旋转相似——手拉手模型
2024河南中考数学二轮复习微专题 “手拉手”模型——相似 模型探究系列 课件
以题串模型
例 一题多问 如图(1),在 △
中,
= , ∠ = ,点 ,
分别为 , 的中点.将 △ 绕点 旋转,连接 , .
图(1)
图(2)
图(3)
=
(1)图(1)中, , 的数量关系为_______.
图(4)
(2)在图(2)的情形下,(1)中结论是否仍然成立?若成立,请加以证
明;若不成立,请说明理由.
[答案] 成立.
证明: ∵
=
=
,∴
=
.
又 ∠ = ∠ − ∠ = ∠ − ∠ = ∠ ,
∴△ ∼△ , ∴
=
= .
(3)图(2)中,延长 交 于点 ,求 ∠ 的度数.
[答案] 设 , 交于点 .
∵△ ∼△ , ∴ ∠ = ∠ .
又 ∵ ∠ + ∠ + ∠ = ∘ , ∠ + ∠ + ∠ = ∘ ,
∠ = ∠ ,
∴ ∠ = ∠ = .
(4)当 = 90∘ 时,如图(3).
=
① 与 的数量关系为_______.
∘
②延长 交 于点 ,则 ∠ 的度数为_____.
(5)当 = 45∘ , = 时,如图(4).
.
重要结论:
1.点 , , 不共线时,有 △ ∼△ ;
2. ⊥ ;
3.点 在 △ 的外接圆上.
类型2 直角三角形的锐角顶点为公共点
中考数学第四章 三角形 重难 微专项6 “手拉手”模型
故点F所经过的路径的长为3.
(3)取BC的中点H,当点M不与点D重合时,连接HN,
1
1
则BH= BC,∴BH= AB.
2
2
1
∵CD⊥AB,CA=CB,∴BD= AB,∴BH=BD.
2
重难·微专项6 “手拉手”模型
专项训练
∵△ABC,△BMN是等边三角形,
B的运动过程中,小亮以B为顶点作正方形BFGH,其中点F,G都在直线
AE上,如图(4).当点E到达点B时,点F,G,H与点B重合.则点H所经过的
路径长为
,点G所经过的路径长为
.
重难·微专项6 “手拉手”模型
专项训练
解:(1)∵△ABC,△BEF是等边三角形,
∴BA=BC,BE=BF,∠ABC=∠EBF=60°,
【答题关键点】
①当点P与点F重合时,可知AC垂直平分PE,结合点P
在△ABC的角平分线BD上,可知BP=PC,再结合三角函数即可求出BP
的长.
重难·微专项6 “手拉手”模型
例题
②连接AF,可证得BP∥EF,再由△BCP≌△ACE,可得△AFE为等边三
角形,进而可证得BP=EF,即可得证.
图(1)
图(2)
∴∠DCQ=∠BCE,CQ=CE.
∵∠PCB+∠QCD=∠PCQ,
∴∠PCB+∠BCE=∠PCQ=∠PCE.
重难·微专项6 “手拉手”模型
专项训练
= ,
在△QCP和△ECP中,ቐ∠ = ∠,
= ,
∴△QCP≌△ECP(SAS),
∴PQ=PE,
∴△APQ的周长=AQ+PQ+AP=AQ+PE+ AP=
手拉手模型几何模型的探究
手拉手模型知识回顾:手拉手模型即指共顶点模型,是指两个顶角相等的等腰或者等边三角形的顶点重合,两个三角形的两条腰分别构成的两个三角形全等或者相似。
两等边三角形 两等腰直角三角形 两任意等腰三角形 问题提出:在上述图形中,如何寻找手拉手模型?图中有哪些相等的边和角?有哪些全等或相似的三角形?寻找共顶点旋转模型的步骤如下: (1)寻找公共的顶点;(2)列出两组相等的边或对应成比例的边;(3)将两组相等的边分别分散到两个三角形中去,证明全等或相似即可.模型探究1:【例1】如图,分别以△ABC 的边AB 、AC 向外作等边三角形△ABD 和△ACE ,连接BE ,CD 相交于点P ,连接AP . (1)求证:BE =CD ; (2)求∠BPD 得度数; (3)求证:AP 平分∠DPE ;【分析】△ABD 和△ACE 是共顶点的两个等边三角形,构成手拉手模型.(1)易证△ABE ≌△ADC (SAS )可得BE =CD ;(2)由△ABE ≌△ADC 得∠ABE =∠ADC ,∴∠BPD =∠BAD =60°;(3)作AM ⊥BE 于M ,AN ⊥CD 于N ,∵△ABE ≌△ADC ,∴AM =AN ,∴AP 平分∠DPE ;【例2】(变式):在例1的条件下,将图形旋转至如图所示的位置,上三个结论还成立吗?请说明理由. 【解答】(1)(2)两个结论依然成立.(3)AP 平分∠DPE 的邻补角,推理方法类比例1.EDCBPA PCEDBA模型拓展:在直线ABC的同一侧作两个等边三角形△ABD和△BCE,连接AE与CD,证明:(1)△ABE≌△DBC(2)AE=DC(3)AE与DC的夹角为60(4)△AGB≌△DFB(5)△EGB≌△CFB(6)BH平分∠AHC(7)GF∥AC(8)AH=DH+BH , CH=BH+HE(9)△BGF等边三角形(10)四点共圆: A、B、H、D四点共圆, B、F、H、G四点共圆,C、B、H、E四点共圆模型探究2:【例3】如图1所示:在等腰Rt△ABC和等腰Rt△ADE中,∠BAC=∠DAE=90°,A、D、C三点在同一直线上,连接BD、CE.(1)试判断BD、CE的数量关系,并说明理由;(2)延长BD交CE于点F,试求∠BFC的度数;(3)将△ADE绕点A逆时针旋转至图2,(1)、(2)中的结论是否仍成立?请说明理由.【分析】∆ABC和∆ADE是共顶点的两个等腰直角三角形,构成手拉手模型.(1)易证∆ABD≌∆ACE(SAS),可得BD=CE;(2)由∆ABD≌∆ACE得∠ABD=∠ACE,∴∠BFC=∠BAD=90°;(3)同理可证(1)、(2)中的结论仍然成立.模型应用1:【例4】已知:如图,△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°.(1)试探究BD与AE的关系(数量关系和位置关系),并说明理由.(2)若∠ABD=∠DAE,AB=8,AD=6,求四边形ABED的面积.模型探究3:【例5】已知△ABC ,分别以AB ,AC 为边作等腰△ABD 和等腰△ACE ,且AD =AB ,AC =AE ,∠DAB =∠EAC ,G ,F 分别为DC 与BE 的中点.图1 图2 图3(1) 如图1,若∠DAB = 60° ,则∠GAF = ,∠AGF = ; (2) 如图2,若∠DAB =45°,求∠AGF 的度数;(3) 如图3,若∠DAB =α,试探究∠AGF 与α的数量关系,请说明理由. 【分析】△ABD 和△ACE 是共顶点的两个等腰三角形,构成手拉手模型. 第(3)问先证△DAC ≌△BAE ,得∠ADG =∠ABF ,DC =BE . 由G ,F 为DC ,BE 中点,DG =BF . 证△DAG ≌△BAF ,得AG =AF ,∴∠DAG =∠BAF ,∠GAF =∠DAB =α,∠AGF =2α-180模型拓展:【例6】如图,△AOB 和△ACD 都是等边三角形,其中AB ⊥x 轴于E 点,点C 在x 轴上. (1)若OC =5,求BD 的长度;(2)设BD 交x 轴于点F ,求证:∠OFA =∠DFA ;(3)若正△AOB 的边长为4,点C 为x 轴上一动点,以AC 为边在直线AC 下方作正△ACD ,连接ED ,求ED 的最小值.图1 图2 图3EAB DC。
模型11 手拉手模型(解析版)
模型介绍共顶点模型,亦称“手拉手模型”,是指两个顶角相等的等腰或者等边三角形的顶点重合,两个三角形的两条腰分别构成的两个三角形全等或者相似。
寻找共顶点旋转模型的步骤如下: (1)寻找公共的顶点(2)列出两组相等的边或者对应成比例的边(3)将两组相等的边分别分散到两个三角形中去,证明全等或相似即可。
两等边三角形两等腰直角三角形两任意等腰三角形*常见结论:连接BD 、AE 交于点F ,连接CF ,则有以下结论:(1)BCD ACE≅△△(2)AE BD=(3)AFB DFE∠=∠(4)FC BFE∠平分【专题说明】两个具有公共顶点的相似多边形,在绕着公共顶点旋转的过程中,产生伴随的全等或相似三角形,这样的图形称作共点旋转模型;为了更加直观,我们形象的称其为“手拉手”模型。
【知识总结】【基本模型】一、等边三角形手拉手-出全等图1图2图3图4二、等腰直角三角形手拉手-出全等两个共直角顶点的等腰直角三角形,绕点C旋转过程中(B、C、D不共线)始终有:①△BCD≌△ACE;②BD⊥AE(位置关系)且BD=AE(数量关系);③FC平分∠BFE;图1图2图3图4手拉手模型的定义:两个顶角相等且有共顶点的等腰三角形形成的图形。
