固体物理-第五章1

合集下载

固体物理学:第五章 第一节 费米分布函数和自由电子气比热容

固体物理学:第五章 第一节 费米分布函数和自由电子气比热容
费米分布函数对所有量子态求和等于系统中总电子数,由于能 量状态是准连续分布的,可以由求和变为积分:
N(E)是能态密度函数。
二、基态(T=0K)下的分布函数 和自由电子气的费米能
在零温下,分布函数:
其中 function)
称为亥维赛单元函数(Heaviside step
在基态下,所有能量小于或等于费米能的态都被占 据,而所有能量高于费米能的态都空着,费米面就 是价电子的最高能量,有
第五章 金属电子论
§5.1 费米分布函数和自由电子气比热容
一、费米分布函数
金属的物理性质主要取决于导带电子。在单电子近似 下,导带电子可以看作是一个近似独立的粒子系统。 系统中的电子具有一系列确定的本征态,这些态由能 带理论确定。 系统的宏观状态,可以用电子在这些本征态的分布来 描述,其平衡态分布函数就是费米分布函数:
温度高于德拜温度,晶格比热容其主导作用。 只有在低温下,电子对金属的比热容才有显著贡献。
在T趋近于0时,电子比热容按照T的线性函数趋于0, 而晶格比热容按照T3趋于0:

得到一个温度
以铜为例,取 得到
低于此温度电子比热容占优势。
测金属的低温比热容,一般做Cv/T和T2的曲线,我们 将得到一个直线,斜率即系数b,截距就是γ。
,估算值和计算值只差一个常数
从5.1.27,得到自由电子气的比热容:
利用
得到
因此

与经典气体不同,电子气的比热容与温度成正比。在室温 附近,它只是经典比热的1%左右,电子对比热容的贡献 微乎其微。这是因为大多数低于费米能的电子不参与热激 发,只有费米面附近的电子才对比热有贡献。 金属的总比热容应该包括晶格比热容和电子比热容:
它给出在温度T时,一个能量为E的量子态被电子占据的概率。 EF是费米能,也就是系统的化学势。它与系统温度和电子浓度有关。

固体物理 第五章 固体电子论基础1

固体物理 第五章  固体电子论基础1
5
5.一些金属元素的自由电子密度 一些金属元素的自由电子密度
元 素 Li Na K Cu Ag Mg Ca Zn Al In Sn Bi z 1 1 1 1 1 2 2 2 3 3 4 5 n/1028m-3 4.70 2.65 1.4 8.47 5.86 8.61 4.61 13.2 18.1 11.5 14.8 14.1 rs/10-10m 1.72 2.08 2.57 1.41 1.60 1.41 1.73 1.22 1.10 1.27 1.17 1.19 rs/a0 3.25 3.93 4.86 2.67 3.02 2.66 3.27 2.30 2.07 2.41 2.22 2.25
n= z
ρNA
M
ne2E j = nev = τ 2m
设电子平均自由程为l, 设电子平均自由程为 ,则 τ
2
zρNAe2E j= τ 2mM
(A m )
2
=l v
电流密度可写成
zρNAe E l j= × 2mM v
6.电导率σ 电导率
(A m )
2
j zρNAe l σ= = × 2mM v E
2
1.必须用薛定谔方程来描述电子的运动。 必须用薛定谔方程来描述电子的运动。 必须用薛定谔方程来描述电子的运动 电子的运动不同于气体分子的运动, 电子的运动不同于气体分子的运动,不能用经典 理论来描述。 理论来描述。 2.电子的分布服从量子统计 即费米 狄拉克分布。 电子的分布服从量子统计, 即费米-狄拉克分布 狄拉克分布。 电子的分布服从量子统计 电子的分布不再服从经典的统计分布规律。 电子的分布不再服从经典的统计分布规律。 3.电子的运动是在一个周期性势场中进行的。 电子的运动是在一个周期性势场中进行的。 电子的运动是在一个周期性势场中进行的 4.电子的能级是由一些能带组成。 电子的能级是由一些能带组成。 电子的能级是由一些能带组成

固体物理 5_1简谐近似和简震坐标

固体物理 5_1简谐近似和简震坐标

Qi A sin(i t )
i 晶格振动频率
Q j A sin( j t )
mi Qj aij mi A sin( j t ) aij
只考察某一个简振坐标 Q j 的振动
代入 m i i
a Q
j 1 ij
3N
j
i
i 1,23N
所有原子共同参与的一个振动称一个振动模
3N
1 即晶格振动能量即3N个谐振子能量和 En (ns ) s 2 s 1
n 0,1,2
晶格振动能量以 s为单位变化.
5-1简谐近似和简正坐标 —— 晶格振动与晶体的热学性质
2Q 0, i 1, 2, 3,3N Qi i i
标准谐振动方程
5-1简谐近似和简正坐标 —— 晶格振动与晶体的热学性质
2Q 0, i 1, 2, 3, 3N Qi i i
结论:
标准谐振动方程
—— 3N个独立无关的方程
晶体内原子(绕平衡位置)振动可看成3N个独立谐振子的振动 方程解
假设存在线性变换 mi ui
a Q
j 1 ij
3N
1 3N 2 T Qi 2 i 1
j
1 3N 2 2 V i Qi 2 i 1
1 3N 2 1 3N 2 2 系统的哈密顿量H T V Qi i Qi 2 i 1 2 i 1
1 3N 2 1 3N 2 2 系统的拉格朗日函数 L T V Qi i Qi 2 i 1 2 i 1
对第n个原子 偏离平衡位置的位移矢量 u (t ) n
uni (i 1,2,3)
N个原子的位移矢量 ui (t )

