材料力学刘鸿文第六版最新课件第三章 扭转3.1-3.3
合集下载
材料力学第3章 扭转
m n m
求图示轴n-n截面内力
解: 截面法
1、截开 取左段杆 2、代替 3、平衡
x
n
m
x
0 Mx T 0 Mx m
m
Mx
扭矩
同样取右段杆,可得: M x m
m
Mx x
左段与右段求出的扭矩等值、共线,但反向。
符合作用力与反作用力定律.
扭矩正负号的规定:
按右手螺旋法则,视Mx为矢量,若矢量的方向与横截面外法线 方向一致, Mx为正,反之为负.
材料力学
第3章 扭转
第三章 扭转
材料力学
第3章 扭转
• • • • •
本章主要内容 扭矩及扭矩图 等值圆杆扭转时横截面上的应力 等值圆杆扭转时的变形 矩形截面杆的扭转
材料力学
第3章 扭转
§3-1 概述 一、工程实际中的受扭杆 等值杆承受作用在垂直于杆轴线的平面内力偶时,杆件将发生 扭转变形,以扭转为主要变形的杆件称为轴。 (a)机械中传动轴; (b)石油钻机、灌注桩等钻杆; (c)水能发电机的主轴; (d)桥梁、厂房空间结构中的某些结构
IP
D4
(1- 4 )
3、薄壁圆环截面
δ
R
0
R0≥10
2 2 3 I P 2 dA R0 dA=R0 d A =2 R 0 A A A
3 I P 2 R0 2 WP 2 R0 R0 R0
Mx 2 2 R0
较小,可认为切应力沿厚度方向均布.
D
解: (a)实心截面
WP1
d1
d3
16
1003
16
1.96 105 mm3
d
D
求图示轴n-n截面内力
解: 截面法
1、截开 取左段杆 2、代替 3、平衡
x
n
m
x
0 Mx T 0 Mx m
m
Mx
扭矩
同样取右段杆,可得: M x m
m
Mx x
左段与右段求出的扭矩等值、共线,但反向。
符合作用力与反作用力定律.
扭矩正负号的规定:
按右手螺旋法则,视Mx为矢量,若矢量的方向与横截面外法线 方向一致, Mx为正,反之为负.
材料力学
第3章 扭转
第三章 扭转
材料力学
第3章 扭转
• • • • •
本章主要内容 扭矩及扭矩图 等值圆杆扭转时横截面上的应力 等值圆杆扭转时的变形 矩形截面杆的扭转
材料力学
第3章 扭转
§3-1 概述 一、工程实际中的受扭杆 等值杆承受作用在垂直于杆轴线的平面内力偶时,杆件将发生 扭转变形,以扭转为主要变形的杆件称为轴。 (a)机械中传动轴; (b)石油钻机、灌注桩等钻杆; (c)水能发电机的主轴; (d)桥梁、厂房空间结构中的某些结构
IP
D4
(1- 4 )
3、薄壁圆环截面
δ
R
0
R0≥10
2 2 3 I P 2 dA R0 dA=R0 d A =2 R 0 A A A
3 I P 2 R0 2 WP 2 R0 R0 R0
Mx 2 2 R0
较小,可认为切应力沿厚度方向均布.
D
解: (a)实心截面
WP1
d1
d3
16
1003
16
1.96 105 mm3
d
D
材料力学第六版PPT 绪论
1.定义 (Definition):由外力引起的内力的集度
2. 应力(Stress)
①平均应力
pm
= ΔF ΔA
F
M
②全应力(总应力)
A
p
ΔF lim
dF
ΔA0 ΔA dA
(Preface)
③全应力分解为
垂直于截面的应力称为“正应力” (The stress acting normal to
section is called the Normal Stress)
1.定义: 指由外力作用所引起的、物体内相邻部分之间 相互作用力(附加内力)。
(Preface) 2. 内力的求法 —— 截面法 (method of sections ) 步骤 (procedures for analysis)
① 截开
在所求内力的截面处,假想
m
地用截面将杆件一分为二.
m
(Preface)
(Preface)
工程中多为梁、杆结构
(Preface)
§1-2 变形固体的基本假设 (The basic assumptions of deformable
body )
一、连续性假设 (continuity assumption)
物质密实地充满物体所在空间,毫无空隙。
二、均匀性假设(homogenization assumption)
lim s
x0 x
角应变 (shearing strain)
lim(
C OD )
2 OC 0
OD0
B
A x s
A x B
D D′
dy
O
C′
dx C
(Preface)
§1-4 杆件变形的基本形式 (The basic forms of deformation)
2. 应力(Stress)
①平均应力
pm
= ΔF ΔA
F
M
②全应力(总应力)
A
p
ΔF lim
dF
ΔA0 ΔA dA
(Preface)
③全应力分解为
垂直于截面的应力称为“正应力” (The stress acting normal to
section is called the Normal Stress)
1.定义: 指由外力作用所引起的、物体内相邻部分之间 相互作用力(附加内力)。
(Preface) 2. 内力的求法 —— 截面法 (method of sections ) 步骤 (procedures for analysis)
① 截开
在所求内力的截面处,假想
m
地用截面将杆件一分为二.