手拉手模型特点:“两等腰,共顶点”模型探究:例题精讲考点一:等边三角形中的手拉手模型【例1】.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.有下列结论:①AD=BE;②AP=BQ;③∠AOB=60°;④DC=DP;⑤△CPQ为正三角形.其中正确的结论有_____________.解:∵△ABC和△DCE是正三角形,∴AC=BC,DC=CE,∠BCA=∠DCE=60°,∴∠BCA+∠BCD=∠DCE+∠BCD,∴∠ACD=∠BCE,在△ACD和△BCE中∴△ACD≌△BCE(SAS),∴AD=BE,∴①正确;∵△ACD≌△BCE,∴∠CBE=∠CAD,∵∠ACB=∠DCE=60°,∴∠BCD=60°=∠ACB,在△ACP和△BCQ中∴△ACP≌△BCQ(ASA),∴AP=BQ,∴②正确;PC=QC,∴△CPQ为正三角形∴⑤正确∵△ACD≌△BCE,∴∠ADC=∠BEC,∠DCE=60°=∠CAD+∠ADC,∴∠CAD+∠BEC=60°,∴∠AOB=∠CAD+∠BEC=60°,∴③正确;∵△DCE 是正三角形,∴DE =DC ,∵∠AOB =60°,∠DCP =60°,∠DPC >∠AOB ,∴∠DPC >∠DCP ,∴DP <DC ,即DP <DE ,∴④错误;所以正确的有①②③⑤变式训练【变式1-1】.如图,ABD ∆,AEC ∆都是等边三角形,则BOC ∠的度数是()A .135︒B .125︒C .120︒D .110︒解:ABD ∆ ,AEC ∆都是等边三角形,AD AB ∴=,AE AC =,60DAB CAE ∠=∠=︒,60ADB DBA ∠==︒,DAB BAC CAE BAC ∴∠+∠=∠+∠,DAC BAE ∴∠=∠,()DAC BAE SAS ∴∆≅∆,ADC ABE ∴∠=∠,BOC BDO DBA ABE∴∠=∠+∠+∠BDO DBA ADC =∠+∠+∠ADB DBA=∠+∠6060=︒+︒120=︒,BOC ∴∠的度数是120︒故选:C .【变式1-2】.如图,△DAC 和△EBC 均是等边三角形,AE 、BD 分别与CD 、CE 交于点M 、N ,有如下结论:①△ACE ≌△DCB ;②CM =CN ;③AC =DN ;④∠DAE =∠DBC .其中正确的有()A .②④B .①②③C .①②④D .①②③④解:∵△DAC 和△EBC 均是等边三角形,∴AC =DC ,BC =CE ,∠ACE =∠BCD ,∴△ACE≌△DCB,①正确由①得∠AEC=∠CBD,∴△BCN≌△ECM,∴CM=CN,②正确假使AC=DN,即CD=CN,△CDN为等边三角形,∠CDB=60°,又∵∠ACD=∠CDB+∠DBC=60°,∴假设不成立,③错误;∵∠DBC+∠CDB=60°∠DAE+∠EAC=60°,而∠EAC=∠CDB,∴∠DAE=∠DBC,④正确,∴正确答案①②④故选:C.【变式1-3】.如图,△ABC和△ADE都是等边三角形,点D在BC上,DE与AC交于点F,若AB=5,BD=3,则=.解:连接CE,过点F作FM⊥BC于点M,FN⊥CE于点N,∵△ABC和△ADE为等边三角形,∴AB=AC,AD=AE,∠BAC DAE=60°,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴BD=CE=3,∠ABD=∠ACE=60°,∵AB=BC=5,∴DC=2,∵∠ACB=∠ACE=60°,FM⊥BC,FN⊥CE,∴FM=FN,=DC•FM,S△FCE=CE•FN,∵S△DFC∴,∴,故答案为:.考点二:等腰直角三角形中的手拉手模型【例2】.如图,ACB∆和ECD∆都是等腰直角三角形,90ACB ECD∠=∠=︒,D为AB边上一点,若5AD=,12BD=,则DE的长为__________解:ACB∆和ECD∆都是等腰直角三角形,CD CE∴=,AC BC=,90ECD ACB∠=∠=︒,ACE BCD∴∠=∠,在ACE∆和BCD∆中,CE CDACE BCD AC BC=⎧⎪∠=∠⎨⎪=⎩,()ACE BCD SAS∴∆≅∆,12BD AE∴==,45CAE CBD∠=∠=︒,90EAD∴∠=︒,222212513DE AE AD∴=+=+=.变式训练【变式2-1】.如图,3AB=,2AC=,连结BC,分别以AC、BC为直角边作等腰Rt ACD∆和等腰Rt BCE∆,连结AE、BD,当AE最长时,BC的长为()A.22B.3C.11D.17解:90ACD BCE∠=∠=︒,ACD ACB BCE ACB∴∠+∠=∠+∠,即ACE DCB∠=∠,在ACE ∆和DCB ∆中,AC DC ACE DCB CE CB =⎧⎪∠=∠⎨⎪=⎩,()ACE DCB SAS ∴∆≅∆,AE BD ∴=,AC CD == ,90ACD ∠=︒,2AD ∴=,3AB = ,∴当点A 在BD 上时,BD 最大,最大值为325+=,如图,过C 作CE AD ⊥于E ,由等腰三角形“三线合一”得1DE AE ==,314BE AB AE ∴=+=+=,再由直角三角形斜边中线等于斜边一半得1DE =,BC ∴=.故选:D .【变式2-2】.如图,在Rt ABC ∆中,AB AC =,点D 为BC 中点,点E 在AB 边上,连接DE ,过点D 作DE 的垂线,交AC 于点F .下列结论:①AED CFD ∆≅∆;②EF AD =;③BE CF AC +=;④212AEDF S AD =四边形,其中正确的结论是(填序号).解:AB AC = ,90BAC ∠=︒,点D 为BC 中点,12BD CD AD BC ∴===,45BAD CAD C ∠=∠=∠=︒,AD BC ⊥,BC =,DF DE ⊥ ,90EDF ADC ∴∠=∠=︒,ADE CDF ∴∠=∠,AD CD = ,BAD C ∠=∠,()AED CFD ASA ∴∆≅∆,故①正确;当E 、F 分别为AB 、AC 中点时,12EF BC AD ==,故②不一定正确;ADE CDF ∆≅∆ ,AE CF ∴=,BE AE AB += ,BE CF AC ∴+=,故③正确;ADE CDF ∆≅∆ ,ADE CDF S S ∆∆∴=,212ADF CDF ADC AEDF S S S S AD ∆∆∆∴=+==⨯四边形,故④正确;故答案为:①③④.【变式2-3】.如图,△ABC 和△CEF 均为等腰直角三角形,E 在△ABC 内,∠CAE +∠CBE =90°,连接BF .(1)求证:△CAE ∽△CBF .(2)若BE =1,AE =2,求CE 的长.(1)证明:∵△ABC和△CEF均为等腰直角三角形,∴==,∴∠ACB=∠ECF=45°,∴∠ACE=∠BCF,∴△CAE∽△CBF;(2)解:∵△CAE∽△CBF,∴∠CAE=∠CBF,==,又∵==,AE=2∴=,∴BF=,又∵∠CAE+∠CBE=90°,∴∠CBF+∠CBE=90°,∴∠EBF=90°,∴EF2=BE2+BF2=12+()2=3,∴EF=,∵CE2=2EF2=6,∴CE=.考点三:任意等腰三角形中的手拉手模型【例3】.如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD =36°.连接AC,BD交于点M,连接OM.下列结论:①∠AMB=36°,②AC=BD,③OM平分∠AOD,④MO平分∠AMD.其中正确的结论是_____.解:∵∠AOB=∠COD=36°,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,在△AOC和△BOD中,∴△AOC≌△BOD(SAS),∴∠OCA=∠ODB,AC=BD,故②正确;∵∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OBD=∠OAC+∠AOB,∴∠AMB=∠AOB=36°,故①正确;法一:作OG⊥AM于G,OH⊥DM于H,如图所示,则∠OGA=∠OHB=90°,∵△AOC≌△BOD,∴OG=OH,∴MO平分∠AMD,故④正确;法二:∵△AOC≌△BOD,∴∠OAC=∠OBD,∴A、B、M、O四点共圆,∴∠AMO=∠ABO=72°,同理可得:D、C、M、O四点共圆,∴∠DMO=∠DCO=72°=∠AMO,∴MO平分∠AMD,故④正确;假设MO平分∠AOD,则∠DOM=∠AOM,在△AMO与△DMO中,,∴△AMO≌△DMO(ASA),∴AO=OD,∵OC =OD ,∴OA =OC ,而OA <OC ,故③错误;变式训练【变式3-1】.