不对称三相电路的计算
不对称三相电路如何分析计算不对称三相电路
中线的作用
• 中线的作用就在于使星形连接的不对称负 载的相电压对称。为了保证负载的相电压 对称,就不应让中线断开。因此,为防止 误动作,规定中线内不允许接入熔断器或 闸刀开关。
例4求负载相电压、负载电流及 中线电流。
• 已知电路如图所示,电源电压对称,每相 电压Up=220V;负载为电灯组,在额定电 压下其电阻分别为RA=5Ω,RB=10Ω, RC=20Ω。(灯泡的额定电路为220V)
IC'A' = 1.11 –118.20 A
求解负载端 线电压
• 从原图中可知: UA'B' = IA'B' Z△=1.11 –1.80×300/300 =333/ 28.20V
求解负载端线电压
IA
或根据一相等效电路先求出负载相电压 UA'N' = IA ZY = 1.93 –31.80× 100 300 =193 –1.80 V
• 当三相系统发生故障时也会引起不对称。
不对称星形连接的三相电路
IN
不对称星形负载的相电压(S断开)
• 开关S断开时,由弥尔曼定理得:
UN'N =
UA ZA
+
UB ZB
+
UC ZC
1 ZA
+
1 ZB
+
1 ZC
≠0
各相电压为 UAN' =UA- UN'N
UBN' =UB- UN'N
UCN' =UC- UN'N
幻灯片
IA
IA= UA/Z=220 00 /22 200=10 –200A • 根据对称性可写出
IB= IA –1200=10 –1400A
不对称三相电路功率计算公式
不对称三相电路功率计算公式
在三相电路中,如果电源电压或电流不完全相等,我们称之为不对称三相电路。
在不对称三相电路中,计算功率需要考虑各个相的功率贡献。
对于不对称三相电路,我们可以使用以下公式来计算总功率:
总功率(P)= √3 × 平均电压(U) ×平均电流(I) ×功率因数(PF)
其中,√3 是三相电路的常数,平均电压(U)和平均电流(I)分别是三相电
路中各相电压和电流的平均值,功率因数(PF)是指电路中有功功率与视在功率
的比值。
不对称三相电路中,各个相的功率可以通过以下公式计算:
每相功率(Pn)= 相电压(Un) ×相电流(In)
不对称三相电路的功率计算需要分别计算各个相的功率,然后求和得到总功率。
需要注意的是,在不对称三相电路中,各个相的功率可能不相等,因此总功率
不等于每个相功率的简单相加。
总结起来,不对称三相电路功率计算公式为:总功率(P)= √3 × 平均电压(U)×平均电流(I) ×功率因数(PF),每相功率(Pn)= 相电压(Un) ×相电流(In)。
希望以上回答能够满足您对于不对称三相电路功率计算公式的描述需求。
如有
其他问题,欢迎继续提问。
不对称三相电路线电压相电压关系
不对称三相电路线电压相电压关系
在不对称三相电路中,线电压和相电压之间存在一定的关系。
由于负载不对称,电源中性点和负载中性点不等位,中线中有电流,各相电压、电流不再存在对称关系。
在这种情况下,线电压与相电压不再是根号3的关系,即不再是1.732 ×相电压= 线电压。
因此,在不对称三相电路中,线电压和相电压的大小和相位都可能不同。
在实际应用中,为了减小中线的电流和电压,通常需要尽量减小中线的阻抗。
同时,为了保护电路设备和人身安全,中线上不允许接入熔断器或闸刀开关。
在某些情况下,可以通过对称分量法来分析不对称三相电路的性质和特点。
不对称短路的计算方法-PPT课件
IB2 I A2
IC1 IA1
IC2 2 IA2
IB0 IC0 IA0
IAIA1IA2IA0
I
1 j 3 e j120 22
2 1 j 3 e j240 22
1 2 0
IBIB1IB2IB0 2IA1 IA2IA0
3、零序电抗X0=U0/I0
当零序电流流过电力系统各元件时产生的零序电 压降与零序电流的比值。(短路计算时,不考虑 电阻)
零序电流从短路点出发,由于三相的零序电流同 相位,如果前方变压器或旋转电机的绕组没有接 地的中性点(△或Y),零序电流就不能通过。
只有在系统有接地的故障现象时才有零序电压和 零序电流。
前面电网各元件电抗计算方法得到的值就是 正序电抗。