阎守胜版固体物理习题解答--第五章

阎守胜版固体物理习题解答--第五章

5.1证明:长波下单原子链运动方程为 )2(11n n n n u u u um -+=-+β (1)可化为连续介质弹性波动方程 )()(22222tu v tu ∂∂=∂∂(2)证明:在长波极限下位移n u 随n 的变化是非常缓慢的,即可看作是连续变化的∴(1)式可改写为 )},(2),(),({),(22t x u t a x u t a x u tt x u m --++=∂∂β=}),(21),(),(21),({22222xt x u a xt x u axt x u a xt x u ∂∂+∙∂∂-∙∂∂+∙∂∂β222),(a xt x u ∙∂∂=β∴22222222),(),(),(xt x u vxt x u matt x u ∂∂=∂∂=∂∂β其中:a mv ∙=2/1)(β为声速。

5.2从有关一维双原子链晶格振动的结果,从5.1.2式出发,说明当两原子的质量M m =时结果回到一维单原子链的情形解:从一维双原子链格波的色散关系有;})]21(sin)(41[1{2/1222qa m M Mm Mmm M w+-±+=±β当m M =时有: )21c o s1(22qa mw ±=±β∴有qa m w 41cos 422β=+ (1) qa mw 41sin422β=-a q m'=21s i n42β (2) 其中q 为一维双原子链的波失aa q ππ42/2==,q '为一维单原子链的波失aq π2='5.3 设有一维双原子链,链上最近邻原子间的恢复力常数交错的等于β和β10,若两种原子的质量相等,并最近邻间距为2a ,试求在波失0=q 和aq π=处的)(q w ,并画处其色散关系曲线。

解:设n u 和n v 分别代表两种 原子的相对平衡位置的位移,M 代表每个原子的质量,则相邻两种原子的运动方程为)1110()()(1011n n n n n n n n u v v v u u v uM -+=---=--βββ (1) )11()(10)(11n n n n n n n n v u u u v v u vM -+=---=++βββ (2)设试探解为)(0nqa wt i n e u u --=,)(0nqa wt i n e v v --= 将试探波解代入方程中可得)1110(2u vev Mu w iqa-+=--β,)1110(2v ueu Mv w iqa-+=-β)10()11(0)11()10(22=++-=-++∴-u e v Mwu Mwv e iqaiqaββββ要想v u ,有解则须系数行列式为零可得:})]cos 1(20121[11{2/12qa mw--+=±β±w 分别对应于光学支与声学支当0=q 时有)22(2/1==-+w Mw β当aq π=时有2/1)20(M w β=+2/1)2(Mw β=-所以其色散关系如图:5.5 对于金属Al 计算在什么温度下晶格比热和电子比热相等 解:由德拜理论晶格比热为3411)(512DB T k n CvΘ=π,其中1n 为晶体的原子浓度,DΘ为德拜温度,Al 的德拜温度为385K 电子比热为2Cv FBT T k n 222π=其中2n 为晶体的电子浓度因为一个Al 原子可提供3个电子,所以晶体的电子浓度为329323232)(108.1)(108.11002.6277.23--⨯=⨯=⨯⨯⨯==m cm mZ n m ρKk T J mk mn k BFF F FF 518221103/12210357.1,10873.12,1075.1)3(⨯==⨯==⨯==--εεπ由21Cv Cv=可得:5.16K)8T 5(T 2/12F 3D=Θ=π5.7 考虑一个全同原子组成的平面方格子,用m l u ,记第l 列,第m 行的原子垂直于格平面的 位移,每个原子的质量为M ,最近邻原子的力常数为β (1) 证明运动方程为: )}2()2{()(,1,1,,,1,12,2m l m l m l m l m l m l m l u u u u u u dtu d M -++-+=-+-+β证明:系统总的势能为: })(){(212,1,21,,,m l m l m l ml m l u u u u v ++-+-=∑β(1)由运动方程ml m l u v uM ,,∂∂-= 若只考虑最近邻的原子则有)}2()2{(,1,1,,,1,1,m l m l m l m l m l m l m l u u u u u u uM -++-+=-+-+β (2) (2) 设解的形式为)](exp[)0(,wt b mq a q i u u y x m l -+=这里a 是最近邻原子的间距,证明运动方程是可以满足的。

固体物理第五章(1)

固体物理第五章(1)

理想晶体 — 晶格,等效势场V(r)均具有周期性 晶体中的电子在晶格周期性的等效势场中运动
波动方程
2 2 [ V ( r )] E 2m
晶格周期性势场
V ( r ) V ( r Rn )
§5.2 周期势场下电子波函数的一般特性:布洛赫定理
布洛赫定理:当势场 性质
2 d 2 H U ( x) 2 2m dx
2 d 2 2nx U 0 U n exp i 2 2m dx a n 0
Bloch函数的性质
Bloch函数:
ik r k ( r ) e uk ( r )
(1)行进波因子
ik r 表明电子可以在整个晶体中运动的,称为共有化电
e
子,它的运动具有类似行进平面波的形式。
(2)周期函数 个原胞到下一个原胞作周期性振荡,但这并不影响态函数具有行进 波的特性。
能带理论的基本近似和假设:
2) 平均场(单电子)近似: 多电子问题简化为单电子问题,每个电子是在固定的离子势场以及其它电 子的平均场中运动
2 1 e i ( r i ) 2 4 0 r r ij i i j
其中 (代表电子i与其它 r ) 电子的相互作用势能.
i i
此外:
布洛赫函数
晶格周期性函数
uk ( r R) uk ( r )
布洛赫定理的证明
晶格平移任意格矢量,势场不变 在晶体中引入描述这些平移对称操作的算符 T f (r ) f (r a ) 1, 2, 3 f (r ) 为任意函数 (1)各平移算符之间对易 T T f (r ) T f (r a ) T T f (r )

