数据处理与数学建模方法精品PPT课件
合集下载
《数学建模培训》PPT课件
数学建模案例解析
04
经济学案例:供需平衡模型
供需平衡理论
通过数学语言描述市场需求与供给之间的平衡关 系,涉及价格、数量等关键变量。
建模过程
收集相关数据,建立需求函数和供给函数,通过 求解方程组找到均衡价格和均衡数量。
模型应用
预测市场趋势,分析政策对市场的影响,为企业 决策提供支持。
物理学案例:热传导模型
Lingo在数学建模中的应 用案例
展示Lingo在数学建模中的实 际应用,如线性规划、整数规 划、非线性规划等优化问题的 求解。
其他数学建模相关软件与工具简介
Mathematica软件
简要介绍Mathematica的特点和功能,以及其 在数学建模中的应用。
SAS软件
简要介绍SAS的特点和功能,以及其在数学建模 中的应用。
数据预处理
包括数据清洗、缺失值处 理、异常值检测等,保证 数据质量。
数据可视化
利用图表、图像等手段展 示数据,便于理解和分析 。
数据分析方法
如回归分析、时间序列分 析、聚类分析等,用于挖 掘数据中的信息和规律。
数学建模常用方法
03
回归分析
线性回归
通过最小二乘法拟合自变量和因 变量之间的线性关系,得到最佳
模型应用
预测舆论走向,分析社会热点问题,为政府和企业提供决策支持。
数学建模软件与工
05
具介绍
MATLAB软件介绍及使用技巧
MATLAB概述
简要介绍MATLAB的历史、功能和应用领域 。
MATLAB常用函数
列举并解释MATLAB中常用的数学函数、绘 图函数、数据处理函数等。
MATLAB基础操作
详细讲解MATLAB的安装、启动、界面介绍 、基本语法和数据类型等。
数学建模中的数据处理方法 非常全PPT共82页
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联
1、不要轻言放弃,否则对不起自己。
2、要冒一次险!整个生命就是一场冒险。走得最远的人,常是愿意 去做,并愿意去冒险的人。“稳妥”之船,从未能从啡,喝起来是苦涩的,回味起来却有 久久不会退去的余香。
数学建模中的数据处理方法 非常全 4、守业的最好办法就是不断的发展。 5、当爱不能完美,我宁愿选择无悔,不管来生多么美丽,我不愿失 去今生对你的记忆,我不求天长地久的美景,我只要生生世世的轮 回里有你。
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
45、自己的饭量自己知道。——苏联
1、不要轻言放弃,否则对不起自己。
2、要冒一次险!整个生命就是一场冒险。走得最远的人,常是愿意 去做,并愿意去冒险的人。“稳妥”之船,从未能从啡,喝起来是苦涩的,回味起来却有 久久不会退去的余香。
数学建模中的数据处理方法 非常全 4、守业的最好办法就是不断的发展。 5、当爱不能完美,我宁愿选择无悔,不管来生多么美丽,我不愿失 去今生对你的记忆,我不求天长地久的美景,我只要生生世世的轮 回里有你。
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
三数学建模与数据分析PPT课件
(1)记 A 表示事件“旧养殖法的箱产量低于 50 kg”, 估计 A 的概率;
(2)填写下面列联表,并根据列联表判断是否有 99% 的把握认为箱产量与养殖方法有关?
养殖法 箱产量<50 箱产量≥50
kg
kg
旧养殖法
新养殖法
(3)根据箱产量的频率分布直方图,对这两种养殖方
法的优劣进行比较.
附:
P(K2≥k) 0.050 0.010 0.001
k
3.841 6.635 10.828
K2=(a+b)(cn+(da)d-(bac+)c2)(b+d).
解:(1)旧养殖法的箱产量低于 50 kg 的频率为
(0.012+0.014+0.024+0.034+0.040)×5=0.62.
因此,事件 A 的概率估计值为 0.62.
