参数方程的概念(课件)
合集下载
高中数学人教A版选修4-4第二讲 一 1. 参数方程的概念 课件
[思路点拨] 此类问题关键是参数的选取.本例中由于 A、 B 的滑动而引起点 P 的运动,故可以 OB 的长为参数,或以角 为参数,不妨取 BP 与 x 轴正向夹角为参数来求解.
[解] 法一:设 P 点的坐标为(x,y),过
P 点作 x 轴的垂线交 x 轴于 Q.如图所示,则 Rt△OAB≌Rt△QBP.
∴xy==bascions
θ, θ.
这就是所求的轨迹方程.
9.如图所示,OA是圆C的直径,且OA=2a, 射线OB与圆交于Q点,和经过A点的切线 交于B点,作PQ⊥OA,PB∥OA,试求点P 的轨迹方程.
解:设 P(x,y)是轨迹上任意一点,取∠DOQ=θ, 由 PQ⊥OA,PB∥OA,得 x=OD=OQcosθ=OAcos2θ= 2acos2θ,y=AB=OAtan θ=2atan θ. 所以 P 点轨迹的参数方程为xy==22aatcaons2θθ,, θ∈-π2,π2.
解析:x轴上的点横坐标可取任意实数,纵坐标为0.
答案:D
2.若点P(4,a)在曲线x=2t , (t为参数)上,则a等于(
)
y=2 t
A.4
B.4 2
C.8
D.1
解析:根据题意,将点P坐标代入曲线方程中得
4=2t , a=2 t
⇒ta==84,2.
答案:B
3.在方程
参数方程是曲线方程的另一种表达形式,点与曲线 位置关系的判断,与平面直角坐标方程下的判断方法是 一致的.
1.已知点 M(2,-2)在曲线 C:x=t+1t , (t 为参数)上, y=-2
则其对应的参数 t 的值为________. 解:由 t+1t =2 知 t=1. 答案:1
2.已知某条曲线 C 的参数方程为xy==a1t+2 2t, (其中 t 为参数, a∈R).点 M(5,4)在该曲线上,求常数 a.
[解] 法一:设 P 点的坐标为(x,y),过
P 点作 x 轴的垂线交 x 轴于 Q.如图所示,则 Rt△OAB≌Rt△QBP.
∴xy==bascions
θ, θ.
这就是所求的轨迹方程.
9.如图所示,OA是圆C的直径,且OA=2a, 射线OB与圆交于Q点,和经过A点的切线 交于B点,作PQ⊥OA,PB∥OA,试求点P 的轨迹方程.
解:设 P(x,y)是轨迹上任意一点,取∠DOQ=θ, 由 PQ⊥OA,PB∥OA,得 x=OD=OQcosθ=OAcos2θ= 2acos2θ,y=AB=OAtan θ=2atan θ. 所以 P 点轨迹的参数方程为xy==22aatcaons2θθ,, θ∈-π2,π2.
解析:x轴上的点横坐标可取任意实数,纵坐标为0.
答案:D
2.若点P(4,a)在曲线x=2t , (t为参数)上,则a等于(
)
y=2 t
A.4
B.4 2
C.8
D.1
解析:根据题意,将点P坐标代入曲线方程中得
4=2t , a=2 t
⇒ta==84,2.
答案:B
3.在方程
参数方程是曲线方程的另一种表达形式,点与曲线 位置关系的判断,与平面直角坐标方程下的判断方法是 一致的.
1.已知点 M(2,-2)在曲线 C:x=t+1t , (t 为参数)上, y=-2
则其对应的参数 t 的值为________. 解:由 t+1t =2 知 t=1. 答案:1
2.已知某条曲线 C 的参数方程为xy==a1t+2 2t, (其中 t 为参数, a∈R).点 M(5,4)在该曲线上,求常数 a.
参数方程的概念及圆的参数方程 课件
类型三 圆的参数方程及应用
例3 如图,圆O的半径为2,P是圆O上的动 点,Q(4,0)在x轴上.M是PQ的中点,当点P绕 O作匀速圆周运动时, (1)求点M的轨迹的参数方程,并判断轨迹所 表示的图形;
(2)若(x,y)是M轨迹上的点,求x+2y的取值范围. 解 x+2y=cos θ+2+2sin θ= 5sin(θ+φ)+2,tan φ=12. ∵-1≤sin(θ+φ)≤1, ∴- 5+2≤x+2y≤ 5+2.
类型二 求曲线的参数方程
例2 如图,△ABP是等腰直角三角形动,求点P在第一象限的轨迹的参数方程.
