x=﹣7,∵方程2(x+1)﹣m=﹣2(m﹣2)的解比方程5(x+1)﹣1=4(x﹣1)+1的解大2,∴x=﹣5,把x=﹣5代入2(x+1)﹣m=﹣2(m﹣2)中得:m=12.6.已知关于x的方程3x+a=0的解比方程2x﹣3=x+5的解大2,求a值.【解答】解:方程2x﹣3=x+5,移项合并得:x=8,把x=10代入3x+a=0中得:30+a=0,解得:a=﹣30.7.方程+=x﹣4与方程(x﹣16)=﹣6的解互为相反数,求m的值.【解答】解:解方程(x﹣16)=﹣6,解得x=4,把x=﹣4代入+=x﹣4得﹣2+=﹣4﹣4,解得:m=﹣18.8.m为何值时,关于x的方程4x﹣m=2x+5的解比2(x﹣m)=3(x﹣2)﹣1的解小2.【解答】解:由4x﹣m=2x+5,得x=,由2(x﹣m)=3(x﹣2)﹣1,得x=﹣2m+7.∵关于x的方程4x﹣m=2x+5的解比2(x﹣m)=3(x﹣2)﹣1的解小2,∴+2=﹣2m+7,解得m=1.故当m=1时,关于x的方程4x﹣m=2x+5的解比2(x﹣m)=3(x﹣2)﹣1的解小2.9.求k为何值时,关于x的方程+8x=7k+6x的解比关于x的方程+1=的解大3.【解答】解:解方程+1=,得x=﹣3.所以关于x的方程+8x=7k+6x的解是x=0,把x=0代入,得=7k,解得k=.10.当m为何值时,关于x的方程5m+3x=1+x的解比关于x的方程2x+m=5m的解大2?【解答】解:解方程5m+3x=1+x得:x=,解2x+m=5m得:x=2m,根据题意得:﹣2=2m,解得:m=﹣.故当m为时,关于x的方程5m+3x=1+x的解比关于x的方程2x+m=5m的解大2.。

(完整版)一元一次方程练习题及答案

(完整版)一元一次方程练习题及答案

一元一次方程和它的解法练习时间60分钟,满分100分)1.判断题:(1′+4′=5′)(1)判断下列方程是否是一元一次方程:①-3x-6x 2=7;( ) ②;31=+x x( )③5x+1-2x=3x-2; ( ) ④3y-4=2y+1. ( ) (2)判断下列方程的解法是否正确: ①解方程3y-4=y+3解:3y-y=3+4,2y=7,y=72;( )②解方程:0.4x-3=0.1x+2解:0.4x+0.1x=2-3;0.5x=-1,x=-2;( )③解方程15123=--+x x解:5x+15-2x-2=10,3x=-3,x=-1;④解方程12.015.02-=-+-xx解:2x-4+5-5x=-1,-3x=-2,x=32.( )2.填空题:(2′×8=10′)(1)若2(3-a )x-4=5是关于x 的一元一次方程,则a ≠ . (2)关于x 的方程ax=3的解是自然数,则整数a 的值为: . (3)方程5x-2(x-1)=17 的解是 .(4)x=2是方程2x-3=m-x 21的解,则m= .(5)若-2x 2-5m +1=0 是关于x 的一元一次方程,则m= . (6)当y= 时,代数式5y+6与3y-2互为相反数.(7)当m= 时,方程65312215--=--x m x 的解为0.(8)已知a ≠0.则关于x 的方程3ab-(a+b)x=(a-b)x 的解为 . 3.选择题:(4′×5=20′) (1)方程ax=b 的解是( ).A .有一个解x=abB .有无数个解C .没有解D .当a ≠0时,x=ab(2)解方程43(34x-1)=3,下列变形中,较简捷的是( )A.方程两边都乘以4,得3(34x-1)=12B.去括号,得x-43=3C.两边同除以43,得34x-1=4 D.整理,得3434=-x(3)方程2-67342--=-x x 去分母得( ) A.2-2(2x-4)=-(x-7) B.12-2(2x-4)=-x-7 C.12-2(2x-4)=-(x-7) D.以上答案均不对(4)若代数式21+x 比35x-大1,则x 的值是( ).A .13B .513C .8D .58(5)x=1是方程( )的解.A .-35.0815-=+x xB .03425233.16.049.0=-----x x xC .2{3[4(5x-1)-8]-2}=8D .4x+413=6x+454.解下列方程:(5′×7=35′)(1)7(2x-1)-3(4x-1)=4(3x+2)-1; (2)61(5y+1)+ 31(1-y)= 81(9y+1)+ 51(1-3y);(3)32[23(141-x )-421]=x+2; (4);1322213-=--+x x x(5);21644533313---+=+-y y y (6);214535.05.25.12.022.1=-----x x x(7);5.04314.0623.036--=-+-y y y (8)21{x-21[x-21(x-21)]}=1;5.解答下列各题:(6′×4=24′)(1)x 等于什么数时,代数式6323)1(221+-++x x x 与的值相等? (2)y 等于什么数时,代数式2439y y --的值比代数式 643--y y 的值少3? (3)当m 等于什么数时,代数式2m-315-m 的值与代数式327--m的值的和等于5?【素质优化训练】(1)若23234+x a 与43152+x a 是同类项,则x=.(2)已知2125=-a b a ,则a b=. (3)已知5243+=--+x y x y x ,用含x 的代数式表示,则y= .(4)当a= 时,方程14523-+=-ax a x 的解是x=0. (5)当m=时,方程mx 2+12x+8=0的一个根是x=-21.(6)方程4312-=-x x 的解为.(7)若(1-3x )2+mx -4=0,,则6+m 2= .(8)若a ≥0,且方程a+3x=10的解是自然数,则a= .(9)已知关于x 的方程21ax+5=237-x 的解x 与字母a 都是正整数,则a=.(10)已知方程2+-=-axb b a x 是关于x 的一元一次方程,则a,b 之间的关系是 .2.选择题(1)在梯形面积公式S=21(a+b )h 中,如果a=5cm,b=3cm,S=16cm 2,那么h=( )A .2cmB .5cmC .4cmD .1cm(2)若关于x 的方程3(x-1)+a=b(x+1)是一元一次方程,则( ). A .a,b 为任意有理数 B .a ≠0 C .b ≠0 D .b ≠3(3)方程12-x =4x+5的解是( ).A .x=-3或x=-32B .x=3或x=32C .x=-32D .x=-3(4)下列方程 ①313262-=+x x ②4532x x =+ ③2(x+1)+3=x1 ④3(2x+5)-2(x-1)=4x+6.一元一次方程共有( )个.A.1B.2C.3D.4(5)当x=2时,二次三项式3x 2+ax+8的值等于16,当x=-3时,这个二次三项式的值是( )A.29B.-13C.-27D.41 (6)方程x(x 2+x+1)-x(x 2-x-1)=2x 2-1的解是( ). A.21 B.- 21 C. 21或-21 D.无解 (7)若关于x 的方程10-4)2(35)3(--=+x k x x k 与方程8-2x=3x-2的解相同,则k 的值为( )A.0B.2C.3D.4 3.解下列方程我国邮政部门规定:国内平信100克以内(包括100克)每20克需贴邮票0.80元,不足20克重的以20克计算;超过100克的,超过部分每100克需加贴2.00元,不足100克的以100克计算.(1)寄一封重41克的国内平信,需贴邮票多少元?(2)某人寄一封国内平信贴了6.00元邮票,此信重约多少克?(3)有9人参加一次数学竞赛,每份答卷重14克,每个信封重5克,将这9份答卷分装两个信封寄出,怎样装才能使所贴邮票金额最少?参考答案【同步达纲练习】1.(1)×××√ (2) ×××√2.(1)3, (2)1或3, (3)x=5, (4)2, (5)51 (6)- 21; (7) 32; (8)x=23b.3.DBCBD4.(1)-1 (2)7; (3)-8; (4)13; (5)-3; (6);2315 (7);1916 (8)213.31 5.(1)54; (2)-1; (3)-25; (4)① 1;②-3516+m m 【素质优化训练】1.(1)6; (2)49;(3);35247+x (4)131; (5)-8; (6)3;(7)150;(8)1,4,7;(9)6;(10)b a -≠,且0ab ≠ 2.C D C A D B D3.(1)617; (2)-2.7; (3)144; (4)-;14123 (5);181051(6)3,-1.4.先求出x=6,再求出m=-165. 5.a ≥1.【生活实际运用】1.① 1.64 ② 200 ③一个信封装3份答卷,另一个信封装6份答卷,或一个装4份,另一个装5份。

