结构力学II张金生结构动力学PPT课件

合集下载

结构力学2ppt课件

结构力学2ppt课件
二元体的方法进行分析。
G G
E
F
E
F
C
C
D
D
A
B
A
B
注:二元体遇到,可以先去掉。
例2:分析图示体系
解:
固定一个刚片的 装配方式。
AB部分与基础固 结在一起,可视为一
扩大的刚片Ⅰ。CD视 为刚片Ⅱ,Ⅰ、Ⅱ用 链杆1,2,3联结。
A
B 1C
ⅡD

2
3
结论:几何不变,无多 余约束。
.
例3:分析图示体系

不变。如有多余约束,体系几何可变。
• ③ 、W<0,或V<0,体系有多余约束,是否

几何不变则需分析。
说明:
W≤0,是体系几何不变的必要条件,非充分条件。
体系的几何组成,不仅与约束的数量有关,而且与 约束的布置有关。
.
•说明:
• (1)、W≤0
是体系几何不变的 必要条件,非充分 条件。 • (2)、体系的 几何组成(是否几 何不变)不仅与约 束的数量有关,而 且与约束布置有关。
与地面相连接只限制了两个自由度有一根链杆是多余约束多余联如果在一个体系中增加一个约束体系的自由度因此减少此约束称为必要约束或非多余约束
第二章
结构的几何构造分析
(机动分析) ( 组成分析)
.
§2-1几何构造分析的几个概念
• 一.体系——杆件+ 约束(联系)
• 杆件:不考虑材料应 变,视作刚体,平面刚 体称为“刚片”。
.
W=2×6-9-3=0
体系几何不变
W=2×6-9-3=0
体系几何可变
习题课I:平面杆件体系的几何构造分析
• 重点:掌握用基本规律分析体系几 何组成的方法。 • 要求: • 1、明确几何构造分析的目的和计算 步骤。 • 2、掌握用基本规律分析体系的几何 构成。 • 3、了解结构的组成顺序和特点。

张金生-结构动力学课件-4

张金生-结构动力学课件-4
69 kN.m
2 n / 60 52 . 3 1 / S

1
2012-9-7 1
跨中最大弯矩 M max M Q M
D

2
/
2
3 .4
结构动力学
跨中最大位移 3 f max Q A 4 . 98 10 m
[动荷载不作用于质点时的计算]
m
P sin t
三.动位移、动内力幅值计算
y ( t ) A sin t
A y st
计算步骤: 1.计算荷载幅值作为静荷载所引起的 位移、内力; 2.计算动力系数;

例1 解.
1 1
2
/
2
3.将得到的位移、内力乘以动力系数 即得动位移幅值、动内力幅值。
求图示体系振幅和动弯矩幅值图,已知 0 . 5
m
P * 11
P 11 12 P
P sin t
12 11
11
P
y ( t ) P sin t
*
y st
m ( t ) y
仍是位移动力系数 是内力动力系数吗?
11
稳态解
2012-9-7
y (t )
P
* 2
m
sin t
Q 35 kN , P 10 kN , n 500 转 / 分 .
P sin t
解. 11
l
3
0 . 722 10
1 4
7
m/N
48 EI
Q
l/2
Q l/2
1
重力引起的弯矩 M
Ql 35 kN
3