m
(Preface)
(Preface)
工程中多为梁、杆结构
(Preface)
§1-2 变形固体的基本假设 (The basic assumptions of deformable
body )
一、连续性假设 (continuity assumption)
物质密实地充满物体所在空间,毫无空隙。
二、均匀性假设(homogenization assumption)
lim s
x0 x
角应变 (shearing strain)
lim(
C OD )
2 OC 0
OD0
B
A x s
A x B
D D′
dy
O
C′
dx C
(Preface)
§1-4 杆件变形的基本形式 (The basic forms of deformation)
材料力学 第三章 扭转PPT课件
8
(Torsion)
9
(Torsion)
10
(Torsion) 轴: 工程中以扭转为主要变形的构件。
齿轮轴
11
(Torsion)
二、受力特点(Character of external force)
杆件的两端作用两个大小相等、方
向相反、且作用平面垂直于杆件轴
线的力偶.
me
三、变形特点(Character of deformation)
4
(Torsion)
§3-1 扭转的概念及实例 (Concepts and example problem of torsion)
一、工程实例(Example problems)
1、螺丝刀杆工作时受扭。
5
(Torsion)
6
(Torsion)
2、汽车方向盘的转动轴工作时受扭。
7
(Torsion)
MA ml
2、截面法求扭矩 TMAmx
Tm (lx)
表示扭矩沿杆件轴线变化的图线(T-x曲线)-扭矩图
21
(Torsion)
§3-3 薄壁圆筒的扭转
(Tors
薄壁圆筒:壁厚
1 10
r0(r0—圆筒的平均半径)
一、应力分析 (Analysis of stress)
杆件的任意两个横截面都发生绕轴线的相对转动.
Me
Me
12
(Torsion)
§3-2 扭转的内力的计算 (Calculating internal force of torsion)
一、外力偶矩的计算 (Calculation of external moment)
1秒钟输入(出)的功:P×1000N•m
(Torsion)
9
(Torsion)
10
(Torsion) 轴: 工程中以扭转为主要变形的构件。
齿轮轴
11
(Torsion)
二、受力特点(Character of external force)
杆件的两端作用两个大小相等、方
向相反、且作用平面垂直于杆件轴
线的力偶.
me
三、变形特点(Character of deformation)
4
(Torsion)
§3-1 扭转的概念及实例 (Concepts and example problem of torsion)
一、工程实例(Example problems)
1、螺丝刀杆工作时受扭。
5
(Torsion)
6
(Torsion)
2、汽车方向盘的转动轴工作时受扭。
7
(Torsion)
MA ml
2、截面法求扭矩 TMAmx
Tm (lx)
表示扭矩沿杆件轴线变化的图线(T-x曲线)-扭矩图
21
(Torsion)
§3-3 薄壁圆筒的扭转
(Tors
薄壁圆筒:壁厚
1 10
r0(r0—圆筒的平均半径)
一、应力分析 (Analysis of stress)
杆件的任意两个横截面都发生绕轴线的相对转动.
Me
Me
12
(Torsion)
§3-2 扭转的内力的计算 (Calculating internal force of torsion)
一、外力偶矩的计算 (Calculation of external moment)
1秒钟输入(出)的功:P×1000N•m
刘鸿文版材料力学课件全套1-101页PPT资料
F5
杆切开
F1
(2)留下左半段或右半段
F2
(3)将弃去部分对留下部
F5
分的作用用内力代替 F1
(4)对留下部分写平衡方
F2
程,求出内力的值。
m F4
m
F3
F4
F3
目录
§1.4 内力、截面法和应力的概念 例如
F
a
a
F
M FS
F S= FM F a
目录
§1.4 内力、截面法和应力的概念
固定,变形后a'b, a'd
仍为直线。
250
b
200 0.025
求:ab 边的m 和 ab、ad 两边夹
角的变化。
a
解:
m
d
a'b ab 0.025 125106
ab
200
g
a'
ab, ad 两边夹角的变化:
即为切应变g 。
gtagn 0.025 100106 (rad )
F
FN1 28.3kN FN2 20kN
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
A
FN1 28.3kN FN2 20kN
1
2、计算各杆件的应力。
45° B
C
2
FN1
F
y
F N 2 45° B x
F
1
FN1 A1
28.3103 202 106
4
90106 Pa 90MPa
d
A
1.9m
W
F m ax
F m axA
刘鸿文版材料力学课件1-3章-139页PPT资料
材料力学主要研究杆件
{ 直杆—— 轴线为直线的杆 曲杆—— 轴线为曲线的杆
{等截面杆——横截面的大小 形状不变的杆 变截面杆——横截面的大小 或形状变化的杆 等截面直杆 ——等直杆
目录
§1.2 变形固体的基本假设
在外力作用下,一切固体都将发生变形, 故称为变形固体。在材料力学中,对变形固体 作如下假设: 1、连续性假设: 认为整个物体体积内毫无空隙地充满物质 灰口铸铁的显微组织 球墨铸铁的显微组织
目录
§1.5 变形与应变
例 1.2
c
已知:薄板的两条边
固定,变形后a'b, a'd
仍为直线。
250
b
200 0.025
___ 不满足上述要求,
不能保证安全工作.
