有理数指数幂的运算

合集下载

指数与指数幂的运算知识点总结

指数与指数幂的运算知识点总结

指数与指数幂的运算知识点总结本节知识点 (1)整数指数幂; (2)根式; (3)分数指数幂; (4)有理数指数幂; (5)无理数指数幂. 知识点一 整数指数幂1.正整数指数幂的定义:,其中N*.an na a a a 个⋅⋅=∈n 2.正整数指数幂的运算法则: (1)(N*);nm nmaa a +=⋅∈n m ,(2)(且N*);nm nma a a -=÷,,0n m a >≠∈n m ,(3)(N*);()mn nma a=∈n m ,(4)(N*);()mmmb a ab =∈m (5)(N*).m m mb a b a =⎪⎭⎫⎝⎛,0≠b ∈m 3.两个规定(1)任何不等于零的数的零次幂都等于1.即.()010≠=a a 零的零次幂没有意义.(2)任何不等于零的数的(为正整数)次幂,等于这个数的次幂的倒数.即:n -n n . ()01≠=-a a a nn 零的负整指数幂没有意义. 知识点二 根式的概念及其性质 1.次方根n (1)定义 一般地,如果(且N*),那么叫做的次方根. a x n=1>n ∈n x a n (2)性质:①当为奇数时,正数的次方根是一个正数,负数的次方根是一个负数,这时,的次n n n a n方根用表示;na ②当为偶数时,正数的次方根有两个,这两个数互为相反数,表示为.负数没有偶n n na ±次方根;③0的任何次方根都是0,记作.00=n2.根式的定义 形如(且N*)的式子叫做根式,其中叫做根指数,叫做被na 1>n ∈n n a 开方数.对根式的理解,要注意以下几点: na (1)且N*; 1>n ∈n (2)当为奇数时,R ; n ∈a (3)当为偶数时,≥0.n a 根式(且N*)的符号的确定:由的奇偶性和被开方数的符号共同确定. na 1>n ∈n n a (1)当为奇数时,的符号与的符号相同; n na a (2)当为偶数时,≥0,为非负数. n a na 3.根式的性质: (1);()a a nn=(2)对于,当为奇数时,;当为偶数时,.nna n a a nn=n ()()⎩⎨⎧≤-≥==00a a a a a a nn与的联系与区别:()nna nn a (1)对于,当为奇数时,R ;当为偶数时,≥0.而对于,是一个恒有意义()nna n ∈a n a nn a 的式子,不受的奇偶性的限制,但式子的值受到的奇偶性的限制. n n (2)当为奇数时,.n ()=nna a a nn =知识点三 分数指数幂1. 规定正数的正分数指数幂的意义是(,N*,且)nm nm a a =0>a ∈n m ,1>n 于是在条件,N*,且下,根式都可以写成分数指数幂的形式.0>a ∈n m ,1>n2. 正数的负分数指数幂的意义与负整数指数幂的意义相仿,规定(,N*,且)nmnm nm aaa11==-0>a ∈n m ,1>n 3. 0的正分数指数幂等于0,0的负分数指数幂没有意义. 对分数指数幂的理解:(1)分数指数幂不能理解为个相乘,它是根式的一种新的写法; nm a nma (2)分数指数不能随意约分. nm如,事实上,,式子是有意义的;而在()()214233-≠-()()424233-=-()3321-=-实数范围内是没有意义的.(3)在保证相应的根式有意义的前提下,负数也存在分数指数幂.如上面提到的,但没有意义.()()424233-=-()()434355-=-所以对于分数指数幂,当≤0时,有时有意义,有时无意义.因此,在规定分数指数幂的nm a a 意义时,要求. 0>a 知识点四 有理数指数幂规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数. 整数指数幂的运算性质对于有理数指数幂同样适用: (1)(Q );sr sra a a +=⋅,0>a s r ,∈(2)(Q );()rs sra a=,0>a s r ,∈(3)(Q ).()rrrb a ab =0,0>>b a r ∈有理数指数幂的运算还有如下性质: (4)(Q );sr sraa a -=÷,0>a s r ,∈(5)(Q ).r r rb a b a =⎪⎭⎫⎝⎛0,0>>b a r ∈常用结论:(1)当时,; 0>a 0>ba (2)若则;,0≠a 10=a(3)若(,且),则; sr a a =0>a 1≠a s r =(4)乘法公式适用于分数指数幂.如().b a b a b a b a -=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+221221212121210,0>>b a 知识点五 无理数指数幂一般地,无理数指数幂(,是无理数)是一个确定的实数.有理数指数幂的运算性αa 0>a α质同样适用于无理数指数幂.知识点六 运用公式进行指数幂的运算(条件求值) 常用公式:(1)平方差公式 .()()b a b a b a -+=-22(2)完全平方公式 .()()2222222,2b ab a b a b ab a b a +-=-++=+(3)立方和公式 . ()()2233bab a b a b a +-+=+(4)立方差公式 .()()2233bab a b a b a ++-=-(5)完全立方和公式 .()3223333b ab b a a b a +++=+(6)完全立方差公式 .()3223333b ab b a a b a -+-=-常用公式变形:(1),.()ab b a b a 2222-+=+()ab b a b a 2222+-=+(2),.211222-⎪⎭⎫ ⎝⎛+=+x x x x 211222+⎪⎭⎫ ⎝⎛-=+x x x x 或者写成,.()22122-+=+--x x xx ()22122+-=+--x x x x (3);⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+b b a a b a b a b a 212121213213212323.⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-b b a a b a b a b a 212121213213212323例题讲解例1. 已知,求的值.32121=+-x x 32222323++++--x x x x 分析:采用整体思想方法,对所求式子进行合理变形,然后把条件整体代入求值.本题用到的公式和结论有:;()22122-+=+--x x x x . ()()1112121121213213212323-+⎪⎭⎫ ⎝⎛+=+-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+------x x x x x x x x x x xx 解:∵32121=+-xx ∴,∴. 92122121=++=⎪⎭⎫ ⎝⎛+--x x x x 71=+-x x ∴.()4727222122=-=-+=+--x x x x ()()181731121213213212323=-⨯=+-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+----x x x x x x xx ∴.52502034721832222323==++=++++--x x x x 例2. 已知,求下列各式的值:22121=+-a a (1); (2); (3).1-+a a 22-+a a 22--a a 分析:在求的值时,直接入手比较困难,我们可以先求出的值,然22--a a ()222--a a 后在进行开平方运算. 解:(1)∵22121=+-aa ∴,∴; 42122121=++=⎪⎭⎫ ⎝⎛+--a a a a 21=+-a a (2);()222222122=-=-+=+--a a a a (3)∵()()04242222222=-=-+=---a a a a ∴. 022=--a a例3. 已知,其中,求的值.41=+-x x 10<<x xx x x 122+--分析:要学会根式与分数指数幂的相互转化,在转化时要注意:根指数是分数指数的分母,被开方数(或式)的指数是分数指数的分子.解:∵41=+-x x ∴,∴,∴. 4222121=-⎪⎭⎫ ⎝⎛+-x x 622121=⎪⎭⎫ ⎝⎛+-x x 62121=+-x x()1424222122=-=-+=+--x x x x ∴()()19241442222222=-=-+=---x x x x ∵,∴,∴.10<<x 22-<x x 3819222-=-=--x x ∴. 24638121212222-=-=+-=+----x x x x x x x x 例4. (1)已知,求的值;42121=+-aa 21212323----aa a a (2)已知,且,求的值;9,12==+xy y x y x <21212121yx y x +-解:(1)∵42121=+-aa ∴,∴. 212212142=++=⎪⎭⎫ ⎝⎛+--a a a a 142161=-=+-a a ∴; ()15114111212112121212132132121212323=+=++=-++⎪⎭⎫ ⎝⎛-=-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=----------a a a a a a a a a a a a aa a a (2)∵9,12==+xy y x ∴ ()()3192129212222221212212122121221212121=+-=++-+=++-+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛+-xy y x xy y x xy y x xy y x y x y x y x y x∵,∴,∴y x <2121y x <021212121<+-yx y x ∴. 333121212121-=-=+-yx y x 例5. 已知,求的值.3232+=a 31311--++aa a a 分析:借助于分式的性质. 解:∵ 3232+=a ∴,.3232113232-=+==-a a()34732223234+=+=⎪⎭⎫⎝⎛=a a ∴()132323431313113131311++=⎪⎭⎫⎝⎛++=++-----a aa a a a a a a aa aa .()3333333333913232347=++=++=++-++=解法二:∵3232+=a ∴113232313132323131313133133131311-+=+⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++--------a a a a a a a a a a a a aa a a .313232132132113232=--++=-+++=-+=aa 例6. (1)当时,求的值;22,22-=+=y x ⎪⎭⎫ ⎝⎛++⋅⎪⎭⎫ ⎝⎛----323132343132y y x x y x (2)若,求的值. 122-=xaxx xx aa a a --++33分析: 结论 对于二次根式,若是完全平方数,则也是完全C B A ±C B A 22-C B A ±平方数. 本题中,,被开方数不是完全平方数,所以不能化简,当确有22+=x 22+x.()222222+=+=x 解:(1)∵22,22-=+=y x ∴12331332323132343132------=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++⋅⎪⎭⎫ ⎝⎛-y x y x y y x x y x ; ()22122222221222+=+-+=--+=(2)∵122-=x a ∴ ()()()()1122223333-+=++-+=++=++--------xx xx x x x x x x x x x x x x a a aa a a a a a a a a a a a a . 1121121122--+-=-+=xx a a 12211212-=-++-=另解:解例5的解法一.题型一 整数指数幂的运算例7. 已知(为常数,且Z ),求的值.a x x =+-22a ∈x x x -+88分析:因为,所以先由条()()()()x x x x x x x x x x 22333321222222288-----+-+=+=+=+件求出的值.a x x =+-22x x 2222-+完全立方和公式 .()3223333b ab b a a b a +++=+解法一:∵a x x =+-22∴()2222222222-=-+=+--a x x x x ∴()()()()x x x x x x x x x x 22333321222222288-----+-+=+=+=+.()()a a a a a a 3312322-=-=--=解法二:(完全立方和公式) ∵a x x =+-22∴,展开得:.()3322a x x =+-()()()()3322322232232a x x x x x x =+⨯⨯+⨯⨯+---整理得:,∴. ()382238a x x x x =+++--3838a a x x =++-∴.a a x x 3883-=+-例8. 已知,则_________. 3101=+-x x =--22x x 解:∵ 3101=+-x x ∴ ()9822310222122=-⎪⎭⎫⎝⎛=-+=+--x x xx ∴ ()()816400498242222222=-⎪⎭⎫⎝⎛=-+=---x x x x ∴. 98081640022±=±=--x x 解法二分析:使用平方差公式得. ()()1122----+=-x x x x x x 解法二:∵ 3101=+-x x ∴ ()()9644310422121=-⎪⎭⎫⎝⎛=-+=---x x xx ∴. 389641±=±=--x x ∴. ()()980383101122±=⎪⎭⎫ ⎝⎛±⨯=-+=----x x x x x x 例9. 若,求的值. 31=+-x x 2323-+x x 解:∵(这里)31=+-x x 0>x ∴,∴. 3222121=-⎪⎭⎫ ⎝⎛+-x x 522121=⎪⎭⎫ ⎝⎛+-x x ∵,∴.02121>+-x x 52121=+-xx ∴ ()1212132132123231----+-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+x x x x x x xx . ()52135=-⨯=解法二:∵31=+-x x ∴()723222122=-=-+=+--x x x x∴ ()()()202173122213322323=+-⨯=+-+=++=⎪⎭⎫ ⎝⎛+----x x x x x x x x ∴.52202323==+-xx 例10. 已知,则【 】41=+-x x =+-2121x x (A )2 (B )2或 2-(C )(D )或666-分析:题目的隐含条件为. 0>x 解:∵41=+-x x ∴,∴ 42221211=-⎪⎭⎫ ⎝⎛+=+--x x x x 622121=⎪⎭⎫ ⎝⎛+-x x ∵02121>+-x x ∴.选择【 C 】.62121=+-x x例11. 已知,则【 】212121++=⎪⎭⎫ ⎝⎛+--x x x x f ()=+1x f (A ) (B )42-x ()21+x (C )(D )()()2111-+++-x x 322-+x x 解:(换元法)设,则有t xx =+-2121∴222221211-=-⎪⎭⎫ ⎝⎛+=+--t x x x x ∴,∴. ()2222t t t f =+-=()2x x f =∴.选择【 B 】.()()211+=+x x f 解法二(凑整法):∵212121++=⎪⎭⎫ ⎝⎛+--x x x x f ∴,∴.2212122121212122⎪⎭⎫ ⎝⎛+=+-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+---x x x x x x f ()2x x f =∴.()()211+=+x x f题型二 根式的化简在进行根式的化简时,主要用到的是根式的性质: (1);()a a nn=(2)对于,当为奇数时,;当为偶数时,.nna n a a nn=n ()()⎩⎨⎧≤-≥==00a a a a a a nn注意 对于,当为奇数时,R ;当为偶数时,≥0.而对于,是一个恒有意()nna n ∈a n a nn a 义的式子,不受的奇偶性的限制,但式子的值受到的奇偶性的限制.n n 例12. 化简下列各式: (1);()()222535-+-(2)(≥1).()()2231x x -+-x 解:(1)原式;125532535=-+-=-+-=(2).()()x x x x -+-=-+-313122∵≥1x ∴当1≤≤3时,原式; x 231=-+-=x x 当时,原式. 3>x 4231-=-+-=x x x 例13. 化简: (1); (2)(≤).()nnx π-62144+-a a a 21分析:对于(1),要对的奇偶性进行分类讨论. n 解:(1)当为奇数时,;n ()ππ-=-x x nn 当为偶数时,; n ()()()⎩⎨⎧<-≥-=-=-ππππππx x x x x x nn(2).()()()33162626221212112144a a a a a a -=-=-=-=+-注意:当底数为正数时,其分数指数可以约分.例14. 求下列各式的值: (1);223223-++(2).347246625-+--+分析: 结论 对于二次根式,若是完全平方数,则也是完全C B A ±C B A 22-C B A ±平方数.根据此结论,可知,,均可以化为完全平方的形式. 625+246-347-解:(1)原式;()()221212*********2=-++=-++=-++=(2)原式()()()222322232-+--+=.22322232322232=-++-+=-+--+=总结 形如()的双重二次根式的化简,一般是将其化为n m 2±0,0>>n m 的形式,然后再化简.由得:()2ba ±()ab b a ba n m 222±+=±=± ⎩⎨⎧==+nab mb a 所以是一元二次方程的两个实数根.b a ,02=+-n mx x 例15. 化简. 32-解:. ()()226213213222132324322-=-=-=-=-=-例16. 计算:.()()4123323-+-解:原式.()[]()58323233443=+-=-+-=-+-=注意 在利用根式的性质进行的化简时,一定要注意当为偶数时,底数的符号.nna n a 例17. 化简下列各式: (1)();()()665544b a b a a -+++0<<b a (2)(). 1212----+x x x x 21<<x 解:(1)∵0<<b a ∴原式; ()a b a b b a a b a b a a -=-+++-=-+++=2(2)∵,∴ 21<<x 110<-<x ∴原式()()1111111122---+-=---+-=x x x x. ()1211111111-=-+-+-=---+-=x x x x x 例18. 求值_________. =-++335252解:令,则有y x =-=+3352,52,.4525233=-++=+y x 1-=xy ∴,∴()()422=+-+y xy x y x ()()[]432=-++xy y x y x 设,则,有t y x =+0>t ,∴,()432=+t t 0433=-+t t 01333=--+t t ∴()()0412=++-t t t ∵,∴,∴. 