2014组合数学试题及答案

合集下载

2014年全国高考理科数学试题分类汇编七、排列组合和二项式定理(逐题详解)

2014年全国高考理科数学试题分类汇编七、排列组合和二项式定理(逐题详解)

2
A.60 种 B.70 种 C.75 种 D.150 种
【答案】C
【解析】根据题意,先从 6 名男医生中选 2 人,有 C62=15 种选法, 再从 5 名女医生中选出 1 人,有 C51=5 种选法, 则不同的选法共有 15×5=75 种;故选 C
(2x 7.【2014 年湖北卷(理 02)】若二项式
而红球篮球是无区别,黑球是有区别的, 根据分布计数原理,第一步取红球,红球的取法有(1+a+a2+a3+a4+a5), 第二步取蓝球,有(1+b5), 第三步取黑球,有(1+c)5, 所以所有的蓝球都取出或都不取出的所有取法有(1+a+a2+a3+a4+a5)(1+b5)(1+c)5,
4.【2014
D.210 =20.f(3,0)=20;
含 x2y1 的系数是
=60,f(2,1)=60;
含 x1y2 的系数是
=36,f(1,2)=36;
含 x0y3 的系数是
=4,f(0,3)=4;
∴f(3,0)+f(2,1)+f(1,2)+f(0,3)=120.故选:C
11.【2014 年浙江卷(理 14)】在 8 张奖券中有一、二、三等奖各 1 张,其余 5 张无奖.将这 8 张奖券分配给 4 个人,每人 2 张,不同的获奖情况有_____种(用数字作答).
不同的摆法有_______种.
【答案】36 【解析】根据题意,分 3 步进行分析: ①、产品 A 与产品 B 相邻,将 AB 看成一个整体,考虑 AB 之间的顺序,有 A22=2 种情况, ②、将 AB 与剩余的 2 件产品全排列,有 A33=6 种情况, ③、产品 A 与产品 C 不相邻,C 有 3 个空位可选,即有 3 种情况, 故不同的摆法有 12×3=36 种

组合数学第五版答案

组合数学第五版答案

组合数学第五版答案【篇一:组合数学参考答案(卢开澄第四版)60页】使其满足(1)|a-b|=5;(2)|a-b|?5;解:(1):由|a-b|=5?a-b=5或者a-b=-5,由列举法得出,当a-b=5时,两数的序列为(6,1)(7,2)……(50,45),共有45对。

当a-b=-5时,两数的序列为(1,6),(2,7)……(45,50)也有45对。

所以这样的序列有90对。

(2):由题意知,|a-b|?5?|a-b|=1或|a-b|=2或|a-b|=3或|a-b|=4或|a-b|=5或|a-b|=0;由上题知当|a-b|=5时有90对序列。

当|a-b|=1时两数的序列有(1,2),(3,4),(2,1)(1,2)…(49,50),(50,49)这样的序列有49*2=98对。

当此类推当|a-b|=2,序列有48*2=96对,当|a-b|=3时,序列有47*2=94对,当|a-b|=4时,序列有46*2=92对,当|a-b|=0时有50对所以总的序列数=90+98+96+94+92+50=5201.2题 5个女生,7个男生进行排列,(a) 若女生在一起有多少种不同的排列?(b) 女生两两不相邻有多少种不同的排列?(c) 两男生a和b之间正好有3个女生的排列是多少?所以总的排列数为上述6种情况之和。

1.3题 m个男生,n个女生,排成一行,其中m,n都是正整数,若(a)男生不相邻(m?n?1); (b)n个女生形成一个整体;(c)男生a和女生b排在一起;分别讨论有多少种方案。

解:(a) 可以考虑插空的方法。

n个女生先排成一排,形成n+1个空。

因为m?n?1正好m个男生可以插在n+1个空中,形成不相邻的关系。

则男生不相邻的排列个数为ppnnn?1m(b) n个女生形成一个整体有n!种可能,把它看作一个整体和m个男生排在一起,则排列数有(m+1)!种可能。

因此,共有n!?(m?1)!种可能。

(c)男生a和女生b排在一起,因为男生和女生可以交换位置,因此有2!种可能,a、b组合在一起和剩下的学生组成排列有(m+n-1)! (这里实际上是m+n-2个学生和ab的组合形成的)种可能。

2014年秋六年级上册数学组合图形的周长和面积测试题

2014年秋六年级上册数学组合图形的周长和面积测试题

(单位:厘米)例1.求阴影部分的面积。

例2.正方形面积是7平方厘米,求阴影部分的面积。

例3.求图中阴影部分的面积。

例4.求阴影部分的面积。

(单位:厘米)例5.求阴影部分的面积。

例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?例7.求阴影部分的面积。

(单位:厘米)例8.求阴影部分的面积。

(单位:厘米)例9.求阴影部分的面积。

(单位:厘米) 例10.求阴影部分的面积。

(单位:厘米)例11.求阴影部分的面积。

(单位:厘米)例12.求阴影部分的面积。

(单位:厘米)例13.求阴影部分的面积。

(单位:厘米)例14.求阴影部分的面积。

(单位:厘米)例15.已知直角三角形面积是12平方厘米,求阴影部分的面积。

例16.求阴影部分的面积。

(单位:厘米)例17.图中圆的半径为5厘米,求阴影部分的面积。

(单位:厘米)例18.如图,在边长为6厘米的等边三角形中挖去三个同样的扇形,求阴影部分的周长。

例19.正方形边长为2厘米,求阴影部分的面积。

例20.如图,正方形ABCD的面积是36平方厘米,求阴影部分的面积。

例21.图中四个圆的半径都是1厘米,求阴影部分的面积。

例22.如图,正方形边长为8厘米,求阴影部分的面积。

例23.图中的4个圆的圆心是正方形的4个顶点,,它们的公共点是该正方形的中心,如果每个圆的半径例24.如图,有8个半径为1厘米的小圆,用他们的圆周的一部分连成一个花瓣图形,图中的黑点是这些圆的圆心。

如果圆周π率取3.1416,那么花瓣图形的的面积是多少平方厘米?例25.如图,四个扇形的半径相等,求阴影部分的面积。

(单位:厘米)例26.如图,等腰直角三角形ABC和四分之一圆DEB,AB=5厘米,BE=2厘米,求图中阴影部分的面积。

例27.如图,正方形ABCD的对角线AC=2厘米,扇形ACB是以AC为直径的半圆,扇形DAC是以D为圆心,AD为半径的圆的一部分,求阴影部分的面积。

数学竞赛组合试题及答案

数学竞赛组合试题及答案

数学竞赛组合试题及答案试题一:排列组合问题题目:某班级有30名学生,需要选出5名代表参加校际数学竞赛。

如果不考虑性别和成绩,仅考虑组合方式,问有多少种不同的选法?答案:这是一个组合问题,可以用组合公式C(n, k) = n! / (k! *(n-k)!)来计算,其中n为总人数,k为选出的人数。