(2)根据箱产量的频率分布直方图得如下列联表:
三数学建模与数据分析PPT课件
三数学建模与数据分析PPT课件 三数学建模与数据分析PPT课件
三数学建模与数据分析PPT课件
[变式训练] (2017·北京卷)某大学艺术专业 400 名学 生参加某次测评,根据男女学生人数比例,使用分层抽样 的方法从中随机抽取了 100 名学生,记录他们的分数,将 数据分成 7 组:[20,30),[30,40),…,[80,90],并整 理得到如下频率分布直方图.
[探究提高] 1.本题以现实生活中的水产品养殖方法作为创新背 景,试题的第(1)问是根据频率分布直方图估计事件的概 率,第(2)问是根据整理的数据进行独立性检验,第(3)问 根据箱产量的频率分布直方图,比较两种养殖方法的优 劣.有效的考查学生阅读理解能力与运用数学模型解决问 题的能力. 2.通过对概率与统计问题中大量数据的分析和加工, 看我们能否获得数据提供的信息及其所呈现的规律,进而 分析随机现象的本质特征,发现随机现象的统计规律,以 此考查数据分析素养.
数学建模培训精品课件ppt
MATLAB在数学建模中的应用
MATLAB概述
01
MATLAB是一种用于算法开发、数据可视化、数据分析和数值
计算的编程语言和开发环境。
MATLAB在数学建模中的优势
02
MATLAB提供了丰富的数学函数库和工具箱,支持矩阵运算、
符号计算和数值分析,适用于各种数学建模场景。
MATLAB在数学建模中的应用案例
数学建模在金融领域的应用
金融行业对数学建模的需求日益增长,涉及风险管理、投资组合优化、市场预测等领域 。
数学建模在物理科学和工程中的应用
物理科学和工程领域中的复杂问题需要借助数学建模进行深入研究,如流体动力学、材 料科学等。
提高数学建模能力的建议
01
掌握数学基础知识
数学建模需要扎实的数学基础, 如概率论、统计学、线性代数和 微积分等。
深度学习中的数学建模
探讨深度学习领域中常用的数学方法和模型,如卷积神经网络、循 环神经网络等。
数据科学中的数学建模
数据清洗与预处理
数据可视化的数学基础
介绍数据科学中数据预处理的基本方 法和数学原理。
介绍数据可视化中涉及的数学原理和 可视化技术。
统计分析方法
阐述统计分析中常用的方法和模型, 如回归分析、聚类分析等。
02
实践经验积累
03
学习优秀案例
通过参与数学建模竞赛、科研项 目等方式,积累实践经验,提高 解决实际问题的能力。
学习经典数学建模案例,了解不 同领域中数学建模的应用方法和 技巧。
对未来数学建模的展望
跨学科交叉融合
未来数学建模将更加注重与其他学科的交叉融合,如生物 学、环境科学、社会科学等。
人工智能与数学建模结合
数学建模常用方法介绍ppt课件
遗传算法一般步骤
1. 完成了预先给定的进 化代数 2. 种群中的最优个体在 连续若干代后没有改进 3. 平均适应度在连续若 干代后基本没有改进
竞赛中的群体思维方法
✓平等地位、相互尊重、充分交流 ✓杜绝武断评价 ✓不要回避责任 ✓不要对交流失去信心
竞赛中的发散性思维方法
➢ 借助于一系列问题来展开思路
与模糊数学相关的问题(二)
模糊聚类分析—根据研究对象本身的属性构造 模糊矩阵,在此基础上根据一定的隶属度来 确定其分类关系
模糊层次分析法—两两比较指标的确定
模糊综合评判—综合评判就是对受到多个因素 制约的事物或对象作出一个总的评价,如产 品质量评定、科技成果鉴定、某种作物种植 适应性的评价等,都属于综合评判问题。由 于从多方面对事物进行评价难免带有模糊性 和主观性,采用模糊数学的方法进行综合评 判将使结果尽量客观从而取得更好的实际效 果
3. 合并距离最近的两类为一个新类 4. 计算新类与当前各类的距离(新类与当
前类的距离等于当前类与组合类中包含 的类的距离最小值),若类的个数等于 1,转5,否则转3 5. 画聚类图 6. 决定类的个数和类。
统计方法(判别分析)
➢ 判别分析—在已知研究对象分成若干类型,并已取 得各种类型的一批已知样品的观测数据,在此基础 上根据某些准则建立判别式,然后对未知类型的样 品进行判别分类。
这个问题与什么问题相似? 如果将问题分解成两个或几个部分会怎样? 极限情形(或理想状态)如何? 综合问题的条件可得到什么结果? 要实现问题的目标需要什么条件?
