考研高数公式

合集下载

考研数学公式大全(高数、概率、线代)目前文库中最全的

考研数学公式大全(高数、概率、线代)目前文库中最全的

高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

考研数学高数重要公式总结

考研数学高数重要公式总结

考研数学高数重要公式总结高等数学是考研数学中的重要科目之一,公式的掌握对于解题非常重要。

下面是高等数学中一些重要的公式总结:1.导数公式:(1)基本公式:若y=f(x)是可导函数,则有:f'(x)=lim(h→0)[f(x+h)-f(x)]/h(2)常见函数的导数:(仅列举部分)常数函数k'(x)=0幂函数x^n的导数[nx^(n-1)]指数函数a^x的导数[a^x×ln⁡(a)]对数函数log⁡(a)x的导数[1/x×ln(a)](3)导数运算公式:[cf(x)]'=cf'(x)[f(x)+g(x)]'=f'(x)+g'(x)[f(x)×g(x)]'=f'(x)g(x)+f(x)g'(x)[f(g(x))]'=f'[g(x)]×g'(x)2.泰勒公式:设在x=a处进行n阶导数的计算,则:f(x)=f(a)+(x-a)f'(a)+(x-a)^2/2!×f''(a)+⋯+(x-a)^n/n!×f^(n)(a)3.不定积分公式:(1)基本公式:∫f'(x)dx=f(x)+C(2)常见函数的不定积分:(仅列举部分)∫c dx=cx+C∫x^(n)dx=x^(n+1)/(n+1)+C (n≠-1)∫a^xdx=a^x/ln⁡(a)+C∫du/u=ln⁡,u,+C(3)积分运算公式:∫[cf(x)+g(x)]dx=c∫f(x)dx+∫g(x)dx∫f(g(x))g'(x)dx=F(g(x))+C4.定积分公式:(1)基本公式:∫[a, b]f(x)dx=F(b)-F(a)(2)常见函数的定积分:(仅列举部分)∫[a, b]dx=b-a∫[a, b]x^(n)dx=(b^(n+1)-a^(n+1))/(n+1) (n≠-1)∫[a, b]e^xdx=e^b-e^a∫[a, b]sinθdθ=-cosθ,^b_a(3)积分运算公式:∫[a, b][cf(x)+g(x)]dx=c∫[a, b]f(x)dx+∫[a, b]g(x)dx∫[a, b]f(g(x))g'(x)dx=∫[g(a), g(b)]f(u)du (令u=g(x))以上仅是高等数学中的一部分重要公式总结,实际上还有许多其他公式和定理。

(整理)考研必备考研数学公式(高数,线性代数)全收录

(整理)考研必备考研数学公式(高数,线性代数)全收录

高等数学公式篇·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0三角函数的角度换算[编辑本段]公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-co tαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)部分高等内容[编辑本段]·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2 tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。

考研高等数学高数公式

考研高等数学高数公式

考研高等数学高数公式在考研高等数学中,高数公式是非常重要的一部分,掌握了这些公式可以帮助我们更好地理解和解决数学问题。

下面是一些常见的高数公式。

1.导数相关公式:-基本导数公式:$\frac{d(c)}{dx}=0$ (常数导数为0)$\frac{d(x^n)}{dx}=nx^{n-1}$ (幂函数的导数)$\frac{d(\sin x)}{dx}=\cos x$ (正弦函数的导数)$\frac{d(\cos x)}{dx}=-\sin x$ (余弦函数的导数)$\frac{d(\tan x)}{dx}=\sec^2 x$ (正切函数的导数)-乘法法则:$\frac{d(uv)}{dx}=u\frac{dv}{dx}+v\frac{du}{dx}$ (两个函数的乘积的导数)-除法法则:$\frac{d(\frac{u}{v})}{dx}=\frac{v\frac{du}{dx}-u\frac{dv}{dx}}{v^2}$ (两个函数的商的导数)-复合函数求导法则:$\frac{d(u(v))}{dx}=\frac{du}{dv}\cdot\frac{dv}{dx}$ (复合函数的导数)2.积分相关公式:-不定积分公式:$\int kdx=kx+C$ (常数的积分)$\int x^ndx=\frac{1}{n+1}x^{n+1}+C$ (幂函数的不定积分,n不等于-1)$\int e^xdx=e^x+C$ (指数函数的不定积分)$\int \sin xdx=-\cos x+C$ (正弦函数的不定积分)$\int \cos xdx=\sin x+C$ (余弦函数的不定积分)$\int \tan xdx=-\ln,\cos x,+C$ (正切函数的不定积分)-定积分基本公式:$\int_{a}^{b}f(x)dx=F(b)-F(a)$ (定积分的基本公式)$\int_{a}^{b}kdx=k(b-a)$ (常数的定积分)-分部积分法则:$\int u dv=uv-\int v du$ (分部积分法则)3.极限相关公式:-基本极限:$\lim_{x\to 0}\frac{\sin x}{x}=1$ (正弦函数的极限)$\lim_{x\to 0}\frac{1-\cos x}{x}=0$ (余弦函数的极限)-洛必达法则:若$\lim_{x\to a}f(x)=\lim_{x\to a}g(x)=0$,则$\lim_{x\to a}\frac{f(x)}{g(x)}=\lim_{x\to a}\frac{f'(x)}{g'(x)}$ (洛必达法则)-泰勒展开公式:$f(x)=f(a)+f'(a)(x-a)+\frac{f''(a)}{2!}(x-a)^2+\frac{f'''(a)}{3!}(x-a)^3+...$ (泰勒展开公式)以上只是一些高等数学中常用的公式,掌握了这些公式可以帮助我们更好地理解和解决数学问题。