固体物理第五章习题及答案

固体物理第五章习题及答案

.
从上式可以看出,当电子从外场力获得的能量又都输送给了晶格时, 电子的有效质量 m* 变 为 . 此时电子的加速度
a= 1 F =0
m*
,
即电子的平均速度是一常量. 或者说, 此时外场力与晶格作用力大小相等, 方向相反. 11. 万尼尔函数可用孤立原子波函数来近似的根据是什么?
[解答] 由本教科书的(5.53)式可知, 万尼尔函数可表示为
m* = 1 m 1 + 2Tn
Vn <1.
10. 电子的有效质量 m* 变为 的物理意义是什么?
[解答] 仍然从能量的角度讨论之. 电子能量的变化
(dE)外场力对电子作的功 = (dE)外场力对电子作的功 + (dE)晶格对电子作的功
m*
m
m
=
1 m
(dE ) 外场力对电子作的功
− (dE)电子对晶格作的功
i 2 nx
V (x) = Vne a
n
中, 指数函数的形式是由什么条件决定的?
[解答] 周期势函数 V(x) 付里叶级数的通式为
上式必须满足势场的周期性, 即
V (x) = Vneinx
n
显然
V (x + a) = Vnein (x+a) = Vneinx (eina ) = V (x) = Vneinx
Es (k)
=
E
at s
− Cs

Js
e ik Rn
n
即是例证. 其中孤立原子中电子的能量 Esat 是主项, 是一负值, − Cs和 − J s 是小量, 也是负 值. 13. 紧束缚模型下, 内层电子的能带与外层电子的能带相比较, 哪一个宽? 为什么?

固体物理:第五章 晶体中电子能带理论

固体物理:第五章 晶体中电子能带理论

电子在一个具有晶格周期性的势场中运动
V r V
r
Rn
其中 Rn 为任意格点的位矢。
2 2 2m
V r
E
2. 布洛赫定理
当势场具有晶格周期性时,波动方程的解具有如下性质:
(
r
Rn
)
eikRn
(
r
),
其中 k
为电子波矢,Rn
n1 a1 n2 a2 n3 a3
是格矢。
个能级分裂成N个相距很近的能级, 形成一个准连续的能带。 N个原子继续靠近,次外壳层电子也开始相互反应,能级 分裂成能带。
能带理论
能带论是目前研究固体中的电子状态,说明固体性质最重 要的理论基础。
能带理论是用量子力学的方法研究固体内部电子运动的理 论。它曾经定性地阐明了晶体运动的普遍特点,并进而说 明了绝缘体与半导体、导体的区别所在,解释了晶体中电 子的平均自由程问题。
原子中的电子处在不同的能级上,形成电子壳层
原子逐渐靠近,外层轨道发生电子的共有化运动——能级分裂
原子外壳层交叠的程度最大,共有化运动显著,能级分裂的很厉害, 能带很宽;
原子内壳层交叠的程度小,共有化运动很弱,能级分裂的很小,能 带很窄。
N个原子相距很远时,相互作用忽略不计。 N个原子逐渐靠近,最外层电子首先发生共有化运动,每
第五章 晶体中电子 能带理论
表征、计算和实验观测电子结构是固体物理学的核心问题; 这是因为原则上研究电子结构往往是进一步解释或预言许 多其他物理性质的必要步骤。
晶体电子结构的内涵是电子的能级以及它们在实空间和动 量空间中的分布。
玻尔的原子理论给出这样的原子图像:电子在一些特定的可能轨道 上绕核作圆周运动,离核愈远能量愈高,当电子在这些可能的轨道 上运动时原子不发射也不吸收能量,只有当电子从一个轨道跃迁到 另一个轨道时原子才发射或吸收能量,而且发射或吸收的辐射是单 频的。

固体物理答案第五章1

固体物理答案第五章1
A4 B4
a∗
kx
第二区
作为原点, (2) 取任意倒格点 作为原点,由原点至其最近邻 Ai 、次近邻 ) 取任意倒格点o作为原点 的连线的中垂线可围成第一、第二布里渊区(如上图 如上图), Bi 的连线的中垂线可围成第一、第二布里渊区 如上图 ,这 是布里渊区的广延图。如采用简约形式,将第二区移入第一区, 是布里渊区的广延图。如采用简约形式,将第二区移入第一区, 其结果如图所示。 其结果如图所示。
当每个原胞有两个电子时, 当每个原胞有两个电子时,晶体电子的总数为
r r rr r r 1 ik⋅Rl at at ψ k,r = ∑e ϕα k − Rl N Rl
( )
(
)
r 一维晶体情况下, 一维晶体情况下,晶格常数 a ,Rl = na
所以
r r r 1 ψ k, x = ∑ e ikna ϕat ( x − na ) α n N
r r 1 −α x ϕ (x) = e α at
a i (k x − k y ) i a (k x + k y ) kza kza 2 2 cos cos +e e 2 2 = E sat − A − 2J a i (− k x − k y ) i a (− k x + k y ) kza kza 2 2 cos cos +e + e 2 2
Eg = 2Vn
是周期势场V(x)付里叶级数的系数,该系数可由式 付里叶级数的系数, 其中 Vn 是周期势场 付里叶级数的系数
1 Vn = ∫ V ( x )e a −a 2
a 2
−i
2π nx a
dx
求得。 求得。 第一禁带宽度为
1 E g1 = 2 V1 = 2 ∫ V ( x )e a −a 2