若:不恰当地加大横截面尺寸或
选用优质材料
___ 增加成本,造成浪费
}均 不 可 取
研究构件的强度、刚度和稳定性,还需要了解材料的力学性能。因此在 进行理论分析的基础上,实验研究是完成材料力学的任务所必需的途径和 手段。
目录
§1.1 材料力学的任务
四、材料力学的研究对象 构件的分类:杆件、板壳*、块体*
程,求出内力的值。
F5
F1
F2
F5
F2
m F4
m
F3
F4
F3
目录
§1.4 内力、截面法和应力的概念 例如
F
a
a
F
M FS
F S= FM F a
目录
§1.4 内力、截面法和应力的概念
例 1.1 钻床 求:截面m-m上的内力。
解: 用截面m-m将钻床截为两部分,取上半 部分为研究对象,
受力如图:
{ 直杆—— 轴线为直线的杆 曲杆—— 轴线为曲线的杆
{等截面杆——横截面的大小 形状不变的杆 变截面杆——横截面的大小 或形状变化的杆 等截面直杆 ——等直杆
目录
§1.2 变形固体的基本假设
在外力作用下,一切固体都将发生变形, 故称为变形固体。在材料力学中,对变形固体 作如下假设: 1、连续性假设: 认为整个物体体积内毫无空隙地充满物质 灰口铸铁的显微组织 球墨铸铁的显微组织
目录
§1.5 变形与应变
例 1.2
c
已知:薄板的两条边
固定,变形后a'b, a'd
仍为直线。
250
b
200 0.025
___ 不满足上述要求,
不能保证安全工作.
若:不恰当地加大横截面尺寸或
选用优质材料
___ 增加成本,造成浪费
}均 不 可 取
研究构件的强度、刚度和稳定性,还需要了解材料的力学性能。因此在 进行理论分析的基础上,实验研究是完成材料力学的任务所必需的途径和 手段。
目录
§1.1 材料力学的任务
四、材料力学的研究对象 构件的分类:杆件、板壳*、块体*
程,求出内力的值。
F5
F1
F2
F5
F2
m F4
m
F3
F4
F3
目录
§1.4 内力、截面法和应力的概念 例如
F
a
a
F
M FS
F S= FM F a
目录
§1.4 内力、截面法和应力的概念
例 1.1 钻床 求:截面m-m上的内力。
解: 用截面m-m将钻床截为两部分,取上半 部分为研究对象,
受力如图:
《材料力学》课件——第三章 扭转
F
Me
F
M'e
汽车的转向操纵杆
3.1 扭转的概念和实例
Me
A'
A
B
B'
Me
扭转:在一对大小相等、转向相反、作用面垂直于 直杆轴线的外力偶Me作用下,直杆的相邻横截面将 绕轴线发生相对转动,杆件表面纵向线将成斜线, 而轴线仍维持直线。
3.1 扭转的概念和实例
Me
A'
g
A
B
j
B'
Me
外力偶作用平面和杆件横截面平行
M2
M3
M1
M4
解:①计算外力偶矩
M1
9.55
P1 n
9.55 500 300
A
15.9(kN m)
B
C
M2
M3
9.55
P2 n
9.55 150 300
4.78
(kN m)
M4
9.55
P4 n
9.55 200 300
6.37
(kN m)
n D
3.2 外力偶矩的计算 扭矩和扭矩图
②求扭矩(扭矩按正方向设)
M 0 , C
T1 M 2 0
T1 M 2 4.78kN m
M2 1 M2
A1 M2
M3
M1
2
3M4
n B 2 C 3D
T2 M 2 M 3 0 ,
T2 M 2 M 3
A
(4.78 4.78)
9.56kN m
T3-M4=0
T3=M4=6.37KN·m
T1
T2
T3
3.2 外力偶矩的计算 扭矩和扭矩图
代入上式得:
G g
材料力学ppt刘鸿文版
目录
§2.7 失效、安全因数和强度计算
例题2.5
AC为50×50×5的等边角钢,AB为10 号槽钢,〔σ〕=120MPa。确定许可载荷F。
解:1、计算轴力(设斜杆为1杆,水平杆 为2杆)用截面法取节点A为研究对象 Fx 0 FN1 cos FN 2 0
F
y
0
FN1 sin F 0
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
例题2.1
A
1 B
11=10kN;F2=20kN; F3=35kN;F4=25kN;试画 出图示杆件的轴力图。
F1 F1 F1
FN kN
F3
3
F4
解:1、计算各段的轴力。 AB段
FN1 FN2 F2
F F
x
x
0
FN1 F1 10kN