二、短路回路中各元件的序电抗
2、负序电抗X2=U2/I2
当负序电流流过电力系统各元件时产生的负 序电压降与负序电流的比值。(短路计算时, 不考虑电阻)
对于静止元件: X1=X2 对于旋转电机: X1≠X2
二、短路回路中各元件的序电抗
第二章 短路电流的计算
第二章 电力系统概述
2-1 概述 2-2 发生短路时电网的等值电路 2-3 短路计算中的网络化简 2-4 三相短路的计算方法 2-5 不对称短路的计算方法
2-5 不对称短路的计算方法
短路种类 对称短路 三相短路
两相短路
不
对
称
短
单相短路接地
路
两相短路接地
示意图
不对称短路的分析和计算
武汉理工大学《电力系统分析》课程设计说明书目录摘要 (3)1 电力系统短路故障的基本概念 (4)1.1短路故障的概述 (4)1.2 三序网络原理 (5)1.2.1 同步发电机的三序电抗 (5)1.2.2 变压器的三序电抗 (5)1.2.3 架空输电线的三序电抗 (6)1.3 标幺制 (6)1.3.1 标幺制概念 (6)1.2.2标幺值的计算 (7)1.4 短路次暂态电流标幺值和短路次暂态电流 (8)2 简单不对称短路的分析与计算 (9)2.1单相(a相)接地短路 (9)2.2 两相(b,c相)短路 (10)2.3两相(b相和c相)短路接地 (12)2.4 正序等效定则 (14)3 不对称短路的计算的实际应用 (14)3.1 设计任务及要求 (14)3.2 等值电路及参数标幺值的计算 (15)3.3 各序网络的化简和计算 (17)3.3.1 正序网络 (17)3.3.2 负序网络 (19)3.3.3 零序网络 (20)3.4 短路点处短路电流、冲击电流的计算 (20)4 实验结果分析 (21)5 心得体会 (22)6 参考文献 (23)2摘要电力系统的安全、稳定、经济运行无疑是历代电力工作者所致力追求的,但是从电力系统建立之初至今电力系统就一直伴随着故障的发生而且电力系统的故障类型多样。
在电力系统运行过程中,时常会发生故障,且大多是短路故障。
短路通常分为三相短路、单相接地短路、两相短路和两相接地短路。
其中三相短路为对称短路,后三者为不对称短路。
电力运行经验指出单相接地短路占大多数,因此分析与计算不对称短路具有非常重要意义。
求解不对称短路,首先应该计算各原件的序参数和画出等值电路。
然后制定各序网络。
根据不同的故障类型,确定出以相分量表示的边界条件,进而列出以序分量表示的边界条件,按边界条件将三个序网联合成复合网,由复合网求出故障处各序电流和电压,进而合成三相电流电压。
关键词: 不对称短路计算、对称分量法、节点导纳矩阵31电力系统短路故障的基本概念1.1短路故障的概述在电力系统运行过程中,时常发生故障,其中大多数是短路故障。
相、三相交流电路功率计算公式
单相、三相交流电路功率计算公式1 / 222 / 22相电压:三相电源中星型负载两端的电压称相电压。
用UA、UB、UC 表示。
相电流:三相电源中流过每相负载的电流为相电流,用IAB、IBC、ICA 表示。
线电压:三相电源中,任意两根导线之间的电压为线电压,用UAB、UBC、UCA 表示。
线电流:从电源引出的三根导线中的电流为线电流,用IA、IB、IC 表示。
如果是三相三线制,电压电流均采用两个互感器,按V/v接法,测量结果为线电压和线电流;如果是三相四线制:1、电压可采用V/v接法,电流必须采用Y/y接法,测量结果为线电压和线电流,线电流也等于相电流。
2、电压和电流均采用Y/y接法,测量结果为相电压和相电流,相电流也等于线电流。
Y/y接法时,电压互感器一次接在火线及零线之间,每个电压互感器二次输出接一个独立仪表。
每根火线穿过一个电流互感器,每个电流互感器二次输出接一个独立仪表。
电压V/v接法时,电压互感器一次接在火线之间,二次分别连接一个电压表,如需测量另一个线电压,可将两个互感器的二次输出的n端连接在一起,a、b端连接第三个电压表。
电流V/v接法时,两根火线分别穿过一个电流互感器,每个互感器的二次分别接一个电流表,如需测量第三个线电流,可将两个的s2端连接在一起,与两个互感器的s1端一起共三个端子,另外,将三个电流表的负端连在一起,其它三个端子分别与上述三个端子连接在一起。