将数值代入公式,得到C(30, 5) = 30! / (5! * 25!) = 142506。

试题二:概率问题题目:一个袋子里有10个红球和20个蓝球,随机抽取3个球,求至少有1个红球的概率。

答案:首先计算没有红球的概率,即抽到3个蓝球的概率。

用组合公式计算,P(3蓝) = C(20, 3) / (C(30, 3)) = (20! / (3! * 17!)) / (30! / (3! * 27!))。

然后,用1减去这个概率得到至少有1个红球的概率,P(至少1红) = 1 - P(3蓝)。

试题三:几何问题题目:在一个半径为10的圆内,随机选择两个点,连接这两点形成弦。

求这条弦的长度小于8的概率。

答案:首先,弦的长度小于8意味着弦所对的圆心角小于某个特定角度。

通过几何关系和圆的性质,可以计算出这个特定角度。

然后,利用面积比来计算概率。

圆的面积为πr²,而弦所对的扇形面积可以通过角度来计算。

最后,将扇形面积除以圆的面积得到概率。

试题四:数列问题题目:给定一个等差数列,其首项为3,公差为2,求前10项的和。

答案:等差数列的前n项和公式为S_n = n/2 * (2a + (n-1)d),其中a为首项,d为公差,n为项数。

将数值代入公式,得到S_10 = 10/2* (2*3 + (10-1)*2) = 10 * 13 = 130。

试题五:逻辑推理问题题目:有5个盒子,每个盒子里都有不同数量的球,分别是1个,2个,3个,4个和5个。

现在有5个人,每个人随机选择一个盒子,每个人只能拿一个盒子。

问至少有一个人拿到的盒子里球的数量与他选择的顺序号相同的概率。

数学运算之排列组合

数学运算之排列组合

数学运算之排列组合返回我的战役成绩单回顾试卷1. 数学运算之排列组合(20)一、数学运算之排列组合(共20小题)请根据题目要求,在四个选项中选出一个最恰当的答案。

请开始答题:第1题:某小组有四位男生和两位女性,六人围成一个圈跳集体舞,不同的排列方法有()A . 720B . 60C . 490D . 120我的答案:A正确答案:D解析:本题属于排列组合问题。

所有排列组合为6×5×4×3×2×1,还得除以6(因为123456跟234561...是一样的)得到120。

故答案为D。

试题报错试题收藏做笔记其他笔记第2题:将小麦、玉米、大豆三种作物同时种植在5块田地里(如图),每块田地里种植一种作物,且相邻的试验田不能种同一种作物,一共有多少种种植方法?()A . 25B . 38C . 42D . 50我的答案:A正确答案:C解析:本题属于排列组合问题。

用分步计数法易求得总的种植方法,但容易忽略只种2种作物的情况,需细心求解。

第一块田有3种选择方法,第二、三、四、五块田均有2种选择方法,因此共有3×2×2×2×2=48种种植方法,而这48种方法中,包含了只种两种作物的可能,因此要将其除去,只种两种作物时,不同的种法有2×3=6种,因此本题的种植方法共有48-6=42种。

故答案为C。

试题报错试题收藏做笔记其他笔记第3题:有红、黄、蓝、白珠子各10粒,装在一只袋子里,为了保证摸出的珠子有两粒颜色相同,应至少摸出几粒?()A . 3B . 4C . 5D . 6我的答案:A正确答案:C解析:本题属于抽屉问题。

总共有四种颜色,取红黄蓝白珠子各1粒,现在有4粒,再任取一粒必定与前面颜色重复,故至少5粒,那么5个珠子中至少有两个是相同颜色。

故答案为C。

试题报错试题收藏做笔记其他笔记第4题:一公司销售部有4名区域销售经理,每人负责的区域数相同,每个区域都正好有两名销售经理负责,而任意两名销售经理负责的区域只有1个相同。