上海师大固体物理 第五章(1)Bloch定理

上海师大固体物理 第五章(1)Bloch定理







ˆ T ˆ U H e ee

r i r j U en r i R n



绝热近似对能级影响在10-5 eV
2. Hatree-Fock平均场近似(单电子近似)
严格来说,体系中的每一对电子之间都有相互作用。 平均场近似是指对于单个电子,把其它电子对它的作用看成一个平均 场,即假定每个电子所处的势场都相同,使每个电子的电子间相互作 用势能仅与该电子的位置有关,而与其它电子的位置无关。
周期势场近似:周期场中的单电子运动问题
固定的离子势场看作周期势场,电子的平均场是常势场。 在单电子近似和晶格周期势场近似下,把多电子体系问题简化为在 晶格周期势场下的单电子定态问题,即
2 2 V r r E r 2m
ˆ (1)引入平移对称算符 T ( R n )
• 平移对称操作算符:代表平移格式的对称操作,任意一 个函数 f r 经平移算符作用后变成
ˆ T Rn f r f r Rn



ˆ f ( r )可以是V ( r ), ( r ),H ( r ) r i , E Ei ,代入薛定谔方程, 由分离变量法,令 r1 r i i



ˆ ri E ri H i i i i


所有电子都满足薛定谔方程,可略去下标。只要解得 i r i , Ei ,便可得
也是严
格周期性的,
V r V r R n


平移对称性是晶体单电子势最本质的特点
绝热近似:多粒子的多体问题一种粒子的多电子问题

固体物理第五章

固体物理第五章

三维晶体中单个电子在周期性势场中的运动问题处理 能量本征值的计算 能量本征值 选取某个具有布洛赫函数形式的完全集合 布洛赫函数 晶体中的电子的波函数按此函数集合展开 将电子的波函数代入薛定谔方程 确定展开式中的系数应满足的久期方程 求解久期方程得到能量本征值 电子波函数的计算 根据能量本征值确定电子波函数展开式中的 系数得到具体的波函数 在不同的能带计算模型和方法中采取的理论框架相 同,只是选取不同的函数集合
b1 , b2 , b3 ——倒格子基矢
满足 ai ⋅ b j = 2πδ ij
2π i
λ1 = eik ⋅a , λ2 = eik ⋅a , λ3 = eik ⋅a 平移算符的本征值
1 2
3
平移算符的本征值 λ1 = e
ik ⋅a1
, λ2 = eik ⋅a2 , λ3 = eik ⋅a3
ˆ ( R ) = T n1 (a )T n2 (a )T n3 (a ) 作用于电子波函数 ˆ ˆ ˆ 将T n 1 1 2 2 3 3
电子波函数
uk + Kn (r ) = =
n
=e
ik ⋅ Rn
- - -K h ⋅ Rn = 2πμ

h
a ( k + K n + K h )e i K h ⋅ r a ( k + K l )e
n

l
i ( K 43; K ( r ) = e i(k + K
=
)⋅ r
uk + Kn (r )
能带理论——单电子近似的理论
将每个电子的运动看成是独立的在一个等效势 运动 场中的运动 单电子近似 最早用于研究多电子原子 哈特里-福克自洽场方法 自洽场 能带理论的出发点 电子不再束缚于个别的原子,而在整个固体内运动 个别的原子 共有化电子

固体物理第五章1

固体物理第五章1

不 足 之 处
既然自由电子参加输运过程,为什么对比热
的贡献这么小呢,这是经典的自由电子理论无 法解释的。
School of Materials Science and Engineering / WHUT
第五章 固体电子论基础
5.1 金属中自由电子经典理论 5.2 自由电子的量子理论
5.3 周期性势场中电子运动的模型
理 论 内 容
金属键的特征是没有方向性和饱和性,结构上为密堆积, 具有高的配位数和大的密度。
School of Materials Science and Engineering / WHUT
5.1金属中自由电子经典理论
Drude--Lorenz自由电子气模型
金属中存在大量可自由运动的电子,其行为类似理想气体 (自由电子气)。导电( 电子沿外电场的漂移引起电流 )、 导热( 温度场中电子气体的流动伴随能量传递 )与电子运 动相关。
School of Materials Science and Engineering / WHUT
前 提 条 件
5.1金属中自由电子经典理论
理论的内容
例如:金属Li 1s22s1 2s上的电子就为离域电子,(原子按密集 六角堆积) 金属Na 1s22s22p63s1 3s上的电子就为离域电子,(原子按密集 六角堆积) 金属中价电子的离域,就好像在金属中形成一个负电荷的 “海”或“电子云雾”,另一方面,由于价电子的离域,在金 属晶体的格点上,留下了由原子核和内层电子所构成的正离子 即离子实(离子实:失去价电子后的原子核及其它核外电子) 。金属正离子本应互相排斥,但价电子形成的电子海把它们紧 紧的结合在一起,所以可以设想金属中是金属离子分享自由的 价电子,根据这种设想可导出金属键的模型。

固体物理学第五章

固体物理学第五章

剪切应力:
F' / S'
F F cos( ) F sin 2
'

S ' S / cos
因此
F / S sin cos
当角度为45 度时,剪切力最大,滑移容易在这一平面上发生。
5.4 滑移与位错
范性形变对应于晶体不同部分之间沿滑移面发生相对移动,