哈工大结构动力学张金生老师讲稿-4

哈工大结构动力学张金生老师讲稿-4

& v 0 = y ( t1 ) = 0
y ( t ) = y 0 cos ω t =
π
2
y st cos ω t
最大位移反应
T t 1 > ( β < 1) 2
最大位移反应发生于第一阶段; 最大位移反应发生于第一阶段;
T t 1 < ( β > 1) 2
最大位移反应发生于第二阶段; 最大位移反应发生于第二阶段;
一. 矩形脉冲 1. 位移反应
P(t )
m
y (t )
P(t )
荷载离开前 ( 0 ≤ t ≤ t1 ) t P y (t ) = ∫ sin ω ( t − τ ) d τ 0 mω = y st (1 − cos ω t )
= y st µ 1 ( t )
k
P
t
t1
2
µ 1 ( t ) = 1 − cos ω t = 2 sin
y(t) = Ae
−ξωt
P(τ ) −ξω (t −τ ) sin( ωDt +ϕ) + ∫ e sinωD (t −τ )dτ 0m ωD
t
§2.6 冲击荷载的动力反应
冲击荷载的特点---作用时间短。 冲击荷载的特点---作用时间短。 ---作用时间短 结构动力反应的特点---最大反应出现快、荷载消失前 结构动力反应的特点---最大反应出现快、 ---最大反应出现快 后反应不同。 后反应不同。 计算特点: 计算特点: 不计阻尼; 1. 不计阻尼; 要考虑瞬态振动; 2. 要考虑瞬态振动; 3. 要分析荷载消失前后两种状态
f = 1/ k
---柔度系数 ---柔度系数
PE = Pt 1ω
---冲量等效荷载 ---冲量等效荷载

结构力学Ⅱ课件:结构动力学(一)

结构力学Ⅱ课件:结构动力学(一)
• 结构的动力计算不但要考虑动力荷载的性质,还要 考虑结构本身的动力特性:刚度分布、质量分布、 阻尼特性分布的影响;
一、动力计算的特点 • 动力计算与静力计算的本质区别:不能忽略惯性力
(1) 计算中考虑惯性力 FI ma my (2)利用达朗伯原理原理,把惯性力视为外力参与
瞬时的平衡,将动力问题转化为静力问题来处理。 (3)动力方程是二阶微分方程,方程求解复杂困难。
F (t )
动荷载:F (t) 干扰力、受迫力、激励
阻尼力: FD cy 和速度方向相反
16
刚度法建立动力方程
y (t )
FD
FI
F(t) y,y, y
FS
质点平衡方程: FI FD FS F (t )
惯性力: FI my
阻尼力: FD cy
约束力(恢复力): FS ky
刚度法的运动方程: my cy ky F(t) (2-1)
三、动力计算中体系的自由度 • 集中质量法——
假定忽略杆的轴向变形和质点的转动。 平面内每个质点最多有两个线位移。
• 质点体系的振动自由度确定方法—附加链杆法
使每个质点不发生线位移所施加的附加链杆数,即为体 系动力计算的自由度。
11
三、动力计算中体系的自由度
2个自由度
1个自由度
2个自由度 单自由度
研究对象
• 求解杆系结构在动荷载 作用下的变形和内力。
本章重点
• 单自由度体系的自振频 率及在简谐荷载作用下
的动力响应。
§10.1 概述
一、动力计算的特点
• 动力计算研究结构在动力荷载作用下的变形和内力,即 研究结构的动力反应。
• 动力荷载:大小、方向、作用点随时间变化的荷载。 • 结构的动力反应不但与动力荷载的性质有关,还与结构

哈尔滨工业大学 结构力学II 第二套张金生 结构动力学-9

哈尔滨工业大学 结构力学II 第二套张金生 结构动力学-9

X 2
1 1.78 2.21 1 1.8 2.24
X DX
3
2
X 3
2.算例: 用迭代法计算图示体系的基频和基本振型.
m m m
解:
m m m m
1 1 1 1 2 2 1 k 1 2 3
X X a
~ X
0 0
T X 1 mX 0 0 X X 1 *
1
4.667 m 8.334 归一化 k 10.334 4.99 m 8.98 归一化 k 11.19
X 2
X DX
3
2
X 3
2.算例: 用迭代法计算图示体系的基频和基本振型.
m m m
解:
m m m m
y(t ) X i i cos( i t i )
动能为
y2 (t )
速度为
m1
y1 (t )
1 1 1 2 2 2 Ti (t ) m1 y1 (t ) m2 y2 (t ) mN y N (t ) 2 2 2 1 T y (t ) m y (t ) 2 1 T X i mX i i2 cos2 ( i t i ) 2 势能为 1 T U i (t ) X i k X i sin 2 ( i t i ) 2
a 0.0328 k / m b 0.0591 m / k 1 2 3 (a bቤተ መጻሕፍቲ ባይዱ 3 ) 0.0624 2 3
m
k
m m m m
2 1 0 k 1 2 1 k 0 1 1 0 0.151 0.0591 c am bk 0.0591 0.151 0.0591 mk 0 0.0591 0.0919