高三数学排列组合综合应用试题答案及解析

高三数学排列组合综合应用试题答案及解析

高三数学排列组合综合应用试题答案及解析1.用数字1,2,3,4可以排成没有重复数字的四位偶数,共有____________个.【答案】12【解析】由题意,没有重复数字的偶数,则末位是2或4,当末位是时,前三位将,,三个数字任意排列,则有种排法,末位为时一样有种,两类共有:种,故共有没有重复数字的偶数个.【考点】排列组合.2.在高三(1)班进行的演讲比赛中,共有5位选手参加,其中3位女生,2位男生.如果2位男生不能连续出场,且女生甲不能排在第一个,那么出场顺序的排法种数为()A.24B.36C.48D.60【答案】D【解析】先排3个女生,三个女生之间有4个空,从四个空中选两个排男生,共有=72(种),若女生甲排在第一个,则三个女生之间有3个空,从3个空中选两个排男生,有=12(种),∴满足条件的出场顺序有72-12=60(种)排法,选D.3. 20个不加区别的小球放入1号,2号,3号的三个盒子中,要求每个盒内的球数不小于它的编号数,则不同的放法种数为________.【答案】120【解析】先在编号为2,3的盒内分别放入1个,2个球,还剩17个小球,三个盒内每个至少再放入1个,将17个球排成一排,有16个空隙,插入2块挡板分为三堆放入三个盒中即可,共有=120(种)方法.4.将5名学生分到A,B,C三个宿舍,每个宿舍至少1人至多2人,其中学生甲不到A宿舍的不同分法有()A.18种B.36种C.48种D.60种【答案】D【解析】由题意知A,B,C三个宿舍中有两个宿舍分到2人,另一个宿舍分到1人.若甲被分到B宿舍:(1)A中2人,B中1人,C中2人,有=6种分法;(2)A中1人,B中2人,C中2人,有=12种分法;(3)A中2人,B中2人,C中1人,有=12种分法,即甲被分到B宿舍的分法有30种,同样甲被分到C宿舍的分法也有30种,所以甲不到A宿舍一共有60种分法,故选D.5.某城市的街道如图,某人要从A地前往B地,则路程最短的走法有()A.8种B.10种C.12种D.32种【答案】B【解析】从A到B若路程最短,需要走三段横线段和两段竖线段,可转化为三个a和两个b的不同排法,第一步:先排a有种排法,第二步:再排b有1种排法,共有10种排法,选B项.6. 5位同学站成一排准备照相的时候,有两位老师碰巧路过,同学们强烈要求与老师合影留念,如果5位同学顺序一定,那么两位老师与同学们站成一排照相的站法总数为()A.6B.20C.30D.42【答案】D【解析】因为五位学生已经排好,第一位老师站进去有6种选择,当第一位老师站好后,第二位老师站进去有7种选择,所以两位老师与学生站成一排的站法共有6×7=42种.7.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A.60种B.70种C.75种D.150种【答案】C【解析】从6名男医生中选出2名有种不同选法,从5名女男医生中选出2名有种不同选法,根据分步计数乘法原理可得,组成的医疗小组共有15×5=75种不同选法.【考点】计数原理和排列组合.8. [2014·南京模拟]用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有________个.(用数字作答)【答案】14【解析】分类讨论:若2出现一次,则四位数有C14个;若2出现二次,则四位数有C24个;若2出现3次,则四位数有C34个,所以共有C14++=14个.9.[2014·郑州模拟]将6名教师分到3所中学任教,一所1名,一所2名,一所3名,则有________种不同的分法.【答案】360【解析】将6名教师分组,分三步完成:第1步,在6名教师中任取1名作为一组,有种取法;第2步,在余下的5名教师中任取2名作为一组,有种取法;第3步,余下的3名教师作为一组,有种取法.根据分步乘法计数原理,共有=60种取法.再将这3组教师分配到3所中学,有=6种分法,故共有60×6=360种不同的分法.10. [2013·浙江高考]将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有________种(用数字作答).【答案】480【解析】如图六个位置.若C放在第一个位置,则满足条件的排法共有种情况;若C放在第2个位置,则从3,4,5,6共4个位置中选2个位置排A,B,再在余下的3个位置排D,E,F,共·种排法;若C放在第3个位置,则可在1,2两个位置排A,B,其余位置排D,E,F,则共有·种排法或在4,5,6共3个位置中选2个位置排A,B,再在其余3个位置排D,E,F,共有·种排法;若C在第4个位置,则有+种排法;若C在第5个位置,则有种排法;若C在第6个位置,则有种排法.综上,共有2(+++)=480(种)排法.11.[2013·怀化模拟]将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有()A.12种B.18种C.36种D.54种【答案】B【解析】先将1,2捆绑后放入信封中,有种方法,再将剩余的4张卡片放入另外两个信封中,有种方法,所以共有=18(种)方法.12.从6名教师中选4名开发A、B、C、D四门课程,要求每门课程有一名教师开发,每名教师只开发一门课程,且这6名中甲、乙两人不开发A课程,则不同的选择方案共有()A.300种 B.240种 C.144种 D.96种【答案】B【解析】依题意可得从除甲、乙外的四位老师中任取一位开发A课程共有种,再从剩下的5位老师中分别选3位开发其他项目共有.所以完成该件事共有种情况.【考点】1.排列组合问题.2.有特殊条件要先考虑.13.某写字楼将排成一排的6个车位出租给4个公司,其中有两个公司各有两辆汽车,如果这两个公司要求本公司的两个车位相邻,那么不同的分配方法共有________种.(用数字作答)【答案】24【解析】此问题相当于将4个公司全排列,因为,则此问题的不同分配方法共有24种。

小学数学人教版(2014秋)五年级上册第六单元 多边形的面积组合图形的面积-章节测试习题

小学数学人教版(2014秋)五年级上册第六单元 多边形的面积组合图形的面积-章节测试习题

章节测试题1.【答题】如图,阴影部分与空白部分面积相比较().A.相等B.空白部分的面积大C.阴影部分的面积大【答案】A【分析】由题意可知:因为三个阴影三角形的面积和与三个空白三角形的面积和都等于平行四边形的面积的一半,所以三个阴影三角形的面积和与三个空白三角形的面积和相等,据此即可进行解答.【解答】因为三个阴影三角形的面积和与三个空白三角形的面积和都等于平行四边形的面积的一半,所以三个阴影三角形的面积和与三个空白三角形的面积和相等.选A.2.【答题】在如图梯形中,甲的面积()乙的面积。

A.大于B.小于C.等于D.无法确定【答案】C【分析】由图可知,两个阴影三角形分别加上顶部的空白三角形后组成两个新的三角形,由于这两个新三角形是等底等高的,面积相等,所以两个阴影三角形的面积是相等的。

【解答】两个阴影三角形分别加上顶部的空白三角形后组成两个新的三角形,这两个新三角形是等底等高,面积相等,空白部分是公共部分,所以两个阴影三角形的面积相等;选C.3.【题文】求阴影部分的面积。

【答案】1300平方分米和330平方厘米【分析】(1)阴影部分的面积=长方形的面积-梯形的面积,利用长方形的面积=长×宽和梯形的面积=(上底+下底)×高÷2即可求解;(2)阴影部分的面积=梯形的面积-长方形的面积,利用长方形的面积公式长方形的面积=长×宽和梯形的面积=(上底+下底)×高÷2即可求解.【解答】52×34-(52+26)×12÷2=1300(平方分米)(20+40)×15÷2-15×8=330(平方厘米)答:阴影部分的面积分别是1300平方分米和330平方厘米。

4.【题文】如图,大正方形的边长是5厘米,小正方形的边长是3厘米,求阴影部分的面积.【答案】阴影部分的面积是12.5平方厘米【分析】要求阴影部分的面积,只要求出梯形CDFE和三角形BCD面积和,然后减去三角形BEF的面积,即可求得阴影部分的面积.【解答】(5+3)×3÷2+5×5÷2-3×(3+5)÷2=12.5(平方厘米)答:阴影部分的面积是12.5平方厘米.5.【题文】某市有一块工业园,地面形状如图,根据图上所标的长度计算这块地有多少平方米?【答案】125000平方米【分析】观察图形可知,这个工业园的面积等于上面的梯形的面积与下面的三角形的面积之和,据此根据梯形和三角形的面积公式进行计算即可解答问题。