对于螺位错, 其滑移面 不唯一确定,而与外加切应 力有关。使螺位错滑移,外 b

加切应力则平行于位错线。

对于棱位错,位错线与滑移方向垂直 对于螺位错,位错线与滑移方向平行
几乎所有晶体中都存在位错,正是由于这些位错的 运动导致金属在很低的外加切应力的作用下就出现滑移。 因此,晶体中位错的存在是造成金属强度大大低于理论 值的最主要原因。 不含位错的金属晶须的确具有相当接近于理论值的强度。
第五章 固体的机械性质
5.1 晶体结合的基本类型
一、离子晶体
正负离子的电子壳层饱和,电子云分布基本上球对称, 满足球密堆积原则。 结合能 ~ 150 kcal/mol
典型晶体:NaCl、LiF等
二、共价晶体 共价结合的特征是具有方向性和饱和性。电子云分 布不是球对称的,不满足球密堆积原则。 共价结合的键合能力相当强,共价晶体一般硬度高, 熔点高。 结合能:~150 kcal/mol 典型晶体:金刚石、SiC等
点缺陷
空位、填隙原子、色心、替位式杂质。。。
面缺陷
小角晶界、堆垛层错
作业:
1、固体的结合类型有几种,其特点各是什么?
2、在晶体缺陷的分类中,有哪几种位错?有什么区别?
3、晶体缺陷可以分成几类,并各自举例说明。

固体物理学课件第五章

固体物理学课件第五章

于是:
A0ei( k )c

B ei( k )c 0
C e D e ( ik )(ac) 0
( ik )(ac)
0

C e( ik )b 0

D0e( ik )b
《固体物理学》 微电子与固体电子学院
23
5.1 布洛赫(Bloch)定理
同理,在x=c处,由 du 连续的条件可得: dx
由布洛赫函数可得

k r Rn

e
i

k Rn
(r )
所以,布洛赫定理可表述为:在以布拉菲格子原胞为周期 的势场中运动的电子,当平移晶格矢量Rn时,单电子态波函 数只增加相位因子exp(ik∙Rn)。
《固体物理学》 微电子与固体电子学院
11
5.1 布洛赫(Bloch)定理
一维周期性方势场,势阱的势能为零,势垒高度V0势阱的宽 度是c,相邻势阱之间的势垒宽度为b,周期为 a=b+c,V0足 够大,b 足够小,乘积为有限值。当电子能量 E 小于V0时, 电子有几率从一个势阱穿到另一个势阱中去。
V0
c
b
x
-a
-b 0 c a
《固体物理学》 微电子与固体电子学院
13
5.1 布洛赫(Bloch)定理
5.1 布洛赫(Bloch)定理
5.1.1 基本概念
实际晶体是由大量电子和原子核组成的多粒子体系。由于 电子与电子、电子与原子核、原子核与原子核之间存在着 相互作用。一个严格的固体电子理论,必须求解多粒子体 系的薛定谔方程。但求解这样复杂的多粒子体系几乎是不 可能的,必须对方程简化,为此能带理论作了一些近似和 假定,将多体问题化为单电子问题。

固体物理讲义第五章

固体物理讲义第五章

第五章晶体中的缺陷主要内容介绍晶体缺陷及其运动的基本知识●缺陷的定义、分类和运动●扩散的宏观定律和微观机制缺陷的定义和分类●原子排列具有严格周期性的晶体称为理想晶体,实际的晶体中总是存在各种缺陷。

●缺陷是对原子排列严格周期性的破坏。

●缺陷对晶体的性质有重要影响。

●根据缺陷的几何尺度,缺陷分为三类:点缺陷、线缺陷、面缺陷(在前面的讨论中,我们一直假定晶体是理想的,即原子或离子的排列具有严格的周期性。

因此晶体具有平移不变性,或称为长程有序(long-range order)但实际上,缺陷总是存在的,产生缺陷的原因或是温度引起的热涨落使原子离开格点、或是化学组分与理想晶体偏离。

本章我们讨论静态缺陷。

晶格振动导致原子瞬间位置对平衡位置的偏离,但从时间的平均上看并不破坏晶体的长程有序,对晶格振动和格波的讨论仍以此为基础)5.1 点缺陷缺陷尺度只有一个或几个原子大小主要形式有:空位、间隙原子、杂质原子、色心空位、间隙原子◆格点缺少原子,称为空位◆间隙位置中有原子,称为间隙原子空位和间隙原子产生的原因空位、间隙原子是由于原子的热运动而产生的,因而又称为热缺陷空位和间隙原子的产生方式●体内产生●与表面交换原子费伦克耳缺陷肖特基缺陷(空位)热缺陷的运动热缺陷是处在不断的产生和消失过程中空位和间隙原子不停地作做无规则的热运动,其位置不断发生变化.在运动中,间隙原子与空位相遇复合而消失在一定温度下,产生和消失达到平衡,晶体内空位和间隙原子的浓度将保持稳定 热缺陷的平衡数目平衡时单位体积中空位的数目单位体积中格点的数目 形成一个空位所需的能量平衡时单位体积中间隙原子的数目单位体积中间隙的数目 形成一个间隙原子所需的能量 空穴和间隙原子的浓度和运动都依赖于温度。

在一般情况下,空位是晶体中主要的热缺陷。

(这些公式的重要性在于说明:1、晶体的无序从本质上讲是不可避免的,由于u 并非无穷大,在T 不等于零的有限温度下,必定有空位和间隙原子存在,尽管其数目未必和统计平衡值一致,例如从高温迅速冷冻到室温,可使高温下的点缺陷数:冻结“下来,数目远大于平衡值。