考研高等数学公式手册

考研高等数学公式手册

考研高等数学公式手册高等数学复习公式kaoyan高等数学公式导数公式:2(tgx)??secx(ctgx)???cscx(secx)??secx?tg x(cscx)???cscx?ctgx(a)??alna(logaxx2(arc sinx)??(arccosx)???(arctgx)??11?x11?x11? x222x)??1xlna(arcctgx)???11?x2基本积分表:?tgxdx?ctgxdx?sec?a?x?a???ln cosx?C?lnsinx?C?cos?sindx2xx???sec?csc 2xdx?tgx?Cxdx??ctgx?Cdx22xdx?lnsecx?t gx?C?cscxdx?lncscx?ctgx?Cdx2?secx?tgx dx?cscx?ctgxdx?ax?secx?C??cscx?C?C?x dx?adx?xdx22???1a1arctglnlnxa?C?C?Cx ?ax?aa?xa?xxadx?axlna222a12a?shxdx?ch xdx??2?chx?C?shx?C?ln(x?x?a)?C2222a? x2?arcsin?Cdxx?a22?2In??sin02nxdx??co sxdx?0nn?1naaa2In?2x?a)?Cx?axa?C2222 ???2u1?ux?adx?x?adx?a?xdx?22222x2x2x 2x?a?x?a?a?x?22222222ln(x?lnx?arcsin22?C2三角函数的有理式积分:sinx?,cosx?21?u1?u2,u?tg2x2,dx?2du1?u2 第 1 页共15 页高等数学复习公式一些初等函数:两个重要极限:e?e2e?e2shxchx2x?xx?x双曲正弦:shx?双曲余弦:chx?双曲正切:thx?arshx?ln(x?archx??ln(x?arthx?12ln 1?x1?xlimsinxx1xx?0?1)?e? 59045...lim(1?x???e?ee?exx?x?xx?1)x?1)2三角函数公式:·诱导公式:函数角A -α 90°-α 90°+α 180°-α 180°+α 270°-α 270°+α 360°-α 360°+α sin cos tg -tgα ctgα ctg -ctgα tgα -ctgα ctgα tgα -ctgα ctgα -sinα cosα cosα cosα sinα sinα -sinα -ctgα -tgα -cosα -tgα -sinα -cosα tgα -cosα -sinα ctgα -cosα sinα -sinα cosα sinα cosα -tgα tgα -ctgα -tgα ·和差角公式:·和差化积公式:sin(???)?sin?cos??cos?sin?cos(???)?cos?c os??sin?sin?tg(???)?tg??tg?1?tg??tg?ctg?? ctg??1ctg??ctg?sin??sin??2sinsin??sin??2cos???2cossin???2???2???2cos??cos??2cos cos??cos??2sin???2cossin???2ctg(???)???? 2???2 第 2 页共15 页高等数学复习公式·倍角公式:sin2??2sin?cos?cos2??2cos??1?1?2sin??co s??sin?ctg2??tg2??ctg??12ctg?2tg?1?tg?2 22222sin3??3sin??4sin?cos3??4cos??3cos ?tg3??3tg??tg?1?3tg?2333 ·半角公式:sintg?2????1?cos?21?cos?1?cos?asinA 1?cos?sin?bsinB?cosctg?2??1?cos?21?cos?1?cos?22 ?1?c os?sin?2?2??csin?1?cos??2???sin?1?cos?·正弦定理:?sinC?2R·余弦定理:c?a?b?2abcosC ·反三角函数性质:arcsinx??2?arccosxarctgx??2?arcctgx 高阶导数公式——莱布尼兹公式:n(uv)?u(n)??Ck?0knu(n?k)v(k)(n)v?nu(n?1)v??n(n?1)2!u(n?2)v?????n(n?1)?(n?k?1)k! u(n?k)v(k)???uv(n)中值定理与导数应用:拉格朗日中值定理:柯西中值定理:f(b)?f(a)?f?(?)(b?a)?f?(?)F?(?)拉格朗日中值定理。