华师网络2014年9月课程考试《组合数学》练习题库及答案

华师网络2014年9月课程考试《组合数学》练习题库及答案

华中师范大学职业与继续教育学院 《组合数学》练习题库及答案一、选择题1. 把101本书分给10名学生,则下列说法正确的是()A.有一名学生分得11本书B.至少有一名学生分得11本书C.至多有一名学生分得11本书D.有一名学生分得至少11本书2. 8人排队上车,其中A ,B 两人之间恰好有4人,则不同的排列方法是()A.!63⨯B.!64⨯C. !66⨯D. !68⨯3. 10名嘉宾和4名领导站成一排参加剪彩,其中领导不能相邻,则站位方法总数为()A.()4,11!10P ⨯B. ()4,9!10P ⨯C. ()4,10!10P ⨯D. !3!14-4. 把10个人分成两组,每组5人,共有多少种方法()A.⎪⎪⎭⎫ ⎝⎛510B.⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛510510 C.⎪⎪⎭⎫ ⎝⎛49 D.⎪⎪⎭⎫ ⎝⎛⨯⎪⎪⎭⎫ ⎝⎛4949 5. 设x,y 均为正整数且20≤+y x ,则这样的有序数对()y x ,共有()个A.190B.200C.210D.2206. 仅由数字1,2,3组成的七位数中,相邻数字均不相同的七位数的个数是()A.128B.252C.343D.1927. 百位数字不是1且各位数字互异的三位数的个数为()A.576B.504C.720D.3368. 设n 为正整数,则∑=⎪⎪⎭⎫ ⎝⎛nk k n 02等于()A.n 2B. 12-nC. n n 2⋅D. 12-⋅n n9. 设n 为正整数,则()k k n k k n 310⎪⎪⎭⎫ ⎝⎛-∑=的值是()A.n 2B. n 2-C. ()n 2-D.010. 设n 为正整数,则当2≥n 时,∑=⎪⎪⎭⎫ ⎝⎛-nk k k 22=()A.⎪⎪⎭⎫ ⎝⎛3nB. ⎪⎪⎭⎫ ⎝⎛+21n C. ⎪⎪⎭⎫ ⎝⎛+31n D. 22+⎪⎪⎭⎫ ⎝⎛n 11. ()632132x x x +-中23231x x x 的系数是()A.1440B.-1440C.0D.112. 在1和610之间只由数字1,2或3构成的整数个数为() A.2136- B. 2336- C. 2137- D. 2337- 13. 在1和300之间的整数中能被3或5整除的整数共有()个A.100B.120C.140D.16014. 已知(){}o n n f ≥是Fibonacci 数列且()()348,217==f f ,则()=10f ()A.89B.110C.144D.28815. 递推关系3143---=n n n a a a 的特征方程是()A.0432=+-x xB. 0432=-+x xC. 04323=+-x xD. 04323=-+x x16. 已知()⋯⋯=⨯+=,2,1,0232n a n n ,则当2≥n 时,=n a ()A.2123--+n n a aB. 2123---n n a aC.2123--+-n n a aD. 2123----n n a a 17. 递推关系()⎩⎨⎧=≥+=-312201a n a a n n n 的解为()A.32+⨯=n n n aB. ()221+⨯+=n n n aC. ()122+⨯+=n n n aD. ()n n n a 23⨯+=18. 设()⋯⋯=⨯=,2,1,025n a n n ,则数列{}0≥n n a 的常生成函数是()A.x 215-B. ()2215x - C.()x 215- D. ()2215x -19. 把15个相同的足球分给4个人,使得每人至少分得3个足球,不同的分法共有()种A.45B.36C.28D.2020. 多重集{}b a S ⋅⋅=4,2的5-排列数为()A.5B.10C.15D.2021. 部分数为3且没有等于1的部分的15-分拆的个数为()A.10B.11C.12D.1322. 设n,k 都是正整数,以()n P k 表示部分数为k 的n-分拆的个数,则()116P 的值是()A.6B.7C.8D.923. 设A ,B ,C 是实数且对任意正整数n 都有⎪⎪⎭⎫ ⎝⎛⋅+⎪⎪⎭⎫ ⎝⎛⋅+⎪⎪⎭⎫ ⎝⎛⋅=1233n C n B n A n ,则B 的值是()A.9B.8C.7D.624. 不定方程1722321=++x x x 的正整数解的个数是()A.26B.28C.30D.3225. 已知数列{}0≥n n a 的指数生成函数是()()t t e e t E 521⋅-=,则该数列的通项公式是()A.n n n n a 567++=B. n n n n a 567+-=C. n n n n a 5627+⨯+=D. n n n n a 5627+⨯-=26、6名同学排成一排,其中甲,乙两人必须排在一起的不同排法有()种。