固体物理第五章

固体物理第五章

l1 l3 l2 简约波矢 k b1 b2 b3 N1 N2 N3
第一布里ห้องสมุดไป่ตู้区体积
l1 l3 l2 简约波矢 k b1 b2 b3 N1 N2 N3
—— 在 空间中第一布里渊区均匀分布的点
每个代表点的体积
Vc 状态密度 ( 2 ) 3
(2 ) N 简约布里渊区的波矢数目 N 3 (2 )
三维晶体中单个电子在周期性势场中的运动问题处理 能量本征值的计算 —— 选取某个具有布洛赫函数形式的完全集合 晶体中的电子的波函数按此函数集合展开 —— 将电子的波函数代入薛定谔方程 确定展开式中的系数应满足的久期方程 求解久期方程得到能量本征值
三维晶体中单个电子在周期性势场中的运动问题处理 电子波函数的计算
实际上,受晶体的 离子和电子产生的 晶体势场的影响.
能带理论 —— 研究固体中电子运动的主要理论基础 能带理论 —— 定性阐明了晶体中电子运动的普遍 性的特点 —— 说明了导体、非导体的区别 —— 晶体中电子的平均自由程为什么远大于原子的 间距 —— 半导体理论问题的基础,推动了半导体技术的 发展
—— 根据能量本征值确定电子波函数展开式中的系数
得到具体的波函数
—— 在不同的能带计算模型和方法中 采取的理论框架相同,只是选取不同的函数集合
能带理论的局限性 一些过渡金属化合物晶体 —— 价电子的迁移率小 自由程与晶格间距相当, 电子不为原子所共有 周期场失去意义,能带理论不适用了 非晶态固体 —— 非晶态固体和液态金属只有短程有序 两种物质的电子能谱显然不是长程序的周期场的结果
第一节 布洛赫定理
布洛赫波
晶体电子在规则排列的正离子势场中运动, 势场具有晶格周期性. 周期场中运动的单电子的波函数不再是平面波, 而是调幅平面波,其振幅不再是常数。

固体物理第五章

固体物理第五章

§ 5.6 载流子的扩散运动主要内容:扩散运动非平衡载流子光照)1()(dx x p d Δ浓度梯度=扩散流密度S p :粒子数)2()(dx x p d D S p p Δ−=扩散定律负号高流向低dx x dS p /)()3()()(22dx x p d D dx x dS p p Δ=−单位时间单位体积内积累的空穴数等于单位时间单位体积内因复合而消失的空穴数。

τ/)(x p Δ)4()()(22τx p dx x p d D p Δ=Δ稳态扩散方程称为空穴扩散长度。

=其中τp p p p D L L x B L x A x p )5()/exp()/exp()(+−=Δ扩散长度寿命。

0)()(,00)(,p x p x x p x Δ=Δ==Δ∞=)7()/(exp )()(0p L x p x p −Δ=Δ扩散长度(1)样品很厚)8()0()0()()/exp()()(0p L D S x p L D L x p L D dx p d D x S p pp pp p p p p p Δ=Δ=−Δ=Δ=-向内扩散的空穴流大小就像非平衡空穴以D p /L p 的速度向内运动()()()()pp p L dx L x dx L x x dx x p dx x p x x =−−=ΔΔ=∫∫∫∫∞∞∞∞−0000exp exp(2)样品宽W,在另一端将非平衡载流子全部引出0)()(,00,p x p x p W x Δ=Δ==Δ=)9()/(]/)[()()(0Lp W sh Lp x W sh p x p −Δ≈Δ)10()/1()()(0W x p x p −Δ≈ΔW x )(x p Δ0)(p ΔWD p S pp 0)(Δ=扩散流密度为:()Wp dx x p d 0)(Δ−=Δ保证大的基区输运系数,获得较大的电流放大系数dxx n d D S nn )(Δ−=τ)()(22x n dx x n d D n Δ=Δx n d dx qD p)(Δ电流密度n p Δ∇Δ∇及p D S p p Δ∇−=pp p p D τ/2Δ=Δ∇pqD J p p Δ∇−=扩)(§ 5.7 载流子的漂移运动,爱因斯坦关系式Enq J Epq J n n pp μμ==漂漂)()(注入电子扩散电流密度空穴扩散电流密度扩扩dxx n d qD J dx x p d qD J nn pp )()()()(Δ=Δ−=电子、空穴漂移电流的方向均与电场方向一致!!E(J p )扩(J p )漂(J n )扩(J n )漂-++++++++++++++++dxx n d qD E nq J dx x p d qD E pq Jnn npp p)()(Δ+=Δ−=μμ漂移项扩散项非均匀掺杂n 平衡时电子扩散电流密度空穴扩散电流密度扩扩dxx dn qD J dx x dp qD J nn pp )()()()(00=−=电离杂质不能移动,静电场E ,产生漂移电流Enq J E pq J n n p p μμ==漂漂)()(++++++++++++++++电场方向)()(0)()(0000==dxx dn qD E q x n J dx x dp qD E q x p Jn n np p p+=−=μμdxx dn D E x n dx x dp D E x p nn pp )()()()(0000−==μμ由于存在电场,半导体内电势各处不等)2()(dxx dV E −=→半导体处于热平衡)3()()()()]([exp )(00000dxx dV T k q x n dx x dn T k x qV E E N x n c F c =⇒⎭⎬⎫⎩⎨⎧−−=爱因斯坦关系式上式适于非简并半导体平衡和非平衡载流子。