➢ 借助于下意识的联想(灵感)来展开思路
抓住问题的个别条件或关键词展开联想或猜想 综合所得到的联想和猜想,得到一些结论 进一步思考找出新思路和方法
【精品】数学建模数据统计与分析PPT课件
参数估计就是从样本(X1,X2,…,Xn)出发,构造一些统计量 ˆi( X1,
X2,…,Xn) (i=1,2,…,k)去估计总体X中的某些参数(或数字特
征)i(i=1,2,…,k).这样的统计量称为估计量.
1. 点估计:构造(X1,X2,…,Xn)的函数 ˆi( X1,X2,…,Xn) 作为参数i的点估计量,称统计量ˆi为总体X参数i的点估计量.
(二)方差的区间估计 D X 在 置 信 水 平 1 - 下 的 置 信 区 间 为 [ ( n 2 1 ) s 2 , ( n 1 2 ) s 2 ] . 1 22
2021/7/15
数学建模
返回
14
对总体X的分布律或分布参数作某种假设,根据 抽取的样本观察值,运用数理统计的分析方法,检 验这种假设是否正确,从而决定接受假设或拒绝假 设.
X n) ,使 得
P (ˆ1ˆ2)1 则 称 随 机 区 间 (ˆ1,ˆ2)为 参 数 的 置 信 水 平 为 1的 置 信 区 ˆ1 间 , 称 为 置 信 下 限 ,ˆ2称 为 置 信 上 限 .
2021/7/15
数学建模
13
(一)数学期望的置信区间 1、已知DX,求EX的置信区间
s 设 样 本 ( X 1 , X 2 , … , X n ) 来 自 正 态 母 体 X , 已 知 方 差 D 2 X ,
( ) Y = X 1 2 X 2 2 X n 2
服 从 自 由 度 为 n 的 2分 布 , 记 为 Y ~ 2 n.
Y 的 均 值 为 n , 方 差 为 2 n .
0.16
0.14
0.12
0.1
0.08
0.06
0.04
0.02
0
0
X2,…,Xn) (i=1,2,…,k)去估计总体X中的某些参数(或数字特
征)i(i=1,2,…,k).这样的统计量称为估计量.
1. 点估计:构造(X1,X2,…,Xn)的函数 ˆi( X1,X2,…,Xn) 作为参数i的点估计量,称统计量ˆi为总体X参数i的点估计量.
(二)方差的区间估计 D X 在 置 信 水 平 1 - 下 的 置 信 区 间 为 [ ( n 2 1 ) s 2 , ( n 1 2 ) s 2 ] . 1 22
2021/7/15
数学建模
返回
14
对总体X的分布律或分布参数作某种假设,根据 抽取的样本观察值,运用数理统计的分析方法,检 验这种假设是否正确,从而决定接受假设或拒绝假 设.
X n) ,使 得
P (ˆ1ˆ2)1 则 称 随 机 区 间 (ˆ1,ˆ2)为 参 数 的 置 信 水 平 为 1的 置 信 区 ˆ1 间 , 称 为 置 信 下 限 ,ˆ2称 为 置 信 上 限 .
2021/7/15
数学建模
13
(一)数学期望的置信区间 1、已知DX,求EX的置信区间
s 设 样 本 ( X 1 , X 2 , … , X n ) 来 自 正 态 母 体 X , 已 知 方 差 D 2 X ,
( ) Y = X 1 2 X 2 2 X n 2
服 从 自 由 度 为 n 的 2分 布 , 记 为 Y ~ 2 n.
Y 的 均 值 为 n , 方 差 为 2 n .