高考数学专题:排列、组合与二项式定理问题练习试题、答案

高考数学专题:排列、组合与二项式定理问题练习试题、答案

高考数学专题:排列、组合与二项式定理问题练习试题一.排列与组合问题1.某科技小组有四名男生两名女生,现从中选出三名同学参加比赛,其中至少一名女生入选的不同选法种数为( )A .36CB .1225C C C .12212424C C C CD .36A2.某校需要在5名男生和5名女生中选出4人参加一项文化交流活动,由于工作需要,男生甲与男生乙至少有一人参加活动,女生丙必须参加活动,则不同的选人方式有( )A .56种B .49种C .42种D .14种 3.五人排成一排,甲与乙不相邻,且甲与丙也不相邻的不同排法有( )A .60种B .48种C .36种D .24种4.某单位有7个连在一起的停车位,现有3辆不同型号的车需要停放,如果要求剩余的4个空车位连在一起,则不同的停放方法有( )A .16种B .18种C .24种D .32种5.为迎接2008年北京奥运会,某校举行奥运知识竞赛,有6支代表队参赛,每队2名同学,若12名参赛同学中有4人获奖,且这4人来自3个不同的代表队,则不同获奖情况种数共有( )A .412CB .3111162223C C C C C C .31116322C C C C D .311112622232C C C C C A 6.A 、B 两点之间有6条网线并联,它们能通过的最大信息量分别为1,1,2,2,3,4,现从中任取三条网线且使这三条网线通过最大信息量的和大于等于6的方法共有( )A .13种B .14种C .15种D .16种7.有一排7只发光二级管,每只二级管点亮时可发出红光或绿光,若每次恰有3只二级管点亮,但相邻的两只二级管不能同时点亮,根据这三只点亮的二级管的不同位置或不同颜色来表示不同的信息,则这排二级管能表示的信息种数共有( )A .10B .48C .60D .808.数列{}n a 共七项,其中五项为1,两项为2,则满足上述条件的数列{}n a 共有( )A .21个B .25个C .32个D .42个 9.三个人踢毽,互相传递,每人每次只能踢一下,由甲开始踢,经过5次传递后,毽又踢回给甲,则不同的传递方式共有( )A .6种B .8种C .10种D .16种 10.5个大小都不同的数按如图形式排列,设第一行中的最大数为a ,第二行中的最大数为b ,则满足a b <的所有排列的个数是( )A .144B .72C .36D .2411.有A ,B ,C ,D ,E ,F 共6个不同的油气罐准备用甲,乙,丙3台卡车运走,每台卡车运两个,但卡车甲不能运A 罐,卡车乙不能运B 罐,此外无其它限制. 要把这6个油气罐分配给这3台卡车,则不同的分配方案种数为( )A .168B .84C .56D .4212.若m 、2210{|1010}n x x a a a ∈=⨯+⨯+,其中(0,1,2){1,2,3,4,5,6}i a i =∈,并且606m n +=,则实数对(,)m n 表示平面上不同点的个数为( )A .32个B .30个C .62个D .60个 13.由0、1、2、3这四个数字,可组成无重复数字的三位偶数有_______个.14.从1,2,…,9这九个数中,随机抽取3个不同的数,则这3个数的和为奇数的概率是____________(用数字作答).15.如图所示,画中的一朵花,有五片花瓣.现有四种不同颜色的画笔可供选择,规定每片花瓣都要涂色,且只涂一种颜色.若涂完的花中颜色相同的花瓣恰有三片,则不同涂法种数为_______(用数字作答).二.二项式定理1.已知23132nx x ⎛⎫- ⎪⎝⎭的展开式中含有常数项(非零),则正整数n 的可能值是( )A .6B .5C .4D .32.已知622x x p ⎛⎫- ⎪⎝⎭的展开式中,不含x 的项是2720,那么正数p 的值是( ) A .1 B .2 C .3 D .43.已知31nx ⎛⎫ ⎪⎝⎭的展开式中第二项与第三项的系数之和等于27,则n 等于______,系数最大的项是第___________项.4.621x x ⎛⎫- ⎪⎝⎭的展开式中第四项的系数为___________.(用数字作答) 5.6)21(x -展开式中所有项的系数之和为________;63)21)(1(x x -+展开式中5x 的系数为__________.6.62)21(x x -展开式中5x 的系数为______________.7.已知n x )21(+的展开式中含3x 项的系数等于含x 项的系数的8倍,则n 等于__________.8.已知n+的二项展开式的第6项是常数项,那么n =_______. 9.62)2(x x+的展开式中的常数项是______________(用数字作答). 10. 在6(12)x -的展开式,含2x 项的系数为_________________;所有项的系数的和为_______________. 11.在n的展开式中,前三项的系数的绝对值依次组成一个等差数列,则n =______,展开式中第五项的二项式系数为_____(用数字作答). 12.82)2(x +的展开式中12x 的系数等于______________(用数字作答). 13.210(1)x -的展开式中2x 的系数是______________,如果展开式中第4r 项和第2r +项的二项式系数相等,则r 等于____________. 14. 若62a x x ⎛⎫- ⎪⎝⎭的展开式中常数项为160-,则常数a 的值为_________,展开式中各项系数之和为_________.答案一.1.C2.B3.C4.C5.C6.C7.D8.A9.C10.B11.D12.D13.1014.10 2115.240二1.B2.C 3.9,5 4.-20 5.1,-132 6.-160 7.58.10 9.60 10.60,111.8,70 12.112 13.-10,2 14.1,1。

小学组合数学试卷及答案

小学组合数学试卷及答案

一、选择题(每题2分,共20分)1. 下列哪个选项不是组合数学中的概念?A. 排列B. 组合C. 集合D. 树2. 从5个不同的水果中取出3个,有多少种不同的组合方式?A. 10种B. 15种C. 20种D. 25种3. 下列哪个公式表示从n个不同元素中取出m个元素的组合数?A. C(n, m) = n! / [m! (n-m)!]B. P(n, m) = n! / [m! (n-m)!]C. nCm = n! / [m! (n-m)!]D. nPm = n! / [m! (n-m)!]4. 一个班级有10名学生,要从中选出3名学生参加比赛,有多少种不同的选法?A. 120种B. 720种C. 120种D. 720种5. 从0到9这10个数字中,任取4个数字组成一个四位数,共有多少种不同的组合?A. 10种B. 90种C. 100种D. 256种6. 在一个3x3的拉丁方格中,填入1到9这9个数字,使得每行、每列、每条对角线上都不重复,有多少种不同的填法?A. 9种B. 36种C. 72种D. 81种7. 下列哪个选项不是二项式定理的应用?A. 展开二项式 (a+b)^nB. 计算组合数C. 解决排列问题D. 解决概率问题8. 下列哪个选项不是图论中的概念?A. 节点B. 边C. 集合D. 路径9. 从6个不同的球中取出3个,有多少种不同的组合方式,不考虑顺序?A. 15种B. 20种C. 30种D. 60种10. 一个班级有8名学生,要从中选出4名学生参加比赛,有多少种不同的选法?A. 70种B. 56种C. 28种D. 14种二、填空题(每题2分,共20分)11. 从5个不同的水果中取出2个,有______种不同的组合方式。

12. 组合数 C(n, m) 表示从n个不同元素中取出m个元素的______。

13. 在一个3x3的拉丁方格中,填入1到9这9个数字,每行、每列、每条对角线上都不重复的填法共有______种。

太原理工大学研究生期2014年末考试组合数学答案.(优选)

太原理工大学研究生期2014年末考试组合数学答案.(优选)

2 / 4word.证明:设该同学从第1天至第k 天共做了k a 道数学题,则6013721≤<<≤a a a , 令13+=k k a b ,则 73143721≤<<≤b b b记},,,{3721a a a A =,},,,{3721b b b B =,则}73,,3,2,1{ =⊂S A ,S B ⊂,从而存在B A x ⋂∈,即13+==j j k a b a ,这表明该同学从第1+j 天到第k 天共做了13道数学题。

四.(10分)设abcd 是一个4位的十进制数,如果21=+++d c b a ,试求满足条件的数的数目。

解:因为21=+++d c b a ,且满足条件91≤≤a ,90≤≤b ,90≤≤c ,90≤≤d 的整数解向量的个数。

令11-=a a ,则201=+++d c b a ,801≤≤a ,满足条件的解有 )33()3(310103203109320310320393203320--+--+-+-+++++-C C C C C564)33()3(3334313314323=+++-=C C C C C五.(10分)设有1对夫妻邀请另外4对夫妻到家做客,围圈而坐,如果随意而坐,问有多少种入座方式?如果每对客人夫妻相邻而坐,有多少种入座方式?如果所有夫妻都不相邻,问有多少种可能的入座方案?解:如果随意而坐,属10个人的圆周排列,则入座方式有9!种。