反思与感悟 求曲线参数方程的主要步骤 (1)画出轨迹草图,设M(x,y)是轨迹上任意一点的坐标. (2)选择适当的参数,参数的选择要考虑以下两点 ①曲线上每一点的坐标x,y与参数的关系比较明显,容易列出方程; ②x,y的值可以由参数惟一确定. (3)根据已知条件、图形的几何性质、问题的物理意义等,建立点的坐 标与参数的函数关系式,证明可以省略.
参数方程的概念及圆的参数方程
知识点一 参数方程的概念
思考 在生活中,两个陌生的人通过第三方建立联系,那么对于曲线上 点的坐标(x,y),直接描述它们之间的关系比较困难时,可以怎么办呢? 答案 可以引入参数,作为x,y联系的桥梁.
梳理 参数方程的概念
(1)参数方程的定义
在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某 个变数t(θ,φ,…)的函数xy= =fgtt,,①并且对于t的每一个允许值, 由方程组①所确定的点M(x,y) 都在这条曲线上 ,那么方程①
就叫做这条曲线的 参数方程 ,t叫做 参数,相对于参数方程而言,
直接给出点的坐标间关系的方程叫普通方程 .
(2)参数的意义 参数 是联系变数x,y的桥梁,可以是有物理 意义或 几何意义的变数, 也可以是没有明显实际意义的变数. 特别提醒:普通方程和参数方程是同一曲线的两种不同表达形式,参数 方程可以与普通方程进行互化.
高中数学精品课件:第二节 参数方程
当 a<-4 时,d 的最大值为-a1+7 1.
由题设得-a+1= 17
17,解得 a=-16.综上,a=8 或 a=-16.
返回
[解题师说] 1.方法要熟 (1)解决直线与圆、圆锥曲线的参数方程的应用问题时, 一般是先化为普通方程,再根据直线与圆、圆锥曲线的位置关 系来解决问题. (2)对于形如xy==yx00++batt, (t 为参数)的参数方程,当 a2+ b2≠1 时,应先化为标准形式后才能利用 t 的几何意义解题.
解析:由xy==35scions
φ, φ
(φ 为参数)得,2x52+y92=1,
当 AB⊥x 轴时,|AB|有最小值.
所以|AB|min=2×95=158. 答案:158
返回
3.曲线
C
的参数方程为xy==csoins
θ, 2θ+1
(θ 为参数),则曲线 C 的普
通方程为____________.
解析:由xy==csoins
θ, 2θ+1
(θ 为参数)消去参数 θ,得 y=2-2x2(-
1≤x≤1).
答案:y=2-2x2(-1≤x≤1)
返回
4.在平面直角坐标系xOy中,已知直线l的参数方程为
x=1+12t,
y=
3 2t
(t为参数),椭圆C的方程为x2+y42=1,设直线
l与椭圆C相交于A,B两点,则线段AB的长为___________.
第二 节
参数方程
课前·双基落实
知识回扣,小题热身,基稳才能楼高
课堂·考点突破
练透基点,研通难点,备考不留死角
课后·三维演练
分层训练,梯度设计,及时查漏补缺
返回
课 前 双基落实
知识回扣,小题热身,基稳才能楼高
参数方程的概念与圆的参数方程课件
题型二 圆的参数方程及其应用
【例2】 圆的直径AB上有两点C、D,且|AB|=10,|AC|= |BD|=4,P为圆上一点,求|PC|+|PD|的最大值. [思维启迪] 本题应考虑数形结合的方法,因此需要先建立 平面直角坐标系.将P点坐标用圆的参数方程的形式表示 出来,θ为参数,那么|PC|+|PD|就可以用只含有θ的式子 来表示,再利用三角函数等相关知识计算出最大值. 解 以AB所在直线为x轴,以线段 AB的中点为原点建立平面直角坐标 系.
解 (1)由题意可知有1a+ t2=2t4=5,故ta==21.∴a=1. (2)由已知及(1)可得,曲线 C 的方程为xy==t12+2t. 由第一个方程得 t=x-2 1代入第二个方程,得 y=x-2 12,即(x-1)2=4y 为所求.
【反思感悟】 将曲线的参数方程化为普通方程主要是消 去参数,简称为“消参”.消参的常用方法是代入消元法和 利用三角恒等式消参法两种.
为参数)
1.曲线的普通方程直接地反映了一条曲线上的点的横、 纵坐标之间的联系,而参数方程是通过参数反映坐标 变量x、y间的间接联系.在具体问题中的参数可能有 相应的几何意义,也可能没有什么明显的几何意 义.曲线的参数方程常常是方程组的形式,任意给定 一个参数的允许取值就可得到曲线上的一个对应点, 反过来对于曲线上任一点也必然对应着其中的参数的 相应的允许取值.
3.圆的参数方程中参数的理解
在圆的参数方程中,设点 M 绕点 O 转动的角速度为ω(ω
为常数)转动的某一时刻为 t,因此取时刻 t 为参数可
得圆的参数方程为:yx==rrscions
ωt, ωt (t
为参数),此时参数
t 表示时间.