在图示结构中,设横梁AB的 变形可以省略,1,2两杆的横截 面面积相等,材料相同。试求1, 2两杆的内力。 解: 1、列出独立的平衡方程
1
例题2.8
2
l
3F 2FN 2 cos FN1 0
2、变形几何关系
A
B
a
l1
a
l2
a
l2 2l1 cos
3、物理关系
4、补充方程
b } F n
例题3-2
FS
h
nn
n
b
l
O Me
Fbs Abs bs
d
O
Me
0.5h
(a)
(b)
nF n S
(c)
目录
§2-13 剪切和挤压的实用计算
解:(1)校核键的剪切强度
Fs A bl d d 由平衡方程 M o 0 得 Fs bl M e
§2.7 失效、安全因数和强度计算
例题2.5
AC为50×50×5的等边角钢,AB为10 号槽钢,〔σ〕=120MPa。确定许可载荷F。
解:1、计算轴力(设斜杆为1杆,水平杆 为2杆)用截面法取节点A为研究对象 Fx 0 FN1 cos FN 2 0
F
y
0
FN1 sin F 0
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
例题2.1
A
1 B
11=10kN;F2=20kN; F3=35kN;F4=25kN;试画 出图示杆件的轴力图。
F1 F1 F1
FN kN
F3
3
F4
解:1、计算各段的轴力。 AB段
FN1 FN2 F2
F F
x
x
0
FN1 F1 10kN
在图示结构中,设横梁AB的 变形可以省略,1,2两杆的横截 面面积相等,材料相同。试求1, 2两杆的内力。 解: 1、列出独立的平衡方程
1
例题2.8
2
l
3F 2FN 2 cos FN1 0
2、变形几何关系
A
B
a
l1
a
l2
a
l2 2l1 cos
3、物理关系
4、补充方程
b } F n
例题3-2
FS
h
nn
n
b
l
O Me
Fbs Abs bs
d
O
Me
0.5h
(a)
(b)
nF n S
(c)
目录
§2-13 剪切和挤压的实用计算
解:(1)校核键的剪切强度
Fs A bl d d 由平衡方程 M o 0 得 Fs bl M e
材料力学第三章 扭转
MeB=1000N·m, MeC=650N·m。试画此轴的扭矩图。
解:
MeA
MeB
MeC
1
2
1.求扭矩
对AB段: T1 350 N m
A1
B2
C
对BC段:T2 650 N m
MeA T1
T2
MeC
2.画扭矩图
|T
| max
650
N
m
350 N . m
T
+
-
650 N . m
例1 某传动轴受力如图所示,已知:MeA=350N·m, MeB=1000N·m, MeC=650N·m。试画此轴的扭矩图。
MeB=1000N·m, MeC=650N·m。试画此轴的扭矩图。
解:
MeA
MeB
MeC
1
2
1.求扭矩
对AB段: T1 350 N m
A1
B2
C
对BC段:
MeA T1
T2
MeC
M x 0 : T2 MeC 0
T2 MeC 650 N m
例1 某传动轴受力如图所示,已知:MeA=350N·m,
解:计算截面参数:W pDd1D6376(17264
2.5 )
0.947
763 16
1
0.947
4
20.3103 mm3
由强度条件:
max
Tmax WP
1.98 103 20.3 103 109
Pa 97.5 MPa
故轴的强度满足要求。
若将空心轴改成实心轴,仍使 max 97.5 MPa ,则
作扭矩图如左图所示。
例题
3.1
已知:一传动轴, n =300r/min,主动轮输入 P1=500kW,从动轮输出 P2=150kW,P3=150kW, P4=200kW,试绘制扭矩图。
材料力学扭转教学课件PPT
200 kW。试做轴力图。
(a)
P2
P3
P1
n
P4
B
C
D
A
例题3-2图
m P2 2
m P3 3
P1
m1
m n
4 P4
B
C
D
A
m2
m3
m1
m4
(b)
B
C
A
D
解:1.计算外力偶矩
m1
m2
9.55 P1 15.9kN .m
m3
n
9.55
P2
n
4.78kN
.m
m4
9.55 P4 n
6.37kN .m
2.由计算简图用截面法计算各段轴内的扭矩,然后画扭矩图
§3.1 扭转的概念和实例
➢ 扭转变形 ——作用在垂直于杆件轴线的平面内 的力偶矩,使得杆件的任意两个 横截面都发生了绕轴线的相对转 动。