如图,等腰ABC ∆中,120ACB ∠=︒,4AC =,点D 为直线AB 上一动点,以线段CD 为腰在右侧作等腰CDE ∆,且120DCE ∠=︒,连接AE ,则AE 的最小值为()A .23B .4C .6D .8解:连接BE 并延长交AC 延长线于F ,120ACB ∠=︒ ,AC BC =,30CAB CBA ∴∠=∠=︒,120DCE ACB ∠=︒=∠ ,ACD BCE ∴∠=∠,AC BC = ,CD CE =,()ACD BCE SAS ∴∆≅∆,30CBE CAD ∴∠=∠=︒,CB 为定直线,30CBE ∠=︒为定值,∴当D 在直线AB 上运动时,E 也在定直线上运动,当AE BE ⊥时,AE 最小,30CAB ABC CBE ∠=︒=∠=∠ ,90AFB ∴∠=︒,∴当E 与F 重合时,AE 最小,在Rt CBF ∆中,90CFB ∠=︒,30CBF ∠=︒,122CF CB ∴==,6AF AC CF ∴=+=,AE ∴的最小值为6AF =,故选:C .【变式3-2】.如图,在△ABC 中,AB =AC =5,∠BAC =120°,以CA 为边在∠ACB 的另一侧作∠ACM =∠ACB ,点D 为边BC (不含端点)上的任意一点,在射线CM 上截取CE =BD ,连接AD ,DE ,AE .设AC 与DE 交于点F ,则线段CF 的最大值为.解:∵∠BAC=120°,AB=AC,∴∠B=∠ACB=30°.∵∠ACM=∠ACB,∴∠B=∠ACM=30°.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS).∴AD=AE,∠BAD=∠CAE.∴∠CAE+∠DAC=∠BAD+∠DAC=∠BAC=120°.即∠DAE=120°.∵AD=AE,∴∠ADE=∠AED=30°;∵∠ADE=∠ACB=30°且∠DAF=∠CAD,∴△ADF∽△ACD.∴=.∴AD2=AF•AC.∴AD2=5AF.∴AF=.∴当AD最短时,AF最短、CF最长.∵当AD⊥BC时,AF最短、CF最长,此时AD=AB=.∴AF最短==.∴CF最长=AC﹣AF最短=5﹣=.故答案为:.【变式3-3】.【问题背景】(1)如图1,等腰ABC ∆中,AB AC =,120BAC ∠=︒,AQ BC ⊥于点Q ,则BC AB =;【知识应用】(2)如图2,ABC ∆和ADE ∆都是等腰三角形,120BAC DAE ∠=∠=︒,D 、E 、C 三点在同一条直线上,连接BD .求证:ADB AEC ∆≅∆.(3)请写出线段AD ,BD ,CD之间的等量关系,并说明理由.(1)解:AB AC = ,120BAC ∠=︒,AQ BC ⊥,30B C ∴∠=∠=︒,BQ QC =,12AQ AB ∴=,由勾股定理得:32BQ AB ===,BC ∴=,∴BC AB ==(2)证明:BAC DAE ∠=∠ ,BAC BAE DAE BAE ∴∠-∠=∠-∠,即DAB EAC ∠=∠,在ADB ∆和AEC ∆中,AD AE DAB EAC AB AC =⎧⎪∠=∠⎨⎪=⎩,()ADB AEC SAS ∴∆≅∆;(3)解:CD BD =+,理由如下:由(1)可知:DE =,ADB AEC ∆≅∆ ,EC BD ∴=,CD DE EC BD ∴=+=+.实战演练1.风筝为中国人发明,相传墨翟以木头制成木鸟,研制三年有成,是人类最早的风筝起源.如图,小飞在设计的“风筝”图案中,已知AB AD =,B D ∠=∠,BAE DAC ∠=∠,那么AC 与AE 相等.小飞直接证明ABC ADE ∆≅∆,他的证明依据是()A .SSSB .SASC .ASAD .AAS证明:BAE DAC ∠=∠ ,BAE EAC DAC EAC ∴∠+∠=∠+∠,BAC DAE ∴∠=∠,AB AD = ,B D ∠=∠,()ABC ADE ASA ∴∆≅∆,AC AE ∴=,故选:C .2.如图,ABD ∆,AEC ∆都是等边三角形,则BOC ∠的度数是()A .135︒B .125︒C .120︒D .110︒解:ABD ∆ ,AEC ∆都是等边三角形,AD AB ∴=,AE AC =,60DAB CAE ∠=∠=︒,60ADB DBA ∠==︒,DAB BAC CAE BAC ∴∠+∠=∠+∠,DAC BAE ∴∠=∠,()DAC BAE SAS ∴∆≅∆,ADC ABE ∴∠=∠,BOC BDO DBA ABE∴∠=∠+∠+∠BDO DBA ADC =∠+∠+∠ADB DBA=∠+∠6060=︒+︒120=︒,BOC ∴∠的度数是120︒,故选:C .3.如图,点A 是x 轴上一个定点,点B 从原点O 出发沿y 轴的正方向移动,以线段OB 为边在y 轴右侧作等边三角形,以线段AB 为边在AB 上方作等边三角形,连接CD ,随点B 的移动,下列说法错误的是()A .BOA BDC∆≅∆B .150ODC ∠=︒C .直线CD 与x 轴所夹的锐角恒为60︒D .随点B 的移动,线段CD 的值逐渐增大解:A .OBD ∆ 和ABC ∆都是等边三角形,60ABC OBD ODB BOD ∴∠=∠=∠=∠=︒,BO BD =,BC AB =,ABC DBA OBD DBA ∴∠-∠=∠-∠,CBD ABO ∴∠=∠,()BOA BDC SAS ∴∆≅∆,故A 不符合题意;B .BOA BDC ∆≅∆ ,90BDC BOA ∴∠=∠=︒,6090150ODC BDO BDC ∴∠=∠+∠=︒+︒=︒,故B 不符合题意;C .延长CD 交x 轴于点E ,150ODC ∠=︒ ,18030ODE ODC ∴∠=︒-∠=︒,90BOA ∠=︒ ,60BOD ∠=︒,30DOA BOA BOD ∴∠=∠-∠=︒,60DEA DOA ODE ∴∠=∠+∠=︒,∴直线CD 与x 轴所夹的锐角恒为60︒,故C 不符合题意;D .BOA BDC ∆≅∆ ,CD OA ∴=,点A 是x 轴上一个定点,OA ∴的值是一个定值,∴随点B 的移动,线段CD 的值不变,故D 符合题意;故选:D .4.如图,3AB =,2AC =BC ,分别以AC 、BC 为直角边作等腰Rt ACD ∆和等腰Rt BCE ∆,连结AE 、BD ,当AE 最长时,BC 的长为()A .22B .3C .11D .17解:90ACD BCE ∠=∠=︒ ,ACD ACB BCE ACB ∴∠+∠=∠+∠,即ACE DCB ∠=∠,在ACE ∆和DCB ∆中,AC DC ACE DCB CE CB =⎧⎪∠=∠⎨⎪=⎩,()ACE DCB SAS ∴∆≅∆,AE BD ∴=,2AC CD == ,90ACD ∠=︒,222AD AC CD ∴=+=,3AB = ,∴当点A 在BD 上时,BD 最大,最大值为325+=,如图,过C 作CE AD ⊥于E ,由等腰三角形“三线合一”得1DE AE ==,314BE AB AE ∴=+=+=,再由直角三角形斜边中线等于斜边一半得1DE =,2217BC CE BE ∴=+=.故选:D .5.如图,线段OA 绕点O 旋转,线段OB 的位置保持不变,在AB 的上方作等边PAB ∆,若1OA =,3OB =,则在线段OA 旋转过程中,线段OP 的最大值是()A 10B .4C .5D .5解:如图,以AO 为边,在AO 的左侧作等边AOH ∆,连接BH ,AOH ∆ ,ABP ∆是等边三角形,1AO AH OH ∴===,AB AP =,60OAH BAP ∠=∠=︒,OAP HAB ∴∠=∠,在OAP ∆和HAB ∆中,AO AH OAP HAB AP AB =⎧⎪∠=∠⎨⎪=⎩,()OAP HAB SAS ∴∆≅∆,OP BH ∴=,在OPH ∆中,BH OH OB <+,∴当点H 在BO 的延长线上时,BH 的最大值4OH OB =+=,OP ∴的最大值为4,故选:B .6.如图,O 是等边△ABC 内一点,OA =3,OB =4,OC =5,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ′,则∠AOB =150°.解:连接OO ′,如图,∵线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ′,∴BO ′=BO =4,∠O ′BO =60°,∴△BOO ′为等边三角形,∴∠BOO ′=60°,∵△ABC 为等边三角形,∴BA =BC ,∠ABC =60°,∴∠O ′BO ﹣∠ABO =∠ABC ﹣∠ABO ,即∠O ′BA =∠OBC ,在△O ′BA 和△OBC中,∴△O ′BA ≌△OBC (SAS ),∴O ′A =OC =5,在△AOO ′中,∵OA ′=5,OO ′=4,OA =3,∴OA 2+OO ′2=O ′A 2,∴∠AOO ′=90°,∴∠AOB =60°+90°=150°,故答案为:150°.7.如图,△ABC与△ADE均是等腰直角三角形,点B,C,D在同一直线上,AB=AC=2,AD=AE=3,∠BAC=∠DAE=90°,则CD=﹣.