若以 OM 转过的角度 θ(∠M0OM=θ)为参数,可得圆的参
2.1.1《参数方程的概念、圆的参数方程》 课件(人教A版选修4-4)
)
【解析】选D. 当x=t-1=0时,t=1,y=t+2=3;当y=t+2=0时, t=-2,x=t-1=-3.曲线与坐标轴的交点坐标为(0,3),
(-3,0).
x=sin 2.下列各点在方程 (θ 为参数)所表示的曲线上的是 y=cos2
(
(B) ( 1 , 2 )
3 3
)
(A)(2,-7) (C) ( 1 , 1 )
(1)将极坐标方程化为普通方程,并选择恰当的参数写出它的
参数方程; (2)若点P(x,y)在该圆上,求x+y的最大值和最小值.
【解析】(1)由 2 -4 2cos(- )+6=0得
4
ρ2-4ρcosθ-4ρsinθ+6=0, 即x2+y2-4x-4y+6=0为所求,
由圆的标准方程(x-2)2+(y-2)2=2,
【解析】设飞机在点H将物资投出机 舱,记此时刻为0 s,设在时刻t s 时的坐标为M(x,y),如图,建立平 面直角坐标系,由于物资做平抛运 动,依题意,得
x=100t x=100t 1 2 ,即 y=h- gt y=h-5t 2 2
令x=100t=1 000,得t=10(s), 由y=h-5t2=h-500=0,得h=500 m. 答案:500 m
∴x=sin 2θ= - 3 .
4
1 4
x=3+cos 6.曲线 (θ 为参数)上的点到坐标轴的最近距离为 y=4+sin
( (A)0 (B)1 (C)2
y=4+sin
)
(D)3
【解析】选C.曲线 x=3+cos (θ为参数) 即(x-3)2+(y-4)2=1,表示圆心为C(3,4),半径为1的圆,圆 上的点到坐标轴的最近距离为2.
参数方程ppt课件演示文稿
+( 10cos α)t+32=0,设 M、N 对应的参数分别为 t1、t2,而由参数 t 的几何意义得|PM|
(t 为
参数).
思路点拨:参数方程通过消去参数可以化为普通方程.对于(1)直接消去参数 k 有困难, 可通过两式相除,先降低 k 的次数,再运用代入法消去 k;对于(2)可运用恒等式(sin θ+cos θ)2 =1+sin 2θ 消去 θ;对于(3)可运用恒等式(11-+tt22)2+(1+2t t2)2=1 消去 t.
(1)将参数方程化为普通方程,需要根据参数方程的结构特征,选取适当的 消参方法.常见的消参方法有:代入消参法、加减消参法,平方消参法等,对于含三角函数 的参数方程,常利用同角三角函数关系式消参如 sin2θ+cos2θ=1 等.
(2)将参数方程化为普通方程时,要注意两种方程的等价性,不要增解.
【例 2】 (2010 年苏、锡、常、镇模拟)已知曲线 C 的方程 y2=3x2-2x3,设 y=tx,t 为 参数,求曲线 C 的参数方程.
4.直线
l
的参数方程为x=t+3 y=3-t
,(参数
t∈R),圆
C
的参数方程为x=2cos y=2sin
θ θ+2
(参
数 θ∈[0,2π)),则圆心到直线 l 的距离为________.
解析:参数方程化为普通方程分别为 l:x+y=6,C:x2+(y-2)2=4,所以圆心(0,2) 到直线的距离 d= 4 =2 2.
y 解:(1)两式相除,得 k=2yx,将其代入,得 x=1+3·22yxx2, 化简得所求的普通方程是 4x2+y2-6y=0(y≠6). (2)由(sin θ+cos θ)2=1+sin 2θ=2-(1-sin 2θ), 得 y2=2-x.又 x=1-sin 2θ∈[0,2], 得所求的普通方程为 y2=2-x,x∈[0,2]. (3)由(11- +tt22)2+(1+2tt2)2=1,得 x2+4y2=1, 又 x=11-+tt22≠-1,得所求的普通方程是 x2+4y2=1(x≠-1).
直线的参数方程 课件
当 θ=π2时,|AB|min= 2,当 θ=0 时,|AB|max=2 2.
(2)∵t1t2=-cos2θ+12sin2θ<0,设 A(x1,y1),B(x2,y2),
∴y1=t1sin θ,y2=t2sin θ,S△AOB=12|OF|·(|y1|+|y2|)=12×1·|t1-t2|·sin θ=1+2ssiinn2θθ=
【例题 1】 (1)化直线 l1:x+ 3y-1=0 的方程为标准形式的参数方程(参数为 t),
并说明 t 和t的几何意义;
(2)化直线 l2的参数方程xy==-1+3+3tt, (t 为参数)为普通方程,并说明t的几何意义.