(完整版)一元一次方程(知识点+典型试题)附答案

(完整版)一元一次方程(知识点+典型试题)附答案

第五章 一元一次方程第1——2课时 一元一次方程相关概念及解法一、知识梳理1.等式及其性质⑴ 等式:用等号“=”来表示 关系的式子叫等式. ⑵ 性质:① 如果b a =,那么=±c a ;② 如果b a =,那么=ac ;如果b a =()0≠c ,那么=ca. 2.方程、一元一次方程的概念⑴ 方程:含有未知数的 叫做方程;使方程左右两边值相等的 ,叫做方程的解;求方程解的 叫做解方程. 方程的解与解方程不同.⑵ 一元一次方程:在整式方程中,只含有 个未知数,并且未知数的次数是 ,系数不等于0的方程叫做一元一次方程;它的一般形式为 ()0≠a . 3.解一元一次方程的步骤①去 ;②去 ;③移 ;④合并 ;⑤系数化为1.4.易错知识辨析(1)判断一个方程是不是一元一次方程,首先在整式方程前提下,化简后满足只含有一个未知数,并且未知数的次数是1,系数不等于0的方程,像21=x,()1222+=+x x 等不是一元一次方程.(2)解方程的基本思想就是应用等式的基本性质进行转化,要注意:①方程两边不能乘以(或除以)含有未知数的整式,否则所得方程与原方程不同解;②去分母时,不要漏乘没有分母的项;③解方程时一定要注意“移项”要变号.二、课堂精讲例题(一)一元一次方程的定义 例题1若3223=+-k kxk是关于x 的一元一次方程,则k =_______.【难度分级】:A 类【选题意图】(对应知识点):本题主要考查学生对一元一次方程的定义的理解。

【解析】:该方程为一元一次方程,则必须满足⎩⎨⎧=-≠1230k k ,由3223=+-k kxk是关于x 的一元一次方11230==-≠k k k 解得且 【搭配课堂训练题】 (A )1.若()521||=--m x m 是一元一次方程,则m =(B )2.下列方程中,属于一元一次方程的是( )A 、x -3B .012=-xC 、2x -3=0D 、x -y =3 (二)方程的解例题2.已知关于x 的方程3x +2a =2的解是a -1,则a 的值是( ) A .1 B .53 C .51D .-1 【难度分类】:A 级【分析】:方程的解就是能够使方程两边左右相等的未知数的值,即利用方程的解代替方程中的未知数,所得到的式子左右两边相等 【答案】:根据题意得:3(a -1)+2a =2,解得a =1 故选A .【点评】:本题主要考查了方程解的定义,已知a -1是方程的解实际就是得到了一个关于a 的方程.【搭配课堂训练题】(A )1.方程2x +a -4=0的解是x =-2,则a 等于( ) A .-8 B .0 C .2 D .8(B )2.已知关于x 的方程4x -3m =2的解是x =m ,则m 的值是( ) A .2 B .-2 C .72 D .72- (三)解方程例题3若2005-200.5=x -20.05,那么x 等于( )A .1814.55B .1824.55C .1774.55D .1784.55 【难度分级】:A 类【选题意图】(对应知识点):本题主要考查学生解一元一次方程。

最新七年级一元一次方程(基础篇)(Word版 含解析)

最新七年级一元一次方程(基础篇)(Word版 含解析)
6.国家规定个人发表文章、出版图书所得稿费的纳税计算方法是: 稿费不高于 800 元
一、初一数学一元一次方程解答题压轴题精选(难)
1.你知道为什么任何无限循环小数都可以写成分数形式吗?下面的解答过程会告诉 你原 因和方法.
(1)阅读下列材料:
问题:利用一元一次方程将 化成分数.



,可知


.(请你体会将方程两边都乘以 10 起到的作用)
可解得
,即
.填空:将 写成分数形式为________ .