➢ 扭转变形杆件的内力 ——扭矩(T )
➢ 轴 ——主要承受扭矩的构件
m A'
g
A
m B j B'
扭转的受力特征 :在杆件的两端作用两个大小相等、
转向相反、且作用平面垂直于杆件轴线的力偶。
dA
O r
dA
dA
O
A
G 2
dj
dx
dA
G
dj
dx
A
2dA
T
GI p
dj
dx
令 Ip A 2dA
dj
dx
T GI p
代入物理关系式
G
dj
dx
得:
T
Ip
T
Ip
—横截面上距圆心为处任一点剪应力计算公式。
(a)
P2
P3
P1
n
P4
B
C
D
A
例题3-2图
m P2 2
m P3 3
P1
m1
m n
4 P4
B
C
D
A
m2
m3
m1
m4
(b)
B
C
A
D
解:1.计算外力偶矩
m1
m2
9.55 P1 15.9kN .m
m3
n
9.55
P2
n
4.78kN
.m
m4
9.55 P4 n
6.37kN .m
2.由计算简图用截面法计算各段轴内的扭矩,然后画扭矩图
§3.1 扭转的概念和实例
➢ 扭转变形 ——作用在垂直于杆件轴线的平面内 的力偶矩,使得杆件的任意两个 横截面都发生了绕轴线的相对转 动。
➢ 扭转变形杆件的内力 ——扭矩(T )
➢ 轴 ——主要承受扭矩的构件
m A'
g
A
m B j B'
扭转的受力特征 :在杆件的两端作用两个大小相等、
转向相反、且作用平面垂直于杆件轴线的力偶。
dA
O r
dA
dA
O
A
G 2
dj
dx
dA
G
dj
dx
A
2dA
T
GI p
dj
dx
令 Ip A 2dA
dj
dx
T GI p
代入物理关系式
G
dj
dx
得:
T
Ip
T
Ip
—横截面上距圆心为处任一点剪应力计算公式。
大学课程材料力学第三章_扭转(上)课件
一、功率、转速与扭力偶矩之间的关系
已知传动构件的转速与所传递的 功率,计算轴所承受的扭力矩。
电机
联轴器
A
B
P M
角速度 2 n 60
n : 转速 ( r m i n ) 功率:K W 力偶矩:N . m
P 103 M 2 n 60
P
M 9549 kW
N m
n
r / min
6
材料力学 第三章 扭转
16
材料力学 第三章 扭转
思考:竹竿扭转破坏沿纵向还是沿横向开裂?
17
材料力学 第三章 扭转
例:如图已知d面上切应力大小和方向,求a, b, c面上的切应 力,并标明方向。
切应力互等定理:在微体互垂截面上,垂直于交线的切应 力数值相等,方向均指向或离开交线。
a b
c
d
450 450
2 2
2 2
2
d
2
2
2
b d
2 2
2
2d
2 2 2
2
d
2 2
2 2
18T1 ( x)ຫໍສະໝຸດ xT mlO
2ml
在AB、BC和CD段分别由三截面 x 切开,考察左(或右)段平衡
D
AB段: T 1 x m x
BC段: T 2 m l
CD段: T 3 2 m l
画扭矩图
x
•以右段作为研究对象时,不要忘 记约束反力!
9
材料力学 第三章 扭转
扭矩图对应的轴力图
m
A
M 3ml
切应力 与切应变 成正比:
G
切变模量:G 钢:G=75~80GPa 铝:G=26~30GPa
各向同性材料:G=E/2(1+)
已知传动构件的转速与所传递的 功率,计算轴所承受的扭力矩。
电机
联轴器
A
B
P M
角速度 2 n 60
n : 转速 ( r m i n ) 功率:K W 力偶矩:N . m
P 103 M 2 n 60
P
M 9549 kW
N m
n
r / min
6
材料力学 第三章 扭转
16
材料力学 第三章 扭转
思考:竹竿扭转破坏沿纵向还是沿横向开裂?
17
材料力学 第三章 扭转
例:如图已知d面上切应力大小和方向,求a, b, c面上的切应 力,并标明方向。
切应力互等定理:在微体互垂截面上,垂直于交线的切应 力数值相等,方向均指向或离开交线。
a b
c
d
450 450
2 2
2 2
2
d
2
2
2
b d
2 2
2
2d
2 2 2
2
d
2 2
2 2
18T1 ( x)ຫໍສະໝຸດ xT mlO
2ml
在AB、BC和CD段分别由三截面 x 切开,考察左(或右)段平衡
D
AB段: T 1 x m x
BC段: T 2 m l
CD段: T 3 2 m l
画扭矩图
x
•以右段作为研究对象时,不要忘 记约束反力!