• 思维导引:求直线的参数方程首先确定定点, 再确定倾斜角.化参数方程为普通方程关键 在于消参.
解析:(1)令
y=0,得
x=1,所以直线
l1
过定点(1,0),斜率
k=-
1 =- 3
33,设倾
斜角为 α,tan α=- 33,α=56π,∴cos α=- 23,sin α=12.所以 l1 的参数方程为
x=1- 23t, y=12t
(t 为参数).t 是直线 l1 上定点 M0(1,0)到直线上任意一点 M(x,y)的有
(2)∵P 在 C1 上,将xy==-3+1+tsintcαo.s α, 代入方程 x2+y2-2x-2y=0 得 t2-4(cos α
-sin α)t+6=0, 设点 B,D 对应的参数分别为 t1,t2. 则|PB|=|t1|,|PD|=|t2|,又 t1t2=6,∴|PB|·|PD|=|t1||t2|=|t1t2|=6.
α,
(t 为参数,0≤α≤π),
以坐标原点 O 为极点,x 轴正半轴为极轴建立极坐标系,曲线 C2 的极坐标方程为ρ=
(2)∵t1t2=-cos2θ+12sin2θ<0,设 A(x1,y1),B(x2,y2),
∴y1=t1sin θ,y2=t2sin θ,S△AOB=12|OF|·(|y1|+|y2|)=12×1·|t1-t2|·sin θ=1+2ssiinn2θθ=
【例题 1】 (1)化直线 l1:x+ 3y-1=0 的方程为标准形式的参数方程(参数为 t),
并说明 t 和t的几何意义;
(2)化直线 l2的参数方程xy==-1+3+3tt, (t 为参数)为普通方程,并说明t的几何意义.
• 思维导引:求直线的参数方程首先确定定点, 再确定倾斜角.化参数方程为普通方程关键 在于消参.
解析:(1)令
y=0,得
x=1,所以直线
l1
过定点(1,0),斜率
k=-
1 =- 3
33,设倾
斜角为 α,tan α=- 33,α=56π,∴cos α=- 23,sin α=12.所以 l1 的参数方程为
x=1- 23t, y=12t
(t 为参数).t 是直线 l1 上定点 M0(1,0)到直线上任意一点 M(x,y)的有
(2)∵P 在 C1 上,将xy==-3+1+tsintcαo.s α, 代入方程 x2+y2-2x-2y=0 得 t2-4(cos α
-sin α)t+6=0, 设点 B,D 对应的参数分别为 t1,t2. 则|PB|=|t1|,|PD|=|t2|,又 t1t2=6,∴|PB|·|PD|=|t1||t2|=|t1t2|=6.
α,
(t 为参数,0≤α≤π),
以坐标原点 O 为极点,x 轴正半轴为极轴建立极坐标系,曲线 C2 的极坐标方程为ρ=
高中数学《参数方程》第一课时 课件
2
2
所以,点M的轨迹的参数方程是
x
y
cos s in
3(为参数)
5、若已知直线的参数方程为xy
1 1
t (t为参数) t
求它与曲线xy
2 c os 2 sin
(为参数)的交点。
解:参数方程xy
1 1
t (t为参数)的普通方程为 t
x y20
曲线xy
2 cos 2 s in
(为参数)的普通方程为x2
x 2 pt2
y
2 pt
圆锥曲线的参数方程
从三角换元看参数方程
换元依据: cos2 sin2 1
圆
心在
原点,
半径
为r的
圆的
参数
方 程 xy
r r
cos sin
(为参
数)
中心在
原点
的椭圆
的 参数 方 程 xy
a cos b sin
(为
参数)
换元依据: sec2 tan2 1
32
22
y
M(x,y)
r
o
M0 x
x y
x0 y0
r r
cos s in
(为参数)
对应的普通方程为(x x0 )2 ( y y0 )2 r 2
2、指出参数方程xy
2cos 5 3 2sin
(为参数)所
表示圆的圆心坐标、半径,并化为普通方程。
(x 5)2 ( y 3)2 4
2
)
以a,b(a>b>0)为半径作两个圆,点B是大圆半 径OA与小圆的交点,过点A作AN⊥Ox,垂 足为N,过点B作BM⊥AN,垂足为M,求当半 径OA绕点O旋转时点M的轨迹的参数方程.
参数方程 课件(共29张PPT)
解:根据题意,作出如图所示的单位圆.所要求的函数 f(θ)=
sin cos
θθ--12的最大值与最小值,就转化为求动点
P
与定点(2,1)
连线的斜率的最大值与最小值.从图可以得知,当直线 PM
和圆相切时,分别得到其最大值与最小值.设直线 PM 的斜
率为 k,所以,其方程为:y-1=k(x-2),即 kx-y+1-2k=0.