结构力学2_张金生教材配套课件(精品教程)

结构力学2_张金生教材配套课件(精品教程)
例5: 对图示体系作几何组成分析
方法1: 若基础与其它部分三杆相连,去掉基础只分析其它彭部怀分林-2
方法2: 利用规则将小刚片变成大刚片. 方法3: 将只有两个铰与其它部分相连的刚片看成链杆. 方法4: 去掉二元体.
例6: 对图示体系作几何组成分析
解: 该体系为无多余约束的几何不变体系. 方法2: 利用规则将小刚片变成大刚片.
§1. 几何组成分析
作业: 1-2 (d)试分析图示体系的几何组成 依次去掉二元体. 几何常变体系
§1. 几何组成分析
作业: 1-1 (b)试计算图示体系的计算自由度
解: W =8×3−11×2−3= −1 或: W =1×3+5×2−2×2−10= −1
由结果不能判定其是否能作为结构
§1. 几何组成分析
一. 三刚片规则 三刚片以不在一条直线上的三铰两两相联,构
成无多余约束的几何不变体系.
瞬变体系
N
=
P 2 Sin α
§1. 几何组成分析
§1-1 基本概念 §1-2 无多余约束的几何不变体系的组成规则 §1-3 几何组成分析举例
例1: 对图示体系作几何组成分析
解: 三刚片三铰相连,三铰不共线,所以该体系为无多余约束 的几何不变体系.
在一个体系上加减二元体不影响原体系的机动性质.
§1. 几何组成分析
§1-1 基本概念
一. 几何不变体系 几何可变体系 二. 刚片 几何形状不能变化的平面物体
三. 自由度 确定体系位置所需的独立坐标数


的 自
几何不变体系的自由片 自度一定等于零
由 几何可变体系的自由由度一定大于零


§1. 几何组成分析
§1-2 无多余约束的几何不变体系的组成规则

结构动力学课件(华中科技大学)

结构动力学课件(华中科技大学)


v02
2
y(t)
a
v0 a cos 初始相位角 tan1 y0
v0
T
自由振动总位移:
y0

0

t
a
13.2.3 结构的自振周期和自振频率
由式: y(t) a sin(t ) 可知
时间经 T 2后 ,质量完成了一个振动周期。
用T 表示周期,周期函数的条件: y(t+T )=y(t )
动力计算的内容:
1)结构本身的动力特性:自振频率、阻尼、振型 2)荷载的变化规律及其动力反应 (自由振动)
(受迫振动)
13.1.2 动力荷载的分类
1)周期荷载
P(t ) 简谐荷载 t
2)冲击荷载
P(t)
P(t)
P
爆炸荷载1
P
P
一般周期荷载
t
P(t) 爆炸荷载2 P
突加荷载
tr
t
tr
t
t
P(t)
3)随机荷载
结构 (系统)
第四类问题:控制问题
输入 (动力荷载)
结构 (系统)
输出 (动力反应)
输出 (动力反应)
控制系统 (装置、能量)
13.1.2 动力荷载的分类
本课程主要任务是:
求解结构的动力特性;剖析结构动力反应规律,提出
结构在动力反应的分析方法;为结构设计提供可靠的依
据。
可靠性设计依据:
安全性:确定结构在动力荷载作用下可能产生的最大内 力,作为强度设计的依据;
l/2
l/2
l/2
l/2
l/2
l/2
(a)
(b)
(c)
13.2.3 结构的自振周期和自振频率