考研数学公式大全--高数--线代--必背公式

考研数学公式大全--高数--线代--必背公式

数学知识点背诵高数部分1. 导数公式22(tan )sec (cot )csc (sec )sec tan (csc )csc cot x xx xx x x x x x'='=-'=⋅'=-⋅22(arcsin )(arccos )1(arctan )11(cot )1x x x x arc x x '='='=+'=-+2. 积分公式2222tan ln cos cot ln sin sec ln sec tan csc ln csc cot sec tan cos csc cot sin sec tan sec csc cot csc xdx x C xdx x Cxdx x x C xdx x x Cdx xdx x C x dx xdx x Cx x xdx x Cx xdx x C=-+=+=++=-+==+==-+⋅=+⋅=-+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰2222221arctan 1ln 21ln 2ln(arcsin dx xC a x a a dx x aC x a a x a dx a xC a x a a x x CxC a=++-=+-++=+--=+=+⎰⎰⎰222ln(2ln 2arcsin 2a x Ca x C a x Ca=+=-++=++22201sin cos nn n n n I xdx xdx I nππ--===⎰⎰3. 和差化积sin sin 2sincos22sin sin 2cos sin22cos cos 2cos cos22cos cos 2sin sin22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=+--=+-+=+--=-4. 积化和差[][][][]1sin cos sin()sin()21cos sin sin()sin()21cos cos cos()cos()21sin sin cos()cos()2αβαβαβαβαβαβαβαβαβαβαβαβ=++-=+--=++-=-+-- 5. 万能公式22tan2sin 1tan 2ααα=+ 221t a n2c o s 1t a n 2ααα-=+ 22t a n2t a n 1t a n2ααα=- 6. 半角公式221cos sin 221cos cos 22αααα-=+= 21c o s t a n 21c o s s i n 1c o s t a n 21c o s s i nαααααααα-=+-==+7. 三倍角公式3332sin 33sin 4sin cos34cos 3cos 3tan tan tan 313tan αααααααααα=-=--=- 8. 三角函数关系图sin costan 1cot sec csc↔↔↔⊗↔↔↔↔↔↔⊗⊗↔↔↔..1.a b c ⊗说明:六边形每个顶点等于两相邻顶点乘积三条对角线上,两端点相乘等于标记的三角形,上面的平方和等于下面的平方9. 等价无穷小33333333222201sin ()61arcsin ()61tan ()31arctan ()31ln(1)()21cos 1()2x x x x o x x x x o x x x x o x x x x o x x x x o x x x o x →=-+=++=++=-++=-+=-+时2011ln 11cos 2(1)1x x x e x a x a x xx x αα→---+-时10. 华里士公式等华里士公式:2200131,222sin cos 132,123n nn n n n n xdx xdx n n n n n πππ--⎧⋅⋅⎪⎪-==⎨--⎪⋅⎪-⎩⎰⎰为正的偶数为大于的奇数20sin 2sin nn xdx xdx ππ=⎰⎰2002c o s ,c o s 0,n nxdx n xdx n ππ⎧⎪=⎨⎪⎩⎰⎰为偶数为奇数2220004sin ,sin =cos 0,n n nxdx n xdx xdx n πππ⎧⎪=⎨⎪⎩⎰⎰⎰为偶数为奇数()()220sin cos f x dx f x dx ππ=⎰⎰ ()()00sin cos f x dx f x dx ππ≠⎰⎰()()()20sin sin sin 2xf x dx f x dx f x dx πππππ==⎰⎰⎰11. 函数展开为幂级数20201+()!2!1(1)1(1)(11)1n nxn n n n nn x x x e x x n n x x x x x x ∞=∞===++++-∞<<+∞=-=-+-+-+-<<+∑∑!20234111213572122011(11)1ln(1)(1)(1)(11)234sin (1)(1)()(21)!3!5!7!(21)!cos (1)1(2)!2!n n n n nn n n n n nnn n nn x x x x x x x x x x x x x x n nx x x x x x x x n n x x x n ∞=∞--=++∞=∞===+++++-<<-+=-=-+-++-+-<≤=-=-+-++-+-∞<<+∞++=-=-+∑∑∑∑()(][]4622(1)()4!6!(2)!(1)(1)(1)(1)12!!(1-1,1;10-1,1;0-1,1)nn nx x x x n n x x x x n αααααααααα-++-+-∞<<+∞---++=+++++≤--<<>时,收敛域为时,收敛域为时,收敛域为12. 幂级数的和函数1211121121212112220(1)11(1)1(1)(1)(1)(1)(1)1(1)1k nn k n n n n n n n n n n n n n n n n n n cx cx x x x nx x x x x x nx x nx x x x nx x nx x x n n x x x x ∞=∞∞-==∞∞-==∞∞+-==∞∞∞-====<-''⎛⎫⎛⎫===< ⎪ ⎪--⎝⎭⎝⎭==<-==<-''''''⎛⎫⎛⎫⎛⎫-=== ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭∑∑∑∑∑∑∑∑∑∑3110001112(1)(1)1ln(1)(11)1n x x x n n n n n x x x t dt t dt dt x x n t ∞∞∞--====<-⎛⎫====---≤< ⎪-⎝⎭∑∑∑⎰⎰⎰13. 狄利克雷收敛定理设()f x 是以2l 为周期的可积函数,如果在[],l l -上()f x 满足: 1)连续或只有有限个第一类间断点; 2)只有有限个极值点;则()f x 的傅里叶级数处处收敛,记其和函数为()S x ,则()01cos sin 2n n n a n x n x S x a b l l ππ∞=⎛⎫=++ ⎪⎝⎭∑,且()()()()()(),00,200,2f x x f x f x S x x f l f l x ⎧⎪⎪-++⎪=⎨⎪⎪-++-⎪⎩为连续点为第一类间断点为端点 14. 周期为2l 的周期函数的傅里叶级数设周期为2l 的周期函数()f x 满足狄利克雷收敛定理的条件,则它的傅里叶级数为()()01cos sin 2n n n a n x n x f x S x a b l l ππ∞=⎛⎫=++ ⎪⎝⎭∑其中系数n a 和n b 分别为:()()1cos (0,1,2,)1sin (1,2,3,)l n l l n l n x a f x dx n l l n x b f x dx n l l ππ--⎧==⎪⎪⎨⎪==⎪⎩⎰⎰ (1)将普通周期函数()f x 在[],l l -上展开为傅里叶级数: 展开系数为()()()01,1cos ,(1,2,3,)1sin ,(1,2,3,)l l l n l l n la f x dx l n x a f x dx n l l n xb f x dx n l l ππ---⎧=⎪⎪⎪==⎨⎪⎪==⎪⎩⎰⎰⎰ (2)将奇偶周期函数()f x 在[],l l -上展开为傅里叶级数:当()f x 为奇函数时,展开为正弦级数()000,0,(1,2,3,)2sin ,(1,2,3,)n l n a a n n x b f x dx n l l π⎧⎪=⎪==⎨⎪⎪==⎩⎰当()f x 为偶函数时,展开为余弦级数()()0002,2cos ,(1,2,3,)0,(1,2,3,)l l nn a f x dx l n x a f x dx n l l b n π⎧=⎪⎪⎪==⎨⎪==⎪⎪⎩⎰⎰ (3)将非对称区间[]0,l 上的函数()f x 展开为正弦级数或余弦级数:将[]0,l 上的函数()f x ,根据要求作奇延拓(若要求展开为正弦级数)或偶延拓(若要求展开为余弦函数),得到[],l l -上的奇函数或偶函数,再根据(2)中的方式展开。