2α(0<α<2π),M 为 PQ 的中点.
(1)求 M 的轨迹的参数方程;
(2)将 M 到坐标原点的距离 d 表示为 α 的函数,并判断 M 的
轨迹是否过坐标原点.
【解】 (1)依题意有 P(2cos α,2sin α),Q(2cos 2α,2sin 2α),
因此 M(cos α+cos 2α,sin α+sin 2α).
2π).
(1)x2+y2=(-1+2cos θ)2+( 3+2sin θ)2 =4( 3sin θ-cos θ)+8=8sin(θ-π6)+8, ∴当 θ-π6=π2,即 θ=23π时,(x2+y2)max=16. (2)x+y=2(sin θ+cos θ)+ 3-1 =2 2sin(θ+π4)+ 3-1, ∴当 θ+π4=32π,即 θ=54π时, (x+y)min= 3-2 2-1.
变式训练
1.(2013·高考江苏卷)在平面直角坐标系 xOy 中,直线 l 的参 数方程为yy==2t+t 1, (t 为参数),曲线 C 的参数方程为
x=2tan2θ, y=2tan θ
(θ 为参数).试求直线 l 和曲线 C 的普通方程,
并求出它们的公共点的坐标.
解:因为直线 l 的参数方程为xy==2t+t 1 (t 为参数),由 x=t+ 1,得 t=x-1,代入 y=2t,得到直线 l 的普通方程为 2x-y-2 =0. 同理得到曲线 C 的普通方程为 y2=2x. 联立方程组yy=2=22xx-1 ,解得公共点的坐标为(2,2),(12,- 1).
2.1 1.参数方程的概念 课件(人教A选修4-4)
返回
在 Rt△QBP 中, |BQ|=acos θ,|PQ|=asin θ. ∴点 P 在第一象限的轨迹的参数方程为
x=asin θ+cos y=asin θ.
θ,
π (θ 为参数,0<θ< ). 2
返回
求曲线参数方程的主要步骤 第一步,画出轨迹草图,设M(x,y)是轨迹上任
转角为参数.此外,离某一定点的“有向距离”、直线的倾斜角、
斜率、截距等也常常被选为参数. 第三步,根据已知条件、图形的几何性质、问题的物理意 义等,建立点的坐标与参数的函数关系式,证明可以省略.
返回
1.设质点沿以原点为圆心,半径为 2 的圆作匀角速度运动, π 角速度为 rad/s,试以时间 t 为参数,建立质点运动轨 60 迹的参数方程.
(t 为参数).
(1)判断点 M1(0,1),M2(5,4)与曲线 C 的位置关系. (2)已知点 M3(6,a)在曲线 C 上,求 a 的值. [思路点拨] 由参数方程的概念,只需判断对应于点的
参数是否存在即可,若存在,说明点在曲线上,否则不在曲 线上.
返回
[解]
(1)把点 M1 的坐标(0,1)代入方程组,
解:选 t=x,则 y=2t+3
x=t, 由此得直线的参数方程为 y=2t+3,
(t 为参数).
也可选 t=x+1,则 y=2t+1.
x=t-1, 参数方程为: y=2t+1.
(t 为参数)
返回
[例 2]
x=3t 已知曲线 C 的参数方程是 y=2t2+1
答案:D
返回
4.已知某条曲线 C
x=1+2t, 的参数方程为 y=at2
(其中 t 为参
数,a∈R).点 M(5,4)在该曲线上,求常数 a.
