最新人教版-八年级上册-三角形的知识点及题型总结
人教版-八年级上册-三角形的知识点及题型总结材料
三角形的知识点及题型总结一、三角形的认识定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形。
分类:锐角三角形(三个角都是锐角的三角形)按角分类直角三角形(有一个角是直角的三角形)钝角三角形(有一个角是钝角的三角形)三边都不相等的三角形按边分类等腰三角形底边和腰不相等的等腰三角形等边三角形例题1 图1中共几个三角形。
例题2 下列说确的是()A.三角形分为等边三角形和三边不相等三角形B.等边三角形不是等腰三角形C.等腰三角形是等边三角形D.三角形分为锐角三角形、直角三角形、钝角三角形例题3已知a、b、c为△ABC的三边长,b、c满足(b-2)2+|c-3|=0,且a为方程|x-4|=2的解.求△ABC的周长,并判断△ABC的形状.二、与三角形有关的边三边的关系:三角形的两边和大于第三边,两边的差小于第三边。
例题1 以下列各组数据为边长,能够成三角形的是()A.3,4,5B.4,4,8C.3,7,10D.10,4,5例题2 已知三角形的两边边长分别为4、5,则该三角形周长L的围是()A.1<L<9B.9<L<14C.10<L<18D.无法确定课后练习:1、若三角形的两边长分别为5、8,则第三边可能是()A.2B. 6C.13D.182、等腰三角形的两边长分别为6、13,则它的周长为。
3、等腰三角形的两边长分别为4、5,则第三边长为。
4、已知三角形的两边长为2和4,为了使其周长是最小的整数,则第三边的为。
5、若等腰三角形的周长为13cm,其中一边长为3cm,则等腰三角形的底边为()A.3cmB.7C.7cmD.7cm或3cm6、根据下列已知条件,能唯一画出△ABC的是()A.AB=3,BC=4,AC=8B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4D.∠C=90°,AB=68、用7根火柴棒首尾顺次相连摆成一个三角形,能摆成个不同的三角形。
新人教版八年级上册数学知识点归纳及常考题型
问:〔1〕求甲乙两队单独工作完成这一工程各需多少天?
〔2〕在不耽误工期的情况下,你认为哪种施工方案较节省 工程款?
第二十四页,共24页。
教学资料整理
• 仅供参考,
只需增加的一个条件是
.A
D
B
图3
C
第七页,共24页。
考点2.如图2,∠1=∠2,要得到
△ABD≌△ACD,还需从以下条件中补选一个,
则错误的选法是〔 〕
A、AB=AC
B、DB=DC
C、∠ADB=∠ADC D、∠B=∠C
考点3.如右图所示,点A、D、B、F在一
条直线上,AC=EF,AD=FB,要使
△ABC≌△FDE,还需添加一个条件,
第十七页,共24页。
第十五章分式考点归纳
1、分式的判断 P127
考点 1.下列各式中, 1 x+ 1 y, 1 , 1 ,—4xy , x , x
3 2 xy 5 a
x2
是分式有
2、分式方程的判断 P
考点 1:下列属于分式的是(
A. X-2
B. y 2x x 1
) C. 8 6 a3
D. 2X-7=16
新人教版八年级上册数学知识点 归纳及常考题型
第十一章三角形考点归纳
1、判断三边能否组成三角形。P3
考点1.以以下各组线段为边,能组成三角形的是〔
〕
A. 1,2,4
B. 4,6,8 C. 5,6,12 D.2,3,5
2、求第三边的取值范围。P3
考点1.三角形的三边长分别是2 ,5 ,x,则x的取值范围
最新人教版八年级数学上册知识点总结归纳【最新整理】
最新人教版八年级数学上册知识点总结归纳【最新整理】复资料、知识分享】新人教版八年级上册数学知识点总结归纳第十一章三角形1.三角形的概念三角形是由不在同一直线上的三条线段首尾顺次相接组成的图形。
组成三角形的线段称为三角形的边,相邻两边的公共端点称为三角形的顶点,相邻两边所组成的角称为三角形的内角,简称三角形的角。
2.三角形中的主要线段1) 三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段称为三角形的角平分线。
2) 在三角形中,连接一个顶点和它对边的中点的线段称为三角形的中线。
3) 从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段称为三角形的高线,简称三角形的高。
3.三角形的稳定性三角形的形状是固定的,这个性质称为三角形的稳定性。
在生产生活中,需要稳定的东西一般都制成三角形的形状。
4.三角形的特性与表示三角形有下面三个特性:三角形有三条线段,三条线段不在同一直线上,三角形是封闭图形,首尾顺次相接。
三角形用符号“△”表示,顶点是A、B、C的三角形记作“△ABC”,读作“三角形ABC”。
5.三角形的分类按边的关系分类:不等边三角形、三角形底和腰不相等的等腰三角形、等腰三角形、等边三角形。
按角的关系分类:直角三角形、锐角三角形、斜三角形、钝角三角形。
特殊的三角形:等腰直角三角形,两条直角边相等的直角三角形。
6.三角形的三边关系定理及推论1) 三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
2) 三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。
③证明线段不等关系。
7.三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。
推论:①直角三角形的两个锐角互余。
②三角形的一个外角等于和它不相邻的来两个内角的和。
③三角形的一个外角大于任何一个和它不相邻的内角。
注:在同一个三角形中,等角对等边,等边对等角,大角对大边,大边对大角。
人教版八年级上数学第十一章-三角形-知识点+考点+典型例题(含答案)
第七章三角形【知识要点】一.认识三角形1.关于三角形的概念及其按角的分类定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三角形的分类:①三角形按内角的大小分为三类:锐角三角形、直角三角形、钝角三角形。
②三角形按边分为两类:等腰三角形和不等边三角形.2.关于三角形三条边的关系(判断三条线段能否构成三角形的方法、比较线段的长短)根据公理“两点之间,线段最短”可得:三角形任意两边之和大于第三边。
三角形任意两边之差小于第三边。
3.与三角形有关的线段..:三角形的角平分线、中线和高三角形的角平分线:三角形的一个角的平分线与对边相交形成的线段;三角形的中线:连接三角形的一个顶点与对边中点的线段,三角形任意一条中线将三角形分成面积相等的两个部分;三角形的高:过三角形的一个顶点做对边的垂线,这条垂线段叫做三角形的高.注意:①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;②任意一个三角形都有三条角平分线,三条中线和三条高;③任意一个三角形的三条角平分线、三条中线都在三角形的内部。
但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部;直角三角形有一条高在三角形的内部,另两条高恰好是它两条直角边;钝角三角形一条高在三角形的内部,另两条高在三角形的外部。