042>++t t 01=-t 1=t ∴. 1525233=-++解法二:设,则有=x 335252-++,∴()x x 3452523333-=-++=0432=-+x x∴, ()()03313=-+-x x ()()0412=++-x x x ∵,∴,∴ 042>++x x 01=-x 1=x ∴. 1525233=-++例19. 根据已知条件求值: (1)已知,求的值;32,21==y x yx y x yx y x +---+(2)已知是方程的两根,且,求的值.b a ,0462=+-x x 0>>b a ba b a +-解:(1)∵ 32,21==y x ∴原式()()()()()()yx yx yx yx yx yx -+--+-+=22yx xyy x y x xy y x --+--++=22; 383221322144-=-⨯⨯=-=yx xy(2)∵是方程的两根 b a ,0462=+-x x ∴4,6==+ab b a ∴()()204464222=⨯-=-+=-ab b a b a ∵,∴ 0>>b a 0>-b a ∴. 5220==-b a ∴. ()()()55515242622==-=--+=-+-=+-b a ab b a ba ba ba ba b a (2)解法二:∵是方程的两根,∴b a ,0462=+-x x 4,6==+ab b a ∴. ()()5110242642622222==+-=++-+=+-=⎪⎪⎭⎫⎝⎛+-abb a ab b a b a b a b a b a ∵,∴,∴0>>b a b a >0>+-ba b a ∴. 5551==+-ba b a 例20. 已知,N*,求的值.⎪⎭⎫ ⎝⎛-=-nn x 115521∈n ()n x x 21++解:∵⎪⎭⎫ ⎝⎛-=-n nx 115521∴.n n n n n n x 222221125215525411552111---++=⎪⎭⎫ ⎝⎛+-+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=+2115541⎪⎭⎫ ⎝⎛+=-n n∴⎪⎭⎫ ⎝⎛+=+-n nx 11255211∴.()55552155211111112=⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=++--nn n nn n n nx x例21. 已知函数,.()53131--=x x x f ()53131-+=x x x g (1)证明:在上是增函数(已知在R 上是增函数);()x f ()+∞,031x y =(2)分别计算和的值,由此概括出函数和()()()2254g f f -()()()3359g f f -()x f 对所有不等于0的实数都成立的一个等式,并加以证明.()x g x (1)证明:任取,且()+∞∈,0,21x x 21x x <∴ ()()55531131231231131231231131121⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=---=-----x x x x x x x x x f x f ∵,且,在R 上是增函数 ()+∞∈,0,21x x 21x x <31x y =∴312311312311,--><x x x x ∴,∴ ()()021<-x f x f ()()21x f x f <∴在上是增函数; ()x f ()+∞,0(2)解:()()()2254g f f -.0522522552222554432323232313131313131=---=⨯⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⨯--=-----同样求得. ()()()03359=-g f f 猜想:. ()()()052=-x g x f x f 证明:()()()x g x f x f 52-.055555532323232313131313232=---=⨯⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⨯--=-----x x x x x x x x xx 例22. 当,且时,求的值.0,0>>y x ()()y x y y x x 53+⋅=+yxy x y xy x -+++32解:∵,且0,0>>y x ()()y x y y x x53+⋅=+∴, y xy xy x 153+=+0152=--y xy x ∴()()053=-+y x yx ∴,. 05=-y x y x y x 25,5==∴.22958525355032==-+++=-+++yyy y y y y y yxy x y xy x 题型三 根式与分数指数幂的互化在进行根式与分数指数幂的互化时要注意两个对应: (1)根指数对应分数指数的分母;(2)被开方数(或式)的指数对应分数指数的分子. 当出现多重根号时,应从里向外化简.例23. 用根式或分数指数幂表示下列各式:,,,;.51a ()043>a a 36a ()013>a a()0>a a a 解:;551a a =;()43430a a a =>;23636a a a ==;()23233101-==>a aa a.()4323210a a a a a a a ==⋅=>例24. 将根式化为分数指数幂是【 】 53-a (A ) (B )(C )(D )53-a 53a 53a -35a -解:选择【 A 】. 例25. 化简:_________.(用分数指数幂表示)()()=⋅÷⋅109532a a a a 解:由题意可知:.0>a ∴原式.561012101451310921532a a a a a a a a ==÷=⎪⎭⎫⎝⎛⋅÷⎪⎭⎫ ⎝⎛⋅=例26. 设,化简:.0>a 434334aa a a -解:∵0>a ∴.611616653163254343234434334---===⋅⋅=aaa aa a a aa aa aa例27. 下列根式与分数指数幂的互化中,正确的是【 】 (A )(B )()()0414>-=-x x x )0551≠-=-x x x(C ) (D )()0,4343≠⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-y x x y y x 4182y y =解:(A ),故(A )错;()0414>-=-x x x (B ),故(B )错; ()0155151≠==--x xx x(D ),故(D )错. 选择【 C 】. 4182y y =例28. 下列各式正确的是【 】 (A );(B )35531aa=-2332x x =(C )(D )⎪⎭⎫ ⎝⎛-⨯-=814121814121aaa a x x x x 412212323131-=⎪⎭⎫ ⎝⎛---解:(A ),故(A )错;53535311aaa ==-(B ),故(B )错; 3232x x =(C ),故(C )错. 选择【 D 】.85814121814121a aaa a ==⎪⎭⎫ ⎝⎛-+-题型四 根式和分数指数幂有意义的条件1.对于次根式,当为奇数时,R ;当为偶数时,≥0. n na n ∈a n a 2.0的0次幂和负实数幂都没有意义.例29. 若有意义,则的取值范围是__________.()4321--x x解:∵()()()43434321121121x x x -=-=--∴,解之得:. 021>-x 21<x 即的取值范围是.x ⎪⎭⎫ ⎝⎛∞-21,例30. 函数的定义域是【 】()()2125--+-=x x y (A ) (B ){}2,5≠≠x x x {}2>x x (C ) (D ){}5>x x {}552><<x x x 或解:∵()()()()()215215250210210-+-=-+-=-+-=-x x x x x x y ∴,解之得:且.⎩⎨⎧>-≠-0205x x 2>x 5≠x ∴该函数的定义域为.选择【 D 】.()()+∞,55,2 题型五 幂的运算目前,当底数大于0时,指数已经由整数指数推广到了实数指数,整数指数幂的运算性质适用于实数指数幂的运算.运算的结果可以化成根式形式或者保留分数指数幂的形式,但不能既有根式又有分数指数幂,也不能同时含有分母和负指数幂.(1)(R ); s r s r a a a +=⋅∈>s r a ,,0(2)(R );()rs sr a a =∈>s r a ,,0(3)(R ).()r r rb a ab =∈>>r b a ,0,0例31. 计算下列各式(式中的字母均为正数): (1);()()()c b a b a b a 24132124-----÷-⋅(2). ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--+----------212121211122b a b a b a b a 解:(1)原式;()ca ac cb a b a 33112412423-=-=÷-=-----(2)原式 ()()⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+---=--------21212121112121b a b a b a b a ()()()bb b a b a b a ba b a b a221111111111111==+-+=----+=-------------例32. 化简下列各式: (1);212121211111aaa a a++------(2).111113131313132---+++++-x xx x x x x x 解:(1)原式; ()()011112121212121211=-=+⎪⎭⎫ ⎝⎛+---=-----a a a a a a a a a (2)原式 11111131323131333131323331-⎪⎭⎫ ⎝⎛--++⎪⎭⎫ ⎝⎛+++-⎪⎭⎫ ⎝⎛=x x x x x x x x 31323132313131313131313231313231323111111111111xx x x x x x x x x x x x x x x x x --+-+-=-⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=.31x -=例33. 化简:. ()()()()()1421443333211--------++-++-+aa a a a a a a a a a a解:原式 ()()()()()()1221442212212111---------+-+-++++-+-+=a a a a a a a a a a a a a aa a ()[]()[]()()1214412222111--------++++++-+=aa a a a a a a a a a a()()aa a a a aa a a a a a a 21111144144=-++=-++++++=------例34. 化简下列各式:(1);(2).436532yx xy⋅1111212331++-+++a a a a a 解:(1)原式;1212143653231--==yx yx y x (2)原式 111111111121212131313231213321313331++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=++-⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛=a a a a a a a a a a a a a a21313221313211aa a a a a +-=-++-=例35. 【 】 ()=-⎪⎭⎫⎝⎛⨯+⎪⎭⎫ ⎝⎛--21212001.04122532(A )(B ) (C )(D )0151630173658-解:. ()21212001.04122532-⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫ ⎝⎛--1516101324111001491411=-⨯+=-⨯+=选择【 A 】.例36. 化简:_________.=⎪⎪⎭⎫⎝⎛÷⋅⋅----321132132a b b a bab a 解:原式.656161673223236167322121131212132--------=÷=⎪⎭⎫⎝⎛÷=⎪⎪⎪⎭⎫ ⎝⎛÷=b a ab b a b a b a b a ba b a b a 例37._________. =⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛---442102324953121解:原式. 22322322232491112=-++=-++-+=例38. 已知,则的值是_________. 3,2==n m 32432332⎪⎪⎭⎫⎝⎛÷⋅----m n nm m n n m 解:∵3,2==n m ∴原式 32325343322534312322332⎪⎭⎫ ⎝⎛÷=⎪⎭⎫ ⎝⎛÷=⎪⎪⎪⎭⎫ ⎝⎛÷=--------mn n m n m n m n m mn n m n m . 27232333131=⨯==⎪⎭⎫⎝⎛=---mn n m 例39. 已知函数,则_________.()()⎪⎩⎪⎨⎧≥--<=1,351,312x x x x x f =⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛--4321353f f 解: ⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛+-⎪⎭⎫⎝⎛---4343213533353f f f f . 33939335353331243=+-=+⎪⎭⎫⎝⎛-+-⨯=-题型六 解含幂的方程例40. 解下列方程:(1);(2).2291381+⎪⎭⎫ ⎝⎛=⨯x x0123222=-⨯++x x 解:(1),()2224333+-=⨯x x 424233--+=x x ∴,解之得:;4242--=+x x 2-=x (2),设,则()0123242=-⨯+⨯x x t x =20>t ∴, 01342=-+t t ()()0114=+-t t 解之得:(舍去). 1,241221-===-t t ∴,∴.222-=x 2-=x 结论 若(,且),则sra a =0>a 1≠a s r =题型七 指数幂等式的证明 设参数法例41. 设都是正数,且,求证:. c b a ,,c b a 643==ba c 122+=证明:设,则有. t cba===643cbat t t 12116,2,3===∵ 236⨯=∴,∴ba bacttt t 2112111+=⋅=ba c 2111+=等式两边同时乘以2得:. b a c 122+=例42. 设,且,则_________.m b a ==52211=+ba =m 分析:这是指数幂的连等式,参数已经给出. 解:∵,∴. m ba==52bam m 115,2==∵211=+ba ∴,∴,.2111152m m m m ba ba==⋅=⨯102=m 10±=m ∵,∴. 0>m 10=m 例43. 已知,且. 333cz by ax ==1111=++zy x 求证:.()31313131222c b a czby ax ++=++证明:设,则. t cz by ax ===333zt cz y t by x t ax ===222,,∴.⎪⎭⎫⎝⎛++=++z y x t cz by ax 111222∵,∴ 1111=++z y x t z y x t =⎪⎭⎫⎝⎛++111∴,t cz by ax =++222()3131222t czby ax =++∵3131313313313313131111t z y x t z t y t x t c b a =⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++∴.()31313131222c b a czby ax ++=++例44. 对于正整数(≤≤)和非零实数,若c b a ,,a b c ω,,,z y x ,ω70===z y x c b a ,求的值. zy x 1111++=ωc b a ,,解:设,则有.k c b a zyx====ω70ω111170,,,k k c k b k a zyx====∴zy x k abc 111=∵,∴. zy x 1111++=ω70=abc ∵为正整数,且≤≤ c b a ,,a b c ∴ 752107170⨯⨯=⨯⨯==abc ∴或10,7,1===c b a 7,5,2===c b a 当时,,不符合题意,舍去. 10,7,1===c b a 0===ωz y ∴.7,5,2===c b a 本节易错题例45. 计算_________.()()=-++44332121分析 对于对于,当为奇数时,;当为偶数时,.nna n a a nn=n ()()⎩⎨⎧≤-≥==00a a a a a a nn解:原式.2212212121=-++=-++=例46. 化简_________. ()()=-⋅-43111a a 分析:题目的隐含条件为. 1>a 解:原式.()()()()()()()414343431111111--=-⋅--=-⋅-=-⋅-=---a a a a a a a 例47. 已知,N*,化简.1,0><<n b a ∈n ()()nn nnb a b a ++-解:当为奇数时,原式; n a b a b a 2=++-=当为偶数时,原式.n b a b a ++-=∵,∴原式. 0<<b a a b a a b 2-=---=其它例48. 已知函数,则_________. ()⎪⎩⎪⎨⎧≤⎪⎭⎫ ⎝⎛>=0,210,21x x x x f x ()=-)4(f f 解:∵ ()1621121444=⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛=--f ∴.()()4161616)4(21====-f f f 例49. 已知集合,,且,则_______.{}4,,2a a A -=⎭⎬⎫⎩⎨⎧-=b a aa B 2,,33B A ==+b a 解:{}{}4,,4,,2a a a a A -=-=根据集合元素的互异性,,∴a a -≠0>a ∴{}b b a a aa B 2,1,2,,33-=⎭⎬⎫⎩⎨⎧-=∴,解之得:.⎩⎨⎧==421b a ⎩⎨⎧==21b a ∴ 3.=+b a 例50. 设,若,则()244+=x xx f 10<<x _________. =⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛10011000100131001210011f f f f 解:∵()244+=x x x f ∴()()=+++=+++=+++=-+--2422444444244244244111x x x x x x x x x x x x f x f 12424=++x x ∴ ⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛10011000100131001210011f f f f.500111100150110015001001100010011=++=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛= f f f f。