《圆的参数方程一》课件
在物理学中,参数方程常用于描述周期性运动,如简谐振动、圆 周运动等。
工程设计中的应用
在工程设计中,参数方程常用于描述曲线和曲面,如机械零件的轮 廓曲线、建筑设计中的曲面等。
计算机图形学中的应用
在计算机图形学中,参数方程常用于描述二维或三维图形,如贝塞 尔曲线、旋转面等。
05
圆的参数方程的习题与解 析
基础习题及解析
01
02
03
04
基础习题1
求圆心在原点,半径为3的圆 的参数方程。
基础习题2
已知圆的参数方程为 x=3+4cosθ, y=4+4sinθ,
求该圆的圆心和半径。
基础习题3
将圆的参数方程转换为直角坐 标方程。
基础习题4
已知圆的直角坐标方程为 x^2+y^2=16,求该圆的参
数方程。
进阶习题及解析
高阶习题及解析
高阶习题1
高阶习题2
已知圆的参数方程为x=a+rcosθ, y=b+rsinθ,求该圆在任意点(x,y)处的切线 方程。
已知圆上两点A、B的坐标分别为 (3+2cosθ1, 2+2sinθ1)和(3+2cosθ2, 2+2sinθ2),求线段AB的中点M的坐标。
高阶习题3
高阶习题4
已知圆的参数方程为x=a+rcosθ, பைடு நூலகம்=b+rsinθ,求该圆在任意点(x,y)处的法线 方程。
进阶习题1
已知圆的参数方程为 x=3+2cosθ, y=2+2sinθ,求
该圆在x轴上的截距。
进阶习题2
将给定的参数方程转换为极坐 标方程。
进阶习题3
工程设计中的应用
在工程设计中,参数方程常用于描述曲线和曲面,如机械零件的轮 廓曲线、建筑设计中的曲面等。
计算机图形学中的应用
在计算机图形学中,参数方程常用于描述二维或三维图形,如贝塞 尔曲线、旋转面等。
05
圆的参数方程的习题与解 析
基础习题及解析
01
02
03
04
基础习题1
求圆心在原点,半径为3的圆 的参数方程。
基础习题2
已知圆的参数方程为 x=3+4cosθ, y=4+4sinθ,
求该圆的圆心和半径。
基础习题3
将圆的参数方程转换为直角坐 标方程。
基础习题4
已知圆的直角坐标方程为 x^2+y^2=16,求该圆的参
数方程。
进阶习题及解析
高阶习题及解析
高阶习题1
高阶习题2
已知圆的参数方程为x=a+rcosθ, y=b+rsinθ,求该圆在任意点(x,y)处的切线 方程。
已知圆上两点A、B的坐标分别为 (3+2cosθ1, 2+2sinθ1)和(3+2cosθ2, 2+2sinθ2),求线段AB的中点M的坐标。
高阶习题3
高阶习题4
已知圆的参数方程为x=a+rcosθ, பைடு நூலகம்=b+rsinθ,求该圆在任意点(x,y)处的法线 方程。
进阶习题1
已知圆的参数方程为 x=3+2cosθ, y=2+2sinθ,求
该圆在x轴上的截距。
进阶习题2
将给定的参数方程转换为极坐 标方程。
进阶习题3
参数方程ppt课件
考虑多种情况
注意单位的统一
在求解参数方程时,需要注意单位的 统一,避免出现单位不匹配的情况。
对于某些参数方程,可能需要考虑多 种情况,分别进行讨论和求解。
03 参数方程的应用实例
物理中的参数方程应用
总结词
描述物理中参数方程的应用,如行星运动、电磁波传播等。
详细描述
在物理学中,参数方程被广泛应用于描述各种现象,如行星运动轨迹、电磁波 传播路径等。这些参数方程通过引入一些变化的参数,能够精确地描述物理量 之间的关系,帮助我们更好地理解物理规律。
参数方程在其他领域的应用将有助于 推动相关领域的技术进步和理论发展 。
随着科技的发展,参数方程在数据科 学、机器学习等领域的应用也将逐渐 增多,为解决实际问题提供更多思路 和方法。
如何提高参数方程的应用水平
加强数学教育和普及工作,提高公众对参数方程的认识和理解,培养更多的数学人才和应用 型人才。
加强学科交叉和合作,促进参数方程与其他学科的融合和应用,共同推动相关领域的发展。
理解。
参数方程与线性代数的关联
参数方程可以用于描述线性代 数中的向量和矩阵的变化规律 。
通过参数方程,可以理解线性 变换的概念,以及矩阵的运算 和性质。
参数方程在解决线性代数问题 中也有一定的应用,例如求解 线性方程组、矩阵的逆和行列 式等。
参数参数方程与复变函数的关系
复变函数是一种描述复数域上的函数的方法,而参数方程可以用于描述复数域上的 函数的变化规律。
参数方程ppt课件
ቤተ መጻሕፍቲ ባይዱ
• 参数方程的基本概念 • 参数方程的求解方法 • 参数方程的应用实例 • 参数方程与其他数学知识的关联 • 参数方程的未来发展与展望
01 参数方程的基本概念
高中数学人教A版选修4-4课件:2.1曲线的参数方程
因为 θ∈ 0,
2
所以 sin θ +
4
,所以 θ+ ∈
4
∈
2
,1
2
3
,
4 4
4
Hale Waihona Puke ..,即 2sin θ +
故 x+y 的最大值是 2,最小值是 1.
4
∈ 1, 2 .
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
首 页
J 基础知识 Z 重点难点
ICHU ZHISHI
关系比较明显,容易列出方程.
首 页
1
2
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
3
思考 2 求曲线参数方程的步骤是什么?
提示:第一步,画出轨迹草图,设 M(x,y)是轨迹上任意一点的坐标.画图
时要注意根据几何条件选择点的位置,以利于发现变量之间的关系.
C.相切
D.相离
解析:圆的普通方程为 x2+y2=4,圆心(0,0)到直线 xcos φ+ysin φ-2=0 的距离
2
1
d= =2.因为圆的半径为 2,所以直线与圆相切.