三相电流计算公式I=P/(U*1.732)所以1000W的线电流应该是1.519A。
功率固定的情况下,电流的大小受电压的影响,电压越高,电流就越小,公式是I=P/U 当电压等于220V时,电流是4.545A,电压等于380V时,电流是2.63A,以上说的是指的单相的情况。
380V三相的时候,公式是I=P/(U*1.732),电流大小是1.519A三相电机的电流计算 I= P/(1.732*380*0.75) 式中: P是三相功率 (1.732是根号3) 380 是三相线电压 (I是三相线电流) 0.75是功率因数,这里功率因数取的是0.75 ,如果功率因数取0.8或者0.9,计算电流还小。
第二十八讲 对称和不对称三相电路的计算
§12—3 12 3 §12-4 12-
重点: 重点:
三相电路
对称三相电路的计算 不对称三相电路的概念
1、对称三相电路的计算; 对称三相电路的计算; 2、中线的作用。 中线的作用。
一、知识回顾
1、对称三相电源 2、对称三相电源的连接方式 3、三相负载的连接方式
线电压(电流)与相电压(电流) 4、线电压(电流)与相电压(电流)的关系
4、举例
相序仪电路。 例12-3 相序仪电路。已知 12- 1/(ω C)=R,三相电源对称。 ,三相电源对称。 灯泡承受的电压。 求:灯泡承受的电压。 解: U AN 设
•
A R C N' R
•
C B • • o o ) = U∠0 V, U BN = U∠ − 120 V, U CN = U∠120o V (正序
3、中线的作用
(1) 、正常情况下,三相四线制,中线阻抗约为零。 正常情况下,三相四线制,中线阻抗约为零。 A 每相负载的工作情况没有相互联 相对独立。 系,相对独立。 N C B N'
I N = I A+ I B+ IC ≠ 0
•
•
•
•
(2) 假设中线断了 三相三线制 A相电灯没有接入电路 三相不对称 假设中线断了(三相三线制 相电灯没有接入电路 三相不对称) 三相三线制), 相电灯没有接入电路(三相不对称 A N' C B 灯泡未在额定电压下工作,灯光昏暗。 灯泡未在额定电压下工作,灯光昏暗。
• • • • • •
jωC U AN + U BN / R + U CN / R jU AN + U BN + U CN U N'N = = jωC + 1 / R + 1 / R 2 + j1
不对称三相电路的计算
负载中性点与电源中性点之间的电压为
1 1 1 U sA U sB U sC ZA ZB ZC 1 1 1 1 Z A ZB ZC ZO
U OO
0
后,各相电流为 求出 U OO
U U OO sA I A ZA
U U sB OO IB ZB
相序仪
解:
U OO
Y U Y U Y U AO A BO B CO C YA YB YC
64 e
j115.5
V
j1.56
B、C两相电压分别为
U U ቤተ መጻሕፍቲ ባይዱ 135e U BO BO OO
V
j176.8 U CO U CO U OO 79.86 e V
UCA 380120 V
B线断开后
0, I B
I I A C
o U 380 120 CA A I C 2 Z 2Z 2 Z l 0.2 j0.4 3 (18 j24) 3Z
o 18.59 66.65 A
断开处的电压相量为
§7-4 不对称三相电路的计算
不对称三相电路 (unsymmetrical three-phase circuit) : 三相电路的电源电压不对称,或负载阻抗 (包括 传输线阻抗) 不对称,或电源电压和负载阻抗均不对 称。 1. 当电源与负载均作星形联接时,无论有中线或无中 线,均可用节点分析法求解。
由以上计算结果可知,在A相接电容的情况下,其后续相 (B相)灯泡电压大于超前相(C相)灯泡的电压。。因此, 在不知道电源相序的情况下,我们可以对接电容的相作任意假 定(例如设其为A相),则接灯泡的两相中,灯泡较亮的相应为 接电容的相的后续相,另一相则为接电容的相的超前相。这样 便可确定三相电源的相序。 例3
不对称三相电路的计算