即可;(2)把
a+b 看作是一个整体,利用题目中方法求出 a+b 的值,即可得到
的值;(3)根据
都是整数结合
或 ,利用有理数乘法法则分析求解即可.
5.已知:如图所示,O 为数轴的原点,A,B 分别为数轴上的两点,A 点对应的数为﹣ 30,B 点对应的数为 100.
(1)A、B 的中点 C 对应的数是________; (2)若点 D 数轴上 A、B 之间的点,D 到 B 的距离是 D 到 A 的距离的 3 倍,求 D 对应的 数.(提示:数轴上右边的点对应的数减去左边对应的数等于这两点间的距离); (3)若 P 点和 Q 点是数轴上的两个动点,当 P 点从 B 点出发,以 6 个单位长度/秒的速度 向左运动时,Q 点也从 A 点出发,以 4 个单位长度/秒的速度向右运动,设两点在数轴上的 E 点处相遇,那么 E 点对应的数是多少? 【答案】 (1)35 (2)解:设点 D 对应的数是 x,则由题意, 得 100﹣x=3[x﹣(﹣30)] 解得,x=2.5 所以点 D 对应的数是 2.5.
4.根据绝对值定义,若有
,则
或 ,若
以根据这样的结论,解一些简单的绝对值方程,例如:

一元一次方程例题讲解及答案.doc

一元一次方程例题讲解及答案.doc

一元一次方程例题讲解及答案.doc去括号,得12 兀+ 66-25 + 10x30. 移项、合并同类项,得22 兀=-11.解这个方程,得例3列方程求下列问题的解:in = -6 —元一次方程课标要求:1?解一元一次方程及其解的意义.2.理解方程变形的基木原理,能在解方程屮正确应用.3.掌握一元一次方程中移项、系数化为1等基本步骤,会解一元一次方程,并会对方程的解进行检验.4.能根据具体情境中的数量关系,列出方程,解决简单的实际问题.中招考点一元一次方程概念及解法,一元一次方程的应用,能利用一元一次方程解决生活屮的实际问题.典型例题例1解方程生巴一土空=1.6(2X4-11)-5(5-2X)=1X 30.系数化为1,得说明:注意在解方程过程中正确进行有理数及整式的运算,步骤不宜过于简单. 例2已知兀=-2是关于兀的方程2(x-m) = 8x-4m的解,求加的值.分析:本题已知方程的解,要求方程中待确定的字母系数,可以像解数字系数的方程一样, 先求出方程的解,再进行比较;也可以根据方程的解的定义:能使方程两边代数式的值相等的未知数的取值叫做方程的解,将工=-2代入原方程,转化为关于加的方程求解.解1解关于兀的方稈:lx-Im = 8x-4m .因为已知方程的解是兀=-2,所以巴=-2,即m=-63解2因为x = -2是方程的解,所以2(-2-m) = 8(-2) 一4/n .解:去分母,强化训练1.选择题(1)下列方程变形正确的是(Y — 1A?由 -- =0得x-l = 55r — 1C.由---- =1 得X -1 = 55 ).YB.由一一1 = 0得x-l = 05D?由兰一1 = 1得兀一5 = 1(1)甲乙两车分别从相距360千米的两地相向开出,己知甲车速度是60千米/小时.乙车速度是40千米/小时.若甲车先开1小时,问乙车开出多少时间后两车相遇?(2)小陈和老师一起整理了一篇教学材料,准备打印成稿.按篇幅估计老师单独打字需4个小时,小陈单独打字需6个小时,后来小陈先打了一个小时后,老师开始一起打.问还需多少小时完成?分析:方程是刻画现实世界数量之间相等关系的一个重要数学模型,通过对实际问题中数量关系的分析,列出相关的代数式,进而建立方程,可以把复杂的实际问题转化为纯数学问题来解决.这一过程的关键是要透过纷繁多变的问题的表象,抓住数量关系的实质,抽象为数学问题.因此,常有面目迥异的情形,在学习屮我们不能机械地记忆、套用某些题型而忽略了问题的本质.像上述两个问题,不论是甲、乙两车还是师、生两人,主要的等量关系都是两个对象所完成数量的和等于总量,而其中一个对象所完成的数量又分为两部分;前一小时的和后來的.请同学们注意强化训练第8题两个问题中数量关系和解法的比较. 解:(1)设乙车开出兀小时后两车相遇,根据题意,得60(1 + 兀)+ 40x = 360 ?解这个方程得经检验,符合题意.答乙车开出3小吋两车相遇.(2)设老师开始打字后还需兀小时完成,扣+兀)+*=1.解这个方程得答老师开始打字后还需要2个小时完成.D.(2)下列方程后所列出的解不正确的是().x 2 ----- 1—23(2) 0.7x +1.37 = 1.5x-0.23;(3) x-3(20-x) = 3x-7(9-x);(4)2x-ll + 4x5(5)A.7B. ±7 C ?3 D ?7 或 3(4) 一种书包经两次降价10%,现在售价Q 元,则原售价为( )元.A. 81%? C ?80%aD.-^81% 80%2 .填空题(1) 若关于兀的方程、x = 5-k 的解是x = -3 ,则比= __________________ .3 (2) 当兀= ___________ 时,代数式2x4-3与6-4兀的值相等. 3. 解下列方程:(1) 3x-2 = -5(x-2);4.当x = -2时,代数式x 2+bx-2的值是12,求当x = 2时,这个代数式的值.5. 初一 (4)班课外乒乓球组买了两副乒乓球板,若每人付9元,则多了 5元,后来组长收了每人8元,自己多付了 2元,问两副乒乓球板价值多少?3y+ 6856(6)6 ?请你编制-道关于兀的方程,形如一咛冷使它的解在】到2之间.7.已y = ax3 +bx-8,当x = 3时,y = 5 .求当兀=一3日寸,y的值.8.应用方程解下列问题:(1)某车间原计划每周装配36台机床,预计若干周完成任务,在装配了三分之一后,改进操作技术,功效提高了一倍,结果提前一周半完成任务?求这次任务需装配的机床总台数.(2)某人有急事,预定搭乘一辆小货车从A地赶住B地,实际上他乘小货车行了三分路后改乘出租车,车速提高了一倍,结果提前一个半小时到达.己知小货车的车速是36千米 /小时,求两地间的路程.一元一次方程参考答案13 11.(1) C (2) C (3) D (4) B2. (1) 6 (2) 一3?(1) x = - (2) x = 2(3) x = -2 2 27(4) x = —(5) y = 2(6) j = -6 4. -8 (提示:先求得方=一5 ) 5?两副乒乓球拍2价值58元6?略(提示:本题解答不唯一,任収符合条件的一个根,如x = -,代入原方程,2即能得到一个对应的加的值)7. -21 (提示:将已知条件代入后可求得27a + 36 = 13,当兀=一3 时,j =-27a-3^-8 =-(27a+ 3*)-8 = -13-8 = -21 )2 28. (1)装配机床总台数162台(提示:设共装配机床x台,根据题意,3—二一--;或72 36 2设共装配机床3兀台,根据题意,得竺二—72 36 2(2)两地间的路程为162千米(提示:与第(1)题具有相同的等量关系和方程)解:(1)由②得代入①,得解得代入③,得所以方程组的解是(2)①+(§)x6,得即代入①,得x = 7 -3y.3(7-3J)-4J =-5.y = 2.x = 1.x = l,y = 2.32 兀= 16,1x =—,2J = -l第6部分二元一次方程组课标要求1.了解二元一次方程组及其解的概念,会将二元一次方程化为用含一个未知数的代数式表示另一个未知数的形式,会检验未知数的一组对应值是否为二元一次方程的解.2.了解二元一次方程组、方程组的解、解方程组等基本概念,掌握用消元法解方程组的基本思想;通过“消元”,转化为一元一次方程.3.