9
材料力学 第三章 扭转
扭矩图对应的轴力图
m
A
M 3ml
切应力 与切应变 成正比:
G
切变模量:G 钢:G=75~80GPa 铝:G=26~30GPa
各向同性材料:G=E/2(1+)
刘鸿文材料力学 I 第6版_3_扭转共89页
1、不要轻言放弃,否则对不起自己。
2、要冒一次险!整个生命就是一场冒险。走得最远的人,常是愿意 耐基。
梦 境
3、人生就像一杯没有加糖的咖啡,喝起来是苦涩的,回味起来却有 久久不会退去的余香。
刘鸿文材料力学 I 第6版_3_扭转 4、守业的最好办法就是不断的发展。 5、当爱不能完美,我宁愿选择无悔,不管来生多么美丽,我不愿失 去今生对你的记忆,我不求天长地久的美景,我只要生生世世的轮 回里有你。
1、最灵繁的人也看不见自己的背脊。——非洲 2、最困难的事情就是认识自己。——希腊 3、有勇气承担命运这才是英雄好汉。——黑塞 4、与肝胆人共事,无字句处读书。——周恩来 5、阅读使人充实,会谈使人敏捷,写作使人精确。——培根
材料力学课件第3章扭转
扭转外力及变 形特点:
杆件受到大小相等,方向相反且作用平 面垂直于杆件轴线的力偶作用, 杆件的横截 面绕轴线产生相对转动。
受扭转变形杆件通常为轴类零件,其横 截面大都是圆形的。所以本章主要介绍圆轴 扭转。
第3章-扭 转
圆轴扭转的内力
3-2 圆轴扭转的内力
1.外力偶矩 直接计算
3-2 圆轴扭转的内力
dx
也发生在垂直于
半径的平面内。
3-3 圆轴扭转横截面上的切应力
2.物理关系
根据剪切胡克定律
G
距圆心为
处的切应力:
G
G
d
dx
垂直于半径
横截面上任意点的切应力 与该点到圆心的距离 成正比。
3-3 圆轴扭转横截面上的切应力
3.静力学关系
T A dA
T A dA
令
Wt
Ip R
抗扭截面系数
在圆截面边缘上,有最 大切应力
3-3 圆轴扭转横截面上的切应力
I
与
p
Wt
的计算
实心轴
T
Ip
max
T Wt
Wt I p / R 1 D3
16
3-3 圆轴扭转横截面上的切应力
空心轴
则
令
Wt I p /(D / 2)
3-3 圆轴扭转横截面上的切应力
实心轴与空心轴 I p 与 Wt 对比
m1=1000Nm,m2=600Nm,m3=200Nm,m4=200Nm,G=79GPa,试求:
(1)各段轴内的最大切应力 (2)若将外力偶m1和m2的位置互换一下,问轴的直径可否减小
3-4 圆轴扭转的强度条件和强度计算
4.强度条件及应用
B
C
杆件受到大小相等,方向相反且作用平 面垂直于杆件轴线的力偶作用, 杆件的横截 面绕轴线产生相对转动。
受扭转变形杆件通常为轴类零件,其横 截面大都是圆形的。所以本章主要介绍圆轴 扭转。
第3章-扭 转
圆轴扭转的内力
3-2 圆轴扭转的内力
1.外力偶矩 直接计算
3-2 圆轴扭转的内力
dx
也发生在垂直于
半径的平面内。
3-3 圆轴扭转横截面上的切应力
2.物理关系
根据剪切胡克定律
G
距圆心为
处的切应力:
G
G
d
dx
垂直于半径
横截面上任意点的切应力 与该点到圆心的距离 成正比。
3-3 圆轴扭转横截面上的切应力
3.静力学关系
T A dA
T A dA
令
Wt
Ip R
抗扭截面系数
在圆截面边缘上,有最 大切应力
3-3 圆轴扭转横截面上的切应力
I
与
p
Wt
的计算
实心轴
T
Ip
max
T Wt
Wt I p / R 1 D3
16
3-3 圆轴扭转横截面上的切应力
空心轴
则
令
Wt I p /(D / 2)
3-3 圆轴扭转横截面上的切应力
实心轴与空心轴 I p 与 Wt 对比
m1=1000Nm,m2=600Nm,m3=200Nm,m4=200Nm,G=79GPa,试求:
(1)各段轴内的最大切应力 (2)若将外力偶m1和m2的位置互换一下,问轴的直径可否减小
3-4 圆轴扭转的强度条件和强度计算
4.强度条件及应用
B
C
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
T T
318N.m 795N.m
x
x
1432N.m
§3.2 外力偶矩的计算 扭矩和扭矩图
§3.3 纯剪切
一、薄壁圆筒扭转时的切应力
将一薄壁圆筒表面用纵 向平行线和圆周线划分; 两端施以大小相等方向相 反一对力偶矩。
观察到:
圆周线大小形状不变, 各圆周线间距离不变;纵 向平行线仍然保持为直线 且相互平行,只是倾斜了 一个角度。
§3.2 外力偶矩的计算 扭矩和扭矩图
1.外力偶矩
直接计算
§3.2 外力偶矩的计算 扭矩和扭矩图
2.按输入功率和转速计算
已知 轴转速-n 转/分钟 输出功率-P 千瓦 求:力偶矩Me
电机每秒输入功: 外力偶作功完成:
W P 1000(N m)
P M e 9 5 5 0 (N m) n M 如果输出功率的单位是马力
第三章
扭 转
第三章 扭 转
§3.1 扭转的概念和实例 §3.2 外力偶矩的计算 扭矩和扭矩图 §3.3 纯剪切
§3.4 圆轴扭转时的应力
§3.5 圆轴扭转时的变形 §3.6 圆柱形密圈螺旋弹簧的应力和变形 §3.7 圆非圆截面扭转的概念
§3.1 扭转的概念和实例
汽车传动轴
§3.1 扭转的概念和实例
b
1 1 dW (dzdy)( dx ) dV 2 2
由剪切胡克定律
G
´
c z dx d
x dz 应变能密度:
dW 1 1 2 1 2 v G dV 2 2 2 G
例题
传动轴,已知转速 n=300r/min,主动轮A输入功率PA=45kW,三 个从动轮输出功率分别为 PB=10kW,PC=15kW, PD=20kW.试绘轴的 扭矩图.