解:∵AB=AC=2,AD=AE=3,∠BAC=∠DAE=90°,∴BC=AB=2,DE=AE=3,∠BAD=∠CAE,∠ABC=45°=∠ACB,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴EC=BD,∠ABD=∠ACE=45°,∴∠ECB=∠ECD=90°,∴DE2=EC2+CD2,∴18=(2+CD)2+CD2,解得:CD=﹣,CD=﹣﹣(不合题意舍去),故答案为:﹣.8.如图,△ABC和△ADE均为等腰直角三角形,连接CD、BE,点F、G分别为DE、BE 的中点,连接FG.在△ADE旋转的过程中,当D、E、C三点共线时,若AB=3,AD=2,则线段FG的长为.解:连接BD,∠BAD=90°﹣∠BAE,∠CAE=90°﹣∠BAE,∴∠BAD=∠CAE.又AD=AE,AB=AC,∴△ADB≌△AEC(SAS).∴BD=CE,∠ADB=∠AEC=135°,∴∠BDC=135°﹣45°=90°.∵△ABC和△ADE均为等腰直角三角形,AB=3,AD=2,∴DE=2,BC=3.设BD=x,则DC=2+x,在Rt△BDC中,利用勾股定理BD2+DC2=BC2,所以x2+(2+x)2=18,解得x1=﹣﹣(舍去),x2=﹣+.∵点F、G分别为DE、BE的中点,∴FG=BD=.故答案为.9.如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交CD于点F,BD分别交CE、AE于点G、H.试猜测线段AE和BD的数量和位置关系,并说明理由.解:猜测AE=BD,AE⊥BD;理由如下:∵∠ACD=∠BCE=90°,∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB,又∵△ACD和△BCE都是等腰直角三角形,∴AC=CD,CE=CB,在△ACE与△DCB中,∴△ACE≌△DCB(SAS),∴AE=BD,∠CAE=∠CDB;∵∠AFC=∠DFH,∠FAC+∠AFC=90°,∴∠DHF=∠ACD=90°,∴AE⊥BD.故线段AE和BD的数量相等,位置是垂直关系.10.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,,∴△CGA≌△CDA(AAS),∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.11.已知△ABC和△ADE都是等边三角形,点D在射线BF上,连接CE.(1)如图1,BD与CE是否相等?请说明理由;(2)如图1,求∠BCE的度数;(3)如图2,当D在BC延长线上时,连接BE,△ABE、△CDE与△ADE的面积有怎样的关系?并说明理由.解:(1)BD=CE,理由如下:∵△ABC和△ADE是都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE,∠ABC=∠ACB=60°,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE;(2)∵△ABD≌△ACE,∴∠ABD=∠ACE=60°,∴∠BCE=120°;+S△CDE=S△ADE,理由如下:(3)S△ABE∵△ABC和△ADE是都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE,∠ABC=∠ACB=60°,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),=S△ACE,∠ABC=∠ACE=60°,∴S△ABD∴∠ECD=180°﹣∠ACB﹣∠ACE=60°,∴∠ABC=∠ECD,∴AB∥CE,=S△ABC,∴S△ABE+S△CDE=S△ADE+S△ACD,∵S△ACE+S△CDE=S△ADE+S△ACD,∴S△ABD+S△ACD+S△CDE=S△ADE+S△ACD,∴S△ABC+S△CDE=S△ADE.∴S△ABE12.如图,在△ABC中,分别以AB、AC为腰向外侧作等腰Rt△ADB与等腰Rt△AEC,∠DAB=∠EAC=90°,连接DC、EB相交于点O.(1)求证:BE⊥DC;(2)若BE=BC.①如图1,G、F分别是DB、EC中点,求的值.②如图2,连接OA,若OA=2,求△DOE的面积.(1)证明:∵∠DAB=∠EAC=90°,∴∠EAB=∠CAD,在△BAE和△DAC中,,∴△BAE≌△DAC(SAS),∴∠ABE=∠ADC,∵∠BAD=90°,∴∠DOB=90°,即BE⊥DC;(2)解:①取DE的中点H,连接GH、FH,∵点G是BD的中点,∴GH∥BE,GH=BE,同理,FH∥CD,FH=CD,∵BE=CD.BE⊥DC,∴GH=FH,GH⊥FH,∴△HGF为等腰直角三角形,∴GF=GH,∵GH=BE,∴GF=BE,∵BE=BC,∴=;②作AM⊥BE于M,AN⊥CD于N,在△BAE和△BAC中,,∴△BAE≌△BAC(SSS),∴∠BAE=∠BAC=135°,∴∠DAE=135°﹣90°=45°,即∠OAD+∠OAE=45°,∵△BAE≌△DAC,∴AM=AN,又AM⊥BE,AN⊥CD,∴OA平分∠BOC,∴∠BOA=∠COA=45°,∴∠DOA=∠EOA=135°,∴∠ODA+∠OAD=45°,∴∠OAE=∠ODA,∴△ODA∽△OAE,∴=,即OD•OE=OA2=4,∴△DOE的面积=×OD•OE=2.13.如图(1),在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD 为一边在AD的右侧作等腰直角△ADF,∠ADE=∠AED=45°,∠DAE=90°,AD=AE,解答下列问题:(1)如果AB=AC,∠BAC=90°,∠ABC=∠ACB=45°.①当点D在线段BC上时(与点B不重合),如图(2),线段CE、BD之间的数量关系为CE=BD;位置关系为CE⊥BD;(不用证明)②当点D在线段BC的延长线上时,如图(3),①中的结论是否仍然成立,请写出结论并说明理由.(2)如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CE⊥BD(点C、E重合除外)?请写出条件,并借助图(4)简述CE⊥BD成立的理由.解:(1)①CE与BD位置关系是CE⊥BD,数量关系是CE=BD.理由:如图(2),∵∠BAD=90°﹣∠DAC,∠CAE=90°﹣∠DAC,∴∠BAD=∠CAE.又BA=CA,AD=AE,∴△ABD≌△ACE(SAS),∴∠ACE=∠B=45°且CE=BD.∵∠ACB=∠B=45°,∴∠ECB=45°+45°=90°,即CE⊥BD.故答案为:CE=BD;CE⊥BD.②当点D在BC的延长线上时,①的结论仍成立.如图(3),∵∠DAE=90°,∠BAC=90°,∴∠DAE=∠BAC,∴∠DAB=∠EAC,又AB=AC,AD=AE,∴△DAB≌△EAC(SAS),∴CE=BD,且∠ACE=∠ABD.∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ACE=45°,∴∠BCE=∠ACB+∠ACE=90°,即CE⊥BD;(2)如图(4)所示,当∠BCA=45°时,CE⊥BD.理由:过点A作AG⊥AC交BC于点G,∴AC=AG,∠AGC=45°,即△ACG是等腰直角三角形,∵∠GAD+∠DAC=90°=∠CAE+∠DAC,∴∠GAD=∠CAE,又∵DA=EA,∴△GAD≌△CAE(SAS),∴∠ACE=∠AGD=45°,∴∠BCE=∠ACB+∠ACE=90°,即CE⊥BD.14.(注意:本题中的说理过程中的每一步必须注明理由,否则不得分)如图1,在△ABC 中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90°;①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为CF⊥BD,线段CF、BD的数量关系为CF=BD;②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立?并说明理由;(2)如图4,如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.解:(1)①正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,又∵AB=AC,∴△DAB≌△FAC(SAS),∴CF=BD,∠B=∠ACF,∴∠ACB+∠ACF=90°,即CF⊥BD.