0.16
0.14
0.12
0.1
0.08
0.06
0.04
0.02
0
0
数学建模方法ppt课件
微
了很大作用。
分
方
应用实例:
程 模
单种群模型(Malthus Logistic )
型
两种群模型
传染病模型(SI SIS SIR)
作战模型
商品销售模型
回归分析是研究变量间统计规律的方法,属于”黑 箱“建模中常用的方法,根据自变量的数值和变化, 估计和预测因变量的相应数值和变化。有线性回归和 非线性回归。
点击添加文本
)点b2击添加文本
ax1m,1x点x21 ,击添a,m加x2nx文2本0 amnxn (, )bn
点击添加文本
建模步骤:
1.建立模型:找出目标函数及相应的限定条件
2.模型的求解:可利用Lin点go击软添件加进文行本求解模型。
3.结果分析
4.灵敏度分析:改变个别相关系数观察最优解是否会
min{D( p, k), D(q, k)}
点击添加文本
点击添加文本
步骤4:重复步骤2和步骤3,直至满足聚类为止。
对于不确定性问题,又可分为随机不确定性与模 糊不确定性两类。模糊数学就是研究属于不确定性, 而又具有模糊性量的变化规律的一种数学方法。
模
点击添加文本
糊
数 学
原理关键词: 模糊集 隶属函数 模糊关系 模糊矩阵
yi 0 1xi1 2 xi2 p xip , i 1,2,, n
其中, i 是随机误差,相互独立且满足E(i ) 0, var(i ) 2
一般非线性模型的形式: 其中, f 是一般的非线性函数, 是 p维参数向量, 是一随机 误差变量,E( ) 0, var( ) 2
,把 Gp 和 Gq 合并
步骤3:计算新类与其他类的距离 点击添加文本
D(r, k) min{d (r, k) r Gr , k Gk , k r} min{d ( j, k) j Gp Gq , k Gk , k j}
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
建模方法
拟合、规划 图论、层次分析、整数规划 图论、插值、动态规划 图论、组合数学 非线性规划、线性规划
动态规划、排队论、图论 微分方程、优化 非线性规划 非线性规划
随机模拟、图论
多目标优化、非线性规划
图论、组合优化
随机优化、计算机模拟
0-1规划、图论
8
00A DNA序列分类
模式识别、Fisher判别、人工
2020/10/21
论、0-1规划
9
08A 数码相机定位
非线性方程组、优化
08B 高等教育学费标准探讨
数据收集和处理、统计
分析、回归分析
09A 制动器试验台的控制方法分析 物理模拟问题
09B 眼科病床的合理安排
排队论优化、统计预测、
分布拟合检验
10A 储油罐的变位识别与罐容表标定 拟合、非线性方程、
2020/10/21
7
Part C:数学建模全国大赛历年题目分析
赛题
93A非线性交调的频率设计 93B足球队排名 94A逢山开路 94B锁具装箱问题 95A飞行管理问题 95B天车与冶炼炉的作业调度 96A最优捕鱼策略 96B节水洗衣机 97A零件的参数设计 97B截断切割的最优排列
98A一类投资组合问题 98B灾情巡视的最佳路线 99A自动化车床管理 92902B0/钻10/2井1 布局
神经网络
00B钢管订购和运输
组合优化、运输问题
01A血管三维重建
曲线拟合、曲面重建
01B 公交车调度问题
多目标规划
02A车灯线光源的优化
非线性规划
02B彩票问题
单目标决策
03A SARS的传播
微分方程、差分方程
03B 露天矿生产的车辆安排
整数规划、运输问题
04A奥运会临时超市网点设计 统计分析、数据处理、优化
赛题的解决依赖计算机,题目的数据较多,手工计算不能完成, 如03B;
某些问题需要使用计算机软件,如01A; 问题的数据读取需要计 算机技术,如00A(大数据),01A(图象数据,图象处理的方 法获得),04A(数据库数据,数据库方法,统计软件包)。
计算机模拟和以算法形式给出最终结果,如09B,11B。