相量图 中性点位移
•
• UCN'
UCN
•
UN'N
N'
N
•
UAN'
•
U AN
•
U U BN
•
BN'
负载中性点与电源中性点不重合。
注意 在电源对称情况下,可以根据中性点位移
的情况来判断负载端不对称的程度。当中性点位移 较大时,会造成负载相电压严重不对称,使负载的 工作状态不正常。
返回 上页 下页
例4-1 讨论照明电路。
12-4 不对称三相电路的概念
不对称 电源不对称(不对称程度小,系统保证其对称)。 电路参数(负载)不对称情况很多。
讨论对象
电源对称,负载不对称(低压电力网) 。
分析方法
复杂交流电路分析方法。
主要了解:中性点位移。
返回 上页 下页
三相负载Za、Zb、 Zc不相同。–
•
UA
Za
+ ++
负载各相电压:
①负载不对称,电源中性点和负载中性点不等位, 中性线中有电流,各相电压、电流不存在对称 关系。
②中性线不装保险,并且中性线较粗。一是减少 损耗, 二是加强强度(中性线一旦断了,负载 不能正常工作)。
③要消除或减少中性点的位移,尽量减少中性线 阻抗,然而从经济的观点来看,中性线不可能 做得很粗,应适当调整负载,使其接近对称情 况。
Req
返回
R N'
R
A C
N'
上页 下页
C
三相电源的相量图
N'
N
B
电容断路,N'在CB线
中点。
A
不对称三相电路的计算
不对称三相电路的功率: 不对称三相电路的功率:各相功率单独计算相加。
8
三相电路功率的测量
一表法:用于对称三相电路 一表法: (三相四线制)
∗
A B C N
∗
W
对 称 负 载
9
三相电路功率的测量
二表法:用于三相三线制的对称或不对称负载 二表法:
ɺ IA
+
+
ɺ UAC
−
− + −
ɺ UAB ɺ IB
13
例
3
如图所示对称三相电路,已知: 如图所示对称三相电路,已知: Z =8+j6 Ω, 线电压 Ul =380V, 负载吸收的平均功率 P = __________。 __________。 34656W 34656W
Ul 380 Ip = = = 38A | Z | 10
P = 3 l Il cosϕ U = 3×380× 3×38×0.8 = 34656W
C
N
ɺ UNN′
A
N′
2
B
例
1
在电源电压为380V的三相四线制的电路中,己知:A 在电源电压为380V的三相四线制的电路中,己知:A相 接有220V 60W的灯泡10个,B相接有220V 40W的灯泡20 接有220V、60W的灯泡10个,B相接有220V、40W的灯泡20 个,C相接有220V 20W的灯泡40个,求火线和中线电流, 个,C相接有220V、20W的灯泡40个,求火线和中线电流, 并画出相量图。
A Z B
Z
C
Z
2 或: P = 3I pR = 3×382 ×8 = 34656W
14
例
4
求图示电路中各表的读数。已知: 求图示电路中各表的读数。已知: Z1=-j10Ω, Z2=(5+j12)Ω, j10Ω =(5+j12)Ω 对称三相电路的线电压U 对称三相电路的线电压Ul =380V, 单相负载R吸收的功率 P 单相负载R =24200W。 =24200W。 * * A W 解:A1测三角形负 Z1 载的线电流
11-2不对称三相电路的概念
P表示功率表的读数。
三 相 负 载
U
AB
C
300
f
U
B
U
A
I
BC
A
U
注意:
三相三线制中,不论对称与否,可用二瓦计法测量三相功 率,不能用于不对称三相四线制。 两块功率表读数的代数和为三相总功率,每块表的单独 读数无意义。 按正确极性接线时,二表中可能有一个表的读数为负, 此时功率表指针反转,可将其电流线圈极性反接后,指 针指向正数,但此时读数应记为负值。 两表法测三相功率的接线方式有三种,注意功率表的同 名端。 负载对称情况下,有:
例2. 相序仪电路。已知1/(w C)=R, 三相电源对称。 求:灯泡承受的电压。
解:
A R C B
C N' R
o 设 U U 0 V, U U 12 0 V, U U 12 0 V ( 正 ) 序 AN BN CN o o