4.1.1有理数指数幂(课件)-高一数学(湘教版2019必修第一册)

4.1.1有理数指数幂(课件)-高一数学(湘教版2019必修第一册)
根式运算是一件比较复杂的事,例如,常常要先把根式化为同次根式再按运
算法则进行运算,而引入分数指数的概念就可以大大简化根式运算.



当 > 0,, ∈ 且 ≥ 2时,规定 = ,
这样就有
24
4
2
= 2 = 4, 6
1
33
=3
3
−6
=3
1
2

=
1
3
=
1

=


.
3
,方便多了.
1
−2
= 5,求下列各式的值:
(1) + −1 ;(2)2 + −2 ;(2)
1
2
解:将 +
1
−2
3
3

2 − 2
1
1

2 − 2
.
= 5两边同时平方,得: + −1 + 2 = 5.
(1) + −1 = 5 − 2 = 3;
(2)将 + −1 两边同时平方,得:2 + −2 + 2 = 9.∴2 + −2 = 7.
∙ = + ,( ) = ,() = .
下面,我们把整数指数幂推广到有理数指数幂.
新知探索——根式
若一个(实)数的次方( ∈ , ≥ 2)等于,即 = ,则称是的次
方根.
当是奇数时,数的次方根记作 .
当 > 0时, > 0;当 = 0时, = 0;当 < 0时, < 0.
1
−2
1 −3
125 −2
;(3)( ) ;(4)( ) 3 .

理解分数指数幂的概念,掌握有理数指数幂的运算性质掌握指数函数.

理解分数指数幂的概念,掌握有理数指数幂的运算性质掌握指数函数.