故答案为:CF⊥BD,CF=BD;②当点D在BC的延长线上时①的结论仍成立.理由如下:由正方形ADEF得AD=AF,∠DAF=90°.∵∠BAC=90°,∴∠DAF=∠BAC,∴∠DAB=∠FAC,又∵AB=AC,∴△DAB≌△FAC(SAS),∴CF=BD,∠ACF=∠ABD.∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ACF=45°,∴∠BCF=∠ACB+∠ACF=90°.即CF⊥BD;(2)当∠ACB=45°时,CF⊥BD.理由如下:过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,∵∠ACB=45°,∠AGC=90°﹣∠ACB,∴∠AGC=90°﹣45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG,∵∠DAG=∠FAC(同角的余角相等),AD=AF,∴△GAD≌△CAF(SAS),∴∠ACF=∠AGC=45°,∴∠BCF=∠ACB+∠ACF=45°+45°=90°,即CF⊥BC.15.背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E、A、D在同一条直线上),发现BE=DG且BE⊥DG.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG绕点A按逆时针方向旋转(如图1),还能得到BE=DG吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG和菱形ABCD,将菱形AEFG绕点A按顺时针方向旋转(如图2),试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE=DG仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG和矩形ABCD,且,AE=4,AB=8,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请求出这个定值.(1)证明:∵四边形AEFG为正方形,∴AE=AG,∠EAG=90°,又∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠EAB=∠GAD,∴△AEB≌△AGD(SAS),∴BE=DG;(2)当∠EAG=∠BAD时,BE=DG,理由如下:∵∠EAG=∠BAD,∴∠EAB=∠GAD,又∵四边形AEFG和四边形ABCD为菱形,∴AE=AG,AB=AD,∴△AEB≌△AGD(SAS),∴BE=DG;(3)解:方法一:过点E作EM⊥DA,交DA的延长线于点M,过点G作GN⊥AB交AB于点N,由题意知,AE=4,AB=8,∵=,∴AG=6,AD=12,∵∠EMA=∠ANG,∠MAE=∠GAN,∴△AME∽△ANG,设EM=2a,AM=2b,则GN=3a,AN=3b,则BN=8﹣3b,∴ED2=(2a)2+(12+2b)2=4a2+144+48b+4b2,GB2=(3a)2+(8﹣3b)2=9a2+64﹣48b+9b2,∴ED2+GB2=13(a2+b2)+208=13×4+208=260.方法二:如图2,设BE与DG交于Q,BE与AG交于点P,∵,AE=4,AB=8∴AG=6,AD=12.∵四边形AEFG和四边形ABCD为矩形,∴∠EAG=∠BAD,∴∠EAB=∠GAD,∵,∴△EAB∽△GAD,∴∠BEA=∠AGD,∴A,E,G,Q四点共圆,∴∠GQP=∠PAE=90°,∴GD⊥EB,连接EG,BD,∴ED2+GB2=EQ2+QD2+GQ2+QB2=EG2+BD2,∴EG2+BD2=42+62+82+122=260.。
初中数学九大几何模型
初中数学九大几何模型一、手拉手模型-———旋转型全等(1)等边三角形【条件】:△OAB 和△OCD 均为等边三角形;【结论】:①△OAC ≌△OBD ;②∠AEB=60°;③OE 平分∠AED(2)等腰直角三角形【条件】:△OAB 和△OCD 均为等腰直角三角形;【结论】:①△OAC ≌△OBD ;②∠AEB=90°;③OE 平分∠AED(3)顶角相等的两任意等腰三角形OAB C DE图 1OABCD E图 2OABCDE图 1OABCDE图 2OCDEOD E【条件】:△OAB 和△OCD 均为等腰三角形; 且∠COD=∠AOB【结论】:①△OAC ≌△OBD ; ②∠AEB=∠AOB; ③OE 平分∠AED二、模型二:手拉手模型——-—旋转型相似 (1)一般情况【条件】:CD ∥AB, 将△OCD 旋转至右图的位置【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD; ②延长AC 交BD 于点E,必有∠BEC=∠BOA (2)特殊情况【条件】:CD ∥AB ,∠AOB=90° 将△OCD 旋转至右图的位置【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA ;OAB COABCDEOB CDEOCD③===OAOBOC OD AC BD tan ∠OCD ;④BD ⊥AC; ⑤连接AD 、BC ,必有2222CD AB B C AD +=+;⑥BD AC 21S △BCD ⨯=三、模型三、对角互补模型 (1)全等型-90°【条件】:①∠AOB=∠DCE=90°;②OC 平分∠AOB【结论】:①CD=CE ;②OD+OE=2OC ;③2△OCE △OCD △DCE OC 21S S S =+= 证明提示:①作垂直,如图2,证明△CDM ≌△CEN②过点C 作CF ⊥OC,如图3,证明△ODC ≌△FEC ※当∠DCE 的一边交AO 的延长线于D 时(如图4): 以上三个结论:①CD=CE ;②OE —OD=2OC;③2△OCD △OCE OC 21S S =-(2)全等型-120°【条件】:①∠AOB=2∠DCE=120°;②OC 平分∠AOB【结论】:①CD=CE ;②OD+OE=OC ;③2△OCE △OCD △DCE OC 43S S S =+=AOBCDE 图 1A OBCDEM N图 2A OBCDEF图 3A O BCDEMN 图 4证明提示:①可参考“全等型-90°”证法一;②如右下图:在OB 上取一点F ,使OF=OC ,证明△OCF 为等边三角形。
相似三角形重要模型-手拉手模型(解析版)-初中数学
相似三角形重要模型-手拉手模型相似三角形是初中几何中的重要的内容,常常与其它知识点结合以综合题的形式呈现,其变化很多,是中考的常考题型。
手拉手模型相似是手拉手模型当中相对于手拉手全等模型较难的一种模型,在实际的应用和解题当中出现时,对于同学们来说,都比较困难。
而深入理解模型内涵,灵活运用相关结论可以显著提高解题效率,本专题重点讲解相似三角形的“手拉手”模型(旋转模型)。
手拉手相似证明题一般思路方法:①由线段乘积相等转化成线段比例式相等;②分子和分子组成一个三角形、分母和分母组成一个三角形;③第②步成立,直接从证这两个三角形相似,逆向证明到线段乘积相等;④第②步不成立,则选择替换掉线段比例式中的个别线段,之后再重复第③步。
模型1.“手拉手”模型(旋转模型)【模型解读与图示】“手拉手”旋转型定义:如果将一个三角形绕着它的项点旋转并放大或缩小(这个顶点不变),我们称这样的图形变换为旋转相似变换,这个顶点称为旋转相似中心,所得的三角形称为原三角形的旋转相似三角形。