j ωC U U /R U /R j U U U AN BN CN AN BN CN U N ' N j ωC 1 /R 1 /R 2 j 1
A
*
W
*
Z Z N Z
A
*
*
Z B C 图b Z
Z
B C 图a
如果Y接法负载的中性点在机壳内部无法接线,或者△接法 负载无法拆开,瓦特计的电流线圈不能串接入一相电路中,此时 可采用人造中性点的方法来测量一相的功率,如图所示。图中两 个电阻的值应等于瓦特计电压线圈(包括分压器)的电阻值。这 样,人造中性点N /的电位便与实际中性点(或等效Y接对称负载 中性点)的电位相等,所以瓦特计的读数就是一相负载的功率。 A
三相电路的基本计算方法
三相电路的基本计算方法( 老头儿的博客)目录一.对称三相电路的计算方法 (1)1 计算三相对称电路的基本方法概述 (1)2. Y-Y 结线的三相对称电路的计算 (2)3. Y-Δ 结线的三相对称电路的计算 (3)4. 对称电源的转换和对称负载的转换 (5)5. Δ-Y 结线的三相对称电路的计算 (6)6. ∆-∆结线的三相对称电路的计算 (7)二.非对称三相电路的计算 (8)1. 有中性线的非对称三相四线电路的计算 (8)2. 无中性线的 Y-Y 非对称三相电路的计算 (9)3. ∆-∆结线的非对称三相电路的计算 (12)4.非对称三相负载结线的转换 (14)5. ∆-Y 和Y -∆形不对称三相电路的计算 (14)6.计算非对称三相电路计算方法的小结 (16)三.三相功率的计算方法和测量方法 (16)1. 对称三相电路的功率 (16)2 三相功率和三相电能的测量方法 (17)附:参考文献 (18)一. 对称三相电路的计算方法1.计算三相对称电路的基本方法概述所谓对称电路是指三相电路的各相负载相等、供电的三相电压也对称的情况。
在电力系统中,多数情况下是对称的电力系统。
计算对称的三相电路时,有许多方法可用。
最基本的方法是KVL 、KCL 、网孔法和节点电压法等。
但是,三相电路本身有很强的规律性,当计算对称的三相电路时,如果能善于利用这些规律,将可能使计算过程大为简化。
甚至可以把所有问题都作为单相电路计算。
计算对称的三相电路时,有以下事项需要考虑:① 计算时,首先要审视负载是怎样结线的。
至于电源是怎样结线的,是星形,还是三角形?并不重要。
因为只要知道了电源的线电压,我们都可以根据负载的结线方式对它的结线方式进行假设。
当然,如果在题目中已经明确了电源的结线方式,就没有必要进行假设了。
② 如果负载是星形结线的,可以假设电源的结线也是星形的。
因为计算三相电路时必须首先选定参考电压,选哪个呢?一般都是选线电压ab V ,因为不管是星形结线,还是三角形结线,其线电压的大小和方向都是一致的。
四、三相交流电路的简单分析和计算
中线电流:中线上流过的电流,用IN表示,正方向由
负载指向电源。
三相负载的星形连接
把三相负载分别接在三相电源的一根相线和中线之
间的接法称为三相负载的星形连接(常用 “Y”标记) 如下图所示,图中ZU、ZV、ZW为各负载的阻抗值,N´ 为负载的中性点。
u
iu
N
U
如果三相负载对称, 中线中无电流, 故可将中线除去, 而 成为三相三线制系统。 但是如果三相负载不对称, 中线上就会有电流IN通过, 此 时中线是不能被除去的, 否则会造成负载上三相电压严重 不对称, 使电设备不能正常工作。
三、三相四线制
星形连接:把发电机三相绕组的末端U2;V2;W2接成一点。而从 始端U1;V1;W1引出三根线。 这种联接方式称为电源的星形联 火线 结。1、连接方式
ev=Emsin(ω t-120°)
ew=Emsin (ω t-240°)
=Emsin(ω t+120°)
发电机的结构
U1 U1 V1 W1 V2
W2 – +
S
n
U1
U2
U2 V2 W2
V1
+
N
+
W1
单相绕组
三相绕组
+
铁 心
U2
绕 组
三相绕组的三相电动势 幅值相等, 频率相同, 彼 此之间相位相差120°。
为190V,电灯变暗。
情况2:一楼的灯全断,三楼 的灯全通,二楼有1/4接通。
A
R2
C
R3 B
结果:二楼灯泡的电压超过额定值, 灯泡被烧毁。