因此A点坐标为(1,2).
答案:(1,2)
加法和减法是一级运算,乘法和除法是二级运算,当引进分数指数幂后,乘方 和开方也可看作同一级运算.利用指数的运算性质,可将根式与指数幂进行互 化运算,同时指数运算也是研究指数函数图象和性质的基础.
【例1】 计算下列各式:
学习指数函数的图象与性质是为研究其它函数图象与性质提供了典型范例,
复合,因此其单调性的判断类似于函数y=
2.作为选择题,本题的关键是判断函数y= 利用单调性,必要时还可考虑求函数的值域等.
=1+
的奇偶性和单调性,主要是
3.学习函数的性质和图象,关键在于对具体函数的性质和图象进行系统的研究 和把握,建议可借助于几何画板等手段作出常见的整式函数如 y=x3+x,y= x3-x;分式函数如:
A.0 B.1 C.2 D.3
)
解析:A={x∈Z|1≤2-x<3}={0,1},B={x∈R|log2x>1,或log2x<-1} =(0, )∪(2,+∞) ,2],∴A∩(∁RB)={0,1}.
∴∁RB=(-∞,0]∪[ 答案:C
4.方程3x-1=
的解是________.
解析:3x-1=3-2,∴x-1=-2,解得x=-1. 答案:-1 5.(2010·高三调研)如图,过原点O的直 线与函数y=2x的图象交于A、B两点, 过B作y轴的垂线交函数y=4x的图象于点C.若AC 平行于y轴,则点A的坐标是________. 解析: 设 A点坐标是 (x,2x),则 C(x,4x), B(x0,4x),由 B点在函数 y= 2x的图象上, 则 =4x,则x0=2x,又O,A,B在一条直线上 ,解得x=1,
>0时,方程①有解.解得-1<y<1.

高一数学指数与指数幂的运算2(1)

高一数学指数与指数幂的运算2(1)

4. 例题与练习:
例1 求值:
2
83 ,
1
100 2 ,
( 1 )3 ,
(
16

)
3 4
.
4 81
4. 例题与练习: 例2 用分数指数幂的形式表示下列各式 (其中a>0):
a2 a; a3 3 a2; a a .
4. 例题与练习: 例2 用分数指数幂的形式表示下列各式 (其中a>0):
an
| a
|
a(a 0) a(a 0).
复习引入
2. 根式的运算性质:
① 当n为奇数时, n a n a;
当n为偶数时, n
an
| a
|
a(a 0) a(a 0).
② 当n为任意正整数时,
复习引入
2. 根式的运算性质:
① 当n为奇数时, n a n a;
2.1.1指数与指数幂 的运算
主讲老师:
复习引入
1. 整数指数幂的运算性质:
复习引入
1. 整数指数幂的运算性质:
a m a n a mn (m, n Z ), (a m )n amn (m, n Z ), (ab)n a n bn (n Z ).
复习引入
2. 根式的运算性质:
4. 例题与练习:
例4
已 知x

x 1

1
3,求x 2

x

1
2的
值.
课堂小结
1. 分数指数幂的意义; 2. 分数指数幂与根式的互化; 3. 有理数指数幂的运算性质.
课后作业
1.阅读教材P.50-P.52; 2.《习案》作业十六.
;佳境配资 佳境配资 ;

《有理数指数幂》中职数学基础模块上册4.1ppt课件2【语文版】

《有理数指数幂》中职数学基础模块上册4.1ppt课件2【语文版】
(1)a a a
(2)(a) a
(3)(ab) a b
课后作业:
• 练习册4.1
编者语
• 要如何做到上课认真听讲?

我们都知道一个人的注意力集中时间是有限的,一节课45分钟如何保持时时刻刻都能认真听讲不走神呢?

1、往前坐

坐的位置越靠后,注意力就越难集中。老师不会注意到你的事实可以让你不再紧张,放心去做别的事情。坐在后面,视线分散,哪怕你是在看老师,如果有人移动,你的视线就会飘到那个同学的后脑勺上去,也就无法集中注意力。 而且,坐在后面很
③(5 23)5 23 8 ④ 2
⑤4(3)4 | 3 | 3
整数指数幂
正整数指数幂:
a2 aa
a3 aaa
指数

an a a ......a
底数
n个
运算法则:(1)aman amn
(2)(am)n anm (3)aamn amn (m n,a 0)
(3)正数的奇次方根是一个正数,负数
的奇次方根是一个负数。都记为 n a 。
根式性质
由n次根式的意义,可得
1. ( n a )n a
a
2. n an a
n是奇数 n是偶数
3.n 0 0
即:n a n 与n an 不一定相等
例1
5 ①(4 5)4
②(3 5)3 5

低着头,心情就放松了,但那种放松对学习一点好处也没有,之所以会放松,就是因为觉得即便是自己开小差,老师也不知道。如果你往前看,不时地和老师眼神交会一下,注意力必然会集中起来。和老师眼神交汇的那种紧张感会让你注意力集中,并充
实地听完整堂课。

§3有理数指数幂运算ppt

§3有理数指数幂运算ppt


225 4
(2)
m3n2 (
mn
)2

1 m2n

m6n4 m2n2

1 m2n

m n 622 421

m2n
练习1:化简(1) (ab2 )4 (a2b()3 2)
x3y2 x3y2 2
x4y
[互动过程3] 探究:负整数指数幂是否也满足上述运算性质?
例2:计算:35 3和7
3,5并(判7) 断两者之间的关系
解:
35 37

35 37
1 375

1 32
1 9
35(7)
32

1 32

1 9
由此看出 35 =37
35 ( 7 )
练习2.(1)计算:(2-3)2和 2-6

(2)化简
(m n)2 (m n)3

(m n)4 (m n)1
(四)、作业:练习1,2

(4)
am an

(5)
(a )n b
(二)、例题探析与巩固训练

例1.(1)求值
105

33 28
( 5223 )化简
(
m3n2 mn
)2

1 m2
n
解:(1) 105

ห้องสมุดไป่ตู้
32 28
2 53

(2

5)5

32 28
2 53

25 55 32 2 28 53

52 9 22
(a (a

b)4 b)0
]3

2.1.1 指数幂及其运算

2.1.1 指数幂及其运算

先将根式化为分数指数幂的形式,再运用分数指数幂的运算性
质进行化简.
11
11
7
【解析】(1)原式=a3 ·a4 =a3 +4 =a12 .
111
111
7
(2)原式=a2 ·a4 ·a8 =a2 +4 +8 =a8 .
23
23
13
(3)原式=a3 ·a2 =a3 +2 =a 6 .
1
1
2 13
213
73
了灵活运用运算法则外还要关注条件中的字母是否有隐含的条
件.
1
【正解】由(-a)2 知-a≥0,故 a-1<0.
11
∴(1-a)[(a-1)-2(-a)2 ]2
=(1-a)(1-a)-1·(-a)14=(-a)14 .
【警示】在利用指数幂的运算性质时,要关注条件中有无
隐含条件,在出现根式时要注意是否为偶次方根,被开方数是
(1)4 2+1·23-2 2·64-3 ;
11
(2)
a-b
1
1
-a+b1-2a21 ·b2
a2 +b2
a2 -b2
【解析】(1)原式=22 2+2·23-2 2·2-4=21=2.
1
1
1
1
1
1
(2)原式=a2
+b2 ·a2 a21+b12
-b2
-a21 a2
-b2
1
-b2
2
1
=a2
1
-b2
- a 1 2
方法二:a2+a-2=a2+2aa-1+a-2-2aa-1
=(a+a-1)2-2=25-2=23.
1
1
(2)∵(a2 -a-2 )2=a+a-1-2=5-2=3,

方氏考纲数学笔记(3指数运算及函数)

方氏考纲数学笔记(3指数运算及函数)

(考点一、有理数指数幂运算 (1)运算公式:):指数与指数函数综合运用= ===备注:初中阶段的完全平方公式以及平方差公式在高中阶段只要能满足有意义[包括正负不会发生变化],都能使用。