考研高数知识点超强归纳

考研高数知识点超强归纳

(t )
连续,
公 式 2 . lim⎜⎛1 + 1 ⎟⎞n = e ; lim⎜⎛1 + 1 ⎟⎞u = e ;
n→∞⎝ n ⎠
u→∞⎝ u ⎠
lim (1
+
v
)1 v
=
e
v→0
则 dy dx
=
f [ϕ2 (x)]ϕ2′ (x) −
f [ϕ1(x)]ϕ1′(x)
4.用无穷小重要性质和等价无穷小代换 5.用泰勒公式(比用等价无穷小更深刻)(数学一和
2
( )e x ′ = e x
de x = e x dx
考研数学知识点-高等数学
ψ ′(t)存在,且ϕ ′(t) ≠ 0 ,则
(arcsin x)′ = 1
1− x2
d arcsin x = 1 dx 1− x2
(arccos x)′ = − 1
d arccos x = − 1 dx
1− x2
1− x2
连续,则 f (x) 必在 [a,b]上有界。
定理 2.(最大值和最小值定理)如果函数 f (x) 在闭
区间 [a, ]b 上连续,则在这个区间上一定存在最大值 M 和
最小值 m 。 其中最大值 M 和最小值 m 的定义如下:
定义 设 f (x0 ) = M 是区间 [a,b]上某点 x0 处的函数
且有
dy = dy du = f ′[ϕ(x)]ϕ ′(x)
dx du dx
对应地 dy = f ′(u)du = f ′[ϕ(x)]ϕ ′(x)dx
由于公式 dy = f ′(u)du 不管 u 是自变量或中间变量
6.隐函数运算法则
设 y = y(x) 是由方程 F (x, y) = 0 所确定,求 y′ 的方

考研—高数重要公式总结

考研—高数重要公式总结

【基础公式】
1、一元二次方程基础(ax2+bx+c=0)
2、立方差公式
3、经典不等式
4、三角函数
正弦定理:
在任意△ABC中,角A、B、C所对的边长分别为a、b、c,三角形外接圆的半径为R,直径为D。

则有:
一个三角形中,各边和所对角的正弦之比相等,且该比值等于该三角形外接圆的直径(半径的2倍)长度。

余弦定理:

【等价无穷小(等价替换)
【极限公式】
【求导公式】1、基本求导公式
2、n阶导数
【泰勒公式】
任何可导函数f(x)一定可以写成幂函数叠加∑a n x n的形式。

1麦克劳林公式
2 六个重要的幂级数展开式
3常用泰勒公式
【积分公式】幂函数
指数函数
三角函数
其他函数
【附录:希腊字母】Α α:阿尔法Alpha
Β β:贝塔Beta
Γ γ:伽玛Gamma
Δ δ:德尔塔Delte
Ε ε:艾普西龙Epsilon Ζ ζ:捷塔Zeta
Ε η:依塔Eta
Θ θ:西塔Theta
Ι ι:艾欧塔Iota
Κ κ:喀帕Kappa
∧ λ:兰布达Lambda
Μ μ:缪Mu
Ν ν:拗Nu
Ξ ξ:克西Xi
Ο ο:欧麦克轮Omicron ∏ π:派Pi
Ρ ρ:柔Rho
∑ σ:西格玛Sigma
Τ τ:套Tau
Υ υ:宇普西龙Upsilon Φ φ:fai Phi
Χ χ:器Chi
Ψ ψ:普赛Psi
Ω ω:欧米伽Omega。

考研高数必备公式

考研高数必备公式

考研高数必备公式高等数学是考研数学的重点和难点之一,掌握和熟练运用高数公式可以帮助考生更好地解题。

下面是一些考研高等数学必备的重要公式,供考生参考。

导数公式:1. 常数函数的导数为零:d/dx (c) = 02. x^n的导数为nx^(n-1):d/dx (x^n) = nx^(n-1)3. e^x的导数为e^x:d/dx (e^x) = e^x4. ln(x)的导数为1/x:d/dx (ln(x)) = 1/x5. sin(x)的导数为cos(x):d/dx (sin(x)) = cos(x)6. cos(x)的导数为-sin(x):d/dx (cos(x)) = -sin(x)7. tan(x)的导数为sec^2(x):d/dx (tan(x)) = sec^2(x)8. cot(x)的导数为-csc^2(x):d/dx (cot(x)) = -csc^2(x)9. sec(x)的导数为sec(x)tan(x):d/dx (sec(x)) = sec(x)tan(x)10. csc(x)的导数为-csc(x)cot(x):d/dx (csc(x)) = -csc(x)cot(x)求导法则:1. 和差法则:d/dx (u ± v) = du/dx ± dv/dx2. 乘法法则:d/dx (uv) = u dv/dx + v du/dx3. 除法法则:d/dx (u/v) = (v du/dx - u dv/dx) / v^24. 复合函数法则:若y = f(u),u=g(x),则dy/dx = dy/du *du/dx积分公式:1. 常数函数的积分为常数乘以自变量:∫c dx = cx + C2. x^n的积分为(1/n+1)x^(n+1) + C:∫x^n dx = (1/n+1)x^(n+1) + C3. e^x的积分为e^x + C:∫e^x dx = e^x + C4. 1/x的积分为ln,x, + C:∫1/x dx = ln,x, + C5. sin(x)的积分为-cos(x) + C:∫sin(x) dx = -cos(x) + C6. cos(x)的积分为sin(x) + C:∫cos(x) dx = sin(x) + C7. tan(x)的积分为-ln,cos(x), + C:∫tan(x) dx = -ln,cos(x), + C8. cot(x)的积分为ln,sin(x), + C:∫cot(x) dx = ln,sin(x),+ C9. sec(x)的积分为ln,sec(x) + tan(x), + C:∫sec(x) dx = ln,sec(x) + tan(x), + C10. csc(x)的积分为ln,csc(x) - cot(x), + C:∫csc(x) dx = ln,csc(x) - cot(x), + C广义积分:1. 若函数f(x)在区间[a, b]上连续且非负,则∫f(x) dx是有限的;2. 若f(x)在区间[a, b]上连续,则∫f(x) dx在该区间上是可积的;3. 若f(x)在区间[a, b]上连续,则∫[a, b] f(x) dx = ∫[a, c]f(x) dx + ∫[c, b] f(x) dx (分段积分);导数和微分:1.y=f(x)在(x0,y0)处可导,则f(x)在该点连续;2. 若函数y = f(x)在区间[a, b]上可导,则y的增量Δy可以近似表示为Δy ≈ f'(x) Δx,即dy = f'(x) dx (微分近似);3. 若函数y = f(x)在区间[a, b]上可导,则在该区间上y的微分dy满足dy = f'(x) dx (微分关系);泰勒公式:1.f(x)在x=a处n阶可导,则f(x)可表示为泰勒展开式:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+...+f^n(a)(x-a)^n/n!+Rn(x),其中Rn(x)为剩余项;拉格朗日中值定理:若函数f(x)在[a,b]的内部连续,在(a,b)的内部可导,且f(a)=f(b),则存在c∈(a,b)使得f'(c)=[f(b)-f(a)]/(b-a);柯西中值定理:若函数f(x)和g(x)在[a,b]的内部连续,在(a,b)的内部可导且g'(x)≠0,则存在c∈(a,b)使得[f'(c)/g'(c)]=[f(b)-f(a)]/[g(b)-g(a)];罗尔中值定理:若函数f(x)在[a,b]的内部连续,在(a,b)的内部可导,且f(a)=f(b)=0,则存在c∈(a,b)使得f'(c)=0;这只是一部分考研高等数学的重要公式,考生还需根据自己的需求和教材内容进行学习和整理。