④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点.(三角形的三条高(或三条高所在的直线)交与一点,锐角三角形高的交点在三角形的内部,直角三角形高的交点是直角顶点,钝角三角形高(所在的直线)的交点在三角形的外部。
)4.三角形的内角与外角(1)三角形的内角和:180°引申:①直角三角形的两个锐角互余;②一个三角形中至多有一个直角或一个钝角;③一个三角中至少有两个内角是锐角。
(2)三角形的外角和:360°(3)三角形外角的性质:①三角形的一个外角等于与它不相邻的两个内角的和;-—常用来求角度②三角形的一个外角大于任何一个与它不相邻的内角.-—常用来比较角的大小5.多边形的内角与外角多边形的内角和与外角和(识记)4题图B DC (1)多边形的内角和:(n-2)180° (2)多边形的外角和:360°引申:(1)从n 边形的一个顶点出发能作(n-3)条对角线;(2)多边形有2)3(-n n 条对角线。
人教版 八年级上册 三角形 知识点及题型总结
第十一章三角形的知识点及题型总结一、三角形的认识定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形。
分类:锐角三角形(三个角都是锐角的三角形)按角分类直角三角形(有一个角是直角的三角形)钝角三角形(有一个角是钝角的三角形)三边都不相等的三角形按边分类等腰三角形底边和腰不相等的等腰三角形等边三角形例题1 图1中共几个三角形。
例题2 下列说法正确的是()A.三角形分为等边三角形和三边不相等三角形B.等边三角形不是等腰三角形C.等腰三角形是等边三角形D.三角形分为锐角三角形、直角三角形、钝角三角形例题3已知a、b、c为△ABC的三边长,b、c满足(b-2)2+|c-3|=0,且a为方程|x-4|=2的解.求△ABC的周长,并判断△ABC的形状.二、与三角形有关的边三边的关系:三角形的两边和大于第三边,两边的差小于第三边。
例题1 以下列各组数据为边长,能够成三角形的是()A.3,4,5B.4,4,8C.3,7,10D.10,4,5例题2 已知三角形的两边边长分别为4、5,则该三角形周长L的范围是()A.1<L<9B.9<L<14C.10<L<18D.无法确定课后练习:1、若三角形的两边长分别为5、8,则第三边可能是()A.2B. 6C.13D.182、等腰三角形的两边长分别为6、13,则它的周长为。
3、等腰三角形的两边长分别为4、5,则第三边长为。
4、已知三角形的两边长为2和4,为了使其周长是最小的整数,则第三边的为。
5、若等腰三角形的周长为13cm,其中一边长为3cm,则等腰三角形的底边为()A.3cmB.7C.7cmD.7cm或3cm6、根据下列已知条件,能唯一画出△ABC的是()A.AB=3,BC=4,AC=8B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4D.∠C=90°,AB=68、用7根火柴棒首尾顺次相连摆成一个三角形,能摆成个不同的三角形。
人教版八年级数学上册第12章全等三角形知识点复习总结及常考题型练习.doc
第十二章一、::二、::1.::⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.理解::①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。
⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2.::⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.理解::①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。
(3)全等三角形的周长相等、面积相等。
(4)全等三角形的对应边上的对应中线、角平分线、高线分别相等。
3.全等三角形的判定定理::⑴边边边( SSS):三边对应相等的两个三角形全等.⑵边角边( SAS ):两边和它们的夹角对应相等的两个三角形全等.⑶角边角(ASA ):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS ):两角和其中一个角的对边对应相等的两个三角形全等⑸斜边、直角边(HL ):斜边和一条直角边对应相等的两个直角三角形全等..4.::5.::⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.(4)三角形的三条角平分线交于三角形内部一点,并且这点到三边的距离相等6.::⑴明确命题中的已知和求证. (包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.7.::(1) 要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2)表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4)中线倍长法、截长补短法证三角形全等。
人教版八年级上册三角形专题知识点典型题型难点题型详细答案(教案)
1.理论介绍:首先,我们要了解三角形的基本概念。三角形是由三条线段首尾相连围成的图形。它是几何图形中最基本、最重要的元素之一,广泛应用于日常生活和各类工程领域。
2.案例分析:接下来,我们来看一个具体的案例。通过分析三角形在桥梁建筑中的应用,了解三角形如何帮助工程Байду номын сангаас解决实际问题。
人教版八年级上册三角形专题知识点典型题型难点题型详细答案(教案)
。
一、教学内容
本节课依据人教版八年级上册数学教材中“三角形”专题进行设计。内容包括:
1.三角形的定义及分类;
2.三角形的内角和定理;
3.三角形全等的判定(SSS、SAS、ASA、AAS);
4.等腰三角形的性质及判定;
5.等边三角形的性质及判定;
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了三角形的基本概念、内角和定理、全等的判定方法以及在实际生活中的应用。同时,我们也通过实践活动和小组讨论加深了对三角形知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(3)直角三角形的判定及性质:学生对于直角三角形的判定和性质理解不深刻,容易混淆。
突破方法:结合勾股定理及其逆定理,通过实际例题,让学生深入理解直角三角形的判定和性质。
(4)难点题型:如涉及多个知识点综合应用的问题,学生难以找到解题思路。
突破方法:通过专题训练,培养学生分析问题和解决问题的能力,提高解题技巧。
2.教学难点
(1)三角形全等的判定:学生容易混淆四种全等判定方法,难以正确运用。
八年级上册人教版数学三角形知识点总结
八年级上册人教版数学三角形知识点总结以下是八年级上册人教版数学三角形部分的知识点总结:1. 三角形的基本性质:三角形内角和定理:三角形的三个内角之和等于180度。
三角形的基本性质:三角形具有稳定性,即三角形的大小和形状是确定的,不论其边的长度如何变化。
2. 三角形中的线段:中线:连接一个顶点和它的对边中点的线段叫做中线。