1)手拉手相似模型(任意三角形)条件:如图,∠BAC =∠DAE =α,AD AB =AE AC=k ;结论:△ADE ∽△ABC ,△ABD ∽△ACE ;EC BD =k .2)手拉手相似模型(直角三角形)条件:如图,∠AOB =∠COD =90°,OC OA =OD OB =k (即△COD ∽△AOB );结论:△AOC ∽△BOD ;BD AC =k ,AC ⊥BD ,S ABCD =12AB ×CD .3)手拉手相似模型(等边三角形与等腰直角三角形)条件:M 为等边三角形ABC 和DEF 的中点;结论:△BME ∽△CMF ;BE CF =3.条件:△ABC 和ADE 是等腰直角三角形;结论:△ABD ∽△ACE .1(2023秋·福建泉州·九年级校考期末)问题背景:(1)如图①,已知△ABC ∽△ADE ,求证:△ABD ∽△ACE ;尝试应用:(2)如图②,在△ABC 和△ADE 中,∠BAC =∠DAE =90°,∠ABC =∠ADE =60°,AC 与DE相交于点F ,点D 在BC 边上,DF CF=233,求AD BD 的值;拓展创新:(3)如图③,D 是△ABC 内一点,∠BAD =∠CBD =30°,∠BDC =90°,AB =4,AC =23,求AD 的长.【答案】(1)见解析;(2)AD BD =2;(3)AD =5【分析】问题背景(1)由题意得出AB AD =AC AE ,∠BAC =∠DAE ,则∠BAD =∠CAE ,可证得结论;尝试应用(2)连接EC ,证明△ABC ∽△ADE ,由(1)知△ABD ∽△ACE ,由相似三角形的性质得出AE AD =EC BD =3,∠ACE =∠ABD =∠ADE ,可证明△ADF ∽△ECF ,得出DF CF =AD CE=233,则可求出答案.拓展创新(3)过点A 作AB 的垂线,过点D 作AD 的垂线,两垂线交于点M ,连接BM ,证明△BDC ∽△MDA ,由相似三角形的性质得出BD MD =DC DA ,证明△BDM ∽△CDA ,得出BM CA =DM AD=3,求出BM =6,由勾股定理求出AM ,最后由直角三角形的性质可求出AD 的长.【详解】问题背景(1)证明:∵△ABC ∽△ADE ,∴AB AD =AC AE ,∠BAC =∠DAE ,∴∠BAD =∠CAE ,AB AC =AD AE,∴△ABD ∽△ACE ;尝试应用(2)解:如图,连接EC ,∵∠BAC=∠DAE=90°,∠ABC=∠ADE=60°,∴△ABC∽△ADE,AE=3AD由(1)知△ABD∽△ACE,∴AEAD=ECBD=3,∠ACE=∠ABD=∠ADE=60°,∴AEEC=ADBD,∵∠AFD=∠AEFC∴△ADF∽△ECF∴DFCF =ADCE∵DF CF =233∴DFCF=ADCE=233∴AD=233CE∴AE=3AD=2CE∴ADBD=AEEC=2,拓展创新(3)解:如图2,过点A作AB的垂线,过点D作AD的垂线,两垂线交于点M,连接BM,∵∠BAD=30°,∴∠DAM=60°,∴∠AMD=30°,∴∠AMD=∠DBC,又∵∠ADM=∠BDC=90°,∴△BDC∽△MDA,∴BDMD=DCDA,又∠BDC=∠ADM,∴∠BDC+∠CDM=∠ADM+∠CDM,即∠BDM=∠CDA,∴△BDM∽△CDA,∴BMCA=DMAD=3,∵AC=23,∴BM=23×3=6,∴AM=BM2-AB2=62-42=25,∴AD=12AM=5.【点睛】此题是相似形综合题,考查了直角三角形的性质,勾股定理,相似三角形的判定与性质等知识,熟练掌握相似三角形的判定与性质是解题的关键.2(2023秋·江苏无锡·九年级校考阶段练习)【模型呈现:材料阅读】如图,点B,C,E在同一直线上,点A,D在直线CE的同侧,△ABC和△CDE均为等边三角形,AE,BD 交于点F,对于上述问题,存在结论(不用证明):(1)△BCD≌△ACE(2)△ACE可以看作是由△BCD绕点C旋转而成;⋯【模型改编:问题解决】点A ,D 在直线CE 的同侧,AB =AC ,ED =EC ,∠BAC =∠DEC =50°,直线AE ,BD 交于F ,如图1:点B 在直线CE 上,①求证:△BCD ∽△ACE ; ②求∠AFB 的度数. 如图2:将△ABC 绕点C 顺时针旋转一定角度.③补全图形,则∠AFB 的度数为;④若将“∠BAC =∠DEC =50°”改为“∠BAC =∠DEC =m °”,则∠AFB 的度数为.(直接写结论)【模型拓广:问题延伸】如图3:在矩形ABCD 和矩形DEFG 中,AB =2,AD =ED =23,DG =6,连接AG ,BF ,求BF AG 的值.图1 图2 图3【答案】【模型改编:问题解决】①见解析;②65°;③图见解析,115°;④90°+m °2【模型拓广:问题延伸】233【分析】【模型改编:问题解决】①先证明△ABC ∽△EDC ,可得AC EC =BC DC,再证明∠ACE =∠BCD ,可得△BCD ∽△ACE ;②由△BCD ∽△ACE ,可得∠DBC =∠EAC ,再结合三角形的外角可得答案;③连接EA 并延长交BD 于F ,同理可得:△BCD ∽△ACE ,∠CEF =∠BDC ,再结合三角形的外角可得答案;④先求解∠CDE =∠DCE =12180°-m ° =90°-12m °,结合③的思路可得答案;【模型拓广:问题延伸】连接BD 、DF ,先证明△ADB ∽△GDF ,可得∠ADB =∠GDF ,AD DG =BD DF ,证明∠ADG =∠BDF ,可得△BDF ∽△ADG ,可得BF AG =BD AD,从而可得答案.【详解】【模型改编:问题解决】①∵AB =AC ,ED =EC ,∠BAC =∠DEC =50°,∴∠ABC =∠ACB =180°-50° ÷2=65°,∠EDC =∠ECD =180°-50° ÷2=65°,∴△ABC ∽△EDC ,∴AC EC =BC DC,∵∠ACE =180°-∠ACB =115°,∠BCD =180°-∠DCE =115°,∴∠ACE =∠BCD ,∴△BCD ∽△ACE ;②由①知,△BCD ∽△ACE ,∴∠DBC =∠EAC ,∴∠AFB =∠DBC +∠CEA =∠EAC +∠CEA =∠ACB =65°③补图如下:连接EA 并延长交BD 于F ,图2同理可得:△BCD ∽△ACE ∴∠CEF =∠BDC ,∴∠AFB =∠BDC +∠CDE +∠DEF =∠CEF +∠CDE +∠DEF =∠CED +∠CDE =50°+65°=115°,④∵∠BAC =∠DEC =m °,CE =DE ,∴∠CDE =∠DCE =12180°-m ° =90°-12m °,同理③可得∠AFB =∠CED +∠CDE =m °+90°-12m °=90°+m °2,故答案为:90°+m °2;【模型拓广:问题延伸】连接BD 、DF ,图3∵在矩形ABCD 和矩形DEFG 中,AB =2,AD =ED =FG =23,DG =6,∴AB AD =GF DG =33,又∵∠BAD =∠DGF =90°,∴△ADB ∽△GDF ,∴∠ADB =∠GDF ,AD DG=BD DF ,∵∠ADG =∠GDF +∠ADF ,∠BDF =∠ADB +∠ADF ,∴∠ADG =∠BDF ,∴△BDF ∽△ADG ,∴BF AG =BD AD,∵AD =23,AB =2,∴BD =AB 2+AD 2=4,∴BF AG =BD AD =423=233.【点睛】本题考查的是等腰三角形的性质,矩形的性质,勾股定理的应用,相似三角形的判定与性质,熟练的证明三角形相似是解本题的关键.3(2023春·湖北黄冈·九年级专题练习)【问题呈现】△CAB 和△CDE 都是直角三角形,∠ACB =∠DCE =90°,CB =mCA ,CE =mCD ,连接AD ,BE ,探究AD ,BE 的位置关系.(1)如图1,当m =1时,直接写出AD ,BE 的位置关系:;(2)如图2,当m ≠1时,(1)中的结论是否成立?若成立,给出证明;若不成立,说明理由.【拓展应用】(3)当m =3,AB =47,DE =4时,将△CDE 绕点C 旋转,使A ,D ,E 三点恰好在同一直线上,求BE 的长.【答案】(1)BE ⊥AD (2)成立;理由见解析(3)BE =63或43【分析】(1)根据m =1,得出AC =BC ,DC =EC ,证明△DCA ≌△ECB ,得出∠DAC =∠CBE ,根据∠GAB +∠ABG =∠DAC +∠CAB +∠ABG ,求出∠GAB +∠ABG =90°,即可证明结论;(2)证明△DCA ∽△ECB ,得出∠DAC =∠CBE ,根据∠GAB +∠ABG =∠DAC +∠CAB +∠ABG ,求出∠GAB +∠ABG =90°,即可证明结论;(3)分两种情况,当点E 在线段AD 上时,当点D 在线段AE 上时,分别画出图形,根据勾股定理求出结果即可.【详解】(1)解:∵m =1,∴AC =BC ,DC =EC ,∵∠DCE =∠ACB =90°,∴∠DCA +∠ACE =∠ACE +∠ECB =90°,∴∠DCA =∠ECB ,∴△DCA ≌△ECB ,∴∠DAC =∠CBE ,∵∠GAB+∠ABG=∠DAC+∠CAB+∠ABG,=∠CBE+∠CAB+∠ABG=∠CAB+∠CBA=180°-∠ACB=90°,∴∠AGB=180°-90°=90°,∴BE⊥AD;故答案为:BE⊥AD.