解: (1)计算外力偶矩 由公式 M e 9549 P / n
§3.2 外力偶矩的计算 扭矩和扭矩图
(2)计算扭矩
§3.2 外力偶矩的计算 扭矩和扭矩图
说明横截面上没有正应力
§3.3 纯剪切
采用截面法将圆筒截 开,横截面上分布有与截 面平行的切应力。由于壁 很薄,可以假设切应力沿 壁厚均匀分布。
二、切应力互等定理
由平衡方程
M
x
0
,得
M e 2 r r
Me 2 2 r
'
§3.3 纯剪切
切应力互等定理:
纯剪切
n W M e 2 60
e
P 7 0 2 4 (N m) n
§3.2 外力偶矩的计算 扭矩和扭矩图
2.扭矩和扭矩图
扭矩:构件受扭时,横截面 上的内力偶矩,记作“T”。
截面法求扭矩
Mx
ቤተ መጻሕፍቲ ባይዱ
0
T Me 0
T = Me
§3.2 外力偶矩的计算 扭矩和扭矩图
3 扭矩正负规定
汽车方向盘
§3.1 扭转的概念和实例
风力发电机
§3.1 扭转的概念和实例
§3.1 扭转的概念和实例
船舶推进
§3.1 扭转的概念和实例 扭转受力特点 杆件受到大小相等, 方向相反且作用平面垂直 于杆件轴线的力偶作用。 变形特点: 杆件的横截面绕轴线产生相对转动。 (扭转变形)
受扭转变形杆件通常为轴类零件,其横截 面大都是圆形的。所以本章主要介绍圆轴扭转。
右手螺旋法则
右手拇指指向外法线方向为正(+), 反之为负(-)
4 扭矩图:表示沿杆件轴线各横截面上扭矩变化规律的图线。
目 的
①直观给出扭矩随截面的变化;
②帮助确定|T|max值及其截面位置。
T
T1
x
§3.2 外力偶矩的计算 扭矩和扭矩图
扭矩图
§3.2 外力偶矩的计算 扭矩和扭矩图
在相互垂直 的两个平面上, 切应力必然成对 存在,且数值相 等;两者都垂直 于两个平面的交 线,方向则共同 指向或共同背离 这一交线。
各个截面上只 有切应力没有正应 力的情况称为纯剪 切
§3.3 纯剪切
三、切应变 剪切胡克定律
在切应力的作用下, 单元体的直角将发生微小 的改变,这个改变量 称 为切应变。
τ
当切应力不超过 G — 剪切弹性模量(GN/m2) 材料的剪切比例极限 各向同性材料,三个 时,切应变与切应力 τ成正比,这个关系 弹性常数之间的关系: 称为剪切胡克定律。 E
G
G
2(1 )
四、 剪切应变能
原则:外力功=应变能 y 对图示单元体剪应力所作微功为:
a
dy
´
(2)计算扭矩
T
(3) 扭矩图
x
§3.2 外力偶矩的计算 扭矩和扭矩图
传动轴上主、从 动轮安装的位置不 同,轴所承受的最 大扭矩也不同。
MB
MC
MD
MA
T3
MA
B
C
D
A
§3.2 外力偶矩的计算 扭矩和扭矩图
MB
MC
MD
MA
例题 改变传动轴上主、从动 轮安装的位置
B
C D
T3
MA
A
A
T3 M A 1432 N m
318N.m 795N.m
x
x
1432N.m
§3.2 外力偶矩的计算 扭矩和扭矩图
§3.3 纯剪切
一、薄壁圆筒扭转时的切应力
将一薄壁圆筒表面用纵 向平行线和圆周线划分; 两端施以大小相等方向相 反一对力偶矩。
观察到:
圆周线大小形状不变, 各圆周线间距离不变;纵 向平行线仍然保持为直线 且相互平行,只是倾斜了 一个角度。
§3.2 外力偶矩的计算 扭矩和扭矩图
1.外力偶矩
直接计算
§3.2 外力偶矩的计算 扭矩和扭矩图
2.按输入功率和转速计算
已知 轴转速-n 转/分钟 输出功率-P 千瓦 求:力偶矩Me
电机每秒输入功: 外力偶作功完成:
W P 1000(N m)
P M e 9 5 5 0 (N m) n M 如果输出功率的单位是马力