中线将三角形分为两个面积相等的小三角形。
高:从一个顶点垂直于对边(或对边的延长线)的线段叫做高。
高将三角形分为两个直角三角形。
角平分线:将一个角平分为两个相等的小角的线段叫做角平分线。
角平分线上的点到这个角的两边距离相等。
3. 全等三角形:两个三角形如果所有对应的边和角都相等,则这两个三角形全等。
全等三角形是三角形中的重要概念,它在证明题中经常用到。
4. 特殊三角形:等腰三角形:两边相等的三角形叫做等腰三角形。
等腰三角形的两个底角相等,并且有一个顶角。
等边三角形:所有边都相等的三角形叫做等边三角形。
等边三角形的三个角都相等,都是60度。
5. 三角形的边角关系:在三角形中,较长的边对应较大的角,较短的边对应较小的角,即“大边大角,小边小角”。
6. 三角形的面积计算:基础公式:面积 = (底× 高) / 2变形公式:底= 2 × 面积 / 高,高= 2 × 面积 / 底7. 解直角三角形:在直角三角形中,已知两个锐角或一条直角边和一条斜边,需要求其他角度或边的长度。
解直角三角形的关键是掌握锐角三角函数的定义和性质。
8. 三角形的证明题:证明题是数学中的重要题型,对于三角形的证明题,需要掌握全等三角形的性质和判定条件,以及一些常用的证明技巧。
希望以上总结对您有所帮助,祝您学习顺利!。
八年级上册数学人教版知识点总结与题型总结
第一篇嗨,亲爱的小伙伴们!今天咱们来唠唠八年级上册数学人教版的那些事儿。
先说全等三角形这块儿哈,这可是个重点。
要知道全等三角形的对应边相等,对应角也相等。
判断两个三角形全等的条件有“SSS”(三边相等)、“SAS”(两边及其夹角相等)、“ASA”(两角及其夹边相等)、“AAS”(两角及其中一角的对边相等)、“RHS”(直角三角形斜边和一条直角边相等)。
做题的时候,可得瞪大眼睛看清楚条件哟!还有角平分线的性质也得记住,角平分线上的点到角两边的距离相等。
这在证明线段相等的时候经常能用到呢。
一次函数也很重要哦!一般式是 y = kx + b,k 表示斜率,b 是截距。
当 k 大于 0 时,函数图像是上升的;k 小于 0 ,图像就下降啦。
通过图像能解决好多实际问题,比如算行程、算成本啥的。
整式的乘除也别落下。
同底数幂相乘,底数不变,指数相加;幂的乘方,底数不变,指数相乘。
这些运算规则要牢记,不然做题容易出错哟!再说三角形这部分,三角形的内角和是 180 度,外角等于不相邻的两个内角之和。
三角形的三边关系也有讲究,两边之和大于第三边,两边之差小于第三边。
怎么样,小伙伴们,这些知识点都记住了没?多做几道题巩固巩固,数学成绩肯定能蹭蹭涨!第二篇嘿,友友们!咱们接着聊聊八年级上册数学的那些宝贝知识点和题型。
先讲讲轴对称图形吧,对称轴两边的图形是完全重合的哟。
等腰三角形和等边三角形都是轴对称图形,它们的性质要搞清楚。
等腰三角形两腰相等,两底角也相等;等边三角形三边相等,三个角都是 60 度。
因式分解可是个技术活,有提公因式法、公式法,像平方差公式和完全平方公式都得用得溜。
数据的分析也不能马虎,平均数、中位数、众数要会算会用。
方差能反映数据的波动大小,做题的时候要根据具体情况选择合适的统计量。
整式的乘法可别弄混了,单项式乘单项式、单项式乘多项式、多项式乘多项式,都有各自的法则,一步一步来,别着急。
再说说平方根和立方根,正数有两个平方根,它们互为相反数;0 的平方根是 0;负数没有平方根。
人教版八年级上册第十二章全等三角形知识点复习
A. ①④
B.①②
C.②③
D.③④
2.如图,ABD ≌ CDB ,且 AB 和 CD 是对应边,下面四个结论中不正确的是( )
A. ABD和CDB 的面积相等
A
D
B. ABD和CDB 的周长相等 C. A + ABD = C + CBD
B
C
D.DAD//BC 且 AD=BC
3.如图, ABC ≌ BAD ,A 和 B 以及 C 和 D 分别是对应点,如果
4.全等三角形的判定(一):三边对应相等的两个三角形全等,简与成“边边边”或“SSS”.
AB = DE 如图,在 ABC 和 DEF 中 BC = EF
AC =
【典型例题】
例1.如图, ABC ≌ ADC ,点 B 与点 D 是对应点, BAC = 26 ,且 B = 20 , SABC = 1,求 CAD , D, ACD 的度数及 ACD 的面积.
数及 BC 的长.
E
F
A
BC
D
本文来源于网络,如果侵权行为,请联系删除!
精品文档,助力人生,欢迎关注小编!
11.如图,在 ABC与ABD 中,AC=BD,AD=BC,求证: ABC ≌ ABD
D A
C B
全等三角形(一)作业
1.如图, ABC ≌ CDA ,AC=7cm,AB=5cm.,则 AD 的长是( )
求证:(1) DE ⊥ AB ; (2)BD 平分 ABC (角平分线的相关证明及性质)
B
A E
D
C
【巩固练习】 1.下面给出四个结论:①若两个图形是全等图形,则它们形状一定相同;②若两个图形的
形状相同,则它们一定是全等图形;③若两个图形的面积相等,则它们一定是全等图形; ④若两个图形是全等图形,则它们的大小一定相同,其中正确的是( )
新人教版八年级上册《直角三角形》知识点归纳总结-(1)
新人教版八年级上册《直角三角形》知识
点归纳总结-(1)
直角三角形是初中数学中的重要内容,本文将对新人教版八年
级上册《直角三角形》的知识点进行归纳总结。
1. 直角三角形的定义和性质
- 直角三角形是指其中一个角为90度的三角形。
- 直角三角形的边中,有一个边与直角的两个边相连,这两个
边称为直角边,另一个边为斜边。
2. 勾股定理
- 勾股定理是直角三角形中最基本的定理,它描述了直角三角
形三条边的关系。
- 勾股定理的表达式为:c^2 = a^2 + b^2,其中c为斜边的长度,a和b为直角边的长度。
3. 特殊直角三角形
- 特殊直角三角形是指具有特定边长比例的直角三角形。
- 常见的特殊直角三角形包括:3-4-5直角三角形、5-12-13直
角三角形和8-15-17直角三角形等。
4. 直角三角形的应用
- 直角三角形的应用非常广泛,常用于解决与长度、角度和面
积相关的问题。
- 例如,可以利用勾股定理求解直角三角形的边长,也可以利
用正弦定理和余弦定理求解三角形的角度。
以上是新人教版八年级上册《直角三角形》的知识点归纳总结,希望对你的学习有所帮助。
如需更详细的内容,请查阅相关教材或
参考资料。
人教版八年级上册第十一章 三角形知识点复习及习题练习
第十一章三角形知识框架【三角形的概念】1、三角形的定义由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形。
要点:①三条线段;②不在同一条直线上;③首尾顺次相连。
2、基本概念:三角形有三条边,三个内角,三个顶点。
边:组成三角形的线段,表示方法:AB(c)、BC(a)、AC(b)内角:相邻两边所组成的角,表示方法:∠A、∠B、∠C顶点:相邻两边的公共端点,表示方法:A、B、C三角形ABC用符号表示为△ABC。
夹边、夹角、对边、对角3、数三角形个数技巧1)按组成三角形的图形个数来数(如单个三角形、由2个图形组成的三角形……最后求和)2)从图中的某一条线段开始,按一定的顺序找出能组成三角形的另外两条边;3)先固定一个顶点,再变换另外两个顶点,找出不共线的三点共有多少组。