考研高数公式总结

考研高数公式总结

考研高数公式总结高等数学是考研数学中的一门重要课程,也是考研数学中需要记住大量公式和定理的科目之一、下面是我总结的一些高等数学中常用的公式和定理,希望对考研学子们的备考能有所帮助。

一、极限和连续1.重要的基本极限公式- $\lim\limits_{x\to0}\frac{\sin{x}}{x}=1$- $\lim\limits_{x\to0}\frac{e^x-1}{x}=1$- $\lim\limits_{x\to+\infty}(1+\frac{1}{x})^x=e$2.微分中的基本极限- $\lim\limits_{\Delta x\to0}\frac{\Delta y}{\Deltax}=\frac{dy}{dx}$- $\lim\limits_{\Delta x\to0}\frac{e^{\Delta x}-1}{\Delta x}=1$3.连续性定理-函数$f(x)$在$x_0$处连续的充分必要条件是:- $\lim\limits_{x\to x_0} f(x)=f(x_0)$- $\lim\limits_{x\to x_0^-} f(x)=\lim\limits_{x\to x_0^+} f(x)=f(x_0)$二、导数和微分1.基本导数公式-$(c)'=0$- $(x^n)'=nx^{n-1}$ (n为自然数)-$(e^x)'=e^x$- $(\ln{x})'=\frac{1}{x}$2.常见运算法则-$(u+v)'=u'+v'$- $(uv)'=u'v+uv'$- $(\frac{u}{v})'=\frac{u'v-uv'}{v^2}$ (v≠0)3.高阶导数-若$f'(x)$存在,则$f''(x)=(f'(x))'$4.微分公式- $dy=f'(x)dx$三、积分与微积分基本定理1.基本积分公式- $\int 0dx=C$- $\int x^ndx=\frac{1}{n+1}x^{n+1}+C$ (n≠-1)2.基本积分的线性运算- $\int kf(x)dx=k\int f(x)dx$- $\int (f(x)+g(x))dx=\int f(x)dx+\int g(x)dx$3.二次换元法- $\int f(g(x))g'(x)dx=\int f(u)du$4.牛顿-莱布尼茨公式- $\int_a^bf(x)dx=F(b)-F(a)$四、级数1.等差数列-$a_n=a_1+(n-1)d$- $S_n=\frac{n}{2}[2a_1+(n-1)d]$- $a_n=\frac{a_{n-1}+a_{n+1}}{2}$2.等比数列-$a_n=a_1q^{n-1}$(q≠0)- $S_n=\frac{a_1(q^n-1)}{q-1}$ (q≠1)3.幂级数- $S_n=\sum\limits_{k=1}^{n} a_k=a_1+a_2+a_3+...+a_n$五、数列和函数的收敛性1.收敛与极限-数列$\{a_n\}$的收敛定义:当无论取多大的正数$ε$,都存在一个正整数$N$,当$n>N$时,总有$,a_n-A,<ε$成立,则称$\{a_n\}$收敛于$A$。

考研高数必背公式

考研高数必背公式

对于考研高等数学,以下是一些常见的必背公式:1. 导数公式:- $(c)'=0$(常数的导数为零)- $(x^n)'=nx^{n-1}$(幂函数的导数)- $(e^x)'=e^x$(指数函数的导数)- $(\ln x)'=\frac{1}{x}$(自然对数函数的导数)- $(\sin x)'=\cos x$(正弦函数的导数)- $(\cos x)'=-\sin x$(余弦函数的导数)- $(\tan x)'=\sec^2 x$(正切函数的导数)2. 积分公式:- $\int k \,dx=kx+C$(常数的积分)- $\int x^n \,dx=\frac{1}{n+1}x^{n+1}+C$(幂函数的积分)- $\int e^x \,dx=e^x+C$(指数函数的积分)- $\int \frac{1}{x} \,dx=\ln |x|+C$(倒数函数的积分)- $\int \sin x \,dx=-\cos x+C$(正弦函数的积分)- $\int \cos x \,dx=\sin x+C$(余弦函数的积分)- $\int \sec^2 x \,dx=\tan x+C$(正切函数的积分)3. 三角函数关系:- $\sin^2 x + \cos^2 x = 1$(三角恒等式)- $\sin (2x) = 2\sin x \cos x$(双角正弦公式)- $\cos (2x) = \cos^2 x - \sin^2 x$(双角余弦公式)- $\tan x = \frac{\sin x}{\cos x}$(正切的定义)这些是考研高等数学中的一些常见公式,但并非全部。