答案:C
首 页
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
1
x = 1 + 2θ,
3.将参数方程
HONGDIAN NANDIAN
1
2
1.与普通方程 xy=1 表示相同曲线的参数方程(t 为参数)是(
2
所以 sin θ +
4
,所以 θ+ ∈
4
∈
2
,1
2
3
,
4 4
4
Hale Waihona Puke ..,即 2sin θ +
故 x+y 的最大值是 2,最小值是 1.
4
∈ 1, 2 .
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
首 页
J 基础知识 Z 重点难点
ICHU ZHISHI
关系比较明显,容易列出方程.
首 页
1
2
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
3
思考 2 求曲线参数方程的步骤是什么?
提示:第一步,画出轨迹草图,设 M(x,y)是轨迹上任意一点的坐标.画图
时要注意根据几何条件选择点的位置,以利于发现变量之间的关系.
C.相切
D.相离
解析:圆的普通方程为 x2+y2=4,圆心(0,0)到直线 xcos φ+ysin φ-2=0 的距离
2
1
d= =2.因为圆的半径为 2,所以直线与圆相切.
答案:C
首 页
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
1
x = 1 + 2θ,
3.将参数方程
HONGDIAN NANDIAN
1
2
1.与普通方程 xy=1 表示相同曲线的参数方程(t 为参数)是(
参数方程的概念、圆的参数方程 课件
联系变数 x,y 之间关系的变数 t 叫做参变数,简称参数.相
对于参数方程而言,直接给出的点的坐标间的关系的方程叫
做
普通方程 .
2.圆的参数方程 (1)如图 2-1-1 所示,设圆 O 的半径为 r,点 M 从初始 位置 M0 开始出发,按逆时针方向在圆上运动,设 M(x,y), 点 M 转过的角度是 θ,
又 3-d<71010,故满足题意的点有 2 个. 【答案】 B
1.本题利用三角函数的平方关系,消去参数;数形结合, 判定直线与圆的位置关系.
2.参数方程表示怎样的曲线,一般是通过消参,得到普 通方程来判断.特别要注意变量的取值范围.
如图 2-1-2,已知点 P 是圆 x2+y2=16 上的 一个动点,定点 A(12,0),当点 P 在圆上运动时,求线段 PA 的中点 M 的轨迹.
【思路探究】 (1)将点 M 的横坐标和纵坐标分别代入参 数方程中的 x,y,消去参数 t,求 a 即可;
(2)要判断点是否在曲线上,只要将点的坐标代入曲线的 普通方程检验即可,若点的坐标是方程的解,则点在曲线上, 否则,点不在曲线上.
【自主解答】 (1)将 M(-3,4)的坐标代入曲线 C 的参数
【自主解答】 如图,设 C 点坐标为(x,y),∠ABO=θ, 过点 C 作 x 轴的垂线段 CM,垂足为 M.
则∠CBM=23π-θ, ∴xy= =aacsions23θπ+-aθco,s23π-θ, 即xy= =aassiinnθθ+ +ππ63, . (θ 为参数,0≤θ≤π2)为所求.
求曲线的参数方程的方法步骤 (1)建立适当的直角坐标系,设曲线上任一点 M 的坐标; (2)写出适合条件的点 M 的集合; (3)用坐标表示集合,列出方程; (4)化简方程为最简形式; (5)证明以化简后的方程的解为坐标的点都是曲线上的点 (此步骤可以省略,但一定要注意所求的方程中所表示的点是 否都表示曲线上的点,要注意那些特殊的点).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
M 点的轨迹方程是
x 5 y 6 2 t 2 (0 t 4 2) 2 t 2
三、巩固概念.理解应用
例1.如图,设圆的圆心在坐 标原点,半径为1 ►求出该圆的普通方程 -1
建 设 步骤: 普通方程: x
2
y
1 •M
• θ HM • O x=cosθ 0 -1
故A、B、C三个角速度之间的关系可以表示为
x t y t
一、创设情境.探求新知
B A A
思考: 若齿轮A、B、C的半径分别为4、1、2,他们转动时的角速度分别是x、y、t,方向 忽略不计 y 4x ; (1) 第一组图中,它们角速度之间的关系是_________________
B
C
1 x t 2 y 2t (2) 第二组图中,它们角速度之间的关系是_________________ ;
二、建构概念.突破难点
1.填写下列两个表格,思考方程和方程的区别与联系
y 3 12
4 16
5 20
方程
1 2 4
五、课后作业
课后习题A组练习1、2、3
谢谢!