练:1、下列说法中正确的是()A、由三个角组成的图形叫三角形B、由三条直线组成图形叫三角形C、由不在同一直线上的三条线段首尾顺次相接所组成的图形叫三角形D、由三条线段组成的图形叫三角形2、右图中三角形的个数是()A、6B、7C、8D、93、如右图所示:(1)图中有几个三角形?把它们一一写出来。
(2)写出△ABD的三个内角。
(3)以∠C为内角的三角形有哪些?(4)以AB为边的三角形有哪些?【分类】在等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
练:1、如果三角形的一个外角是锐角,则此三角形的形状是()A、锐角三角形B.钝角三角形C.直角三角形D.无法判断2、若△ABC三边长分别为m,n,p,且| m - n |+( n - p)2= 0 ,则这个三角形为()A、等腰三角形B、等边三角形C、直角三角形D、等腰直角三角形3、三角形中,若一个角等于其他两个角的差,则这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.等腰三角形4、根据下列所给条件,判断△ABC的形状(若已知的是角,则按角的分类标准去判断;若已知的是边,则按边的分类标准去判断)(1)∠A=45°,∠B=65°,∠C=70°;(2)∠C=90°;(3)∠C=120°;(4)AB=BC=4,AC=5.【三边的关系】①三角形任意两边之和大于第三边,b + c > a;②三角形任意两边之差小于第三边,b - c < a。
新人教版八年级上册数学[等边三角形(提高)知识点整理及重点题型梳理]
新人教版八年级上册数学知识点梳理及巩固练习重难点突破课外机构补习优秀资料等边三角形(提高)【学习目标】1. 掌握等边三角形的性质和判定.2. 掌握含30°角的直角三角形的一个主要性质.3. 熟练运用等边三角形的判定定理与性质定理进行推理和计算.【要点梳理】【等边三角形,知识要点】要点一、等边三角形等边三角形定义:三边都相等的三角形叫等边三角形.要点诠释:由定义可知,等边三角形是一种特殊的等腰三角形.也就是说等腰三角形包括等边三角形.要点二、等边三角形的性质等边三角形的性质:等边三角形三个内角都相等,并且每一个内角都等于60°.要点三、等边三角形的判定等边三角形的判定:(1)三条边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角是60°的等腰三角形是等边三角形.要点四、含30°的直角三角形含30°的直角三角形的性质定理:在直角三角形中,如果有一个锐角是30°,那么它所对的直角边等于斜边的一半. 要点诠释:这个定理的前提条件是“在直角三角形中”,是证明直角三角形中一边等于另一边(斜边)的一半的重要方法之一,通常用于证明边的倍数关系.【典型例题】类型一、等边三角形1、(2015秋·黄冈期中)如图,已知点B 、C 、D 在同一条直线上,ABC ∆和DCE ∆都是等边三角形,BE 交AC 于F ,AD 交CE 于H.(1)求证:△BCE ≌△ACD ;(2)求证:FH ∥BD.【答案与解析】(1)证明: ABC ∆和DCE ∆都是等边三角形∴BC =AC ,CE =CD ,∠BCA =∠ECD =60°∴∠BCA+∠ACE=∠ECD+∠ACE ,即∠BCE=∠ACD在△BCE 和△ACD 中BCE ACD CE B A D C C C ∠=∠==⎧⎪⎨⎪⎩∴△BCE ≌△ACD (SAS )(2)由(1)知△BCE ≌△ACD则∠CBF=∠CAH ,BC=AC又∵ABC ∆和DCE ∆都是等边三角形,且点B 、C 、D 在同一条直线上,∴∠ACH=180°-∠ACB-∠HCD=60°=∠BCF ,在△BCF 和△ACH 中 CBE CAH BC ACBCF ACH ∠=∠=∠=∠⎧⎪⎨⎪⎩∴△BCF ≌△ACH (ASA )∴CF=CH ,又∵∠FCH =60°∴△CHF 是等边三角形∴∠FHC =∠HCD=60°,∴FH ∥BD【总结升华】本题考查等边三角形的判定与性质及全等三角形的判定与性质,熟知全等三角形的判定定理是解答此题的关键。
人教版八年级数学上学期数学知识点归纳
人教版八年级数学上学期数学知识点归纳八年级数学上册知识点总结第十一章三角形一、知识框架:三角形的分类、三边关系、高、中线、角平分线、内角和、外角和、多边形的内角和。
二、知识清单:1.三角形:由不在同一直线上的三条线段首尾顺次连接所组成的图形叫做三角形。
三角形用符号“△”加顶点字母表示,如“△ABC”(读作“三角形ABC”)。
2.三角形(按边)分类:三边都不相等的三角形腰与底边不相等的等腰三角形等边三角形3.三角形三边关系(定理):三角形任意两边的和大于第三边;(推论)三角形任意两边的差小于第三边。
4.三角形的高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的连线段叫做三角形的高。
(三角形三条高或高所在直线相交于一点,交点称为三角形的垂心)5.三角形的中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。
(三角形的三条中线交于一点,交点叫三角形的重心)6.三角形的角平分线:三角形一个内角的平分线与这个角的对边相交,顶点和交点之间的连线段叫做三角形的角平分线。
(三角形三条角平分线的交点称为三角形的内心)7.三角形的稳定性:三边长度固定的三角形的形状、大小固定不变,这个性质叫三角形的稳定性。
(在所有的多边形中,只有三角形具有稳定性)8.三角形的内角:三角形中,相邻两边组成的角称为三角形的内角,也称为三角形的角。
三角形内角和(定理):三角形的三个内角和为180°。
直角三角形的两个锐角互余。
9.三角形的外角:由三角形的一条边和相邻边的延长线组成的角称为三角形的外角。
三角形外角和(定理):三角形三个外角的和为360°。
三角形的一个外角等于与它不相邻的两内角的和。
三角形的一个外角大于任何一个与它不相邻的内角。
10.多边形:在平面内,由不在同一条直线上的n条线段首尾顺次连接组成的图形叫做n边形。
正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。
11.多边形的内角:多边形相邻两边组成的角叫做多边形的内角,简称多边形的角。
新人教版八年级上册数学各章节知识点总结(最新整理)
轴对称图形可以经过旋转得出。 用坐标轴表示轴对称:关于 x 轴对称(x,y)与(x,-y);关于 y 轴对称(x,y)与(-x,y)。 第三节等腰三角形 有两个边相等的三角形叫做等腰三角形。 等腰三角形的性质:1)等腰三角形的两个底角相等。简言之:等边对等角。
1 ap
(
a≠0,p是正
整数), 而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的;当a<0时,a-p的值可能是正也可能是负的,如
(2)2
1 (2)2
1 4
, (2)3
1 (2)3
1 8
;
④运算要注意运算顺序。 2.整式的除法 1)单项式除法单项式 单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的 指数作为商的一个因式; 2)多项式除以单项式
一般地, (a)n
a n (当n为偶数时), a n (当n为奇数时).