掌握知识。作题有一个可以作的潜在假设。 ◇ 培训 增加知识,以知识为基础解题,基本是老师主导。
2、作事与实践 ◇ 作事 对象是问题,以自身知识和能力为基础,其过程是锻炼和发挥 综合素质。 ◇ 实践 作事的过程可称为实践。对问题,只能说依其能力和知识可以给
予一定程度的解决,不保证已有知识够用。 3、数模竞赛与实践
查阅文献、收集资料及撰写科技论文的文字表达能力
2020/10/21
5
Part B数学建模实践活动
3、选题过程中常遇到的困境和解决思路
◇ 学术先进性与学生的知识及技术水平的可承受性.以学生的已有知识 和应具有的能力为基础。
◇ 教师所从事专业与所选课题内容的一致性,若一致更好,若不一致, 以学生的可接受性为基础,把相应研究首先看成教学成果其次为科研 成果,接受成果所属分类分散的事实。
2013年数学建模暑假培训讲座
2020/10/21
1
浅谈数学建模
Part A 对数学建模竞赛的认识 Part B 数学建模实践活动 Part C 数学建模全国大赛历年题目分析
Part D 数据处理与数据建模方法
2020/10/21
2
Part A 对数学建模竞赛的认识
1、作题与一般的培训 ◇ 作题 利用已有知识可以解决,与知识及知识量有关,其过程有利于
2020/10/21
6
Part B数学建模实践活动
• 目标: • 1、数学建模培养的是意识与理念; • 2、数学建模活动不仅仅是一个简单的培训、
竞赛活动。----可以看做是知识积累的过程。 • (1)大学生创新计划、暑期班; • (2)发表学术论文; • (3)参加其他的竞赛活动; • (4)敢想敢做的态度。
04B电力市场的输电阻塞管理
数据拟合、优化
05A长江水质的评价和预测
预测评价、数据处理
05B DVD在线租赁
随机规划、整数规划
06A出版社书号问题
整数规划、数据处理、优化
06B Hiv病毒问题
线性规划、回归分析
07A 中国人口增长预测
微分方程、数据处理、优化
07B 乘公交,看奥运
多目标规划、动态规划、图
数模竞赛是一个实践过程,学建模实践活动
1、投入与效益 ◇ 投入 以老师和同学都要投入大量的时间和精力为前提。 ◇ 效益 投入的效益不单纯体现在知识的程度上,主要体现在使学生有作 科研的经历,使教师有机会提高学术水平,真正做到教学相长。
2、选择实践活动内容的原则 ◇ 学术的先进性 文献要新 ◇ 大学生的可接受性 思想性强,所用研究技术相对初等 ◇ 有较大的提问题空间 开放性选题,不是小品类选题
优化
10B 2010年上海世博会影响力的定量评估 数据收集和处理、
统计分析
11A城市表层土壤重金属污染分析
插值拟合、统计分析、
偏微分方程
11B 交巡警服务平台的设置与调度
优化、算法
12A 葡萄酒的评价
统计分析
12B 太阳能小屋的设计
优化、数据处理
2020/10/21
10
赛题发展的特点:
➢1.对选手的计算机能力提出了更高的要求:
◇ 学生所学专业与所选内容的一致性 不以专业知识作为选题依据,不引导其作专业研究,而是提供一个
作科学研究的机会。 ◇ 教师的知识面宽度与选题内容的丰富度的关系
显然,知识面宽时丰富度就宽,这是以教师掌握为前提的,其次, 很多时候教师要以阅历为前提判断一个选题的水平及可接受性,然后 和同学一起学习课题内容,做到教学相长。
2020/10/21
4
数学建模竞赛培养学生创新精神,提高学生综合素质
运用学过的数学知识和计算机(包括选择合适的数学 软件)分析和解决实际问题的能力
面对复杂事物的想象力、洞察力、创造力和独立进行 研究的能力 关心、投身国家经济建设的意识和理论联系实际的学风 团结合作精神和进行协调的组织能力
勇于参与的竞争意识和不怕困难、奋力攻关的顽强意志
➢ 2. 赛题的开放性增大 :题意的开放性,思路的开放性,方法 的开放性,结果的开放性。 开放性还表现在对模型假设和对数 据处理上。如10B
2020/10/21
11
➢3. 试题向大规模数据处理方向发展:
从05年开始,基本上每年都有一大数据量的赛 题;数据结构的复杂性:数据的真实性,数据 的海量性,数据的不完备性,数据的冗余性