在复习过程中,建议根据自己的教材和课程重点,对相关公式进行系统性的整理和复习。

不仅要记住公式,还要了解其推导和应用方法,以便在解题过程中能够熟练运用。

同时,还要注重理解概念和原理,培养灵活的思维和解题能力。

高等数学考研(数学一)公式大全

高等数学考研(数学一)公式大全

高等数学公式大全导数公式:基本积分表:三角函数的有理式积分: 222212211cos 12sin udu dx x tg u uu x uu x +==+-=+=, , , ax x a a a x x x x x x x x x x a xxln 1)(logln )(cot csc )(csc tan sec )(sec csc )(cot sec )(tan 22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin xarcctgx xarctgx xx xx +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x ax dx Cshx chxdx C chx shxdx Caadx aC x ctgxdx x C x dx tgx x Cctgx xdx xdxC tgx xdx x dxxx)ln(ln csc csc sec sec cscsinsec cos 22222222Cax xa dxCx a x a ax a dx C a x a x a a x dx C ax arctg a x a dxCctgx x xdx Ctgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Ca x ax a x dx x a Ca x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n nnn arcsin22ln 22)ln(221cos sin22222222222222222222220ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:函数 角A sincostancot-α -sinα cosα -tan α -cot α 90°-α cosα sinαcot αtan α90°+α cosα -sinα -cot α -tan α 180°-α sinα-c osα -tan α -cot α180°+α -sinα -cosα tan α cot α 270°-α -cosα -sinα cot α tan α270°+α -cosα sinα -cot α -tan α 360°-α -sinα cosα -tan α -cot α 360°+αsinαcosαtan αcot α·和差角公式: ·和差化积公式:·倍角公式:2sin2sin 2cos cos 2cos 2cos 2cos cos 2sin2cos 2sin sin 2cos 2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+-=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαcot cot 1cot cot )cot(tan tan 1tan tan )tan(sin sin cos cos )cos(sin cos cos sin )sin(±⋅=±⋅±=±=±±=± xx arthx x x archx x x arshx ee e e chxshx thx ee chx ee shx xxx x xxxx-+=-+±=++=+-==+=-=----11ln 21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim==+=∞→→e xx x xx x·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctgtg·正弦定理:R CcBb Aa 2sin sin sin ===·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k nn uvvuk k n n n v un n v nuv uvuCuv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

考研数学公式大全(高数、概率、线代)目前文库中最全的

考研数学公式大全(高数、概率、线代)目前文库中最全的

高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

考研高数公式默写

考研高数公式默写
x0 g(x)
x
x
则 g(t)dt 0
0 f (t)dt
lim x ln x

x0 lim
sin
x0
( 0)
1
lim(1 ) 0
间断点
无穷大 n
第 I 类: f (x 0)、f (x 0)
logn a(a 1) n nk (k 1) an(a 1) n! nn
a
a
a
一些必备公式
xn 1
cos2x
tan2 x 2
tan x 2
sec2 x csc2 x 求导工具

(xa )' (sin x)' (ex )' (loga x)'

(tan x)' (sec x)' (arcsin x)' (arctan x)' ⑶考前背熟
(4)
tan xdx
cot xdx
△ sec xdx
△ csc xdx
(5)三角函数替换
a2 x2
x2 a2
x2 a2
定积分重要公式
b
N L : f (t)dt a a
对称区间: f (x)dx a
奇: 偶:
三角函数:
0 xf (sin x)dx
In
2 sinn xdx
Vx
b f 2 (x)dx
a
b
Vy 2
xf (x)dx
a
多元函数微分学 Z f (x, y)
F(x, y, z) 0
z x z y
z x
( x0 , y0 )
z y (x0 ,y0 )
dz
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考研高数公式
在考研数学中,高等数学是一个重要的科目。