底数有时形式不同,但可以化成相同。 要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。 3.积的乘方法则
一般地,对于任意底数a、b与任意正整数n,有 (ab)n an bn (n为正整数)。即积的乘方,等于把积
②相同字母相乘,运用同底数的乘法法则;
③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式; ④单项式乘法法则对于三个以上的单项式相乘同样适用; ⑤单项式乘以单项式,结果仍是一个单项式。
2)单项式与多项式相乘:就是用单项式去乘多项式的每一项,再把所得的积相加。即单项式乘以多项式, 是通过乘法对加法的分配律,把它转化为单项式乘以单项式。
新人教版八年级上册《全等三角形》知识点归纳总结
全等三角形一、知识要点:(一)全等变换:只改变图形的位置,二不改变其形状大小的图形变换叫做全等变换。
全等变换包括以下三种:1、平移变换:把图形沿某条直线平行移动的变换叫做平移变换。
2、对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。
3、旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。
(二)全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。
(三)全等三角形的性质:全等三角形的对应角相等、对应边相等。
二、题型分析:题型一:考察全等三角形的定义例题:下列说法正确的是()A、全等三角形是指形状相同的两个三角形 C、全等三角形的周长和面积分别相等C、全等三角形是指面积相等的两个三角形D、所有的等边三角形都是全等三角题型二:考察全等三角形之间的关系——传递性例题:如果△ABC和△DEF全等,△DEF和△GHI全等,则△ABC和△GHI______全等,如果△ABC和△DEF不全等,△DEF 和△GHI全等,则△ABC和△GHI______全等.(填“一定”或“不一定”或“一定不”)题型三:根据三角形全等求角例1:△ABC中,∠BAC∶∠ACB∶∠ABC=4∶3∶2,且△ABC≌△DEF,则∠DEF=______.例2:如图,△ABN≌△ACM,AB=AC,BN=CM,∠B=50°,∠ANC=120°,则∠MAC的度数等于()A、120°B、70°C、60°D、50°第二节三角形全等的判定一、知识要点:(一)三角形全等的判定公理及推论有:1、“边角边”简称“SAS”2、“角边角”简称“ASA”3、“边边边”简称“SSS”4、“角角边”简称“AAS”5、斜边和直角边相等的两直角三角形(HL)。
注:边边角和角角角不成立。
(文末附解析)人教版初中数学八年级上册三角形重点题型及重要知识点的整理
(文末附解析)人教版初中数学八年级上册三角形重点题型及重要知识点的整理单选题1、一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°2、如图,在△ABC中,∠A=30°,∠B=50°,CD平分∠ACB,则∠ADC的度数是()A.80°B.90°C.100°D.110°3、如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点,沿过点E的直线折叠,使点B与点A重合,,则BC的长是()折痕现交于点F,已知EF=32B.3√2C.3D.3√3A.3√224、如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°5、如图,在△ABC中,∠C=90°,点D在AC上,DE∥AB,若∠CDE=165°,则∠B的度数为()A.15°B.55°C.65°D.75°6、在△ABC中,∠A-∠C=∠B,那么△ABC是()A.等边三角形B.锐角三角形C.钝角三角形D.直角三角形7、如图,在△ABC中,∠A=30°,∠B=50°,CD平分∠ACB,则∠ADC的度数是()A.80°B.90°C.100°D.110°8、将正六边形与正五边形按如图所示方式摆放,公共顶点为O,且正六边形的边AB与正五边形的边DE在同一条直线上,则∠COF的度数是()A.74°B.76°C.84°D.86°填空题9、若一个多边形内角和等于1260°,则该多边形边数是______.10、一个多边形从一个顶点出发可引3条对角线,这个多边形的内角和等于________.11、如图,直线MN∥PQ,点A、B分别在MN、PQ上,∠MAB=33°.过线段AB上的点C作CD⊥AB交PQ于点D,则∠CDB的大小为_____度.12、如图,AD是△ABC的外角∠CAE的平分线,∠B=40°,∠DAE=55°,则∠ACB的度数是___.13、如图,在△ ABC中,已知点D、E、F分别为BC、AD、CE的中点,若△ ABC的面积为4m2,则阴影部分的面积为 _________ cm2解答题14、如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,求证:AM平分∠DAB.15、如图所示,AD,CE是△ABC的两条高,AB=6cm,BC=12cm,CE=9cm.(1)求△ABC的面积;(2)求AD的长.(文末附解析)人教版初中数学八年级上册三角形_00C参考答案1、答案:C解析:首先设此多边形为n边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.解:设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,∴这个正多边形的每一个外角等于:360°5=72°.故选C.小提示:此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.2、答案:C解析:在△ABC中,利用三角形内角和为180°求∠ACB,再利用CD平分∠ACB,求出∠ACD的度数,再在△ACD利用三角形内角和定理即可求出∠ADC的度数.∵在△ABC中,∠A=30°,∠B=50°.∴∠ACB=180°−∠A−∠B=180°−30°−50°=100°.∵CD平分∠ACB.∴∠ACD=12∠ACB=12×100°=50°.∴∠ADC=180°−∠A−∠ACD=180°−30°−50°=100°.故选C.小提示:本题考查了三角形的内角和和角平分线的性质,熟练应用性质是解决问题的关键.3、答案:B解析:折叠的性质主要有:1.重叠部分全等;2.折痕是对称轴,对称点的连线被对称轴垂直平分. 由折叠的性质可知∠B=∠EAF=45°,所以可求出∠AFB=90°,再直角三角形的性质可知EF=12AB,所以AB=AC,的长可求,再利用勾股定理即可求出BC的长.解:∵沿过点E的直线折叠,使点B与点A重合,∴∠B=∠EAF=45°,∴∠AFB=90°,∵点E为AB中点,且∠AFB=90°,∴EF=12AB,∵EF=32,∴AB=2EF=32×2=3,在ΔRtABC中, AB=AC,AB=3,∴BC=√AB2+AC2=√32+32=3√2, 故选B.小提示:本题考查了折叠的性质、等腰直角三角形的判断和性质以及勾股定理的运用,求出∠AFB=90°是解题的关键.4、答案:A解析:依据AD是BC边上的高,∠ABC=60°,即可得到∠BAD=30°,依据∠BAC=50°,AE平分∠BAC,即可得到∠DAE=5°,再根据△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,可得∠EAD+∠ACD=75°.∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选:A.小提示:本题考查了角平分线的定义和三角形内角和定理,解决问题的关键是三角形外角性质以及角平分线的定义的运用.5、答案:D解析:根据邻补角定义可得∠ADE=15°,由平行线的性质可得∠A=∠ADE=15°,再根据三角形内角和定理即可求得∠B=75°.解:∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,故选D.小提示:本题考查了平行线的性质、三角形内角和定理等,熟练掌握平行线的性质以及三角形内角和定理是解题的关键.6、答案:D解析:由于∠A-∠C=∠B,再结合∠A+∠B+∠C=180°,易求∠A,进而可判断三角形的形状.∵∠A-∠C=∠B,∠A+∠B+∠C=180°,∴2∠A=180°,∴∠A=90°,∴△ABC是直角三角形,故选D.小提示:本题考查了三角形内角和定理,求出∠A的度数是解题的关键.7、答案:C解析:在△ABC中,利用三角形内角和为180°求∠ACB,再利用CD平分∠ACB,求出∠ACD的度数,再在△ACD利用三角形内角和定理即可求出∠ADC的度数.∵在△ABC中,∠A=30°,∠B=50°.∴∠ACB=180°−∠A−∠B=180°−30°−50°=100°.∵CD平分∠ACB.∴∠ACD=12∠ACB=12×100°=50°.∴∠ADC=180°−∠A−∠ACD=180°−30°−50°=100°.