如果每对客人夫妻相邻而坐,此时主人随意,属6个人的圆周排列与4对夫妻的对换,所以入座方式有5!24种。

进一步,至少有一对夫妻相邻而坐的入座方式有:2!815⋅⋅C 种; 至少有两对夫妻相邻而坐的入座方式有:2252!7⋅⋅C 种;至少有三对夫妻相邻而坐的入座方式有:3352!6⋅⋅C 种;至少有四对夫妻相邻而坐的入座方式有:4452!5⋅⋅C 种;五对夫妻相邻而坐的入座方式有:52!4⋅种;所以每对夫妻都不相邻而坐的入座方式有1125122!42!52!62!72!8!9555445335225115=⋅⋅-⋅⋅+⋅⋅-⋅⋅+⋅⋅-C C C C C3 / 4word.六.(10分)用红、白两种颜色给正四方体的6条棱着色,在空间转动能重合为同一着色方案。

卢开澄《组合数学》习题答案第二章

卢开澄《组合数学》习题答案第二章

2.1 求序列{0,1,8,27,…3n …}的母函数。

解:()()++++++=++++++=nn n x n x x x x G x a x a x a x a a x G 3323322102780()046414321313=+-+--==-----n n n n n n n a a a a a n a n a左右同乘再连加:464:0464:0464:0464:4321543211123455012344=+-+-=+-+-=+-+-=+-+-----------n n n n n n n n n n n n a a a a a x a a a a a x a a a a a x a a a a a x母函数:()()42162036-+-=x x x x G2.2 已知序列()()3433{,,……()33,,n +……},求母函数。

解:1(1)nx -的第k 项为:11()k n n +-- ,对于本题,n=4, ∴母函数为:41(1)x - 2.3 已知母函数G (X )= 25431783x x x--+,求序列{ n a }解:G (X )=)61)(91(783x x x +-+=)61()91(x Bx A ++-从而有: ⎩⎨⎧-==⇒⎩⎨⎧=-=+4778963B A B A B AG (X )=)61(4)91(7x x +-+-G (X )=7)999x (13322 ++++x x -4))6((-6)(-6)x (13322 +-+++x xn a =7*n )6(*49n -- 2.4.已知母函数239156xx x---,求对应的序列{}n a 。

解:母函数为239()156x G x x x -=--39(17)(18)xx x -=+- A BG(x)17x 18xA(18x)B(17x)39x=++--++=-令 A B 38A +7B =9+=⎧⎨--⎩解得:A=2 B=1所以 ii i 0i 021G(x)2*(7x)(8x)17x 18x ∞∞===+=-++-∑∑n n n a 2*(7)8=-+2.5 设n n F G 2=,其中F n 是第n 个Fibonacci 数。

组合数学竞赛试题及答案

组合数学竞赛试题及答案

组合数学竞赛试题及答案1. 排列问题给定一个包含n个不同元素的集合,求这个集合的所有排列的数量。

2. 组合问题从n个不同元素的集合中选取k个元素(k≤n),求所有可能的组合数量。

3. 二项式系数计算二项式系数C(n, k),即从n个元素中选取k个元素的组合数。

4. 鸽巢原理如果有m个鸽巢和n个鸽子(n > m),至少有一个鸽巢至少有几只鸽子?5. 包含与排除原理在一个有30个元素的集合中,有A和B两个子集,A有15个元素,B有20个元素。

求同时属于A和B的元素数量。

6. 组合恒等式证明:\( \sum_{k=0}^{n} C(n, k) = 2^n \)。

7. 组合优化问题给定一个由n个元素组成的集合,要求找到一个子集,使得子集中任意两个元素的和都不是2的倍数,求这个子集的最大可能大小。

8. 组合图论问题在一个无向图中,有n个顶点和m条边。

如果图中的每个顶点至少有一个邻接点,求证图是连通的。

9. 组合几何问题在一个平面上,有n个点,没有任何三个点共线。

求这些点可以形成多少条直线段。

10. 组合设计问题给定一个有限集合,设计一个方案,使得对于任意两个不同的元素,它们要么完全相同,要么互不相交。

答案1. 排列的数量是n!(n的阶乘)。

2. 组合的数量是C(n, k) = n! / [k! * (n - k)!]。

3. 二项式系数C(n, k)可以通过组合公式计算。

4. 根据鸽巢原理,至少有一个鸽巢有 \( \lceil \frac{n}{m}\rceil \) 只鸽子,其中 \( \lceil x \rceil \) 表示向上取整。

5. 同时属于A和B的元素数量可以通过公式|A ∩ B| = |A| + |B| - |A ∪ B| 来计算。

6. 组合恒等式可以通过二项式定理证明。

7. 这个问题可以通过构造性地选择元素来解决,最大可能大小是\( \lfloor \frac{n}{2} \rfloor \)。

组合数学第五版答案

组合数学第五版答案

组合数学第五版答案【篇一:组合数学参考答案(卢开澄第四版)60页】使其满足(1)|a-b|=5;(2)|a-b|?5;解:(1):由|a-b|=5?a-b=5或者a-b=-5,由列举法得出,当a-b=5时,两数的序列为(6,1)(7,2)……(50,45),共有45对。

当a-b=-5时,两数的序列为(1,6),(2,7)……(45,50)也有45对。

所以这样的序列有90对。

(2):由题意知,|a-b|?5?|a-b|=1或|a-b|=2或|a-b|=3或|a-b|=4或|a-b|=5或|a-b|=0;由上题知当|a-b|=5时有90对序列。

当|a-b|=1时两数的序列有(1,2),(3,4),(2,1)(1,2)…(49,50),(50,49)这样的序列有49*2=98对。

当此类推当|a-b|=2,序列有48*2=96对,当|a-b|=3时,序列有47*2=94对,当|a-b|=4时,序列有46*2=92对,当|a-b|=0时有50对所以总的序列数=90+98+96+94+92+50=5201.2题 5个女生,7个男生进行排列,(a) 若女生在一起有多少种不同的排列?(b) 女生两两不相邻有多少种不同的排列?(c) 两男生a和b之间正好有3个女生的排列是多少?所以总的排列数为上述6种情况之和。

1.3题 m个男生,n个女生,排成一行,其中m,n都是正整数,若(a)男生不相邻(m?n?1); (b)n个女生形成一个整体;(c)男生a和女生b排在一起;分别讨论有多少种方案。