会灵活应用代入消元法和加减消元法解二元一次方程组.4.能应用二元一次方程组解决简单的实际问题.中招考点二元一次方程概念及解法,代入法和加减法解方程组,用含一个未知数的代数式表示另一个未知数,会检验未知数的一组对应值是否为二元一次方程的解,能应用二元一次方程组解决简单的实际问题.典型例题例1解下列方程组:j3x-4J = -5, ①小严①(1)—(2) 5 1 _x+ 3j = 7; ②5x + —y = 2.②2分析:要结合方程组中方程的系数特征,合理选择消元的方法?通常方程中系数比较简单,尤其当一个未知数系数的绝对值是1时,可选用代入消元法,一般常采用加减消元法.Y =—所以方程组的解是2'y=~1 2例2已知关于工、y的方程组戶[尸& 与[x-2y = 5y有相同的解,求(l-2m)x + 2y = \-n ?[兀兀 + 丿=m + 1.“2、兀值?分析:这里两个方程组屮都有待定系数,但并未知道具体的解,不能应用方程解的定义,代入后转化为关于加、H的方程来解.注意到两个方程组中都有一个方程的系数是已知的.且根据方程组的解的定义,本题“相同的解”也就是方程组!2x_3j=8,的解,因此,这个解可[x-2y = 5.y* — 1 f 1 — 2"? — 4 _ 1 —U以先予求出:~ :这时再将它代入另两个方程组,得几 ~ '[y = -2. [n-2 = m + 1.解这个方程组,得m = -l,7i = 2.例3某公园的学生门票价格如下:1 初一甲、乙两个班共104人,若分别购票,需1240元.两个班合起来购票,能否节约一些?或己知甲班人数稍多一些,请求出两班各有多少人?2若不知道两班学生总数及各班人数的多少,你能求出各班人数吗?分析本题具有较大的开放性?在第(1)个问题中,首先应根据题意,判断各班人数的大致范围:两班共104人,则至少有一个班级人数50,但总票价1240元不是11的倍数,说明另一个班级人数不超过50.根据这些信息,可以着手应用列方程组求解.在第二个问题中,减弱了条件,两班学生的总数也是未知数.比较上述分析,共同之处是两班人数不可能是同一范围内的数(因为1240不是13、11、9的倍数),不同之处是少了一个方程.则应该用到求二元一次方程的整数解的知识,同吋还应根据实际情况,选取合适的解.解(1)设初一甲班学生兀人,初一乙班学生y人,根据题意,两班票价总数1240不是13 或11的倍数,所以甲班人数大于50,乙班人数小于50.可得方程组x + y = 104,llx + 13j = 1240?1240-13兀n = 112—兀 +8-2x11= 112—兀 +2(4-兀)H(1)3兀一丿=2,5x + 4y = 1.3x + 5y = 42.(4)j5/n +7" = 26,[4,72 + 6〃= 18. 解这个方程组,得经检验,符合题意.y = 4&答:初一甲班学生56人,初一乙班学生48人.(2)设两个班级人数分别为兀人和y人,根据实际情况,其屮兀、J 的值是不超过100的正整数,且X <卩根据题意,得方程13x + llj = 124 0?将方程变形为含X的代数式表示”得所以4-x是11的倍数,依次取工=4,15,26,37,48.求出对应的y = l 0& 95,82,69,56.根据实际情况,我们选取甲、乙两班人数分别为37人、69人、69人、37人、48人、56人或56人、48人四种比较合理的解答.强化训练1?填空题(1)已知4兀+ 5y —20 = 0 ,用含工的代数式表示只得___________________________当y = _4 时,X= ______________________________ .(2)己知x = 3』=一2是关于兀、丿的方程2兀一加丿+ 2加一2 = 0的解,贝【J:m= _______ .(3)己知|2x +J-3|+(X-3J +2)2 =0 ,贝ij x-y= ___________________(4)己知关于的方程组:%二亠的解’与y相等’则" ------------------------------------2.解下列方程组:(2) x3-t 丄、,十门.e 小「2兀一y = 2a + b 3.已知关于兀、丿的万程组彳 .[x^2y = a-b.的解是{二求…的值.4.已知当x = l 吋,代数式ax + b 的值等于2;当x = 2吋,代数式ax+ b 的值是1.求当x = 5 时,这个代数式的值.5?甲、乙两件商品成本共400元,甲商品按30%的利润定价,乙商品按20%的利润定价.后应顾客的要求,两种商品都按定价的90%出售,商店仍获利55?4元.求两种商品的成本各是多少?6. 求方程4x + 3y = 31的正整数解.7. 探索用适当的方法解下列方程组:(1)8. 某校课外阅读小组同学每人订甲、乙两份杂志,甲杂志是月刊,每月一期定价2?2元:乙杂志是双月刊,两个月一期定价2?6元.每位同学都是一份杂志订半年,另一份杂志订全年. 经统计,甲杂志订费858元,乙杂志订费429元,求这个阅读小组的人数.J17x + 23j = 57, [23兀+ 17y = 63;x + y-z = 5, (3) ? 2x + 3j+ z = 10,x-2y-z = 20.第6部分二元一次方程组1. (1) 丁=20一4兀]05 (2) -1 (3) 0 (4) 4 2. (1)9x ——,17 (2)7 y = ?17口⑶y = 6.X =29 7 = -!(4)m = 15.n = —7.3a = 2° 4. -2 5?甲商品成本260元,乙商品成本140元b = -5.商品成本兀元,乙商品成本J元,根据题意得方程组x + j = 400,x(l + 30%) x 90% + y (1 + 20%) x 90% = 400 + 55.4 6.x2 =4,兀1 =y=9; J2=5;l j3=l.(提示:I — x先将方程化为y = 10-x + —;或先确定y是1与9之间的奇数)37. (1) X =29J = 1(提示:将两式分别相减和相加,得x-y = t)x+j=3?(2) x = l,1y = -2(3)35X~T,j = -5, 8?这个阅读小组有40人(提示:设订甲种杂志全年的学5 Z_3'生兀人,订乙种杂志全年的学生y人,列方程组2.2x12兀+ 2?2x6y = 85& 曰解得<〔2.6x3 兀+ 2?6x6y = 429.x = 25,)y = 15.。