故选C.小提示:本题考查了三角形的内角和和角平分线的性质,熟练应用性质是解决问题的关键.8、答案:C解析:利用正多边形的性质求出∠EOF,∠BOC,∠BOE即可解决问题.解:由题意得:∠EOF=108°,∠BOC=120°,∠OEB=72°,∠OBE=60°,∴∠BOE=180°﹣72°﹣60°=48°,∴∠COF=360°﹣108°﹣48°﹣120°=84°,故选:C小提示:本题考查正多边形,三角形内角和定理等知识,解题的关键是熟练掌握基本知识.9、答案:9解析:这个多边形的内角和是1260°.n边形的内角和是(n-2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.根据题意,得(n-2)•180=1260,解得:n=9.所以答案是:9.小提示:此题考查了多边形内角和以及多边形内角和外角的关系,解题的关键是熟练掌握多边形内角和以及多边形内角和外角的关系.10、答案:720°解析:首先确定出多边形的边数,然后利用多边形的内角和公式计算即可.∵从一个顶点可引对角线3条,∴多边形的边数为3+3=6.多边形的内角和=(n−2)×180°=4×180°=720°故答案为720°.小提示:此题考查多边形内角(和)与外角(和),多边形的对角线,解题关键在于掌握计算公式.11、答案:57解析:直接利用平行线的性质得出∠ABD的度数,再结合三角形内角和定理得出答案.解:∵直线MN∥PQ,∴∠MAB=∠ABD=33°,∵CD⊥AB,∴∠BCD=90°,∴∠CDB=180°-∠BCD-∠ABD=57°.所以答案是:57.小提示:此题主要考查了平行线的性质以及三角形内角和定理,掌握平行线的性质和三角形的内角和定理是解题关键.12、答案:70°解析:根据角平分线的性质求出∠CAE的度数,再利用外角的性质定理求出答案.解:∵AD是△ABC的外角∠CAE的平分线,∠DAE=55°,∴∠CAE=2∠DAE=110°∵∠CAE=∠B+∠ACB=110°,∠B=40°,∴∠ACB=70°,所以答案是:70°.小提示:此题考查三角形角平分线的性质及外角的性质,熟记各性质定理是解题的关键.13、答案:1解析:根据三角形的中线把三角形分成两个面积相等的三角形解答.解:∵点E 是AD 的中点,∴S △ABE =12S △ABD ,S △ACE =12S △ADC ,∴S △ABE +S △ACE =12S △ABC =12×4=2cm 2, ∴S △BCE =12S △ABC =12×4=2cm 2, ∵点F 是CE 的中点,∴S △BEF =12S △BCE =12×2=1cm 2. 所以答案是:1.小提示:本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.14、答案:见解析解析:由题意利用角平分线的性质“角的平分线上的点到角的两边的距离相等”,以及到角两边距离相等的点在角的角平分线上进行分析证明.解:如图,过点M 作ME ⊥AD 于F ,∵∠C=90°,DM平分∠ADC,∴ME=MC,∵M是BC的中点,∴BM=CM,∴BM=EM,又∵∠B=90°,∴点M在∠BAD的平分线上,∴AM平分∠DAB.小提示:本题考查角平分线性质和角平分线的判定,熟练掌握角平分线的性质“角的平分线上的点到角的两边的距离相等”是解题的关键.15、答案:(1)27;(2)4.5解析:(1)根据三角形面积公式进行求解即可;(2)利用面积法进行求解即可.解:(1)由题意得:S△ABC=12AB⋅CE=12×6×9=27cm2.(2)∵S△ABC=12BC⋅AD,∴27=12×12⋅AD.解得AD=4.5cm.小提示:本题主要考查了与三角形高有关的面积求解,解题的关键在于能够熟练掌握三角形面积公式.。
新人教版八年级上册数学[《三角形》全章复习与巩固—知识点整理及重点题型梳理](提高)
新人教版八年级上册数学知识点梳理及巩固练习重难点突破课外机构补习优秀资料《三角形》全章复习与巩固(提高)知识讲解【学习目标】1.认识三角形并能用符号语言正确表示三角形,理解并会应用三角形三边之间的关系.2.理解三角形的高、中线、角平分线的概念,通过作三角形的三条高、中线、角平分线,提高学生的基本作图能力,并能运用图形解决问题.3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.4.通过观察和实地操作知道三角形具有稳定性,知道四边形没有稳定性,了解稳定性与没有稳定性在生产、生活中的广泛应用.5.了解多边形、多边形的对角线、正多边形以及镶嵌等有关的概念;掌握多边形内角和及外角和,并能灵活运用公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力.【知识网络】【要点梳理】要点一、三角形的有关概念和性质1.三角形三边的关系:定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.2.三角形按“边”分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形 3.三角形的重要线段:(1)三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.要点诠释:三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外.(2)三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线,要点诠释:一个三角形有三条中线,它们交于三角形内一点,叫做三角形的重心.中线把三角形分成面积相等的两个三角形.(3)三角形的角平分线三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.要点诠释:一个三角形有三条角平分线,它们交于三角形内一点,这一点叫做三角形的内心.要点二、三角形的稳定性如果三角形的三边固定,那么三角形的形状大小就完全固定了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在窗框未安好之前,先在窗框上斜着钉一根木板,使它不变形. 要点三、三角形的内角和与外角和1.三角形内角和定理:三角形的内角和为180°.推论:1.直角三角形的两个锐角互余2.有两个角互余的三角形是直角三角形2.三角形外角性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.3.三角形的外角和: 三角形的外角和等于360°.要点四、多边形及有关概念1. 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.要点诠释:多边形通常还以边数命名,多边形有n 条边就叫做n 边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.2.正多边形:各个角都相等、各个边都相等的多边形叫做正多边形.如正三角形、正方形、正五边形等.要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形.3.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形;(2)n边形共有(3)2n n条对角线.要点五、多边形的内角和及外角和公式1.内角和公式:n边形的内角和为(n-2)·180°(n≥3,n是正整数) .要点诠释:(1)一般把多边形问题转化为三角形问题来解决;(2)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和,求其边数.2.多边形外角和:n边形的外角和恒等于360°,它与边数的多少无关.要点诠释:(1)外角和公式的应用:①已知外角度数,求正多边形边数;②已知正多边形边数,求外角度数.(2)多边形的边数与内角和、外角和的关系:①n边形的内角和等于(n-2)·180°(n≥3,n是正整数),可见多边形内角和与边数n有关,每增加1条边,内角和增加180°.要点六、镶嵌的概念和特征1.定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌).这里的多边形可以形状相同,也可以形状不相同.要点诠释:(1)拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边.(2)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°.(3)只用一种正多边形镶嵌地面,当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角360°时,就能铺成一个平面图形.事实上,只有正三角形、正方形、正六边形的地砖可以用.【典型例题】类型一、三角形的三边关系1.(2016•长沙模拟)一个三角形的三边长分别是3,2a-1,6,则整数a的值可能是( ).A.2,3 B.3,4 C.2,3,4 D.3,4,5【思路点拨】直接利用三角形三边关系,得出a的取值范围.