第三章
扭 转
第三章 扭 转
§3.1 扭转的概念和实例 §3.2 外力偶矩的计算 扭矩和扭矩图 §3.3 纯剪切
§3.4 圆轴扭转时的应力
§3.5 圆轴扭转时的变形 §3.6 圆柱形密圈螺旋弹簧的应力和变形 §3.7 圆非圆截面扭转的概念
§3.1 扭转的概念和实例
汽车传动轴
§3.1 扭转的概念和实例
b
1 1 dW (dzdy)( dx ) dV 2 2
由剪切胡克定律
G
´
c z dx d
x dz 应变能密度:
dW 1 1 2 1 2 v G dV 2 2 2 G
例题
传动轴,已知转速 n=300r/min,主动轮A输入功率PA=45kW,三 个从动轮输出功率分别为 PB=10kW,PC=15kW, PD=20kW.试绘轴的 扭矩图.
解: (1)计算外力偶矩 由公式 M e 9549 P / n
§3.2 外力偶矩的计算 扭矩和扭矩图
(2)计算扭矩
§3.2 外力偶矩的计算 扭矩和扭矩图
说明横截面上没有正应力
§3.3 纯剪切
采用截面法将圆筒截 开,横截面上分布有与截 面平行的切应力。由于壁 很薄,可以假设切应力沿 壁厚均匀分布。
二、切应力互等定理
由平衡方程
M
x
0
,得
M e 2 r r
Me 2 2 r
'
§3.3 纯剪切
切应力互等定理:
纯剪切
n W M e 2 60
e
P 7 0 2 4 (N m) n
§3.2 外力偶矩的计算 扭矩和扭矩图
2.扭矩和扭矩图
扭矩:构件受扭时,横截面 上的内力偶矩,记作“T”。
截面法求扭矩
Mx
ቤተ መጻሕፍቲ ባይዱ
0
T Me 0
T = Me
§3.2 外力偶矩的计算 扭矩和扭矩图
3 扭矩正负规定
汽车方向盘
§3.1 扭转的概念和实例
风力发电机
§3.1 扭转的概念和实例
§3.1 扭转的概念和实例
船舶推进
§3.1 扭转的概念和实例 扭转受力特点 杆件受到大小相等, 方向相反且作用平面垂直 于杆件轴线的力偶作用。 变形特点: 杆件的横截面绕轴线产生相对转动。 (扭转变形)
受扭转变形杆件通常为轴类零件,其横截 面大都是圆形的。所以本章主要介绍圆轴扭转。
右手螺旋法则
右手拇指指向外法线方向为正(+), 反之为负(-)
4 扭矩图:表示沿杆件轴线各横截面上扭矩变化规律的图线。
目 的
①直观给出扭矩随截面的变化;
②帮助确定|T|max值及其截面位置。
T
T1
x
§3.2 外力偶矩的计算 扭矩和扭矩图
扭矩图
§3.2 外力偶矩的计算 扭矩和扭矩图
在相互垂直 的两个平面上, 切应力必然成对 存在,且数值相 等;两者都垂直 于两个平面的交 线,方向则共同 指向或共同背离 这一交线。
各个截面上只 有切应力没有正应 力的情况称为纯剪 切
§3.3 纯剪切
三、切应变 剪切胡克定律
在切应力的作用下, 单元体的直角将发生微小 的改变,这个改变量 称 为切应变。
τ
当切应力不超过 G — 剪切弹性模量(GN/m2) 材料的剪切比例极限 各向同性材料,三个 时,切应变与切应力 τ成正比,这个关系 弹性常数之间的关系: 称为剪切胡克定律。 E
G
G
2(1 )
四、 剪切应变能
原则:外力功=应变能 y 对图示单元体剪应力所作微功为:
a
dy
´
(2)计算扭矩
T
(3) 扭矩图
x
§3.2 外力偶矩的计算 扭矩和扭矩图
传动轴上主、从 动轮安装的位置不 同,轴所承受的最 大扭矩也不同。
MB
MC
MD
MA
T3
MA
B
C
D
A
§3.2 外力偶矩的计算 扭矩和扭矩图
MB
MC
MD
MA
例题 改变传动轴上主、从动 轮安装的位置
B
C D
T3
MA
A
A
T3 M A 1432 N m