24【基础】一元一次方程的解法(基础课程讲义例题练习含答案)

24【基础】一元一次方程的解法(基础课程讲义例题练习含答案)

一元一次方程的解法(基础)知识讲解【学习目标】1. 熟悉解一元一次方程的一般步骤,理解每步变形的依据;2. 掌握一元一次方程的解法,体会解法中蕴涵的化归思想;3. 进一步熟练掌握在列方程时确定等量关系的方法. 【要点梳理】要点一、解一元一次方程的一般步骤 变形名称 具体做法 注意事项去分母 在方程两边都乘以各分母的最小公倍数(1)不要漏乘不含分母的项(2)分子是一个整体的,去分母后应加上括号去括号先去小括号,再去中括号,最后去大括号 (1)不要漏乘括号里的项(2)不要弄错符号 移项 把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(记住移项要变号)(1)移项要变号(2)不要丢项合并同类项把方程化成ax =b(a ≠0)的形式 字母及其指数不变系数化成1在方程两边都除以未知数的系数a ,得到方程的解b x a=. 不要把分子、分母写颠倒要点诠释:(1)解方程时,表中有些变形步骤可能用不到,而且也不一定要按照自上而下的顺序,有些步骤可以合并简化.(2) 去括号一般按由内向外的顺序进行,也可以根据方程的特点按由外向内的顺序进行. (3)当方程中含有小数或分数形式的分母时,一般先利用分数的性质将分母变为整数后再去分母,注意去分母的依据是等式的性质,而分母化整的依据是分数的性质,两者不要混淆.要点二、解特殊的一元一次方程1.含绝对值的一元一次方程解此类方程关键要把绝对值化去,使之成为一般的一元一次方程,化去绝对值的依据是绝对值的意义.要点诠释:此类问题一般先把方程化为ax b c +=的形式,再分类讨论:(1)当0c <时,无解;(2)当0c =时,原方程化为:0ax b +=;(3)当0c >时,原方程可化为:ax b c +=或ax b c +=-. 2.含字母的一元一次方程此类方程一般先化为最简形式ax =b ,再分三种情况分类讨论: (1)当a ≠0时,b x a=;(2)当a =0,b =0时,x 为任意有理数;(3)当a =0,b ≠0时,方程无解. 【典型例题】类型一、解较简单的一元一次方程1.(•广州)解方程:5x=3(x ﹣4) 【答案与解析】解:方程去括号得:5x=3x ﹣12, 移项合并得:2x=﹣12, 解得:x=﹣6.【总结升华】方法规律:解较简单的一元一次方程的一般步骤:(1)移项:即通过移项把含有未知数的项放在等式的左边,把不含未知数的项(常数项)放在等式的右边.(2)合并:即通过合并将方程化为ax =b(a ≠0)的形式.(3)系数化为1:即根据等式性质2:方程两边都除以未知数系数a ,即得方程的解b x a=. 举一反三:【变式】下列方程变形正确的是( ). A .由2x-3=-x-4,得2x+x =-4-3 B .由x+3=2-4x ,得5x =5 C .由2332x -=,得x =-1 D .由3=x-2,得-x =-2-3【答案】D类型二、去括号解一元一次方程2.解方程:【思路点拨】方程中含有括号,应先去括号再移项、合并、系数化为1,从而解出方程. 【答案与解析】(1)去括号得:42107x x +=+ 移项合并得:65x -= 解得:56x =-(2)去括号得:32226x x --=- 移项合并得:47x -=-解得:74x =【总结升华】去括号时,要注意括号前面的符号,括号前面是“+”号,不变号;括号前面是“-”,各项均变号. 举一反三:【变式】解方程: 5(x-5)+2x =-4. 【答案】解: 去括号得:5x-25+2x =-4. 移项合并得: 7x =21.解得: x =3. 类型三、解含分母的一元一次方程()()1221107x x +=+()()()232123x x -+=-3.(春•新乡期末)解方程﹣2=.【思路点拨】方程按照去分母,去括号,移项合并同类项,把x系数化为1的步骤,即可求出解.【答案与解析】解:去分母得:2(2x﹣1)﹣12=3(3x+2),去括号得:4x﹣2﹣12=9x+6,移项合并得:5x=﹣20,解得:x=﹣4.【总结升华】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.举一反三:【变式】(•岳池县模拟)解方程:x+=﹣.【答案】解:去分母得:12x+30=24x﹣8﹣3x+24,移项合并得:﹣9x=﹣14,解得:x=.类型四、解较复杂的一元一次方程4.解方程:0.170.21 0.70.03x x--=【思路点拨】先将方程中的小数化成整数,再去分母,这样可避免小数运算带来的失误.【答案与解析】原方程可以化成:1017201 73x x--=.去分母,得:30x-7(17-20x)=21.去括号、移项、合并同类项,得:170x=140.系数化成1,得:1417x=.【总结升华】解此题的第一步是利用分数基本性质把分母、分子同时扩大相同的倍数,以使分母化整,与去分母方程两边都乘以分母的最小公倍数要区分开.5. 解方程:112 [(1)](1) 223x x x--=-【答案与解析】解法1:先去小括号得:11122()22233x x x-+=-再去中括号得:1112224433x x x-+=-移项,合并得:5111212x-=-系数化为1,得:115 x=解法2:两边均乘以2,去中括号得:14(1)(1)23x x x--=-去小括号,并移项合并得:51166x-=-,解得:115x=解法3:原方程可化为:112 [(1)1(1)](1) 223x x x-+--=-去中括号,得1112 (1)(1)(1) 2243x x x-+--=-移项、合并,得51(1)122x--=-解得115 x=【总结升华】解含有括号的一元一次方程时,一般方法是由里到外或由外到内逐层去括号,但有时根据方程的结构特点,灵活恰当地去括号,以使计算简便.例如本题的方法3:方程左、右两边都含(x-1),因此将方程左边括号内的一项x变为(x-1)后,把(x-1)视为一个整体运算.举一反三:【变式】32[(1)2]2 234xx---=【答案】解:去中括号得:3(1)22 42xx--⨯-=去小括号,移项合并得:364x-=,解得x=-8类型五、解含绝对值的方程6.解方程|x|-2=0【答案与解析】解:原方程可化为:2x=当x≥0时,得x=2,当x<0时,得-x=2,即,x=-2.所以原方程的解是x=2或x=-2.【总结升华】此类问题一般先把方程化为ax b=的形式,再根据ax的正负分类讨论,注意不要漏解.【巩固练习】 一、选择题 1.(春•唐河县期末)方程|2x ﹣1|=2的解是( )A. x=B. x=﹣C. x=或x=﹣D. x=﹣2.下列解方程的过程中,移项错误的是( ). A .方程2x+6=-3变形为2x =-3+6 B .方程2x-6=-3变形为2x =-3+6 C .方程3x =4-x 变形为3x+x =4 D .方程4-x =3x 变形为x+3x =43. 方程1143x =的解是 ( ). A .12x = B .112x = C .43x = D .34x =4.对方程2(2x-1)-(x-3)=1,去括号正确的是( ).A .4x-1-x-3=1B .4x-1-x+3=1C .4x-2-x-3=1D .4x-2-x+3=1 5.方程1302x --=可变形为( ). A .3-x-1=0 B .6-x-1=0 C .6-x+1=0 D .6-x+1=2 6.3x-12的值与13-互为倒数,则x 的值为( ). A .3 B .-3 C .5 D .-5 7.(•株洲)在解方程时,方程两边同时乘以6,去分母后,正确的是( )A .2x ﹣1+6x=3(3x+1)B .2(x ﹣1)+6x=3(3x+1)C .2(x ﹣1)+x=3(3x+1)D .(x ﹣1)+x=3(x+1)8.某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有( ). A .54盏 B .55盏 C .56盏 D .57盏二、填空题9.(1)方程2x+3=3x-2,利用________可变形为2x-3x =-2-3,这种变形叫________. (2)方程-3x =5,利用________,把方程两边都_______,把x 的系数化为1,得x =________.10.方程2x-kx+1=5x-2的解是x =-1,k 的值是_______. 11.(秋•铜陵期末)如果|a+3|=1,那么a= . 12.(春•南江县校级月考)在解方程﹣=2时,去分母得 .13.在有理数范围内定义一种运算“※”,其规则为a ※b =a-b .根据这个规则,求方程(x-2)※1=0的解为________.14.一列长为150m 的火车,以15m/s 的速度通过600m 的隧道,则这列火车完全通过此隧道所需时间是________s . 三、解答题15.解下列方程:(1)4(2x-1)-3(5x+2)=3(2-x);(2)12323x x x ---=-; (3)0.10.2130.020.5x x -+-= .16.(春•宜阳县期中)当k 取何值时,关于x 的方程2(2x ﹣3)=1﹣2x 和8﹣k=2(x+)的解相同?17.小明的练习册上有一道方程题,其中一个数字被墨汁污染了,成为31155x x ++•=-,他翻看了书后的答案,知道了这个方程的解是14,于是他把被污染了的数字求出来了,请你把小明的计算过程写出来.【答案与解析】一、选择题1.【答案】C.【解析】由题意,2x ﹣1=2,或2x ﹣1=﹣2,解这两个方程得:x=,或x=﹣2. 【答案】A【解析】A 中移项未改变符号. 3. 【答案】C【解析】系数化为1,两边同乘以4即可. 4. 【答案】D【解析】A 中,去掉第1个括号时第二项漏乘,去掉第2个括号时,-3没变号;B 中,去掉第1个括号时第二项漏乘;C 中,去掉第2个括号时,-3没变号. 5.【答案】C【解析】A 中,去分母时3没有乘以2,-1没变号;B 中,去分母时-1没变号;D 中,等号右边0乘以2应是0,而不应是2. 6.【答案】A 【解析】-3x-12与13-互为倒数,所以3x-12=-3,x =3. 7. 【答案】B【解析】解:方程两边同时乘以6得:2(x ﹣1)+6x=3(3x+1),故选B . 8. 【答案】B【解析】设有x 盏,则有(1)x -个灯距,由题意可得:36(1061)70(1)x -=-,解得:55x =.二、填空题9.【答案】(1)等式性质1,移项; (2)等式性质2,除以-3,53- 10.【答案】k =-6【解析】将1x =-代入得:2152k -++=--,解得:6k =-. 11.【答案】﹣2或﹣4.【解析】∵|a+3|=1,∴a+3=1或a+3=﹣1,∴a=﹣2或﹣4. 12.【答案】3(x+1)﹣2(2x ﹣3)=24.【解析】解:方程两边都乘以12,去分母得,3(x+1)﹣2(2x ﹣3)=24.故答案为:3(x+1)﹣2(2x ﹣3)=24.13.【答案】x =3【解析】根据规则得:x-2-1=0,x =3. 14.【答案】50 【解析】6001505015+=(秒) .三、解答题 15.【解析】解:(1)8x-4-15x-6=6-3x 8x-15x+3x =6+4+6 -4x =16x =-4 (2)12323x x x ---=-6x-3(1-x)=18-2(x-2)11x =25 2511x =(3)原方程可化为:10201010325x x -+-=,约分得:5x-10-(2x+2)=3,去括号得5x-10-2x-2=3,移项及合并,得3x =15,系数化为1,得x =5.16.【解析】解2(2x ﹣3)=1﹣2x ,得 x=,把x=代入8﹣k=2(x+),得 8﹣k=2(+), 解得k=4,当k=4时,关于x 的方程2(2x ﹣3)=1﹣2x 和8﹣k=2(x+)的解相同. 17.【解析】解:将14x =代入,得: 113144155⨯++•=-. 解得:3•=.所以被污染的数字为3.。