【答案】B【解析】解:∵一个三角形的三条边长分别为3,2a-1,6,∴21 219 aa-⎧⎨-⎩>3<解得:2<a<5,则整数a的值可能是3,4,故选B.【总结升华】主要考察了三角形三边关系,正确得出a的取值范围是解题关键.举一反三:【变式】(2014秋•孝感月考)已知a、b、c是三角形三边长,试化简:|b+c-a|+|b-c-a|+|c-a-b|﹣|a-b+c|.【答案】解:∵a、b、c是三角形三边长,∴b+c-a>0,b-c-a<0,c-a-b<0,a-b+c>0,∴|b+c-a|+|b-c-a|+|c-a-b|-|a-b+c|,=b+c-a-b+c+a-c+a+b-a+b-c=2b.2.如图,O是△ABC内一点,连接OB和OC.(1)你能说明OB+OC<AB+AC的理由吗?(2)若AB=5,AC=6,BC=7,你能写出OB+OC的取值范围吗?【答案与解析】解:(1)如图,延长BO交AC于点E,根据三角形的三边关系可以得到,在△ABE中,AB+AE>BE;在△EOC中,OE+EC>OC,两不等式相加,得AB+AE+OE+EC>BE+OC.由图可知,AE+EC=AC,BE=OB+OE.所以AB+AC+OE>OB+OC+OE,即OB+OC<AB+AC.(2)因为OB+OC>BC,所以OB+OC>7.又因为OB+OC<AB+AC,所以OB+OC<11,所以7<OB+OC<11.【总结升华】充分利用三角形三边关系的性质进行解题.【与三角形有关的线段例1】类型二、三角形中的重要线段3.在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分为12cm和15cm两部分,求三角形的各边长.【思路点拨】因为中线BD的端点D是AC边的中点,所以AD=CD,造成两部分不等的原因是BC边与AB、AC边不等,故应分类讨论.【答案与解析】解:如图(1),设AB=x,AD=CD=12 x.(1)若AB+AD=12,即1122x x+=,所以x=8,即AB=AC=8,则CD=4.故BC=15-4=11.此时AB+AC>BC,所以三边长为8,8,11.(2)如图(2),若AB+AD=15,即1152x x+=,所以x=10.即AB=AC=10,则CD=5.故BC=12-5=7.显然此时三角形存在,所以三边长为10,10,7.综上所述此三角形的三边长分别为8,8,11或10,10,7.【总结升华】BD把△ABC的周长分为12cm和15cm两部分,哪部分是12cm,哪部分是15cm,问题中没有交代,因此,必须进行分类讨论.【与三角形有关的线段例5、】举一反三:【变式】有一块三角形优良品种试验田,现引进四个品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的方案供选择.【答案】解:方案1:如图(1),在BC上取D、E、F,使BD=ED=EF=FC,连接AE、AD、AF.方案2:如图(2),分别取AB、BC、CA的中点D、E、F,连接DE、EF、DF.方案3:如图(3),取AB中点D,连接AD,再取AD的中点E,连接BE、CE.方案4:如图(4),在 AB取点 D,使DC=2BD,连接AD,再取AD的三等分点E、F,连接CE、CF.类型三、与三角形有关的角4.(2015春•石家庄期末)已知△ABC中,AE平分∠BA C(1)如图1,若AD⊥BC于点D,∠B=72°,∠C=36°,求∠DAE的度数;(2)如图2,P为AE上一个动点(P不与A、E重合,PF⊥BC于点F,若∠B>∠C,则∠EPF=是否成立,并说明理由.【思路点拨】(1)利用三角形内角和定理和已知条件直接计算即可;(2)成立,首先求出∠1的度数,进而得到∠3的度数,再根据∠EPF=180°﹣∠2﹣∠3计算即可.【答案与解析】证明:(1)如图1,∵∠B=72°,∠C=36°,∴∠A=180°﹣∠B﹣∠C=72°;又∵AE平分∠BAC,∴∠1==36°,∴∠3=∠1+∠C=72°,又∵AD⊥BC于D,∴∠2=90°,∴∠DAE=180°﹣∠2﹣∠3=18°.(2)成立.如图2,∵A E平分∠BAC,∴∠1===90°﹣,∴∠3=∠1+∠C=90°﹣+,又∵PF⊥BC于F,∴∠2=90°,∴∠EPF=180°﹣∠2﹣∠3=.【总结升华】本题考查了三角形的内角以及角平分线的性质,准确识别图形是解题的关键.举一反三:【与三角形有关的角练习(3)】【变式】如图,AC⊥BC,CD⊥AB,图中有对互余的角?有对相等的锐角?【答案】3,2.类型四、三角形的稳定性5. 如图是一种流行的衣帽架,它是用木条(四长四短)构成的几个连续的菱形(四条边都相等),每一个顶点处都有一个挂钩(连在轴上),不仅美观,而且实用,你知道它能收缩的原因和固定方法吗?【答案与解析】解:这种衣帽架能收缩是利用四边形的不稳定性,可以根据需要改变挂钩间的距离。
人教版八年级数学上册第12章全等三角形知识点复习总结及常考题型练习
第十二章第十二章 全等三角形全等三角形全等三角形一、知识框架知识框架::二、知识概念知识概念::1.基本定义基本定义基本定义::⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.理解理解::①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。
⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2.基本性质基本性质基本性质::⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.理解理解::①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。
(3)全等三角形的周长相等、面积相等。
(4)全等三角形的对应边上的对应中线、角平分线、高线分别相等。
3.全等三角形的判定定理全等三角形的判定定理全等三角形的判定定理::⑴边边边(SSS ):三边对应相等的两个三角形全等. ⑵边角边(SAS ):两边和它们的夹角对应相等的两个三角形全等. ⑶角边角(ASA ):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS ):两角和其中一个角的对边对应相等的两个三角形全等. ⑸斜边、直角边(HL ):斜边和一条直角边对应相等的两个直角三角形全等.4.4.证明两个三角形全等的基本思路证明两个三角形全等的基本思路证明两个三角形全等的基本思路::5.角平分线角平分线角平分线::⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.(4)三角形的三条角平分线交于三角形内部一点,并且这点到三边的距离相等6.证明的基本方法证明的基本方法证明的基本方法::⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.7.学习全等三角形应注意以下几个问题学习全等三角形应注意以下几个问题学习全等三角形应注意以下几个问题::(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2)表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4)中线倍长法、截长补短法证三角形全等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新人教版-八年级上册-三角形的知识点及题型总结
一、三角形的认识
定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形.
分类:
锐角三角形(三个角都是锐角的三角形)
按角分类直角三角形(有一个角是直角的三角形)
钝角三角形(有一个角是钝角的三角形)
三边都不相等的三角形
按边分类等腰三角形底边和腰不相等的等腰三角形
等边三角形
例题1 图1中共几个三角形.
例题2 下列说法正确的是()
A.三角形分为等边三角形和三边不相等三角形
B.等边三角形不是等腰三角形
C.等腰三角形是等边三角形
D.三角形分为锐角三角形、直角三角形、钝角三角形
例题3已知a、b、c为△ABC的三边长,b、c满足(b-2)2+|c-3|=0,且a为方程|x-4|=2的解.求△ABC的周长,并判断△ABC的形状.
二、与三角形有关的边
三边的关系:三角形的两边和大于第三边,两边的差小于第三边. 例题1 以下列各组数据为边长,能够成三角形的是()
A.3,4,5
B.4,4,8
C.3,7,10
D.10,4,5
例题2 已知三角形的两边边长分别为4、5,则该三角形周长L的范围是()
A.1<L<9
B.9<L<14
C.10<L<18
D.无法确定
课后练习:
1、若三角形的两边长分别为5、8,则第三边可能是()
A.2
B. 6
C.13
D.18
2、等腰三角形的两边长分别为6、13,则它的周长为.