五、对称分量法 1、任何一组不对称三相正弦量都可以分解为:正序(UV-W-U),负序(U-W-V-U)和零序(相位差为零)三 组对称分量。 2、三线制电路的线电流中不含有零序分量。中线是零序电 流通路,中线电流等于线电流零序分量的三倍。 线电压中不含有零序分量 处于同一线电压下的不同星形连接负载,他们相电压的 正序分量相同,负序分量也相同,不同的只是零序分量。 3、对称分量法的实质是根据叠加原理,把一组不对称电压 分解为三组对称电压,把一个不对称电路处理为三个对称 电路的叠加,从而解决了旋转电机在不对称运行情况下的 分析计算问题。
不对称三相电路的计算
V、W两相负载上旳总电压等于电源旳线电压, 因为V、W两相负载旳阻抗相等,在所选定旳参 照方向下,V、W两相负载电压为
U V
1 2 U VW
3 2 UP
U W
1 2
U
VW
3 2
U
P
负载中性点与电源中性点之间旳电压 及U相断路处旳电压为
uNN uV uV
uU uU u NN
190V
负载相电流和线电流
I U V
U W U Z
1 U VW 2Z
1 UL 2Z
1 2
380
A 4.75A
34.642 202
I V W
U VW Z
UL Z
380
A 9.5A
34.642 202
I U 0
IV
IW
3 U
380
A 14.25A
34.642 202
2
Ø 其他两相负载上旳电压和电流均减小到原来旳 3 倍。
2
3.对称三角形负载中一条端线断路
在对称三角形负载旳三相电路中,假 定U相端线断路,其电路如图示。→
U相端线断路后,电路中各负 载旳连接关系发生了变化,其 电路如图示。↓
U相端线断 路后负载 上旳电压 和电流旳 相量图如 图。 ←
三相负载旳相电压为
IW
U W ZW
UW ZW
iN iU iV iW 0
在不对称旳三相四线制电路中,中性线电流一般不等于零。 这表白中性线具有传导三相系统中旳不平衡电流或单相电 流旳作用。
2.一相负载短路旳三相不对称电路
(1)对称三角形负载中一相短路
若不计线路阻抗,则短路相旳 电压等于电源线电压,短路相旳阻 抗等于零。
电路原理9.3.1不对称三相电路的分析 - 不对称三相电路的分析
U&Cn U&CN U&nN U120o 0.632U108.4o 0.4U138.4o
若以接电容一相为A相,则B相电压比C相电压高。B相灯较
亮,C相较暗(正序)。据此可测定三相电源的相序。
三相电路
例6.
A1
S
Z
如图电路中,电源三相对 称。当开关S闭合时,电流
A2
Z 表的读数均为5A。
Z
(三相不对称) A
UCn 190 VC
n
n
UnN
N
A
U An
C
B
B
UBn 190 V
灯泡未在额定电压下工作,灯光昏暗。
三相电路
(3)A相短路 A
C UCn 380 V
A
n
N
n UnN
UAn 0 V
C B
B UBn 380 V
超过灯泡的额定电压,灯泡可能烧坏。
在实际工程中,照明中线不装保险,并且中线较粗。 一是减少损耗,二是加强强度(中线一旦断了,负载就不 能正常工作)。
U&An U&AN U&nN,U&Bn U&BN U&nN,U&Cn U&CN U&nN
三相电路
相量图:
A
C U&CN
U&Cn U&nN
n
U&An
N
U&ANA
N
n
U&BN B
U&Bn
B
C
负载中点n与电源中点N不重合,这个现象称为中性点位 移。
在电源对称情况下,可以根据中点位移的情况来判断负
U&nN
电路分析07-2不对称三相电路的计算
或:
P
3I
2 p
R
3 382
8
34656W
11
电 路 例 7-11
分析
求图示电路中各表的读数。已知: Z1=-j10,
Z2=(5+j12), 对称三相电路的线电压Ul =380V, 单相负载R吸
收的功率 P =24200W。
*
解:A1测三角形负
1 3 Ul,
IP Il
➢ 形接法中: UP Ul ,
IP
1 3 Il
P 3Ul Il cos
无功功率:Q = 3Up Ip sin = 3Ul Il sin
视在功率:S = 3Up Ip = 3Ul Il 功率因数: cos P
S
不对称三相电路的功率:各相功率单独计算相加。
解 用弥尔曼定理计算中性点之间