《一元一次方程的解法》课件

《一元一次方程的解法》课件

(3)去分母,得2x+224=7 移项,得 2x=7-224 合并同类项,得 2x=-217 系数化为1,得 x=-108.5
(4)去分母,得3(3y+12)=48-8(5y-7) 去括号,得9y+36=48-40y+56 移项,得 9y+40y=48+56-36 合并同类项,得 49y=68
68
一元一次方程的解法
等式的基本性质1 等式两边同时加上(或
减去)同一个代数式,所得结果仍是等式.
符号语言
若 x=y,那么x+a = y+a(a为一代数式) 若 x=y,那么x-a = y-a(a为一代数式)
等式的基本性质2 等式两边同时乘一个数
(或除以同一个不为0的数), 所得结果仍是等式.
符号语言
3. (1) 解方程:
2x 11 x
3
6
x 1
解方程时,你 有没有注意到:
1.去分母时,方 程两边的每一项 都要乘同一个数,
(2) 解方程:
x 1 2
x3 3
1
不要漏乘某项. 2.移项时,要对
x 15
所移的项进行变 号.
想一想
4(x+0.5)+x=7
此方程又该如何解呢?
解:去括号,得: 4x+2+x=7 移项,得: 4x+x=7-2 化简,得: 5x=5
1.解方程: (1)x-3=-12;(2)1.5x+4.5=0; (3)5-2x=9; (4)-3y=-15.
解: (3)两边都减去5 ,得 -2x=4.
两边都除以-2,得 x=-2.
1.解方程: (1)x-3=-12;(2)1.5x+4.5=0; (3)5-2x=9; (4)-3y=-15.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程的解法(基础)知识讲解【学习目标】1. 熟悉解一元一次方程的一般步骤,理解每步变形的依据;2. 掌握一元一次方程的解法,体会解法中蕴涵的化归思想;3. 进一步熟练掌握在列方程时确定等量关系的方法. 【要点梳理】要点一、解一元一次方程的一般步骤 变形名称 具体做法 注意事项去分母 在方程两边都乘以各分母的最小公倍数(1)不要漏乘不含分母的项(2)分子是一个整体的,去分母后应加上括号去括号先去小括号,再去中括号,最后去大括号 (1)不要漏乘括号里的项(2)不要弄错符号 移项 把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(记住移项要变号)(1)移项要变号(2)不要丢项合并同类项把方程化成ax =b(a ≠0)的形式 字母及其指数不变系数化成1在方程两边都除以未知数的系数a ,得到方程的解b x a=. 不要把分子、分母写颠倒要点诠释:(1)解方程时,表中有些变形步骤可能用不到,而且也不一定要按照自上而下的顺序,有些步骤可以合并简化.(2) 去括号一般按由内向外的顺序进行,也可以根据方程的特点按由外向内的顺序进行. (3)当方程中含有小数或分数形式的分母时,一般先利用分数的性质将分母变为整数后再去分母,注意去分母的依据是等式的性质,而分母化整的依据是分数的性质,两者不要混淆.要点二、解特殊的一元一次方程1.含绝对值的一元一次方程解此类方程关键要把绝对值化去,使之成为一般的一元一次方程,化去绝对值的依据是绝对值的意义.要点诠释:此类问题一般先把方程化为ax b c +=的形式,再分类讨论:(1)当0c <时,无解;(2)当0c =时,原方程化为:0ax b +=;(3)当0c >时,原方程可化为:ax b c +=或ax b c +=-. 2.含字母的一元一次方程此类方程一般先化为最简形式ax =b ,再分三种情况分类讨论: (1)当a ≠0时,b x a=;(2)当a =0,b =0时,x 为任意有理数;(3)当a =0,b ≠0时,方程无解. 【典型例题】类型一、解较简单的一元一次方程1.(•广州)解方程:5x=3(x ﹣4) 【答案与解析】解:方程去括号得:5x=3x ﹣12, 移项合并得:2x=﹣12, 解得:x=﹣6.【总结升华】方法规律:解较简单的一元一次方程的一般步骤:(1)移项:即通过移项把含有未知数的项放在等式的左边,把不含未知数的项(常数项)放在等式的右边.(2)合并:即通过合并将方程化为ax =b(a ≠0)的形式.(3)系数化为1:即根据等式性质2:方程两边都除以未知数系数a ,即得方程的解b x a=. 举一反三:【变式】下列方程变形正确的是( ). A .由2x-3=-x-4,得2x+x =-4-3 B .由x+3=2-4x ,得5x =5 C .由2332x -=,得x =-1 D .由3=x-2,得-x =-2-3【答案】D类型二、去括号解一元一次方程2.解方程:【思路点拨】方程中含有括号,应先去括号再移项、合并、系数化为1,从而解出方程. 【答案与解析】(1)去括号得:42107x x +=+ 移项合并得:65x -= 解得:56x =-(2)去括号得:32226x x --=- 移项合并得:47x -=-解得:74x =【总结升华】去括号时,要注意括号前面的符号,括号前面是“+”号,不变号;括号前面是“-”,各项均变号. 举一反三:【变式】解方程: 5(x-5)+2x =-4. 【答案】解: 去括号得:5x-25+2x =-4. 移项合并得: 7x =21.解得: x =3. 类型三、解含分母的一元一次方程()()1221107x x +=+()()()232123x x -+=-3.(春•新乡期末)解方程﹣2=.【思路点拨】方程按照去分母,去括号,移项合并同类项,把x系数化为1的步骤,即可求出解.【答案与解析】解:去分母得:2(2x﹣1)﹣12=3(3x+2),去括号得:4x﹣2﹣12=9x+6,移项合并得:5x=﹣20,解得:x=﹣4.【总结升华】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.举一反三:【变式】(•岳池县模拟)解方程:x+=﹣.【答案】解:去分母得:12x+30=24x﹣8﹣3x+24,移项合并得:﹣9x=﹣14,解得:x=.类型四、解较复杂的一元一次方程4.解方程:0.170.21 0.70.03x x--=【思路点拨】先将方程中的小数化成整数,再去分母,这样可避免小数运算带来的失误.【答案与解析】原方程可以化成:1017201 73x x--=.去分母,得:30x-7(17-20x)=21.去括号、移项、合并同类项,得:170x=140.系数化成1,得:1417x=.【总结升华】解此题的第一步是利用分数基本性质把分母、分子同时扩大相同的倍数,以使分母化整,与去分母方程两边都乘以分母的最小公倍数要区分开.5. 