固体物理第五章

固体物理第五章

据特鲁德模型,应用经典理论很容易对金属的一些物理性质作
出解释并在某些方面获得成功。
1 电导率
没有外电场作用时,电子的运动是无规的,不形成电流.在 静电场E作用下,电子沿电场方向加速,同时又不断地和离子实 碰撞而改变运动方向。
按弛豫时间近似,电子沿电场方向获得平均速度v(漂移速度)为
v
eE
m
电流密度为
以外的状态,费米面内的一些状态便空了出来,这时电子的分 布情况与基态不同。下图中分别画出f(E,T)和N(E,T)随E的变化 曲线,阴影部分表示T = 0K 时的分布情况,当温度从0上升至T 时,区域1中的电子激发至区域2
1
g(E) CE 2
f (E,T)
1
exp[(E ) / kBT ] 1
米面是球面,其半径为kF。T=0K时费米面内所以状态都被电
子占满,费米面外状态是空的。
金属:n~1029/m3, kF ~ 1010/m, EF ~ 10 eV
基态时自由电子气的总能量为
NE
EF
g(E)EdE
EF
CE
0
0
1
2 EdE
2 5
C
5
CEF 2
V
2
2
(
2m 2
)
3 2
2C 5
EF 32 EF
解释金属的物理性质
采用自由电子模型:
不考虑晶格周期场对电子的作用; 不考虑电子之间的相互作用;
简单地把金属中的价电子看成封闭在晶格中的自由电子气体。
在此基础上逐步发展为现代的固体电子论 : 考虑电子受晶格周期场的作用; 也考虑电子之间的相互作用;
在研究对象上也从金属扩展至所有类型的固体,从三维固体 扩展至低维固体,从晶体扩展至非晶体。

固体物理第五章 课件

固体物理第五章 课件

3、布里渊区的特点 布里渊区的特点 (1)空间点阵相同 ) 倒格子点阵相同 布里渊区形状相同 (2)在同一倒格子点阵中,各布里渊区 )在同一倒格子点阵中, 的形状不同, 体积”相同, 的形状不同,但“体积”相同,都 等 于倒格子元胞的体积。 于倒格子元胞的体积。
正格子) 一、二维正方格子(正格子) 正格子
禁带宽度为
Eg = 2 Vn
晶体能带结构的特点
(1)在周期性势场中,电子有带状结 构的能 )在周期性势场中, 允带与禁带交替排列; 带,允带与禁带交替排列; (2) E 是 K 的偶函数 E(K) = E(-K); ; (3)能量越高,允带越宽; )能量越高,允带越宽; (4)禁带宽度为 Eg = 2 Vn ; ) (5)能量是波矢的周期函数 )
i
ik Rn
a i k xi +k y j +kz k i k 2 i k xi +k y j +kz k
=e
a i (kx kz ) 2 i a (kx kz ) 2
ik Rn
) a (i k ) 2
=e
①②③④
∑ e
ik Rn
=e
i
a (kx +kz ) 2
+e
i
a (kx +kz ) 2
例:一维周期势场为 1 mW 2 [b 2 ( x na ) 2 ] 当na b ≤ x ≤ na + b V ( x) = 2 0 当( n 1)a b ≤ x ≤ na b 如图, 求第一, 如图,其中 a = 4b, 求第一,第二禁带宽度 。
V ( x)
o b
a
2a
3a
x
En = 2 Vn 1 Vn = ∫ V ( x) e a a/2 Eg1 = 2 V 1 1 mW2 2 2 i 2π n x =2 [b x ]e a dx ∫ 4b b 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
School of Materials Science and Engineering / WHUT
5.1金属中自由电子经典理论
对金属机械性能的解释
正离子间可流动的“电子海”,对原子移动时克服势垒起到“调剂” 作用。因此,原子之间(主要是密置层之间)比较容易相对位移,从而 使金属具有较好的延展性和可塑性。
School of Materials Science and Engineering / WHUT
5.1金属中自由电子经典理论
电子←→电子之间的相互碰撞(作用)忽略不计。
理 论 内 容
电子气体通过与离子实的碰撞而达到热平衡。电子运动 速度分布服从Maxwell-Boltzman经典分布(就是微观状 态数最大的那种分布,也称最可几分布பைடு நூலகம்)。
成 功 之 处
定性解释离子化合物与金属合金的差别
判断是否满足定比与倍比定律所反映的规律性。
金属的基本性质的定性解释
例:金属块体的不透明性( 不透过光,即光被吸收 )和金属光泽 (发射光,入射光被金属表面电子吸收、电子吸收入射光波后产生强烈 震动,而发出光波。)
School of Materials Science and Engineering / WHUT
理 论 内 容
金属键的特征是没有方向性和饱和性,结构上为密堆积, 具有高的配位数和大的密度。
School of Materials Science and Engineering / WHUT
5.1金属中自由电子经典理论
Drude--Lorenz自由电子气模型
金属中存在大量可自由运动的电子,其行为类似理想气体 (自由电子气)。导电( 电子沿外电场的漂移引起电流 )、 导热( 温度场中电子气体的流动伴随能量传递 )与电子运 动相关。
部分能量交给晶格,本身仅在原有热运动的平均速度之上 获得一个有限的附加漂移速度,故产生电阻。)
School of Materials Science and Engineering / WHUT
5.1金属中自由电子经典理论
对金属电导率的解释
电导率与热导率之间的关系
成 功 之 处
维德曼夫兰兹经验定律认为:金属的热导率与电导率之 比正比于温度,其中比例常数称为洛仑兹(Lorenz)常量, 它的值不依赖于具体的金属,即:
理 论 内 容
电子气体除与离子实碰撞瞬间外,其它时间可认为是自由 的。两次连续碰撞之间的时间称平均自由时间
弛豫时间: 指外场作用下体系偏离平衡状态,在去掉外场 后恢复平衡态的时间。 平均自由时间是分子运动论中的概 念,两种等同是一种近似。在一定条件下成立,(例弹性 散射,散射各向同性等,近似便于处理。)
School of Materials Science and Engineering / WHUT
前 提 条 件
5.1金属中自由电子经典理论
理论的内容
例如:金属Li 1s22s1 2s上的电子就为离域电子,(原子按密集 六角堆积) 金属Na 1s22s22p63s1 3s上的电子就为离域电子,(原子按密集 六角堆积) 金属中价电子的离域,就好像在金属中形成一个负电荷的 “海”或“电子云雾”,另一方面,由于价电子的离域,在金 属晶体的格点上,留下了由原子核和内层电子所构成的正离子 即离子实(离子实:失去价电子后的原子核及其它核外电子) 。金属正离子本应互相排斥,但价电子形成的电子海把它们紧 紧的结合在一起,所以可以设想金属中是金属离子分享自由的 价电子,根据这种设想可导出金属键的模型。
f E e
E EF / kT
School of Materials Science and Engineering / WHUT
5.1金属中自由电子经典理论
经典自由电子理论的成功之处 对金属电导率的解释
成 功 之 处
电导率有限性 金属的导电可理解为金属的自由电子在外加电场的 影响下,沿外加电场的电势梯度定向流动,形成电流。 一般情况下金属是良导体,可认为没有电阻存在。但实 验事实告诉我们,随温度的上升金属的电导率下降。
H L T
School of Materials Science and Engineering / WHUT
5.1金属中自由电子经典理论
对金属电导率的解释
电导率与热导率之间的关系
这个经验规律是布洛赫电子模型的基础,结合Boltzman 输运方程 可知: 2 *
成 功 之 处
ne EF / m
School of Materials Science and Engineering / WHUT
5.1金属中自由电子经典理论
对金属电导率的解释
电导率有限性 当温度升高的时候,金属电导率的变化主要取决于电 子运动速度。因为晶格中的原子和离子不是静止的,它们
成 功 之 处
在晶格的格点上作一定的振动,且随温度升高这种振动会 加剧,正是这种振动对电子的流动起着阻碍作用,温度升 高,阻碍作用加大,电子迁移率下降,电导率自然也下降 了。( 晶格和缺陷对电子的散射,电子将电场中获得的大
5.2 自由电子的量子理论
5.2.1 索莫非电子模型
5.2.2 态密度分布函数
5.2.3 电子分布与费米能级
5.2.4 索莫非电子比热
School of Materials Science and Engineering / WHUT
5.2.1 Somerfield 电子模型
1928年由Somerfield提出,沿用了Drude—Lorenz的模型 思想。
School of Materials Science and Engineering / WHUT
5.1金属中自由电子经典理论
理论的内容
德鲁特和洛伦茨提出:在决定金属固体的导电、导热、 金属强度、硬度等特性方面,不是金属原子中所有的电子都 起着同样的作用,只是外层的价电子起主要作用。
这个理论把金属中的电子分为两类: 一类是内层电子,它们处在原子核束缚较强的状态,与单 独原子中的电子差别不大,基本上具有“原子运动的特 征”,在比较狭窄的区域内运动,称它们为“定域电子”; 另一类是价电子,它们受原子核束缚较弱,可以脱离原子 核,在整个晶体中进行离域的“共有化运动”,称这些比 较自由的电子为“离域电子”或“自由电子”。
5.6 电子运动的性质
School of Materials Science and Engineering / WHUT
第五章 固体电子论基础
5.1 金属中自由电子经典理论 5.2自由电子的量子理论
5.3 周期性势场中电子运动的模型
5.4 能带理论
5.5 能带的几种计算方法
5.6 电子运动的性质