例:[意义使用]例:[公式使用]例:已知 x+ =2, 求 +; + 2; +2.例:(1 )(2)幂作整体的运算[提示:立方差公式]二、指数函数的使用 (1)图像使用[包括画法和数形结合]例:已知函数 f(x)=x-4+ ,x∈(0,4),当 x=a 时,f(x)取得最小值 b,则在直角坐标系中函数 g(x)|︱=( )的图象为( )A.B.C.D.设函数 f(x)=, > ,若 f(x)的值域为 R,则常数 a 的取值范围是( ) ,A.(-∞,-1]∪[2,+∞)B.B[-1,2]C.(-∞,-2]∪[1,+∞)D.[-2,1]分析:由题意可知,y=2x+a>4+a,y=x+a2≤2+a2,a2+2≥a+4,解不等式可求 解答:解:当 x>2 时,y=2x+a>4+a 当 x≤2 时,y=x+a2≤2+a2 ∵f(x)的值域为 R,∴a2+2≥a+4 解不等式可得,a≥2 或 a≤-1 已知函数 f(x)=|2x-1|,a<b<c,且 f(a)>f(c)>f(b),则下列结论中,必成立的是( )A.a<0,b<0,c<0B.a<0,b≥0,c>0C.ac>0D.ac<0解答: 解:f(x)=x-4+ ,则 f(x)=x+1+解:根据题意画出函数图象 ,利用均值不等式的性质,可得 a=2,b=1,已知函数 f(x)对任意 x∈R,都有 f(x)=f(2-x),且当 x≤1 时,f(x)=|1-ax|(a>1),又数列{an}中,=,,,且 an+3=an,n∈N*,则有( )A.f(a2010)<f(a2009)<f(a2011)B.f(a2011)<f(a2009)<f(a2010)C.f(a2010)<f(a2011)<f(a2009)D.f(a2009)<f(a2010)<f(a2011)分析:先根据数列的周期性,分别计算 a ,a ,a 2010 2009 2011 的值,并利用函数的对称性将三个值化到同一区间(0,1) 上,再利用函数图象得函数 f(x)在(0,1)上的单调性,利用单调性比较大小即可 解答:解:∵an+3=an,∴数列{an}为周期为 3 的周期数列,∴a2010=a3×670=a3= ,a2009=a2= , a2011=a1= , ∴f(a2011)=f( ), f(a2009)= f( ),f(a2010)=f( )f(x)=f(2-x),∴函数 f(x)的图象关于 x=1 对称, 又∵当 x≤1 时,f(x)=|1-ax|(a>1),图象为即 f(a2011)<f(a2009)<f(a2010)故选 B(2)单调性的使用 一、确定幂值大小 二、比数值大小:(主要分底数相同指数不同、底数不同指数相同、度数不同指数不同三种情况)下列大小关系正确的是( )A.0.43<30.4<log40.3B.0.43<log40.3<30.4C.log40.3<0.43<30.4D.log40.3<30.4<0.43若 0<a<b< ,则( D )A.2ab>2aB.2ab>2bC.log2(ab)>-1D.log2(ab)<-2解答:解:由题意可知 ab<a,ab<b<例:y=2x 是增函数,显然 A、B 不对;y=log2(ab)是增函数,有 0<a<b<知 ab< 所以 log2(ab)<-2 例.已知 ab>ac>1,b<c,则正确的结论是(D) A.0<b<c,a>1B.b<c<0,a>1C.0<b<c,,0<a<1D.b<c<0,,0<a<1设 a=40.9,b=80.48,c=( )— 则 a,b,c 的大小顺序为: a>c>b [提示:化同底]例:a=40.9,b=80.48,c=( ) ,则 a,b,c 的大小顺序为( )思路:化同底A.a>b>cB.a>c>b个数 60.5,0.56,log0.56 的大小顺序为(A.0.56<log0.56<60.5C.b>a>cD.c<a<b)思路:底数真数都不同,通过确值大小B.log0.56<0.56<60.5C.log0.56<60.5<0.56 考点:指数函数单调性的应用.D.0.56<60.5<log0.56知关于 x 的函数 f(x)=mx-1,(其中 m>1),设 a>b>c>1,则 、 、 的大小关系是( )答案: > >分析:根据 m>1,得到函数 f(x)=mx-1 是 R 上的增函数,图象经过原点分布在二、四象限.由此作出函数 f(x) =mx-1 图象,并设 A(a,f(a))、B(b,f(b)))、C(c,f(c)),利用斜率与倾斜角的关系并结合正切 在锐角范围内的单调性,不难得到本题的答案.思路二:利用函数 的单调性 例:2x-3-x≥2-y-3y,则( )A.x-y≥0B.x-y≤0C.x+y≥0D.x+y≤0解答:解;设 f(x)=2x-3-x,∵y=2x 和 y=-3-x 均为增函数,∴f(x)=2x-3-x 为 R 上的增函数 ∵2x-3-x≥2-y-3y,即 f(x)≥f(-y) ∴x≥-y,即 x+y≥0 例:已知函数 f(x)=ax、g(x)=bx 的图象与直线 y=3 的交点分别为 x1、x2,且 x1>x2,则 a 与 b 的大小关系不 可能成立的是( )[图像思路:相同纵坐标比较横坐标]A.b>a>1B.a>1>b>0C.1>b>a>0D.b>1>a>0例:[比大小]函数 f(x)定义在实数集上,对于任意的实数 x,都有 f(x+1)=f(1-x),且当 x≥1 时,f(x)=4x-1,则有( f( )< f( )< f( ) )例:设 a=( ) ,b=( ) ,c=( ) ,,则 a,b,c 的大小关系是( )A.a>b>cB.a>c>bC.b>c>aD.c>a>b思路:同底直接利用单调性,不同底化同底。

有理数的加减乘除、幂运算

有理数的加减乘除、幂运算

有理数的加减乘除运算重点:有理数的加法法则、减法法则、乘法法则、除法法则。

有理数的加法结合律、交换律;乘法交换律、结合律、乘法分配律。

混合运算的顺序。

难点:有理数运算法则的理解,尤其是有理数加法和减法法则的理解;有理数运算中的符号问题;运用运算律进行简算问题;运算的准确性问题等。

二、知识要点梳理知识点一:有理数的加法把两个有理数合成一个有理数的运算叫做有理数的加法。

要点诠释:相加的两个有理数有以下几种情况:(1)两数都是正数;(2)两数都是负数;(3)两数异号,即一个是正数,一个是负数;(4)一个是正数,一个是0;(5)一个是负数,一个是0;(6)两个都是0。

知识点二:有理数加法法则根据有理数的加法法则,两数相加,先弄清这两个加数是同号还是异号,根据法则确定和的符号,然后根据法则求出和的绝对值。

要点诠释:(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

(3)一个数同0相加,仍得这个数。

知识点三:有理数加法的运算定律要点诠释:(1)加法交换律:。

(2)加法结合律:。

知识点四:有理数减法法则要点诠释:减去一个数,等于加上这个数的相反数,即知识点六:有理数加减法统一成加法的意义要点诠释:对于有理数的加减混合运算中的减法,可以根据有理数减法法则将减法转化为加法。

这样一来,就将原来的混合运算统一为加法运算。

统一成加法以后的式子是几个正数或负数的和的形式,有时,我们把这样的式子叫做代数和。

知识点七:有理数加减混合运算的方法要点诠释:(1)运用减法法则将有理数混合运算中的减法转化为加法。

(2)运用加法法则、加法交换律、加法结合律简便运算。

知识点八:有理数乘法法则要点诠释:两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0。

知识点九:有理数乘法法则的推广要点诠释:(1)几个不等于0的数相乘,积的符号由负因数的个数决定。

有理数指数幂

有理数指数幂

解析 (1)
(2)
3

4

3+
4
4
(3-3)4 (a≤1);
(1 − )4 .
根据根式的性质化简,注意被开方数的符号.
(3-3)4 =|3a-3|=3|a-1|=3-3a.
3+
4
(1 − )4 =a+|1-a|=
1, ≤ 1,
2-1, > 1.
课前预学
课堂导学
方法总结:根式化简求值解题思路:解决根式的化简问题,首先要分清根式为奇次根式还是
方法总结:指数幂运算的常用技巧:(1)有括号先算括号里的,无括号先进行指数运
算.(2)负指数幂化为正指数幂的倒数.(3)底数是小数,先要化成分数;底数是带分数,
要先化成假分数,然后要尽可能用幂的形式表示,便于用指数幂的运算性质.
提醒:化简的结果不能同时含有根式和分数指数,也不能既含有分母又含有负指数.
(3)(ab)r=
(a>0,b>0,r∈Q).
有理数指数幂的运算性质的理解与巧记
(1)有理数指数幂的运算性质是由整数指数幂的运算性质推广而来的,可以
用文字语言叙述:①同底数幂相乘,底数不变,指数相加;②幂的幂,底数不变,指数
相乘;③积的幂等于幂的积.
(2)有理数指数幂的运算性质中幂指数运算法则遵循:乘相加,除相减,幂相乘.
课前预学
课堂导学
问题 2: 问题 1 中没有 a<b<0 的限制条件,根号内的式子还能“穿墙”吗?
答案
能,但要注意讨论.

问题 3: ( a)n 中实数 a 的取值范围是任意实数吗?
答案 不一定,当 n 为大于 1 的奇数时,a∈R;

