不定积分的概念

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不定积分的概念

原函数的概念

已知函数f(x)是一个定义在某区间的函数,如果存在函数F(x),使得在该区间内的任一点都有

dF'(x)=f(x)dx,

则在该区间内就称函数F(x)为函数f(x)的原函数。

例:sinx是cosx的原函数。

关于原函数的问题

函数f(x)满足什么条件是,才保证其原函数一定存在呢?这个问题我们以后来解决。若其存在原函数,那末原函数一共有多少个呢?

我们可以明显的看出来:若函数F(x)为函数f(x)的原函数,

即:F"(x)=f(x),

则函数族F(x)+C(C为任一个常数)中的任一个函数一定是f(x)的原函数,

故:若函数f(x)有原函数,那末其原函数为无穷多个.

不定积分的概念

函数f(x)的全体原函数叫做函数f(x)的不定积分,

记作。

由上面的定义我们可以知道:如果函数F(x)为函数f(x)的一个原函数,那末f(x)的不定积分就是函数族

F(x)+C.

即:=F(x)+C

例题:求:.

解答:由于,故=

不定积分的性质

1、函数的和的不定积分等于各个函数的不定积分的和;

即:

2、求不定积分时,被积函数中不为零的常数因子可以提到积分号外面来,

即:

相关文档
最新文档