《结构力学》PPT课件 (2)

《结构力学》PPT课件 (2)

的位移。
• (5)、计算出X1 、X2、… Xn后,由叠加原理

M=M1X1+M2X2+…+MnXn+MP

FQ= FQ1X1+ FQ2X2+…+FQnXn+ FQP

FN=FN1X1+ FN2X2+… +FNnXn+ FNP
精选课件ppt
49
§5 - 3 超静定刚架和排架
• 1、超静定刚架 • 类型:单跨超静定梁、多跨超静定

δ21X1+δ22X2+⊿2P = 0
精选课件ppt
53
(2)、作M i 、MP 图,求δ、⊿
(用第一种基本体系)
δ11 =[(1/2×l×l) (2/3×l)+ (l×l)×l]/EI
= 4 l 3/3EI δ22=δ11= 4l3/3EI
• 静定结构的内力只要根据静力平衡条件即 可求出,而不必考虑其它条件,即:内力是 静定的。
• 超静定结构的内力则不能单由静力平衡
条件求出,而必须同时考虑变形协调条件,即:
内力是超静定的。
精选课件ppt
2
求解超静定结构的计算方法
• 从方法上讲基本有两种:力法和位移法。 • 从历史上讲分传统方法和现代方法。
方程。
• 至此力法的基本概念已建立。

其中系数δ11和自由项⊿1P都是基本
体系即静定结构的位移。
精选课件ppt
31
l ql2/2
M1 图
X1=1
MP 图
精选课件ppt
32
系数和自由项计算
• 11 M E 1M 1Id x M E1 2dI x3lE 3 (I图形自乘)

结构力学课件—结构动力学

结构力学课件—结构动力学

中南大学
退出
返回
17:04
§14-1 概述
二、动力荷载的分类
1. 周期荷载
结构力学
周期荷载—— 随时间周期地变化的荷载。其中最简单、最重要的是 简谐荷载(按弦或余弦函数规律变化)。 F
r
m
F (t) F t
θ t
o
简谐荷载
l/ 2
l/ 2
非简谐性周期荷载
F (t)
例:打桩时落锤撞击所产生的荷载。
o
退出
返回
17:04
§14-3 单自由度结构的自由振动
结构力学
(2)柔度法。即列位移方程。当质点m振动时,把惯性力看作静力荷载作用在体 系的质量上,则在其作用下结构在质点处的位移y应当为:
y F111 my11

my k11 y 0
同刚度法所得方程
此二阶线性常系数齐次微分方程的通解为:
振动微分方程的建立方法:
(1)刚度法。即列动力平衡方程。设质点m在振动的任一时刻位移为y,取质点 m为隔离体,不考虑质点运动时受到的阻力,则作用于质点m上 的力有: (a) 弹簧恢复力
Fc k11 y
(b) 惯性力
该力有将质点拉回静力平衡位置的趋势,负号表示其方 向恒与位移y的方向相反,即永远指向静力平衡位置。
产生自由振动的原因:结构在振动初始时刻受到干扰。 初始干扰的形式: (1)结构具有初始位移 m (2)结构具有初始速度 Δ st 静平衡位置 (3)上述二者同时存在
yd
结构力学
自由振动:结构在振动进程中不受外部干扰力作用的振动形式。
k11
m
FS (t )
yd
W
FI ( t )
1. 不考虑阻尼时的自由振动