指数加减乘除公式

指数加减乘除公式

指数加减乘除公式1. 同底数幂的乘法公式。

- 对于同底数幂a^m和a^n(a≠0,m、n为有理数),同底数幂相乘,底数不变,指数相加,即a^m· a^n = a^m + n。

- 例如:2^3×2^4 = 2^3+4=2^7 = 128。

2. 同底数幂的除法公式。

- 同底数幂相除,底数不变,指数相减。

对于a^m÷ a^n(a≠0,m、n为有理数且m>n),a^m÷ a^n=a^m - n。

- 例如:3^5÷3^2 = 3^5 - 2=3^3 = 27。

3. 幂的乘方公式。

- 幂的乘方,底数不变,指数相乘。

(a^m)^n=a^mn(a≠0,m、n为有理数)。

- 例如:(2^3)^4 = 2^3×4=2^12=4096。

4. 积的乘方公式。

- 积的乘方等于乘方的积,(ab)^n=a^n b^n(a、b为实数,n为有理数)。

- 例如:(2×3)^2 = 2^2×3^2=4×9 = 36。

5. 指数的加法和减法。

- 在同底数幂的情况下,如前面所述,乘法对应指数加法a^m· a^n = a^m + n,除法对应指数减法a^m÷ a^n=a^m - n。

- 不同底数幂的指数相加或相减没有直接的通用公式,一般需要先将底数化为相同或者通过对数等其他方法来处理。

例如2^3+3^2,不能直接对指数进行运算,2^3 = 8,3^2 = 9,结果为8 + 9=17。

6. 指数的乘除混合运算。

- 遵循先乘方、再乘除的顺序。

例如计算2^3×3^2÷2^2:- 先计算乘方:2^3 = 8,3^2 = 9,2^2 = 4。

- 再进行乘除运算:8×9÷4=(8×9)÷4 = 72÷4 = 18。

- 如果是同底数幂的乘除混合运算,则按照同底数幂的乘除规则进行,如a^m· a^n÷ a^p=a^m + n-p(a≠0,m、n、p为有理数)。

七年级同步第5讲:幂的运算(二) - 教师版

七年级同步第5讲:幂的运算(二) - 教师版

1、幂的运算概念:求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂,在n a 中,a 叫做底数,n 叫做指数.含义:n a 中,a 为底数,n 为指数,即表示a 的个数,n a 表示有n 个a 连续相乘. 特别注意负数及分数的乘方,应把底数加上括号. 2、“奇负偶正”口诀的应用:口诀“奇负偶正”在多处知识点中均提到过,它具体的应用有如下几点:(1)多重负号的化简,这里奇偶指的是“-”号的个数,例如:()33---=-⎡⎤⎣⎦;()33-+-=⎡⎤⎣⎦. (2)有理数乘法,当多个非零因数相乘时,这里奇偶指的是负因数的个数,正负指结果中积的符号.(3)有理数乘方,这里奇、偶指的是指数,当底数为负数时,指数为奇数,则幂为负;指数为偶数,则幂为正.3、特别地:当n 为奇数时,()n n a a -=-;而当n 为偶数时,()nn a a -=.负数的奇次幂是负数,负数的偶次幂是正数.正数的任何次幂都是正数,1的任何次幂都是1,任何不为0的数的0次幂都是“1”. 4、运算法则:(1)同底数幂相乘.同底数的幂相乘,底数不变,指数相加. 用式子表示为:m n m n a a a +⋅=(,m n 都是正整数). (2)幂的乘方.幂的乘方的运算性质:幂的乘方,底数不变,指数相乘. 用式子表示为:()nm mn a a =(,m n 都是正整数).(3)积的乘方.积的乘方的运算性质:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘. 用式子表示为:()nn n ab a b =(n 是正整数). (4)同底数幂相除.同底数幂相除,底数不变,指数相减.用式子表示为:m n m n a a a -÷=(0a ≠,m ,n 都是正整数).(5)规定()010a a =≠;1p p a a -=(0a ≠,p 是正整数).幂的运算(二)一、选择题1. 化简()()23x x -⋅--⎡⎤⎣⎦,结果是() A .6x - B .6xC .5xD .5x -【答案】D【解析】()()23325=x x x x x -⋅---⋅=-⎡⎤⎣⎦.【总结】本题主要考查同底数幂的运算,运算中注意式子符号.2. 下列各式计算过程正确的是( ) A .33336x x x x +==+B .333·2x x x = C .350358··x x x x x ==++D .()32235x x x x +⋅-=-=-【答案】D【解析】A 的正确结果是32x ,B 的正确结果是6x ,C 的正确结果是159335··x x x x x ++==. 【总结】本题主要考查幂的运算的基本法则,熟练掌握相关法则.3. 下列计算:①()2525x x =;②()257x x =;③()5210x x =;④()752·x y xy =;⑤()1052·x y xy =;⑥()555x y xy =;其中错误的有( ) A .2个B .3个C .4个D .5个【答案】C【解析】①②③本题主要考查幂的乘方运算,底数不变,指数相乘,①②错误;④⑤⑥主要考查积的乘方运算,底数相乘,指数不变,④⑤错误.【总结】本题主要考查幂的运算法则,计算时需要注意法则的准确运用.4. 下列计算中,运算错误的式子有( )(1)33354a a a -=;(2)2m m m x x x =+;(3)62·3n m n m =+;(4)12·m m a a a =++.A .0个B .1个C .2个D .3个【答案】C【解析】本题主要考查幂的运算和合并同类项相关知识,一定注意运算中是乘号还是加号,分清楚是幂的运算还是合并同类项计算,故(2)(3)错误.【总结】本题主要考查幂的运算法则,计算时需要注意法则的准确运用.5. 计算()()1009922-+-所得的结果是()A .-2B .2C .992-D .992【答案】D【解析】原式=()1009999999999222222122-=⨯-=-⨯=. 【总结】本题在计算时要注意“奇负偶正”的运用.6. 计算()()()22b a a b b a ---的结果是()A .()5a b - B .()5a b --C .()6a b - D .()6a b --【答案】B【解析】()()()()()()225252()()b a a b b a b a b c b a a b a b =---=-=-----. 【总结】本题在计算时要将底数全部化作相同,按照同底数幂的运算法则计算.7. 当n 是正整数时,下列等式成立的有( )(1)()22m m a a =(2)()22m m a a =(3)()22m m a a =- (4)()22mm a a =-A .4个B .3个C .2个D .1个【答案】B【解析】(1)(2)根据幂的乘方运算法则,正确;(3)正确,左侧式子确定为非负数;(4)不能确定正负.【总结】本题主要考查幂的乘方的运算及其逆用,注意法则的准确运用.8. 计算:()3211n n x x x -+⋅⋅的结果为() A .33n x + B .63n x +C .12n xD .66n x +【答案】D【解析】()3211211322366()()n n n n n n x x x x x x -++-++++⋅⋅===【总结】本题主要考查同底数幂和幂的乘方的运算法则.9. 如果2339.48 1.5610=⨯,则20.3948=( )A .1.56B .0.156C .0.0156D .0.00156【答案】B【解析】()22220.394839.4810039.48100=÷=÷,由已知2339.48 1.5610=⨯,可知2320.3948 1.5610100 1.56100.156=⨯÷=÷=【总结】本题主要考查同底数幂相除的运算,但是要注意39.48与0.3948的关系.二、填空题(1)()()()()()235x x x x x -⋅-⋅-+-⋅-=________;(2)()()3223a b b a ⎡⎤⎡⎤---⎣⎦⎣⎦=_________.【答案】(1)62x ;(2)0【解析】(1)原式()()666==2x x x -+-;(2)原式6666()()()()0a b b a a b a b =---=---=. 【总结】本题主要考查同底数幂的运算法则.10. 计算:()()2003200422______-+-=.【答案】20032.【解析】原式=()200420032003200320032003222222122-=⨯-=-⨯=. 【总结】本题主要考查同底数幂运算法则的逆用,m n m n a a a +=⋅. 11. 计算:()()20052004232-+⨯-=_______________.【答案】20042.【解析】原式=()20042005200420042004200432232223222⨯-=⨯-⨯=-⨯=.【总结】本题一方面考查同底数幂运算法则的运用,另一方面考查负底数幂的运算.12. 比较大小:(1)()()422_____4--;(2)()()355_____3--.【答案】(1)=;(2)>.【解析】(1)因为()()42216416-=-=,,因此()()4224-=-;(2)因为()()3551253243125243-=--=-->-,,,因此()()3553->-.【总结】本题主要考查负底数幂的运算,当底数为负数,但指数是偶数时,结果为正数;当 底数为负数,但指数是奇数时,结果为负数.13. 计算:()32122n m n m ⎛⎫-+⋅- ⎪⎝⎭=_______________.【答案】5142m n ⎛⎫- ⎪⎝⎭.【解析】原式=23511124222m n m n m n ⎡⎤⎛⎫⎛⎫⎛⎫-⋅-=- ⎪⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.【总结】本题主要考查同底数幂相乘的运算法则,但是要注意先要将底数化为相同.14. 长为32.210⨯米,宽是41.510⨯厘米,高是2410⨯米的长方体的体积为____________.【答案】831.3210m ⨯【解析】421.510 1.510b cm m =⨯=⨯,322832.210 1.510410=1.3210V abh m ==⨯⨯⨯⨯⨯⨯. 【总结】本题一方面考查长方体的体积公式,另一方面考查同底数幂相乘的法则. 15. 若25m =,26n =,则212m n ++=_______________.【答案】360.【解析】()221222222222562360m n m n m n ++=⋅⋅=⋅⋅=⨯⨯=.【总结】本题主要考查同底数幂相乘的法则.16. 已知2m a =,3n a =,则32m n a +=__________.【答案】72【解析】()()323232322372m n m n m n a a a a a +=⋅=⋅=⨯=.【总结】本题主要考查同底数幂相乘和幂的乘方的运算法则,注意有时要对法则进行逆用.17. 若53022x y +-=,则432x y ⋅=_______________.【答案】8 【解析】由53022x y +-=,得253x y +=,故()()25252534322222228x y x y x y x y +⋅=⋅=⋅===. 【总结】本题一方面考查同底数幂的运算法则,另一方面考查整体代入思想的运用.18. 设503a =,404b =,305c =,比较a ,b ,c 的大小,用<号连接:________________.【答案】c a b <<.【解析】因为()105051033243a ===,()104041044256b ===,()103031055125c ===,所以c a b <<.【总结】本题主要考查如何运用幂的乘方将三个数字化作指数相同的幂的运算.19. 若111999a =,222111b =,则a 、b 的大小关系,用<号连接:_________________.【答案】a b <.【解析】因为()1112222111111b ==,又2999111<,所以a b <.【总结】本题主要考查如何运用幂的乘方将三个数字化作指数相同的幂的运算.20. 已知:227371998a b c ⋅⋅=,其中a 、b 、c 是自然数,则()2016a b c --=_________________.【答案】1【解析】因为3322737233719982337a b c a b c ⋅⋅=⋅⋅==⨯⨯,又a 、b 、c 是自然数,故可得111a b c ===,,,代入可得()20161111--=.【总结】本题一方面考查幂的乘方的逆用,另一方面考查对1998的分解.21. 你能比较两个数20092008和20082009的大小吗?为了解决这个问题,我们先写出它的一般形式,即比较1n n +与(1)n n +的大小(n 是自然数),然后,我们分析1n =,2n =,3n =,…中发现规律,经归纳,猜想得出结论. (1)通过计算,比较下列各组中两个数的大小(在空格中填写“>”、“=”、“<”号)①21____12;②32____23;③43____34;④54____45;⑤65____56…(2)从第(1)题的结果经过归纳,可以猜想出1n n +和()1nn +的大小关系是_______. (3)根据上面归纳猜想得到的一般结论,试比较下列两个数的大小20092008____20082009.【答案】(1)①<;②<;③>;④>;⑤>; (2)()111(2)(1)(2)n n n n n n n n n n ++⎧<+≤⎪⎨>+>⎪⎩;(3)>.【解析】通过代入数值进行计算后,发现其中的大小关系,再进行比对.三、简答题22. 计算: (1)()()()()()1333335⨯-⨯-⨯-⨯-⨯-;(2)()()()()()2345a a a a a -⋅-⋅-⋅-⋅-; (3)()()()()n a ba b a b a b a b +++++个;(4)()()66666-⨯⨯-⨯⨯-.【答案】(1)5135-⨯;(2)15a -;(3)()na b +;(4)56-.【解析】(1)原式()5511=3355⨯-=-⨯;(2)原式()1515a a =-=-;(3)原式()n a b =+;(4)原式56=-.【总结】本题主要考查乘方的概念.23. 计算:(1)()()32422393m n m n +-;(2)()()32242433a b ab a ⋅-⋅;(3)()()()()32232238a b a a b -+⋅-⋅-;(4)()()()33223733345a a a a a a -⋅+-⋅-⋅.【答案】(1)4618m n ;(2)6424a b ;(3)6335a b -;(4)91211125a a --【解析】(1)原式4646469918m n m n m n =+=; (2)原式64646427324a b a b a b =-=; (3)原式63636327835a b a b a b =--=-;(4)原式9912912271612511125a a a a a =-+-=--.【总结】本题主要考查幂的运算,并作合并同类项运算,注意运算符号.24. 计算:()()()3421332229m n n m n m ⎡⎤----⎣⎦【答案】()11144m n -.【解析】原式=()()()()()46111141132832814499m n m n m n m n m n ⎛⎫⎡⎤-----=⨯⨯⨯-=-⎡⎤⎡⎤ ⎪⎣⎦⎣⎦⎣⎦⎝⎭. 【总结】本题主要考查同底数幂的运算法则和积的乘方的运算法则,注意符号的变化.25. 计算:()()43242142x y x y ⎡⎤⎡⎤-+-+⎢⎥⎣⎦⎣⎦.【答案】()20256x y -+.【解析】原式=()()()()48122020661144256216x y x y x y x y ⎛⎫⎛⎫⎡⎤-+⋅-+=-⨯+=-+ ⎪ ⎪⎣⎦⎝⎭⎝⎭.【总结】本题主要考查积的乘方和同底数幂相乘的运算法则,注意符号的变化.26. 当n 是正整数时,求()()212222n n+-+⋅-.的值.【答案】0【解析】因为n 是正整数,所以2n 是偶数,21n +是奇数,所以()()2122122222n nn n ++-=--=,;所以原式=2212220n n +⋅-=.【总结】本题主要考查负底数幂的乘方,注意指数是奇数和偶数时的区别.27. 比较大小:20.4a =-,214b ⎛⎫=- ⎪⎝⎭,()24c =-,214d ⎛⎫=- ⎪⎝⎭.【答案】c d b a >>>.【解析】因为()2222114444c d ⎛⎫⎛⎫=-==-= ⎪ ⎪⎝⎭⎝⎭,,所以0c d >>;又因为2220.45a ⎛⎫=-=- ⎪⎝⎭,214b ⎛⎫=- ⎪⎝⎭,所以0a b <<,所以c d b a >>>.【总结】本题主要考查幂的乘方,计算时先确定正负,再根据有理数大小比较法则判断大小.28. 已知()432a =,()342b =,()423c =,()234d =,()324e =,试比较a 、b 、c 、d 、e的大小关系.【答案】c a b d e >===.【解析】根据幂的乘方运算法则,可得122a b d e ====;又()()4434242839a c ====,,可得c a >;由此c a b d e >===.【总结】本题主要是考查幂的乘方的运算法则,底数不变,指数相乘.29. 计算:(1)1011000.254⨯;(2)()()200220030.1258-⨯-.【答案】(1)0.25;(2)8-.【解析】(1)原式=()1001001000.250.2540.2540.250.25⨯⨯=⨯⨯=;(2)原式=()()()()2002200220020.125880.125888⨯-⨯-=⨯-⨯-=-⎡⎤⎣⎦.【总结】本题主要考查同底数幂的乘法和积的乘方运算的逆用.30. 计算:()()25331133223a b b a a b b a ⎛⎫⎛⎫-⋅-⋅-⋅- ⎪ ⎪⎝⎭⎝⎭.【答案】()111312a b -. 【解析】原式=()()()()2231151113(3)3332312a b b a a b b a a b ⎛⎫⋅-⋅-⋅-⋅-=- ⎪⎝⎭. 【总结】本题主要考查同底数幂相乘的运算法则,注意将底数化作相同.31. 已知:5n a =,3n b =,求()2nab -.【答案】225.【解析】()()()()()2222253225n n n n n ab ab ab a b ⎡⎤-===⋅=⨯=⎣⎦. 【总结】本题主要考查幂的运算以及整体思想的应用.32. 已知3m a =,2n a =,m 、n 是正整数且m n >.求下列各式的值:(1)()4m a ;(2)()3m n a +.【答案】(1)81;(2)216.【解析】(1)()44381m a ==; (2)()()()33332216m n m n a a a +=⋅=⨯=. 【总结】本题主要考查幂的运算以及整体思想的应用.33. 若15m x =,3n x =,求()42m n x +-的值. 【答案】9625. 【解析】原式=()()442424221935625m n m n m n x x x x x +⎛⎫=⋅=⋅=⨯= ⎪⎝⎭. 【总结】本题主要考查幂的乘方的逆用.34. 已知4m a =,3n a =,22p a =,求324m n p a ++的值.【答案】2304【解析】()()()32232432423224322304m n p m n p m n p a a a a a a a ++=⋅⋅=⋅⋅=⨯⨯=. 【总结】本题主要考查幂的乘方的逆用以及整体思想的应用.35. 已知5x a =,25x y a +=,求x y a a +的值.【答案】10【解析】因为25x y x y a a a +=⋅=,由5x a =,可得5y a =,所以10x y a a +=.【总结】本题主要考查同底数相乘法则的逆用.36. 若2340x y +-=,求927x y ⋅的值.【答案】,【解析】由2340x y +-=,得234x y +=;所以()()232323492733333381x yx y x y x y +⋅=⋅=⋅===. 【总结】本题主要考查幂的乘方以及整体思想的应用.37. 已知:13205x y +-=,12305x y --=,求832x y ⋅.【答案】64. 【解析】由方程组1320512305x y x y ⎧+-=⎪⎪⎨⎪--=⎪⎩,可解得135x y =⎧⎪⎨=⎪⎩, 所以()()331535353565832222222264x y x y x y x y ⨯+⨯+⋅=⋅=⋅====.【总结】本题主要考查幂的乘方法则的运用.38. 已知22n a =,求()()223223nn a a -的值.【答案】20.【解析】原式=()()326422324343423220n n n n a a a a -=-=⨯-⨯=. 【总结】本题主要考查幂的运算以及整体思想的应用.39. 已知:232122192x x ++-=,求x .【答案】52x =. 【解析】22121222192x x ++⋅-=2162642x +==52x = 【总结】本题主要考查同底数幂相乘的法则的逆用在解方程中的运用.40. 解方程:313333648x x ++-=-.【答案】1x =.【解析】31312333648x x ++-⋅=-3183648x +-⋅=- 3143813x +==1x =【总结】本题主要考查同底数幂相乘的法则的逆用在解方程中的运用.41. 已知742521052m n ⋅⋅=⋅,求m n ,的值.【答案】23m n ==,.【解析】因为()()221742521052255252m n m n m n n ++⋅⋅=⋅⋅⨯=⋅=⋅,所以2714m n n +=⎧⎨+=⎩,则23m n =⎧⎨=⎩. 【总结】本题一方面考查同底数幂的相乘,另一方面考查积的乘方的逆用.42. 如果()2323k a b c+比()24582ka a a a bc ⎡⎤⋅⋅⋅-⋅⎢⎥⎣⎦的次数大1,那么k 的值是多少?【答案】1k =.【解析】因为第一个单项式次数为()()3232816k k +++=+,第二个单项式次数为 ()4582211617k k +++⨯++=+,依题意有()()8166171k k +-+=,解得1k =. 【总结】本题一方面考查单项式的次数的概念,另一方面考查同底数幂相乘的运算法则.43. 比较552,443,335,226这4个数的大小关系.【答案】334422555362>>>.【解析】因为()()()()111111115551144411333112221122323381551256636========,,,, 又125813632>>>,所以11111111125813632>>>,即334422555362>>>.【总结】本题主要是利用幂的乘方运算法则,将这些幂化作指数相同,比较底数大小即可.44. 比较1615与1333的大小关系.【答案】13163315>.【解析】因为16166415162<=,131********>=,又656422>,所以13163315>.【总结】本题主要考查两个数的大小比较方法,选取合适的中间量进行大小比较.45. 比较5553、4444、3335的大小.【答案】444555333435>>.【解析】因为()()()1111111115555111444411133331113=3=2434=4=2565=5=125,,,又256243125>>, 所以111111111256243125>>,即444555333435>>.【总结】本题主要考查几个数的大小比较,常用的方法是将它们化为底数相同或者是指数相同再进行比较.46. 已知3181a =,4127b =,619c =,比较a ,b ,c 的大小.【答案】a b c >>.【解析】因为()()()31416131412441312361212281332733933======,,,所以31416181279>>. 【总结】本题主要考查利用幂的乘方运算法则,将这些幂化作底数相同,比较指数大小即可.47. 若n 为不等式2003006n >的解,求n 的最小正整数值.【答案】n 的最小正整数值是15.【解析】因为2003006n >,即()()100100231006216n >=,故2216n >. 所以n 的最小正整数值是15.【总结】本题主要考查幂的乘方的逆用.48. 已知:123n a ++++=,求代数式()()()()()122321n n n n nx y x y x y x y xy ---的值.【答案】a a x y .【解析】原式=()()13211231n n n n a a x y x y +-+⋅⋅⋅++++++⋅⋅⋅+-+⋅=.【总结】本题主要考查同底数幂相乘的运算法则以及整体代入思想的运用.49. 已知:22737471998a b c d ⋅⋅⋅=,其中a 、b 、c 、d 为自然数,求a b c d --+的值.【答案】1-.【解析】因为2273747199822737a b c d ⋅⋅⋅==⨯⨯,又a 、b 、c 、d 为自然数,所以 1110a b c d ====,,,,故11101a b c d --+=--+=-.【总结】本题主要考查幂的乘方的逆用,另外注意01a =的运用.50. 已知2001200367M =+,2003200167N =+,试比较M 、N 的大小关系.【答案】M N >.【解析】因为()()()()20012003200320012001200122001220016767666777M N -=+-+=-⋅+⋅-20012001487356=⨯-⨯,又20012001483576>>,,所以20012001487356⨯>⨯.即200120014873560⨯-⨯>. 所以M N >.【总结】本题主要考查利用直接作差法来比较两个数的大小.。