而在高等数学中,高
数公式是备考考研的关键因素之一。

掌握高数公式不仅有助于解题,
还能提升解题效率。

本文将介绍一些考研高数中常用的公式,并对其
应用进行简单说明。

一、导数的基本公式
1. 基本导数公式
(1) 常数导数公式:常数c的导数为0,即d(c)/dx = 0。

(2) 幂函数导数公式:对于 y = x^n,其中n为常数,导数为 dy/dx =
n*x^(n-1)。

(3) 指数函数导数公式:对于 y = a^x,其中a为常数且不等于1,导数为 dy/dx = a^x * ln(a)。

(4) 对数函数导数公式:对于 y = log_a(x),其中a为常数且不等于1,导数为 dy/dx = 1 / (x * ln(a))。

(5) 三角函数导数公式:
- 正弦函数导数:d(sin(x))/dx = cos(x)。

- 余弦函数导数:d(cos(x))/dx = -sin(x)。

- 正切函数导数:d(tan(x))/dx = sec^2(x)。

(6) 反三角函数导数公式:
- 反正弦函数导数:d(arcsin(x))/dx = 1 / sqrt(1 - x^2)。

- 反余弦函数导数:d(arccos(x))/dx = -1 / sqrt(1 - x^2)。

- 反正切函数导数:d(arctan(x))/dx = 1 / (1 + x^2)。

2. 基本函数导数运算法则
(1) 线性运算法则:对于函数 f(x) 和 g(x),以及常数 c1 和 c2,有以下公式:
- d(c1*f(x) ± c2*g(x))/dx = c1*df(x)/dx ± c2*dg(x)/dx
- d(c*f(x))/dx = c*df(x)/dx (其中c为常数)
(2) 乘积法则:对于函数 f(x) 和 g(x),有以下公式:
- d(f(x) * g(x))/dx = f(x) * dg(x)/dx + g(x) * df(x)/dx
(3) 商积法则:对于函数 f(x) 和 g(x),有以下公式:
- d(f(x) / g(x))/dx = (g(x) * df(x)/dx - f(x) * dg(x)/dx) / g(x)^2
(4) 链式法则:对于复合函数 y = f(g(x)),有以下公式:
- dy/dx = df(g(x))/dg(x) * dg(x)/dx
二、积分的基本公式
1. 基本积分公式
(1) 幂函数的积分公式:对于 y = x^n,其中n不等于-1,积分为
∫x^n dx = (1 / (n+1)) * x^(n+1) + C。

(2) 三角函数的积分公式:
- 正弦函数的积分:∫sin(x) dx = -cos(x) + C。

- 余弦函数的积分:∫cos(x) dx = sin(x) + C。

- 正切函数的积分:∫tan(x) dx = -ln|cos(x)| + C。

(3) 反三角函数的积分公式:
- 反正弦函数的积分:∫1 / sqrt(1 - x^2) dx = arcsin(x) + C。

- 反余弦函数的积分:∫1 / sqrt(1 - x^2) dx = arccos(x) + C。

- 反正切函数的积分:∫1 / (1 + x^2) dx = arctan(x) + C。

2. 基本函数积分运算法则
(1) 线性运算法则:对于函数 f(x) 和 g(x),以及常数 c1 和 c2,有以下公式:
- ∫(c1*f(x) ± c2*g(x)) dx = c1*∫f(x) dx ± c2*∫g(x) dx
- ∫c*f(x) dx = c*∫f(x) dx (其中c为常数)
(2) 乘积法则:对于函数 f(x) 和 g(x),有以下公式:
- ∫f(x) * g'(x) dx = f(x) * g(x) - ∫f'(x) * g(x) dx
(3) 分部积分法则:对于函数 u(x) 和 v(x),有以下公式:
- ∫u(x) * v'(x) dx = u(x) * v(x) - ∫u'(x) * v(x) dx
三、常用极限公式
1. 基本极限公式
(1) 常数极限:lim(x→c) c = c
(2) 幂函数极限:lim(x→c) x^n = c^n (其中n为整数)
(3) 指数函数与对数函数极限:lim(x→∞) a^x = ∞、lim(x→-∞) a^x = 0
lim(x→∞) log_a(x) = ∞、lim(x→0+) log_a(x) = -∞
(4) 三角函数和反三角函数极限:
- 正弦函数极限:lim(x→0) sin(x) = 0
- 余弦函数极限:lim(x→0) cos(x) = 1
- 正切函数极限:lim(x→0) tan(x) = 0
- 反正弦函数极限:lim(x→0) arcsin(x) = 0
- 反余弦函数极限:lim(x→0) arccos(x) = π/2
- 反正切函数极限:lim(x→0) arctan(x) = 0
2. 极限运算法则
(1) 乘法法则:lim(x→c) [f(x) * g(x)] = lim(x→c) f(x) * lim(x→c) g(x)
(2) 加法法则:lim(x→c) [f(x) + g(x)] = lim(x→c) f(x) + lim(x→c) g(x)
(3) 减法法则:lim(x→c) [f(x) - g(x)] = lim(x→c) f(x) - lim(x→c) g(x)
(4) 商法则:lim(x→c) [f(x) / g(x)] = [lim(x→c) f(x)] / [lim(x→c) g(x)] (其中lim(x→c) g(x) ≠ 0)
综上所述,掌握高数公式是考研数学备考的关键之一。

通过熟悉和灵活应用这些公式,考生们可以在考试中更高效地解题,并提升数学水平。

因此,建议考生们在备考过程中,多加强对高数公式的复习和练习,以便在考试中取得更好的成绩。

相关文档
最新文档