A
的电压,设 U A U0 V
U NN
U A jC U B R U C jC 1 R 1 R
R
jU U 120 U120 j2
U A
U C
N
U B
(0.2 j0.6)U
灯泡较暗的为C相
1
jC
N
B
R
R
C灯泡较亮的为B相
B相灯泡两端电压为 U BN U B U NN U 120 (0.2 j0.6)U
ZN 0 或 ZN = (无中线),则 U NN 0 。中性点位移, 即各相负载电压不对称。
ZN=0,UNN‘=0,电源中心与负载中心强制重合。故 无中性点位移。但中线电流 IN 0,即相电流不对称。
相量图:
C
N
A
U NN N
B
2
电 路 例 7-6
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
UV UUV 3UP
UW UWU 3UP
V、W两相负载的相电流(即线电流)为
IV
U UV Z
3UP Z
IW
U WU Z
3UP Z
U相的线电流等于
iU iV iW
U相的线电流的有效值为
IU
3UP Z
在电源电压(指有效值)恒定,且不计线路阻抗的
情况下,在负载星形联结的对称三相三线制电路中,一
不对称三相电路的计算
1.低压供电系统中的三相不对称电路
在中性线及线路阻抗为零的三相四线制电路中,当三 相电源电压对称时,即使三相负载不对称,三相负载上的 电压依然是对称的,但由于三相负载阻抗不等,所以三相 电流将是不对称的,三相电流分别为
IU
U U ZU
UU ZU
中性线电流为
IV
U V ZV
UV ZV
U相电源电压
uU 220 2 sin(t 30)V,每相负载的
电阻
R 34.,64感抗
X 。20试计算在下列情
况下,负载的相电压、相电流及线电流。
(1)U′V′相负载断路; (2)U相端线断路
U
U'
uW
uU
uV
iU
uWU
uUV
i'WU Z
W
V
iW W'
i'VW
Z
uVW
iV
Z i'UV V'
断路后,负载的线电压
仍等于相应的电源线电压,
其电流
I U V 0
其他两相负载的电流为
I V W
U VW Z
线电流为
I W U
U WU Z
IU IW U IV IV W IW 3IW U
电源电压有效值恒定, 不计线路损耗的情况下,三 角形联结的对称负载一相断 路时,可得如下结论:
1)负载线电压:均不发生变化 2)相电流:断路相的负载电流等于零, 其他两相负载电流保持不变 3)线电流:与断路相两端相连的两端线 电流减少为原相电流,另一线电流保持不变,
2
➢ 其它两相负载上的电压和电流均减小到原来的 3 倍。
2
3.对称三角形负载中一条端线断路
在对称三角形负载的三相电路中,假 定U相端线断路,其电路如图示。→
U相端线断路后,电路中各负 载的连接关系发生了变化,其 电路如图示。↓
U相端线断 路后负载 上的电压 和电流的 相量图如 图。 ←
三相负载的相电压为
即仍为原相电流的 倍3
V、W两相负载上的总电压等于电源的线电压, 由于V、W两相负载的阻抗相等,在所选定的参 考方向下,V、W两相负载电压为
U V
1 2 UVW
3 2 UP
U W
1 2 U VW
3 2 UP
负载中性点与电源中性点之间的电压 及U相断路处的电压为
uNN uV uV
uU uU u NN
U相的线电流有效值为
IU
3UP Z
3
220 A 6.6A 802 602
(2)相负载断路后,U相电流,这时V、W两相电源与V、W两相负 载串联,形成独立的闭合回路。此时,V、W两相负载电压为
U V
1 2 U VW
3 2 UP
3 220 V 190V 2
U U
3 2
U
U
3 2
U
P
3 2
220V
330V
U W
1 2 UVW
3 2
UP
190 V
U相负载断路后,V、W相负载的相电流(即线电流)为
IU 0
IV
1 U VW 2Z
3 UP 2Z
3 2
220 A 1.9A 802 602
IW
1 U VW 2Z
3 U P 1.9A 2Z
➢与断路端线相连的两相负载的电流和电压均减少为原来的 1 ,另一相负
载的电压和电流保持不变;
2