有理数指数幂的运算性质

有理数指数幂的运算性质

(1) lg1002
(2) ln e
(1) loga (M N ) loga M loga N M (2) log a log a M log a N N (3) loga M n n loga M (n R)
课堂小结
对数的运算性质:
如果a 0,且a 1, M 0, N 0, 那么:
(1) log a
(2) log a
(2) a a a
mn
xy z
x2 y
3
(3) (a ) a (a 0, m, n Q)
mn
z
对数的运算性质:
如果a 0,且a 1, M 0, N 0, 那么:
例4:求下列各式的值:
(1) log2 (47 25 ) (2) lg 5 100
(1) loga (M N ) loga M loga N M (2) log a log a M log a N N (3) loga M n n loga M (n R)
课本P74
习题2.2
、4
(1) lg( xyz)
xy3 (2) log a z
(2) a m a n a mn (a 0, m, n Q) (3) (a m ) n a mn (a 0, m, n Q)
对数的运算性质:
2. 求下列各式的值:
如果a 0,且a 1, M 0, N 0, 那么:
2.2.1 对数的运算(1)
执教者: 魏苏珊 执教班级:高二(1)班 执教时间:2012.11.13
把下列指数式化成对数式:
(1) a M
m
(2) a
m n
MN

指数幂运算课件(人教版)

指数幂运算课件(人教版)
高中数学
例 1. 求值: (2)2ξ3 × 33ξ1.5 × 6ξ12.
解:2ξ3 × 33ξ1.5 × 6ξ12 = 6 × 3 ×
1
3 × 12
=2 6 × 3 × 3 × 2 × 3 × =6×2 + ×3++ = 6 × 20 × 3
= 18.
高中数学
总结:
用分数指数幂的情势来表示根式 ,往往会简化根式运算.
36
6
6
125
高中数学
例 1. 求值: (2)2ξ3 × 33ξ1.5 × 6ξ12.
解 :提示 ,将根式化为幂ax 情势.
2ξ3 × 33ξ1.5 × 6ξ12 = 2 × 3 × 3 ×
1
3 × 12 .
= 3 × 2 ,12 = ሺ3 × 22 = 3 × 2
公式:a = nξam ,aT ∙ aS = aT +S , = aT −S .
能产生一列从
1 414,1 4142
于ξ 2的 方 向 1 4 1421, 1
ξ 的数x: 渐逼近 421 3,
高中数学
由此 , 我们 就能产生一列从 于ξ 2的 方 向逐渐逼 近ξ 的数x
1 4 , 1 41 ,1 414, 1 4142 1 4 1421, 1 414213,
: 而且 ,2 − 1.96 = 0.04 ,2 − 1.9881 = 0.0119,
T, S ∈ Q .
③ ሺab ሻT = aT ∙ bT ,
常见情势: = aT ∙ a−S = aT −S .
高中数学
例 1. 求值:
−1.5
(1) ቀ25 ቁ ;
36
解 :提示 ,将−1.5化为分数 ,将25化为幂ax 情势.