结构力学——结构动力学PPT课件

结构力学——结构动力学PPT课件

由静止状态考虑一个瞬时冲量的影响。dS FE( )d
FE(t)
dS=FE()d
mdy
dy( ) FE ( )d
m
d
t
dy( ) FE ( ) (d )2
2m
0
瞬时激振作用效果就在于使质点在τ时
t
刻产生一个初速度,而初位移为零。质
点作以此初始条件引起的自由振动。
dy(t) dy0 sin(t )
y 0
2
A0
A1
A2
arctan
y0
y 0
A0 ——振幅(amplitude of vibration)
——初始相位角。
总动力位移
第4页/共65页
4 / 67
第三节 单自由体系自由振动
1、无阻尼的自由振动 ( = 0 )
T
2
f1 T
称周期(振动一次所需的时间) 称工程频率(单位时间内振动次数)
23 / 67
第三节 单自由体系自由振动
3、确定体系阻尼比的方法
y
Ae
y
t
s
i
n
(dt
)
发现
1/
衰减性振动;
Ae t
2/ 非周期性振动; 3/ 质点两次通过平衡位
o
t
置的时间间隔相等
2
Td d 准周期
第24页/共65页
24 / 67
第三节 单自由体系自由振动
3、确定体系阻尼比的方法 ① 阻尼对自振频率的影响.
第31页/共65页
31 / 67
第四节 单自由体系受迫振动
1、单自由体系受迫振动的一般解
整个加载过程可以考虑成是由一系列瞬时冲量对同一时
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

静荷载。 静荷只与作用位置有关,而动荷是坐标和时间的函数。
二.动荷载的分类 确定
动荷载
简谐荷载 周期 非简谐荷载
冲击荷载 非周期 突加荷载
其他确定规律的动荷载 风荷载
不确定 地震荷载
其他无法确定变化规律的荷载
3
§1.2 结构动力学的研究内容和任务
结构动力学是研究动荷作用下结构动力反应规律的学科。 一.结构动力学的研究内容 当前结构动力学的研究内容为:
输出 (动力反应)
控制系统 (装置、能量)
第一类问题:反应分析(结构动力计算) -----正问题
输入 (动力荷载)
结构 (系统)
输出 (动力反应)
第二类问题:参数(或称系统)识别
-----反问题
输入 (动力荷载)
结构 (系统)
输出 (动力反应)
第三类问题:荷载识别。
-----反问题
输入 (动力荷载)
y
k11
k 1y 1 (t)P (t) m y (t)
k11y(t)
3EI k11 l 3
刚度系数
m y (t)3lE3 Iy(t)P(t)
k11111
刚度法步骤:
柔度法步骤:
1.在质量上沿位移正向加惯性力;
1.在质量上沿位移正向加惯性力;
2.求发生位移y所需之力;
2.求外力和惯性力引起的位移;
二. 自由度的简化 实际结构都是无限自由度体系,这不仅导致分析困难,而且从工程
角度也没必要。常用简化方法有:
m
1) 集中质量法 将实际结构的质量看成(按一定规则)
集中在某些几何点上,除这些点之外物体是 无质量的。这样就将无限自由度系统变成一 有限自由度系统。
6
2) 广义坐标法
y(x) aii(x) i1 n
y(x) aii(x) i1
3) 有限元法
a i ---广义坐标
i (x) ---基函数
i(0)i(l)0
和静力问题一样,可通过将实际结构 离散化为有限个单元的集合,将无限自由 度问题化为有限自由度来解决。
二. 自由度的确定
1) 集中质量法 将实际结构的质量看成(按一定规则)
集中在某些几何点上,除这些点之外物体是 无质量的。这样就将无限自由度系统变成一 有限自由度系统。
三、列运动方程例题
例1.
P(t)
m y(t) P(t)
l EI
EI
l
y(t)
=1 11
m y(t)
l
11
2l 3 3 EI
m y (t)32E l3Iy(t)P(t)
例2.
m
y(t)
=1 11
1P
y(t)
m y(t)
l EI
P(t)
EI
l/2 l/2
11
2l 3 3 EI
1P
Pl3 16EI
结构 (系统)
输出 (动力反应) 5
二. 结构动力学的任务
讨论结构在动力荷载作用下反应的分析的方法。寻找结构固有动力 特性、动力荷载和结构反应三者间的相互关系,即结构在动力荷载作用 下的反应规律,为结构的动力可靠性(安全、舒适)设计提供依据。
§1.3 结构动力分析中的自由度
一. 自由度的定义 确定体系中所有质量位置所需的独立坐标数,称作体系的动力自由度数。
《结构动力学》
2002年10月
1
整体 概述
一 请在这里输入您的主要叙述内容