(2)解:成立;理由如下:∵∠DCE=∠ACB=90°,∴∠DCA+∠ACE=∠ACE+∠ECB=90°,∴∠DCA=∠ECB,∵DC CE =ACBC=1m,∴△DCA∽△ECB,∴∠DAC=∠CBE,∵∠GAB+∠ABG=∠DAC+∠CAB+∠ABG,=∠CBE+∠CAB+∠ABG =∠CAB+∠CBA=180°-∠ACB=90°,∴∠AGB=180°-90°=90°,∴BE⊥AD;(3)解:当点E在线段AD上时,连接BE,如图所示:设AE=x,则AD=AE+DE=x+4,根据解析(2)可知,△DCA∽△ECB,∴BE AD =BCAC=m=3,∴BE=3AD=3x+4=3x+43,根据解析(2)可知,BE⊥AD,∴∠AEB=90°,根据勾股定理得:AE2+BE2=AB2,即x2+3x+432=472,解得:x=2或x=-8(舍去),∴此时BE=3x+43=63;当点D在线段AE上时,连接BE,如图所示:设AD=y,则AE=AD+DE=y+4,根据解析(2)可知,△DCA∽△ECB,∴BE AD =BCAC=m=3,∴BE=3AD=3y,根据解析(2)可知,BE⊥AD,∴∠AEB=90°,根据勾股定理得:AE 2+BE 2=AB 2,即y +4 2+3y 2=47 2,解得:y =4或y =-6(舍去),∴此时BE =3y =43;综上分析可知,BE =63或43.【点睛】本题主要考查了全等三角形的判定和性质,相似三角形的判定和性质,三角形内角和定理的应用,勾股定理,解题的关键是熟练掌握三角形相似的判定方法,画出相应的图形,注意分类讨论.4(2023秋·福建泉州·九年级校考阶段练习)如图,已知△ABC 中,AB =AC ,∠BAC =α.点D 是△ABC 所在平面内不与点A 、C 重合的任意一点,连接CD ,将线段CD 绕点D 顺时针旋转α得到线段DE ,连接AD 、BE .(1)如图1,当α=60°时,求证:BE =AD .(2)当α=120°时,请判断线段BE 与AD 之间的数量关系是,并仅就图2的情形说明理由.(3)当α=90°时,且BE ⊥AB 时,若AB =8,BE =2,点E 在BC 上方,求CD 的长.【答案】(1)见解析,(2)BE =3AD ,理由见解析(3)82【分析】(1)先证明△ABC 和△DCE 是等边三角形,再证明△ADC ≌△BEC ,可推出BE =AD ;(2)过A 作AH ⊥BC 与H ,先根据含30°的直角三角形的性质,等腰三角形的性质以及勾股定理可求出BC =3AC ,同理求出CE =3CD ,可得出BC EC =3AC 3DC=AC DC ,证明∠DCA =∠BCE ,然后证明△EBC ∽△DAC 即可求解;(3)过E 作EF ⊥BC 于F ,可判断△BEF 是等腰直角三角形,然后可求出EF ,BF ,CF 的长度,由(2)同理可证出△EBC ∽△DAC ,最后根据相似三角形的性质即可求解.【详解】(1)解:∵旋转,∴CD =ED ,当α=60°时,又AB =AC ,∴△ABC 和△DCE 是等边三角形,∴AC =BC ,DC =EC ,∠DCE =∠ACB =60°,∴∠ACD =∠BCE ,∴△ADC ≌△BEC ,∴AD =BE ;(2)解:BE =3AD 过A 作AH ⊥BC 与H ,∵AB =AC ,∠BAC =α=120°,∴∠ACB =30°,CH =12BC ,∴AC =2AH ,又由勾股定理得AH 2+CH 2=AC 2,∴CH =32AC ,∴BC =3AC ,同理CE =3CD ,∵DC =EC ,∠CDE =α=120°,∴∠DCE =30°=∠ACB ,∴∠DCA =∠BCE ,∵BC =3AC ,CE =3CD ,∴BC EC =3AC 3DC =AC DC ,∴△EBC ∽△DAC ,∴BE AD =BC AC =3,即BE =3AD (3)解:如图,过E 作EF ⊥BC 于F ,当α=90°时,∵AC =AB =8,∴∠ACB =45°,BC =AB 2+AC 2=2AC =82,∵BE ⊥AB ,∴∠EBF =45°=∠BEF ,∴BF =EF ,∵BE =EF 2+BF 2=2EF =2,∴EF =BF =2,∴CF =BF +BC =92,∴CE =EF 2+CF 2=241,由(2)同理可证△EBC ∽△DAC ,∴EC DC =BC AC=2,即241DC =2,∴DC =82.【点睛】本题属于三角形综合题,考查了等边三角形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理等知识,解题的关键在于正确寻找全等三角形或相似三角形.5(2023·黑龙江齐齐哈尔·统考中考真题)综合与实践数学模型可以用来解决一类问题,是数学应用的基本途径.通过探究图形的变化规律,再结合其他数学知识的内在联系,最终可以获得宝贵的数学经验,并将其运用到更广阔的数学天地.(1)发现问题:如图1,在△ABC 和△AEF 中,AB =AC ,AE =AF ,∠BAC =∠EAF =30°,连接BE ,CF,延长BE交CF于点D.则BE与CF的数量关系:,∠BDC=°;(2)类比探究:如图2,在△ABC和△AEF中,AB=AC,AE=AF,∠BAC=∠EAF=120°,连接BE,CF,延长BE,FC交于点D.请猜想BE与CF的数量关系及∠BDC的度数,并说明理由;(3)拓展延伸:如图3,△ABC和△AEF均为等腰直角三角形,∠BAC=∠EAF=90°,连接BE,CF,且点B,E,F在一条直线上,过点A作AM⊥BF,垂足为点M.则BF,CF,AM之间的数量关系:;(4)实践应用:正方形ABCD中,AB=2,若平面内存在点P满足∠BPD=90°,PD=1,则S△ABP=.【答案】(1)BE=CF,30(2)BE=CF,∠BDC=60°,证明见解析(3)BF=CF+2AM(4)7+74或7-74【分析】(1)根据已知得出∠BAE=∠CAF,即可证明△BAE≌△CAF,得出BE=CF,∠ABE=∠ACF,进而根据三角形的外角的性质即可求解;(2)同(1)的方法即可得证;(3)同(1)的方法证明△BAE≌△CAF SAS,根据等腰直角三角形的性质得出AM=12EF=EM=MF,即可得出结论;(4)根据题意画出图形,连接BD,以BD为直径,BD的中点为圆心作圆,以D点为圆心,1为半径作圆,两圆交于点P,P1,延长BP至M,使得PM=DP=1,证明△ADP∽△BDM,得出PA=22BM,勾股定理求得PB,进而求得BM,根据相似三角形的性质即可得出PA=221+7=2+142,勾股定理求得BQ,PQ,进而根据三角形的面积公式即可求解.【详解】(1)解:∵∠BAC=∠EAF=30°,∴∠BAE=∠CAF,又∵AB=AC,AE=AF,∴△BAE≌△CAF,∴BE=CF,∠ABE=∠ACF设AC,BD交于点O,∵∠AOD=∠ACF+∠BDC=∠ABE+∠BAO∴∠BDC=∠BAO=∠BAC=30°,故答案为:BE= CF,30.(2)结论:BE=CF,∠BDC=60°;证明:∵∠BAC=∠EAF=120°,∴∠BAC-∠EAC=∠EAF-∠EAC,即∠BAE=∠CAF,又∵AB=AC,AE=AF,∴△BAE≌△CAF∴BE=CF,∠AEB=∠AFC∵∠EAF=120°,AE=AF,∴∠AEF=∠AFE=30°,∴∠BDC=∠BEF-∠EFD=∠AEB+30°-∠AFC-30°=60°,(3)BF=CF+2AM,理由如下,∵∠BAC=∠EAF=90°,∴∠BAC-∠EAC=∠EAF-∠EAC,即∠BAE=∠CAF,又∵△ABC和△AEF均为等腰直角三角形∴AB=AC,AE=AF,∴△BAE≌△CAF SAS,∴BE= CF,在Rt △AEF 中,AM ⊥BF ,∴AM =12EF =EM =MF ,∴BF =BE +EF =CF +2AM ;(4)解:如图所示,连接BD ,以BD 为直径,BD 的中点为圆心作圆,以D 点为圆心,1为半径作圆,两圆交于点P ,P 1,延长BP 至M ,使得PM =DP =1,则△MDP 是等腰直角三角形,∠MDP =45°∵∠CDB =45°,∴∠MDB =∠MDP +∠PDC +∠CDB =90°+∠PDC =∠ADP ,∵AD DB =12,DP DM =12,∴△ADP ∽△BDM ∴PA BM =12=22,∴PA =22BM ,∵AB =2,在Rt △DPB 中,PB =DB 2-DP 2=22 2-12=7,∴BM =BP +PM =7+1∴PA =221+7 =2+142过点P 作PQ ⊥AB 于点Q ,设QB =x ,则AQ =2-x ,在Rt △APQ 中,PQ 2=AP 2-AQ 2,在Rt △PBQ 中,PQ 2=PB 2-BQ 2∴AP 2-AQ 2=PB 2-BQ 2∴2+142 2-2-x 2=7 2-x 2解得:x =7-74,则BQ =7-74,设PQ ,BD 交于点G ,则△BQG 是等腰直角三角形,∴QG =QB =7-74在Rt △DPB ,Rt △DP 1B 中,DP =DP 1DB =DB ∴Rt △DPB ≌Rt △DP 1B ∴∠PDB =∠P 1DB又PD =P 1D =1,DG =DG ∴△PGD ≌△P 1DG ∴∠PGD =∠P 1GD =45°∴∠PGP 1=90°,∴P 1G ∥AB ∴S △ABP 1=12AB ×QG =12×2×7-74=7-74,在Rt △PQB 中,PQ =PB 2-BQ 2=7 2-7-74 2=7+74∴S△ABP =12AB ×PQ =12×2×7+74=7+74,综上所述,S△ABP=7+74或7-74故答案为:7+74或7-74.