高中数学知识点:有理数指数幂的运算

高中数学知识点:有理数指数幂的运算

高中数学知识点:有理数指数幂的运算
1.有理数指数幂的运算性质
()Q b a ∈>>βα,00,,
(1);a a a αβαβ+⋅=
(2)();a a αβαβ=
(3)();ab a b ααα=
当a>0,p 为无理数时,a p 是一个确定的实数,上述有理数指数幂的运算性质仍适用.
要点诠释:
(1)根式问题常利用指数幂的意义与运算性质,将根式转化为分数指数幂运算;
(2)根式运算中常出现乘方与开方并存,要注意两者的顺序何时可以交换、何时不能交换.如2442)4()4(-≠-;
(3)幂指数不能随便约分.如2
142)4()4(-≠-.
2.指数幂的一般运算步骤
有括号先算括号里的;无括号先做指数运算.负指数幂化为正指数幂的倒数.底数是负数,先确定符号,底数是小数,先要化成分数,底数是带分数,先要化成假分数,然后要尽可能用幂的形式表示,便于用指数运算性质.在化简运算中,也要注意公式:a 2-b 2=(a -b )(a +b ),(a ±b )2=a 2±2ab +b 2,(a ±b )3=a 3±3a 2b +3ab 2±b 3,a 3-b 3=(a -b )(a 2+ab +b 2),a 3+b 3=(a +b )(a 2-ab +b 2)的运用,能够简化运算.。

16.有理数指数幂的运算

16.有理数指数幂的运算
授课主要内容或板书设计
1、有理数指数幂的定义:


;(其中 是正整数),
;(其中 都是正整数),
;(其中 是正整数),
1、幂的运算法则: ;
(2) ;
(3) ;
(4)
2、多形式的乘法公式:(1)
(2)
(3)
例1、
课堂教学安排
教学过程
主要教学内容及步骤
一,复习引入
二,典型例题及学生练习
三.课外作业
1.有理数指数幂的定义:

;(其中 是正整数)
;(其中 都是正整数),
;(其中 都是正整数),
2.幂的运算法则:
;(2) ;
(3) ;(4)
3、多形式的乘法公式:
(1)
(2)
(3)
例1、化简:
(1)
(2)
(2) =
(3)
4)
(5)
(6)
(7)
(8)
例2、应用计算器求下列各幂的值(结果保留四个有效数字)
(1) (2) (3) (4)
课本P22练习1
课题序号
40-41
授课班级
商务131
授课课时
2
授课形式
新授课
授课章节
名称
有理数指数幂的运算使用教具来自教学目的教学目标:1、理解幂指数的推广
2、掌握有理数指数幂及其运算法则
教学重点
重点:有理数指数幂的运算
教学难点
难点:有理数指数幂的运算
更新、补
充、删节
内容
课外作业
第11页练习2
教学后记
在掌握公式的基础上,以练习为主,复习巩固,加深学生对知识点的理解

有理数指数幂及根式-高中数学知识点讲解

有理数指数幂及根式-高中数学知识点讲解

有理数指数幂及根式1.有理数指数幂及根式【根式与分数指数幂】푚规定:푎푛 = 푛푎푚(a >0,m ,n ∈N *,n >1) ―푚푎 푛 = 1 푚 푛 = 푎1 푛 푎푚(a >0,m ,n ∈N *,n >1) 0 的正分数指数幂等于 0,0 的负分数指数幂没有意义常考题型:例 1:下列计算正确的是( )(푎푥)2 A 、(﹣1)0=﹣1 B 、 푎 푎 = a C 、4 ( ― 3)4 = 3D 、 푎2 = a 푥 2―2 (a >0) 分析:直接由有理指数幂的运算性质化简求值,然后逐一核对四个选项得答案. 解:∵(﹣1)0=1,∴A 不正确;31 3 ∵ 푎 푎 = 푎 ⋅ 푎2 = 푎2 = 푎4 = 4 푎3, ∴B 不正确;4( ― 3)4 = ∵ 4 34 = 3,∴C 正确;(푎푥)2 ∵ 푎2 = 푎2푥 푎2 = 푎2푥―2 ∴D 不正确.故选:C .点评:本题考查了根式与分数指数幂的互化,考查了有理指数幂的运算性质,是基础的计算题.1 / 2【有理数指数幂】(1)幂的有关概念:푚①正分数指数幂:푎푛=푛푎푚(a>0,m,n∈N*,且n>1);―푚②负分数指数幂:푎푛=1푚푛=푎1푛푎푚(a>0,m,n∈N*,且n>1);③0 的正分数指数幂等于 0,0 的负分数指数幂无意义.(2)有理数指数幂的性质:①a r a s=a r+s(a>0,r,s∈Q);②(a r)s=a rs(a>0,r,s∈Q);③(ab)r=a r b r(a>0,b>0,r∈Q).常考题型:例 1:若a>0,且m,n 为整数,则下列各式中正确的是()푚A、푎푚÷푎푛=푎푛B、a m•a n=a m•nC、(a m)n=a m+nD、1÷a n=a0﹣n分析:先由有理数指数幂的运算法则,先分别判断四个备选取答案,从中选取出正确答案.解:A 中,a m÷a n=a m﹣n,故不成立;B 中,a m•a n=a m+n≠a m•n,故不成立;C 中,(a m)n=a m•n≠a m+n,故不成立;D 中,1÷a n=a0﹣n,成立.故选:D.点评:本题考查有理数指数幂的运算,解题时要熟练掌握基本的运算法则和运算性质.2/ 2。

2020-2021学年数学第一册教师用书:第3章 §2指数幂的运算性质含解析

2020-2021学年数学第一册教师用书:第3章 §2指数幂的运算性质含解析

2020-2021学年新教材北师大版数学必修第一册教师用书:第3章§2指数幂的运算性质含解析§2指数幂的运算性质学习目标核心素养1.掌握指数幂的运算性质.(重点)2。

能用指数幂的运算性质对代数式进行化简与求值.(难点)通过指数幂的运算,培养数学运算素养.有理数指数幂的运算性质(1)a r a s=a r+s(a>0,r,s∈Q)。

(2)(a r)s=a rs(a>0,r,s∈Q).(3)(ab)r=a r b r(a>0,b>0,r∈Q).有理数指数幂的运算性质同样适用于无理数指数幂.思考:以下计算正确吗?若计算错误,应该如何计算错误!错误!=错误!错误!=错误!错误!=-2提示:错误,错误!错误!=错误!错误!=21=2.1.用分数指数幂的形式表示a3·错误!错误!的结果是() A.a错误!B.a错误!C。

a4D.a错误! B[a3·错误!=a3·a错误!=a错误!=a错误!.故选B。

]2.下列各式运算错误的是()A.(-a2b)2·(-ab2)3=-a7b8B.(-a2b3)3÷(-ab2)3=a3b3C.(-a3)2·(-b2)3=a6b6D.[(a3)2·(-b2)3]3=-a18b18C[(-a3)2·(-b2)3=a6·(-b6)=-a6b6≠a6b6.]3.错误!-错误!+错误!的值为________.错误![原式=错误!-错误!+错误!=错误!-错误!+错误!=错误!。

]4.计算8错误!×错误!+错误!错误!.[解]原式=2错误!×2错误!+错误!6=2+22×33=2+4×27=110.对指数幂的运算性质的理解【例1】(1)下列函数中,满足f错误!=错误!f错误!的是()A.f错误!=4x B.f错误!=4-xC.f错误!=2x D.f错误!=2-x(2)2错误!·5错误!=()A.20错误!B.20错误!C.10错误!D.10错误!(1)D(2)A[(1)f错误!=2-(x+1)=错误!×2-x=错误!f错误!.故选D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数指数幂的运算
有理数指数幂是数学中的一个重要概念,它涉及到数的运算、指数、幂等基本概念。

在本文中,我们将讨论有理数指数幂的基本运算法则
以及一些应用。

定义:
有理数指数幂是指一个有理数作为底数,一个有理数作为指数,两
者运算所得的结果。

有理数指数幂的基本运算法则如下:
1. 同底数幂相乘,指数相加
对于同一有理数a的幂am和an,当底数相同时,指数相加得到
新的指数,即 am × an = am+n。

2. 同底数幂相除,指数相减
对于同一有理数a的幂am和an,当底数相同时,指数相减得到
新的指数,即 am ÷ an = am-n。

3. 幂的幂,指数相乘
对于同一有理数a的幂am,当将其作为指数时,指数相乘得到新
的指数,即 (am)n = amn。

4. 乘方与开方互为逆运算
对于有理数a,m和n为任意整数,(am)n = amn。

5. 0的指数为1,1的任何指数为1
任何有理数a的0次方都等于1,即 a^0 = 1;而1的任何指数都
等于1,即 1^n = 1。

有理数指数幂的运算法则在实际生活和数学问题中有着广泛的应用。

应用一:科学计数法
科学计数法是一种用于表示过大或过小数的方法。

它由两个因子组成,一个是大于等于1且小于10的实数,另一个是10的整数次方。

科学计数法可以简化大数或小数的书写和运算,并方便进行数字间的比较。

应用二:利息计算
在金融领域,利息计算通常涉及有理数指数幂的运算。

例如,计算
复利时,每年的利息是本金的一定比例,当利息再次投资时,利息也
会得到增加。

这种增加的过程可以用有理数指数幂来表示和计算。

应用三:导数和微分
在微积分中,导数和微分等运算都涉及到有理数指数幂的计算。


数表示了函数在某一点处的变化率,微分则是对函数进行近似线性的
变换。

这些运算常常会用到有理数指数幂的法则来简化计算过程。

总结:
有理数指数幂运算是数学中一个重要的概念,它应用广泛,并且有着严格的运算法则。

通过熟悉和掌握这些运算法则,我们可以更加方便地处理数学问题,以及在实际生活中应用数学知识。

参考文献:
无。

相关文档
最新文档