解方程:112 [(1)](1) 223x x x--=-【答案与解析】解法1:先去小括号得:11122()22233x x x-+=-再去中括号得:1112224433x x x-+=-移项,合并得:5111212x-=-系数化为1,得:115 x=解法2:两边均乘以2,去中括号得:14(1)(1)23x x x--=-去小括号,并移项合并得:51166x-=-,解得:115x=解法3:原方程可化为:112 [(1)1(1)](1) 223x x x-+--=-去中括号,得1112 (1)(1)(1) 2243x x x-+--=-移项、合并,得51(1)122x--=-解得115 x=【总结升华】解含有括号的一元一次方程时,一般方法是由里到外或由外到内逐层去括号,但有时根据方程的结构特点,灵活恰当地去括号,以使计算简便.例如本题的方法3:方程左、右两边都含(x-1),因此将方程左边括号内的一项x变为(x-1)后,把(x-1)视为一个整体运算.举一反三:【变式】32[(1)2]2 234xx---=【答案】解:去中括号得:3(1)22 42xx--⨯-=去小括号,移项合并得:364x-=,解得x=-8类型五、解含绝对值的方程6.解方程|x|-2=0【答案与解析】解:原方程可化为:2x=当x≥0时,得x=2,当x<0时,得-x=2,即,x=-2.所以原方程的解是x=2或x=-2.【总结升华】此类问题一般先把方程化为ax b=的形式,再根据ax的正负分类讨论,注意不要漏解.【巩固练习】 一、选择题 1.(春•唐河县期末)方程|2x ﹣1|=2的解是( )A. x=B. x=﹣C. x=或x=﹣D. x=﹣2.下列解方程的过程中,移项错误的是( ). A .方程2x+6=-3变形为2x =-3+6 B .方程2x-6=-3变形为2x =-3+6 C .方程3x =4-x 变形为3x+x =4 D .方程4-x =3x 变形为x+3x =43. 方程1143x =的解是 ( ). A .12x = B .112x = C .43x = D .34x =4.对方程2(2x-1)-(x-3)=1,去括号正确的是( ).A .4x-1-x-3=1B .4x-1-x+3=1C .4x-2-x-3=1D .4x-2-x+3=1 5.方程1302x --=可变形为( ). A .3-x-1=0 B .6-x-1=0 C .6-x+1=0 D .6-x+1=2 6.3x-12的值与13-互为倒数,则x 的值为( ). A .3 B .-3 C .5 D .-5 7.(•株洲)在解方程时,方程两边同时乘以6,去分母后,正确的是( )A .2x ﹣1+6x=3(3x+1)B .2(x ﹣1)+6x=3(3x+1)C .2(x ﹣1)+x=3(3x+1)D .(x ﹣1)+x=3(x+1)8.某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有( ). A .54盏 B .55盏 C .56盏 D .57盏二、填空题9.(1)方程2x+3=3x-2,利用________可变形为2x-3x =-2-3,这种变形叫________. (2)方程-3x =5,利用________,把方程两边都_______,把x 的系数化为1,得x =________.10.方程2x-kx+1=5x-2的解是x =-1,k 的值是_______. 11.(秋•铜陵期末)如果|a+3|=1,那么a= . 12.(春•南江县校级月考)在解方程﹣=2时,去分母得 .13.在有理数范围内定义一种运算“※”,其规则为a ※b =a-b .根据这个规则,求方程(x-2)※1=0的解为________.14.一列长为150m 的火车,以15m/s 的速度通过600m 的隧道,则这列火车完全通过此隧道所需时间是________s . 三、解答题15.解下列方程:(1)4(2x-1)-3(5x+2)=3(2-x);(2)12323x x x ---=-; (3)0.10.2130.020.5x x -+-= .16.(春•宜阳县期中)当k 取何值时,关于x 的方程2(2x ﹣3)=1﹣2x 和8﹣k=2(x+)的解相同?17.小明的练习册上有一道方程题,其中一个数字被墨汁污染了,成为31155x x ++•=-,他翻看了书后的答案,知道了这个方程的解是14,于是他把被污染了的数字求出来了,请你把小明的计算过程写出来.【答案与解析】一、选择题1.【答案】C.【解析】由题意,2x ﹣1=2,或2x ﹣1=﹣2,解这两个方程得:x=,或x=﹣2. 【答案】A【解析】A 中移项未改变符号. 3. 【答案】C【解析】系数化为1,两边同乘以4即可. 4. 【答案】D【解析】A 中,去掉第1个括号时第二项漏乘,去掉第2个括号时,-3没变号;B 中,去掉第1个括号时第二项漏乘;C 中,去掉第2个括号时,-3没变号. 5.【答案】C【解析】A 中,去分母时3没有乘以2,-1没变号;B 中,去分母时-1没变号;D 中,等号右边0乘以2应是0,而不应是2. 6.【答案】A 【解析】-3x-12与13-互为倒数,所以3x-12=-3,x =3. 7. 【答案】B【解析】解:方程两边同时乘以6得:2(x ﹣1)+6x=3(3x+1),故选B . 8. 【答案】B【解析】设有x 盏,则有(1)x -个灯距,由题意可得:36(1061)70(1)x -=-,解得:55x =.二、填空题9.【答案】(1)等式性质1,移项; (2)等式性质2,除以-3,53- 10.【答案】k =-6【解析】将1x =-代入得:2152k -++=--,解得:6k =-. 11.【答案】﹣2或﹣4.【解析】∵|a+3|=1,∴a+3=1或a+3=﹣1,∴a=﹣2或﹣4. 12.【答案】3(x+1)﹣2(2x ﹣3)=24.【解析】解:方程两边都乘以12,去分母得,3(x+1)﹣2(2x ﹣3)=24.故答案为:3(x+1)﹣2(2x ﹣3)=24.13.【答案】x =3【解析】根据规则得:x-2-1=0,x =3. 14.【答案】50 【解析】6001505015+=(秒) .三、解答题 15.【解析】解:(1)8x-4-15x-6=6-3x 8x-15x+3x =6+4+6 -4x =16x =-4 (2)12323x x x ---=-6x-3(1-x)=18-2(x-2)11x =25 2511x =(3)原方程可化为:10201010325x x -+-=,约分得:5x-10-(2x+2)=3,去括号得5x-10-2x-2=3,移项及合并,得3x =15,系数化为1,得x =5.16.【解析】解2(2x ﹣3)=1﹣2x ,得 x=,把x=代入8﹣k=2(x+),得 8﹣k=2(+), 解得k=4,当k=4时,关于x 的方程2(2x ﹣3)=1﹣2x 和8﹣k=2(x+)的解相同. 17.【解析】解:将14x =代入,得: 113144155⨯++•=-. 解得:3•=.所以被污染的数字为3.。

相关文档
最新文档