解:(a) 可以考虑插空的方法。

n个女生先排成一排,形成n+1个空。

因为m?n?1正好m个男生可以插在n+1个空中,形成不相邻的关系。

则男生不相邻的排列个数为ppnnn?1m(b) n个女生形成一个整体有n!种可能,把它看作一个整体和m个男生排在一起,则排列数有(m+1)!种可能。

因此,共有n!?(m?1)!种可能。

(c)男生a和女生b排在一起,因为男生和女生可以交换位置,因此有2!种可能,a、b组合在一起和剩下的学生组成排列有(m+n-1)! (这里实际上是m+n-2个学生和ab的组合形成的)种可能。

组合数学题目及标准答案

组合数学题目及标准答案

组合数学题目及标准答案————————————————————————————————作者:————————————————————————————————日期:组合数学例1: 将8个“车”放在8×8的国际象棋棋盘上,如果它们两两均不能互吃,那么称8个“车”处于一个安全状态。

问共有多少种不同的安全状态?解:8个“车”处于安全状态当且仅当它们处于不同的8行和8列上。

用一个排列a1,a2,…,a8 ,对应于一个安全状态,使ai 表示第i 行的ai 列上放置一个“车”。

这种对应显然是一对一的。

因此,安全状态的总数等于这8个数的全排列总数8!=40320。

例4:n 位客人在晚会上每人与他人握手d 次,d 是奇数。

证明n 偶数。

证:由于每一次握手均使握手的两人各增加 一次与他人握手的次数,因此n 位客人与他人握手 次数的总和 nd 是偶数 — 握手次数的2倍。

根据奇偶 性质,已知d 是奇数,那么n 必定是偶数。

例4 从1到2n 的正整数中任取n +1个,则这n +1个数中,至少有一对数,其中一个是另一个的倍数。

证 设n +1个数是a 1, a 2, ···, an +1。

每个数去掉一切2的因子,直至剩下一个奇数为止。

组成序列r 1, r 2,, ···, rn +1。

这n +1个数仍在[1 , 2n ]中,且都是奇数。

而[1, 2n ]中只有n 个奇数,故必有ri =rj = r , 则ai = 2αi r , aj = 2αj r 。

若ai >aj ,则ai 是aj 的倍数。

例5 设a 1, a 2, ···, am 是正整数,则至少存在一对k 和l , 0≤k<l ≤m ,使得和ak+1+ ak +2+ ···+ al 是m 的倍数。

证 设Sh = , Sh ≡rh mod m, 0≤rh ≤m -1,h = 1 , 2 , ···, m . 若存在l , Sl ≡0 mod m 则命题成立.否则,1≤rh ≤m -1.但h = 1 , 2 , ···,m .由 鸽巢原理,故存在rk= rl , 即Sk ≡Sl mod m ,不妨设l >k .则Sl -Sk= ak+1+ ak+2+…+ al ≡0 mod m例6 设a 1, a 2, a3是任意三个整数,b1 b2 b3为a1, a2, a3的任一排列,则a1-b1, a2-b2 ,a3-b3中至少有一个是偶数.证 由鸽巢原理:a1, a2, a3至少有两个奇偶性相同.则这3个数被2除的余数至少有两个是相同的,不妨设为x; 同样b1, b2, b3中被2除的余数也至少有2个x .这样a1-b1, a2-b2 , a3-b3被2除的余数至少有一个为0.例7 设a 1, a 2,…, a100是由数字1和2组成的序列, 已知从其任一数开始的顺序10个数的和不超过16.即ai+ ai+1+…+ ai+9≤16,1≤i ≤91。

组合数学题目及答案

组合数学题目及答案

组合数学例1: 将8个“车”放在8×8的国际象棋棋盘上,如果它们两两均不能互吃,那么称8个“车”处于一个安全状态。

问共有多少种不同的安全状态?解:8个“车”处于安全状态当且仅当它们处于不同的8行和8列上。

用一个排列a1,a2,…,a8 ,对应于一个安全状态,使ai 表示第i 行的ai 列上放置一个“车”。

这种对应显然是一对一的。

因此,安全状态的总数等于这8个数的全排列总数8!=40320。

例4:n 位客人在晚会上每人与他人握手d 次,d 是奇数。

证明n 偶数。

证:由于每一次握手均使握手的两人各增加 一次与他人握手的次数,因此n 位客人与他人握手 次数的总和 nd 是偶数 — 握手次数的2倍。

根据奇偶 性质,已知d 是奇数,那么n 必定是偶数。

例4 从1到2n 的正整数中任取n +1个,则这n +1个数中,至少有一对数,其中一个是另一个的倍数。

证 设n +1个数是a 1, a 2, ···, an +1。

每个数去掉一切2的因子,直至剩下一个奇数为止。

组成序列r 1, r 2,, ···, rn +1。

这n +1个数仍在[1 , 2n ]中,且都是奇数。

而[1, 2n ]中只有n 个奇数,故必有ri =rj = r , 则ai = 2αi r , aj = 2αj r 。

若ai >aj ,则ai 是aj 的倍数。

例5 设a 1, a 2, ···, am 是正整数,则至少存在一对k 和l , 0≤k<l ≤m ,使得和ak+1+ ak +2+ ···+ al 是m 的倍数。

证 设Sh = , Sh ≡rh mod m, 0≤rh ≤m -1,h = 1 , 2 , ···, m . 若存在l , Sl ≡0 mod m 则命题成立.否则,1≤rh ≤m -1.但h = 1 , 2 , ···,m .由 鸽巢原理,故存在rk= rl , 即Sk ≡Sl mod m ,不妨设l >k .则Sl -Sk= ak+1+ ak+2+…+ al ≡0 mod m例6 设a 1, a 2, a3是任意三个整数,b1 b2 b3为a1, a2, a3的任一排列,则a1-b1, a2-b2 ,a3-b3中至少有一个是偶数.证 由鸽巢原理:a1, a2, a3至少有两个奇偶性相同.则这3个数被2除的余数至少有两个是相同的,不妨设为x; 同样b1, b2, b3中被2除的余数也至少有2个x .这样a1-b1, a2-b2 , a3-b3被2除的余数至少有一个为0.例7 设a 1, a 2,…, a100是由数字1和2组成的序列, 已知从其任一数开始的顺序10个数的和不超过16.即ai+ ai+1+…+ ai+9≤16,1≤i ≤91。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、(10分)用组合意义证明恒等式:
(n +3
k
)=(n k )+3(n k −1)+3(n k −2)+(n k −3)
证明:考虑对集合{a1,a2,…,an,b1,b2,b3}的k -组合计数可以表示为(n +3
k ),同时该K −组合
可以分成如下四类:
第一类:从{ a1,a2,…,an }中取k 个,再从{ b1,b2,b3}中取0个;计数为(n
k )
第二类:从{ a1,a2,…,an }中取k -1个,再从{ b1,b2,b3}中取1个;计数为3(n
k −1)
第三类:从{ a1,a2,…,an }中取k -2个,再从{ b1,b2,b3}中取2个;计数为3(n
k −2)
第四类:从{ a1,a2,…,an }中取k -3个,再从{ b1,b2,b3}中取3个;计数为(n
k −3)
因此,根据加法原则该恒等式成立。