➢断路的端线电流为零,另外两条端线的电流减少为原线电流的 3 倍。因
2
此,无论在哪一种不对称状态下运行,要么出现过压或过电流,造成线路过
热,易烧坏用电设备;要么出现电压过低,造成用电设备不能正常工作。
例 如图所示,一个对称三相电路,线路阻抗为零,
I U I W U 9.5A I V I V W 9.5A
IW 3IW U 3 9.5A 16.45A
(2)相端线断路后,三相负载的相电压为
U U V
1 2
U
VW
1 2
U
L
1 380V 2
190V
U V W U VW U L 380 V
U W U
1 2
U
VW
1 2
U
L
1 380V 2
U U U UU V
1 2 U VW
1 2UL
VW
VW
L
UW U
1 2
U
VW
1 2
U
L
负载相电流和线电流为
I U V
U W U Z
1 U VW 2Z
1 UL 2Z
I V W
U VW Z
UL Z
I U 0
IV
IW
3 U VW 2Z
3 UL 2Z
在电源电压有效值恒定,且不计线路阻抗的情况下,对称三 角形负载的一条端线断路后,我们可以得到如下结论:
解:
(1) U’V’ 相负载断路,负载的线电压仍等于相应的 电源线电压, U’V’ 相负载电流为零,即
U L U L I U V 0
其他两相的电流为
I V W
U VW Z
380 34.642 202
A 9.5A
I W U
U WU Z
380
A 9.5A
34.642 202
根据基尔霍夫电流定律,求得线电流
从相量图可得:U NN
1 2
U
U
1 2
U
P
U U
3 2UU
3 2UP
V、W两相电流为
IV
1 U VW 2Z
3 UP 2Z
I W
1 U VW 2Z
3 UP 2Z
在电源电压有效值恒定,线路阻抗不计的情况下,Y/Y 接对称三相电路,一相断路时:
➢ 断路相电流等于零,负载电压为零,断路处电压为原来
相电压的 3 倍;
IW
UW ZW
UW ZW
iN iU iV iW 0
在不对称的三相四线制电路中,中性线电流一般不等于零。 这表明中性线具有传导三相系统中的不平衡电流或单相电 流的作用。
2.一相负载短路的三相不对称电路
(1)对称三角形负载中一相短路
若不计线路阻抗,则短路相的 电压等于电源线电压,短路相的阻 抗等于零。
相负载短路:线路出现过热,负载不能正常工作。
※ 短路相的负载电压为零,其线电流增至原来的3倍; ※ 其他两相负载上的电压和电流均增至原来的 3 倍。
(3)对称Y/Y接电路中一相断路
U相负载断路后,iU 0 ,这时V、W两相电源与V、W两 相负载串联,构成一个独立的闭合回路。
(4)对称的三角形负载中一相断路
I U V
3U P 0
为无穷大
此时与短路相负载相连的两
条端线上将出现很大的短路电流-
---必须在线路上装设熔断器或过
流保护装置
(2)对称的Y/Y联结电路中一相负载短路
此时U相负载电压为零,负载中性点与电源中性点之间的 电压等于U相电源的电压,即
U U 0 U NN U U U P V、W两相电流和线电流
I U V
U W U Z
1 U VW 2Z
1 UL 2Z
1 2
380
A 4.75A
34.642 202
I V W
U VW Z
UL Z
380
A 9.5A
34.642 202
I U 0
IV
IW
3 U VW 2Z
3 UL 2Z
3 2
380
A 14.25A
34.642 202
380 3
V
220V
V、W两相负载的电压分别为
UV UUV 3UP 3 220V 380V
V、W两相负载的相电流(也是线电流) UW UWU 3UP 380V
IV
UUV Z
3UP Z
380 A 3.8A 80 2 60 2
IW
UWU Z
3UP Z
380 A 3.8A 80 2 60 2
例 在Y/Y联结的三相三线制电路中,每相负载的电阻 R=80Ω,感抗 X=60Ω ,接在线电压有效值为380V 的三相对称电源上,试求在下列情况下, 负载的相电压、线电流和相电流。
(1)U相负载短路; (2)U相负载断路。
解:(1)U相负载短路后,U′点与N′点等电位,有
U U 0
U NN
UU
UP