3、等腰三角形的两边长分别为
4、5,则第三边长为.
4、已知三角形的两边长为2和4,为了使其周长是最小的整数,则第三边的为.
5、若等腰三角形的周长为13cm,其中一边长为3cm,则等腰三角形的底边为()
A.3cm
B.7
C.7cm
D.7cm或3cm
6、根据下列已知条件,能唯一画出△ABC的是()
A.AB=3,BC=4,AC=8
B.AB=4,BC=3,∠A=30°
C.∠A=60°,∠B=45°,AB=4
D.∠C=90°,AB=6
8、用7根火柴棒首尾顺次相连摆成一个三角形,能摆成个不同的三角形.
9、已知三角形的三边长分别为2,x,8,若x为正整数,则这样的三角形有个.
10、小刚准备用一段长50米的篱笆围成一个三角形的场地,用于饲养鸡,已知第一条边长为m米,由于条件限制,第二条边长只能比第一条边长的3倍少2米.
(1)请用含m的式子表示第三条边长.
(2)第一条边长能否为10米?为什么?
(3)求m的取值范围.
11、如图,小红欲从A地去B地,有三条路可走:1)A→B;2)A→D →B;3)A→C→B.
(1)在不考虑其他因素的情况下,我们可以肯定小红会走1)路线,理由是.
(2)小红绝对不走路线3),因为路线3)的路程最长,即AC+BC>AD+BD.
你能说明其中的原因吗?
三角形的高、中线、角平分线
例题1 在下列各图的△ABC中,正确画出AC边上的高的图形是()
例题2 如图1,AD⊥BC于点D,GC⊥BC于点C,
CF⊥AB于点F,下列关于高的说法错误的是()
A.△ABC中,AD是BC边上的高
B.△GBC中,CF是BG边上的高
C.△ABC中,GC是BC边上的高
D.△GBC中,GC是BC边上的高
图1 图2
例题3 能将三角形面积平分的是三角形的()
A.角平分线
B.高
C.中线
D.外角平分线
课后练习:
1、如图2,AD是△ABC的中线,CF是△ACD的中线,且△ACF的面积是1,求△ABC的面积.
2、如图,AD、AE分别是△ABC的高和中线,AB=6cm,AC=8cm,BC=10cm,∠CAB=90°.求:
(1)AD的长;
(2)△ABE的面积;
(3)△ACE和△ABE的周长差.
3、如图,在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分为12cm和15cm两个部分,求△ABC各边的长.
4、如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=4,则PQ的最小值为.
三角形的稳定性
例题1 王师傅用四根木条钉成一个四边形木架,要使这个木架不变形,他至少要再钉上()根木条.
A.0
B.1
C.2
D.3
例题2一扇窗户打开后,用窗钩可将其固定,这里运用的几何原理是()
A.三角形的稳定性
B.两点之间线段最短
C.两点确定一条直线
D.垂线段最短
例题3下列图形中具有稳定性的是()
A.正方形
B.长方形
C.直角三角形
D.平行四边形
三、与三角形有关的角
三角形内角和为180°;
直角三角形的两个锐角互余;
三角形外角和等于与它不相邻的两个内角的和.
例题1 如图1,△ABC中,AD是高,AE是角平分线,∠B=20°,
∠C=60°.求∠CAD和∠AEC的度数.
例题 2 如果三角形的一个外角与跟它不相邻的两个内角的和为180°,那么与这个外角相邻的内角的度数为()
A.30°
B.60°
C.90°
D.120°
例题3在△ABC中,∠A:∠B:∠C=3:4:5,则∠C= .
课后练习:
1、如图2,点D在△ABC的边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE= .
2、如图3,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处,若∠B=70°,则∠BDC等于()
A.45°
B.55°
C.65°
D.75°
3、已知一个等腰三角形内角的度数之比为1:4,那么这个等腰三角形顶角的度数为()
A.20°
B.120°
C.36°
D.20°或120°
4、已知△ABC中,∠ACB=90°,CD是斜边AB上的高,∠A=30°,则∠B= ,∠BCD= .
5、在△ABC中,∠A:∠B:∠C=1:2:3,则这个三角形
一定是三角形(填“锐角”“直角”或“钝角”).
6、如图,在△ABC中,∠BAC=50°,∠C=60°,
AD⊥BC,BE是∠ABC的平分线,AD、BE相交于点F,求∠BFD的度数.
7、如图,在某海面上,客轮C突然发生事故,马上向救护船B发出求救信号.由于救护船A离客轮C比救护船B离客轮C要近,所以救护船B立即向救护船A发出信号,让其救助客轮C.已知救护船A在救护船B北偏东45°方向上,客轮C在救护船B的北偏东75°方向上,经测得∠ACB=75°,则救护船A沿南偏东多少度方向驶向客轮C
所用时间最短?
8、如图,在△ABC中,AD是BC边上的高,AE平分∠BAC,
∠B=75°,∠C=45°,求∠DAE与∠AEC的度数.
9、某工厂要制作符合条件的模板,如图,要求∠A=105°,
∠B=18°,∠C=30°,为了提高工作效率,检验人员测量∠BDC的度数的方法筛选出不合格的产品.若测得∠BDC的度数为150°,则这种
模板是否合格?请说明理由.
10、如图1所示,对顶三角形中,容易证明∠A+∠B=∠C+∠D,利用这个结论,完成下列填空.
如图2,∠A+∠B+∠C+∠D+∠E= .
如图3,∠A+∠B+∠C+∠D+∠E= .
如图4,∠1+∠2+∠3+∠4+∠5+∠6= .
如图5,∠1+∠2+∠3+∠4+∠5+∠6+∠7= .
三、多边形及其内角和
多边形:在平面内,由一些线段首尾顺次相接组成的封闭图形.
正多边形:各个角都相等,各条边都相等的多边形.
n边形的内角和等于(n-2)×180°.
多边形的外角和等于360°.
例题1 一个多边形的内角和是1080°,则这个多边形的边数为()A.6 B.7 C.8 D.9
例题2一个正多边形的每个外角都等于36°,那么它是()
A.正六边形
B.正八边形
C.正十边形
D.正十二边形
例题3内角和等于外角和的2倍的多边形是()
A.五边形
B.六边形
C.七边形
D.八边形
例题4 下列说法错误的是()
A.边数越多,多边形的外角和越大
B.多边形每增加一条边,内角和就增加180°
C.正多边形的每一个外角随着边数的增加而减少
D.正六变形的每一个内角都是120°
课后练习:
1、下列正多边形中,不能铺满地面的是()
A.正方形
B.正五边形
C.等边三角形
D.正六边形
2、若多边形的边数增加1,则它的内角和增加.
3、某多边形的内角和与外角和为1080°,则这个多边形的边数是.
4、一个多边形的内角和比它的外角和的3倍少180°,这个多边形的边数是多少?
5、如果一个多边形的内角和等于它的外角和的4倍,求这个多边形的边数?。