请在这里输入您的主要 叙述内容
三 请在这里输入您的主要叙述内容
2
§1. 绪论
§1.1 动荷载及其分类
一.动荷载的定义
大小、方向和作用点随时间变化;在其作用下,结构上的惯性力 与外荷比不可忽视的荷载。
自重、缓慢变化的荷载,其惯性力与外荷比很小,分析时仍视作
自由度数与质点个数无关,但 不大于质点个数的2倍。
EI
W=1
8
二. 自由度的确定
8) 平面上的一个刚体
y2
y1 W=3
9)弹性地面上的平面刚体
W=3
10)
m EI
W=2
4)
y1
W=1
5) W=2
6)
y2 y1
W=2
自由度数与质点个数无关,但 不大于质点个数的2倍。 7)
EI
W=1
9
二. 自由度的确定
3.令该力等于体系外力和惯性力。
3.令该位移等于体系位移。
一、柔度法
P(t) m m y(t) =1 11 y(t)
l EI
1[1P(t)m y (t)] y(t)1[1 P (t)m y (t)]
P(t)
m y(t)
11
l3 3 EI
柔度系数
l
m y (t)3lห้องสมุดไป่ตู้3 Iy(t)1P 2 (t)
11)
8) 平面上的一个刚体
y2
y1 W=3
12)
9)弹性地面上的平面刚体
W=1
10)
m
W=3
W=13
EI W=2
自由度为1的体系称作单自由度体系; 自由度大于1的体系称作多(有限)自由度体系; 自由度无限多的体系为无限自由度体系。
10
§1.4 体系的运动方程
要了解和掌握结构动力反应的规律,必须首先建立描述结构运动的 (微分)方程。建立运动方程的方法很多,常用的有虚功法、变分法等。 下面介绍建立在达朗泊尔原理基础上的“动静法”。
第一类问题:反应分析(结构动力计算)
输入 (动力荷载)
结构 (系统)
输出 (动力反应)
第二类问题:参数(或称系统)识别
输入 (动力荷载)
结构 (系统)
第三类问题:荷载识别。
输出 (动力反应)
输入 (动力荷载)
结构 (系统)
输出 (动力反应) 4
第四类问题:控制问题
输入 (动力荷载)
结构 (系统)
-----控制问题
一、柔度法
P(t) m m y(t) =1 11 y(t)
l EI
1[1P(t)m y (t)] y(t)1[1 P (t)m y (t)]
P(t)
m y(t)
11
l3 3 EI
柔度系数
l
m y (t)3lE3 Iy(t)1P 1 (t)
二、刚度法
P(t)
m
1
m y(t)
y(t)
l EI
m y(x)
广义坐标个数即 为自由度个数
m
结点位移个数即 为自由度个数
m
7
二. 自由度的确定
4)
1) 平面上的一个质点
y1
W=1
y2
y1 W=2
5)
2) W=2
W=2
弹性支座不减少动力自由度
6)
3) 计轴变时 W=2
不计轴变时 W=1 7)
为减少动力自由度,梁与刚架不 计轴向变形。
y2 y1
W=2

m

物 体
P(t) P(t)
y(t )
m
m y (t)P(t) 运动方程
P(t)m y (t) 惯性力 P (柔 1t).在度质[法 量m 步 y 上 骤(t沿:)位 ]移0正向加惯性力;
P(t)
m y(t)
形式上2的.求平外衡力方和程惯,性实力质引上起的的运位动移方;程 3.令该位移等于体系位移。
P(t)
P(t)
l
Pl/4
y (t)1[ 1 m y (t) ] 1 P 3 2 E l3[ m I y (t) ] 1 lE 36 P (tI)
相关文档
最新文档