二、(10分)由2n 个人围成一个圆圈,问有多少种围法?若从中抽出n 个人围成一圆圈有多少种围法?
(1) (2n-1)!
(2) 2n!/n ˟ n! 或 2n ˟ (2n-1) ˟…˟ (n+1)/n
三、(10分)设计从格路平面(0,0)走到(10,5)点,只能沿格路走水平或垂直方向,不可回退,且途径道路上会有若干萝卜坑(如图所示),请问恰巧只经过2个坑的格路数是多少?
从左到右依次编号为1,2, 3, 4。

分类考虑如下: 经过1、2的:C(4,2)*(C(7,2)+C(5,2))=186; 经过2、3的:(C(6,2)-C(4,2))*C(6,2)=135; 经过2、4的:(C(6,2)-C(4,2))*C(5,2)=90; 共有:186+135+90=411
四、(10分)有5对父子(共10人)参加“爸爸去哪儿”节目。

一期节目是“交换爸爸”,即每位父亲在节目中的孩子不是自己的孩子。

请问一共有多少种不同的安排方法? 解:此题为n=5的错排问题,也可看做是n=5的有限制排列问题,棋盘多项式如下: R (C )=(1+x )5=∑(5n
)5n=0x n
所以,排列方法数:
D5=r0∙5!−r1∙4!+r2∙3!−r3∙2!+r4.1!−r5
=5!−5∙4!+10∙3!−10∙2!+5.1!−1
=44
五、(10分)设有两个队Q1和Q2,每队都是30人,其中Q1队有15名男孩和15名女孩组成,Q2队男、女孩的人数不限。

这两队按序号面对面地站好,如图所示,然后,Q1队不动,Q2队迂回往右错动,每次依序错动一个位置。

试证明当Q2错动到某一位置上时,Q1和Q2在对应位置上的两个小孩至少有15对是性别相同的。

证明:Q2队迂回错动一圈再回到初始状态时,每个小孩无论是男孩还是女孩,在对应位置上都与Q1队的15个小孩同性别。

故同性别的总对数为15*30=450。

因此,每个错动位置上同性别的平均对数为450/30=15。

根据鸽巢原理,必存在某一位置,当Q2错动到这个位置上时,则性别相同的小孩至少有15对。

六.(10分)设有N条封闭曲线画在平面上,而任何两条封闭曲线恰好相交于两点,且任何三条封闭曲线不相交于同一点,问这些封闭曲线把平面分割成的区域个数。

解:令an为n条封闭曲线把平面分割成的区域个数。

若n-1条封闭曲线把平面分割成的区域个数为an-1,则第n条封闭曲线与这n-1条封闭曲线相交于2(n-1)个点,这2(n-1)个点把第n条封闭曲线截成2(n-1)段弧,这些弧把原来的2(n-1)个区域中的每个区域一分为二,故新增加的区域个数为2(n-1)。

所以,满足如下的递归关系:
a n=a n−1+2(n−1),a1=2, 解该递归关系得:a n=n2−n+2
七.(10分)面包店出售豆沙馅、椰蓉馅,果酱馅三种面包,小红到面包店时刚好有3个豆沙馅,2个椰蓉馅,2个果酱馅面包出炉,小红带的食品袋正好可以装下5个面包,那么小红购买5个面包共有多少种不同的购买方案呢?
解:该组合问题的母函数为G(x)=(1+x+x2+x3).(1+x+x2)2
对上述母函数进行展开合并,得到x5的系数为6
故,共有6种购买方案。

八.(10分)今安排5位女士和17位男士围圆桌而坐(22个座位均已编号),使得任何两位
女士之间至少有3位男士,求有多少种不同的安排座位的方案? 解:先任选一位女士,记为1w ,则可依如下步骤安排座位:
1> 安排1w 入座,有22种方法; 2> 安排其他4位女士入座,使得任何两位女士之间至少有3个空座位。

设由1w 开始按逆时针顺序,5位女士依次为125,,
,w w w ,且i w 与1i w +(1,2,3,4)
i =之间有i x 个空位(1,2,3,4)i =,5w 与1w 之间有5x 个空位,则3i x ≥(1,2,3,4,5)i = 且 1234517x x x x x ++++=,设N 为该式中满足条件3i x ≥(1,2,3,4,5)i =的整数解
个数,则完成本步骤的方法共有4!
N ⋅种。

因为N 是3
4
5()()G x x x =++
展开式中17x 的系数,而
3
4
5
15
2
5
15
5
15051()()(1)(1)4l
l l G x x x x x x x x x ∞
-+=+-⎛⎫=++=⋅+++=⋅-=⋅ ⎪⎝⎭∑
517151644N +--⎛⎫⎛⎫
== ⎪ ⎪⎝⎭⎝⎭
所以完成本步骤的方法有:64!4⎛⎫
⋅ ⎪⎝⎭
种。

3> 安排17位男士入座共有17!种方法; 综合上述三个步骤,由乘法法则得:不同的安排座位的方法数共有:
6224!17!4⎛⎫
⨯⨯⨯ ⎪⎝⎭
九.(10分)用红、白、蓝三色珠子穿成一条长度为n 的珠串,要求蓝色珠子的个数为偶数,问满足条件的长度为n 的珠串有多少种穿法?(用母函数法) 解:该排列问题的母函数为:G (x )=(1+x +
x 22!
+
x 33!
+⋯)2
.(1+
x 22!
+
x 44!
+⋯)
=e 2x

e x +e −x
2
=
e 3x +e x 2
=12∑(3n
+1)x n
n!
所以方法数为:a n =(3n
+1)/2
十.(10分)设用三种颜色对一个五角星的五个区域着色,求在允许旋转和翻转的情况下,
有多少种不同的染色方案?
解:该问题可以用波利亚定理求解,共有5种旋转,5种翻转
5种旋转对应的置换形式分别为 (5)1
和(1)5
,其中(5)1
的个数为4个,(1)5
的个数为1个,5种翻转对应的置换形式为(1)1
(2)2

因此,应用波利亚定理得: 方案个数=
35+4∙31+5∙33
10
=39。

相关文档
最新文档