2

H nk 2 EF T / m* 3
k T 3 e H
2 2
其中τEF为EF(费密能级)附近电子的弛豫时间(偏离平衡态恢复 所需要的时间);m*:电子有效质量(表明周期性势场对电子运动的 影响),同实验值符合的越好,表明越精确。 采用量子理论及周期性 势场理论都可以得到相同结论。
5.4 能带理论
5.5 能带的几种计算方法
5.6 电子运动的性质
School of Materials Science and Engineering / WHUT
5.2 自由电子的量子理论
5.2.1索莫非电子模型
5.2.2 态密度分布函数
5.2.3 电子分布与费米能级
5.2.4 索莫非电子比热
School of Materials Science and Engineering / WHUT
School of Materials Science and Engineering / WHUT
5.1金属中自由电子经典理论
无法解释金属的比热问题
根据杜隆——珀替定律,单位体积内含有N个离子的 晶体,不论是有自由电子的金属,还是没有自由电子的 绝缘体,它们在高温下的比热都趋于常数3Nk,这里看不 出自由电子的贡献。如果假设自由电子是理想气体(经 典理论给出的),服从经典的统计规律。 能量均分原理:每一粒子在任一自由度的平均能量都是1/2kT 晶格振动包括动能和势能,所以总能量是:
《固 体 物 理》
教 师: 周静 祁琰媛
学生专业:材料学院材料物理
School of Materials Science and Engineering / WHUT
第五章 固体电子论基础
5.1 金属中自由电子经典理论 5.2 自由电子的量子理论
5.3 周期性势场中电子运动的模型
5.4 能带理论
5.5 能带的几种计算方法
School of Materials Science and Engineering / WHUT
5.2.1 Somerfield 电子模型
方盒势阱中运动的粒子
假设金属为边长为L的立方体,电子势能为:
理 论 推 导
V ( x, y, z ) 0 V ( x, y, z )

0 x, y, z L x, y, z 0 x, y, z L
模 型 基 本 思 路
金属中价电子可视作理想气体,相互间没有相互作用。 离子实所产生的周期性势场基本被公有化电子所掩盖, 即电子各自独立地在平均势场为零的势场中运动。 这一假设需修正,存在局部性 在金属内部电子运动是自由的。在金属表面电子被反射 若要使电子逸出体外,则需对其做功。例电场、加热等。 电子脱离金属所需的能量称逸出功 所以,电子运动的能量状态可用在一定深度势阱中运 动粒子的能量状态来描述。
School of Materials Science and Engineering / WHUT
前 提 条 件
5.1金属中自由电子经典理论
相关文档
最新文档