2
y
1 •M
• θ HM • O x=cosθ 0 -1 方程:
y=sin θ
x
y 1
2
限
代
化
►试一试:能不能找出一个 变量,“连接”圆上点的 横坐标x和纵坐标y,进而 得出圆的方程的不同表现 形式?
x cos y sin
二、建构概念.突破难点
1 x t x cos 2 (t是中间量) (θ是中间量, [0, 2 )) y 2t y sin
x f (t ) (t D ) y g (t )
概括归纳: 一般的,在平面直角坐标系中,如果曲线上任意一点的 坐标x,y都是某个变数t的函数并且对于t的每一个允许值, 由方程组所确定的点M(x,y)都在这条曲线上,那么方 程就叫做这条曲线的参数方程,联系变数x,y的变数t叫 做参变数,简称参数.
x sin 2.方程 ( y cos
[0,2 ) )所表示的曲线上一
点是( D ) A.(2,7)
1 2 B.( , 3 3
)
1 1 C.( , 2 2
) D.(1,0)
三、巩固概念.理解应用
跟踪练习
y
B
M t • A O C
x
如图所示,已知点A(1,2),B(5,6), 点M是线段AB上的一个动点,试求 点M(x,y)轨迹的参数方程
1 x t 2 y 2t
三、巩固概念.理解应用
x 3t 例2.已知曲线C的参数方程是 y 2t 2 1 (t为参数) (1)判断点M1(0,1),M2(5,4)与曲线C的位置关系 (2)已知点M3(6,a)在曲线C上,求a的值
解:解: (1)把点 (2) M 因为点 M3(0,1) (6,a)代入方程组,解得 在曲线C上,所以 t=0, 1的坐标 因此M1在曲线C上 6 3t 把点 M2的坐标(5,4) 代入方程组,得到 ,解得 t=2,a=9
跟踪练习
y
t M • A O
B
H C
x
如图所示,已知点A(1,2),B(5,6), 点M是线段AB上的一个动点,试求 点M(x,y)轨迹的参数方程
方案二:解:设|MB|=t,易知 BMH
4
,
2 xM 5 t cos 5 t 4 2 2 yM 6 t sin 6 t 4 2
2 4 8
3 6 12
4 8 16
5 10 20
1 x t 2 y 2t
2.满足方程的点(x,y) 所形成的图形是什么呢? 方程表示的是一条直线
二、建构概念.突破难点
例1.如图,设圆的圆心在坐 标原点,半径为1 ►求出该圆的标准方程 -1
建 设 步骤: 标准方程: x
高二年级第二学段人教版数学选修4-4
参数方程的概念
大冶一中 孙雷
一、创设情境探求新知
A
B
A
B C
一、创设情境.探求新知
B
A A
B
xt y t
C
思考: 若齿轮A、B、C的半径相等,他们转动时的角速度分别是x、y、t,方向忽略不计 x=y ________; (1) 第一组图中,A与B角速度之间的关系是_______ (2) 第二组图中,A与C角速度之间的关系是________________; B与C角速度之间的关系是________________;
解:设|MA|=t,易知 BAC
4
,
2 xM t cos 1 t 1 4 2 2 yM t sin 2 t2 4 2
M 点的轨迹方程是
x y 2 t 1 2 (0 t 4 2) 2 t2 2
三、巩固概念.理解应用
参数方程: 1
y
•M
y=sin θ
x cos ( R) y sin x cos ( [0, ]) 2 y sin
-1
• θ HM • O x=cosθ 0 -1
x
思考:这两个参数方程都表示圆C吗?
四、课堂小结.提升能力
1、知识内容: 知道圆的参数方程以及曲线参数方程的概念; 能选取适当的参数建立参数方程; 通过对圆和直线的参数方程的研究,理解其中参 数的意义。 2、思想与方法:参数思想。
a 2 t 1 5 3 t ,这个方程组无解,因此点M2不在 2 因此, a=9 4 2 t 1
2
曲线 C上
三、巩固概念.理解应用
x 1 t 2 1.曲线 y 4t 3 (t为参数)与x轴的焦点坐标是(B) 25 25 A.(1,4) B.( ,0) C.(1,-3) D.( ,0) 16 16
y=sin θ
x
y 1
2
限
代
化
►试一试:能不能找出一个 x cos 变量,“连接”圆上点的 参数方程: 横坐标x和纵坐标y,进而 y sin 得出圆的参数方程? ►还能不能找出类似的变量? 弧长、面积、周长
三、巩固概念.理解应用
例1.如图,设圆O的圆心在 坐标原点,半径为1
二、建构概念.突破难点
概括归纳: 相对于参数方程而言,直接给出点的坐标间关系的方 程叫做普通方程. 参数是联系变数x,y的桥梁,可以是一个有物理意义或 几何意义的变数,也可以是没有明显实际意义的变数.
二、建构概念.突破难点
思考: 下列两个方程,是参数方程吗?
x 4y 1 y x 4