【点睛】本题考查了全等三角形的性质与判定,相似三角形的性质与判定,正方形的性质,勾股定理,直径所对的圆周角是直角,熟练运用已知模型是解题的关键.6(2023·山东济南·九年级统考期中)问题背景:一次小组合作探究课上,小明将一个正方形ABCD和等腰Rt△CEF按如图1所示的位置摆放(点B、C、E在同一条直线上),其中∠ECF=90°.小组同学进行了如下探究,请你帮助解答:初步探究(1)如图2,将等腰Rt△CEF绕点C按顺时针方向旋转,连接BF,DE.请直接写出BF与DE的关系;(2)如图3,将(1)中的正方形ABCD和等腰Rt△CEF分别改成菱形ABCD和等腰△CEF,其中CE=CF,∠BCD=∠FCE,其他条件不变,求证:BF=DE;深入探究:(3)如图4,将(1)中的正方形ABCD和等腰Rt△CEF分别改成矩形ABCD和Rt△CEF,其中∠ECF=90°且CECF =CDBC=34,其它条件不变.①探索线段BF与DE的关系,说明理由;②连接DF,BE若CE=6,AB=12,直接写出DF2+BE2=.【答案】(1)BF=DE,BF⊥DE;(2)见解析;(3)①DEBF=34,DE⊥BF,见解析;②500【分析】(1)由正方形的性质,等腰直角三角形的性质,得到BC=CD,CE=CF,证明△BCF≌DCE,得到BF=DE,∠CBF=∠CDE,结合对顶角相等,即可得到BF⊥DE;(2)由菱形的性质,旋转的性质,先证明ΔBCF≌ΔDCE,即可得到结论成立;(3)①由矩形的性质,直角三角形的性质,先证明ΔBCF∽ΔDCE,得到BF与DE的数量关系,再由余角的性质证明位置关系即可;②连接BD,先求出矩形的边长,直角三角形的边长,与(1)同理先证明BF⊥DE,然后利用勾股定理,等量代换,即可得到DF2+BE2=500.【详解】解:(1)如图:∵正方形ABCD和等腰Rt△CEF中,∴BC=CD,CE=CF,∠BCD=∠ECF=90°,∴∠BCD+∠DCF=∠ECF+∠DCF,即∠BCF=∠DCE,∴△BCF≌DCE,∴BF=DE,∠CBF=∠CDE,∵∠BGC=∠DGF,∴∠BCG=∠DFG=90°∴BF⊥DE.(2)证明:如图:∵∠BCD=∠FCE,∴∠BCF=∠DCE,∵四边形ABCD为菱形∴BC=CD,又∵CE=CF∴△BCF≌△DCE(SAS),∴BF=DE;(3)①∵在矩形ABCD中,∠BCD=90°,∴∠BCD=∠FCE∴∠BCF=∠DCE,又∵CECF=CDBC=34∴△BCF∽△DCE,∴DEBF=CECF=34;∴∠CBF=∠CDE,设CD与BF交于点G∵∠BGC=∠DGF∴180°-∠CBF-∠BGC=180°-∠CDE-∠DGF,∴∠DQB=∠BCD=90°∴DE⊥BF.②如图:连接BD在矩形ABCD中,CD=AB=12,∵CE=6,6CF =12BC=34,∴CF=8,BC=16,∵△BCF∽△DCE,∴∠CBF=∠CDE,∵∠BGC=∠DGF,∴∠BCG=∠DQG=90°,∴BF⊥DE;在直角△BCD中,有BD2=BC2+CD2=162+122=400,在直角△BDQ中,BD2=BQ2+DQ2=400;在直角△CEF中,EF2=CE2+CF2=62+82=100,在直角△EFQ中,EF2=EQ2+FQ2=100;∴BQ2+DQ2+EQ2+FQ2=400+100=500;在直角△BEQ和直角△DFQ中,由勾股定理,则∵BQ2+EQ2=BE2,DQ2+FQ2=DF2,∴DF2+BE2=BQ2+DQ2+EQ2+FQ2=500;故答案为:500.【点睛】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,旋转的性质,勾股定理,以及等腰直角三角形的性质等知识,解题的关键是熟练掌握所学的知识,正确的作出辅助线,找到证明三角形相似和三角形全等的条件进行解题.7(2023春·广东·九年级专题练习)已知在△ABC中,O为BC边的中点,连接AO,将△AOC绕点O顺时针方向旋转(旋转角为钝角),得到△EOF,连接AE,CF.(1)如图1,当∠BAC=90°且AB=AC时,则AE与CF满足的数量关系是;(2)如图2,当∠BAC =90°且AB≠AC时,(1)中的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)如图3,延长AO到点D,使OD=OA,连接DE,当AO=CF=5,BC=6时,求DE的长.【答案】(1)AE=CF;(2)成立,证明见解析;(3)511 3【分析】(1)结论AE=CF.证明ΔAOE≅ΔCOF(SAS),可得结论.(2)结论成立.证明方法类似(1).(3)首先证明∠AED=90°,再利用相似三角形的性质求出AE,利用勾股定理求出DE即可.【详解】解:(1)结论:AE=CF.理由:如图1中,∵AB=AC,∠BAC=90°,OC=OB,∴OA=OC=OB,AO⊥BC,∵∠AOC=∠EOF=90°,∴∠AOE=∠COF,∵OA=OC,OE=OF,∴ΔAOE≅ΔCOF(SAS),∴AE=CF.(2)结论成立.理由:如图2中,∵∠BAC=90°,OC=OB,∴OA=OC=OB,∵∠AOC=∠EOF,∴∠AOE=∠COF,∵OA=OC,OE=OF,∴ΔAOE≅ΔCOF(SAS),∴AE=CF.(3)如图3中,由旋转的性质可知OE =OA ,∵OA =OD ,∴OE =OA =OD =5,∴∠AED =90°,∵OA =OE ,OC =OF ,∠AOE =∠COF ,∴OA OC =OE OF ,∴ΔAOE ∽ΔCOF ,∴AE CF =OA OC,∵CF =OA =5,∴AE 5=53,∴AE =253,∴DE =AD 2-AE 2=102-253 2=5113.【点睛】本题属于几何变换综合题,考查了旋转变换,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题.课后专项训练1(2023秋·北京顺义·九年级校考期中)如图,△ABC 和△ADE 都是等腰直角三角形,∠ABC =∠ADE =90°.连接BD ,CE .则BD CE的值为()A.12B.22C.2D.2【答案】B 【分析】由等腰直角三角形的性质可推出∠DAE =∠BAC =45°,AE =2AD ,AC =2AB ,从而可得出∠EAC =∠DAB ,AE AD =AC AB=2,证明△DAB ∽△EAC 即可得出结论.【详解】解:∵△ABC 和△ADE 都是等腰直角三角形,∴∠DAE =∠BAC =45°,AE =2AD ,AC =2AB ,∴∠EAC =∠DAB ,AE AD =AC AB =2,∴△DAB ∽△EAC ,∴BD CE =AD AE=22.故选B .【点睛】本题考查等腰直角三角形的性质,勾股定理,相似三角形的判定和性质.掌握三角形相似的判定条件是解题关键.2(2023春·浙江金华·九年级校考期中)如图,在Rt △ABC 中,∠ABC =90°,以AB ,AC 为边分别向外作正方形ABFG 和正方形ACDE ,CG 交AB 于点M ,BD 交AC 于点N .若GM CM =12,则CG BD=() A.12 B.34 C.255 D.13013【答案】D【分析】设AG =a =AB ,BC =2a ,由“AAS ”可证△ABC ≌△CHD ,可得AB =CH =a ,DH =BC =2a ,利用勾股定理分别求出CG ,BD 的长,即可求解.【详解】解:如图,过点D 作DP ⊥BC ,交AC 的延长线于点P,交BC 的延长线于点H ,∵AG ∥BF ,∴△AGM ∽△BCM ,∴AG BC =GM CM=12,∴设AG =a =AB ,BC =2a ,∴CG =GF 2+FC 2=a 2+(3a )2=10a ,∵DH ⊥BC ,AB ⊥BC ,∴∠DHC =∠ABC =∠ACD =90°,AB ∥DH ,∴∠DCH +∠ACB =90°=∠ACB +∠BAC ,∴∠DCH =∠BAC ,在△ABC 和△CHD 中,∠ABC =∠DHC ∠BAC =∠DCH AC =CD,∴△ABC ≌△CHD (AAS ),∴AB =CH =a ,DH =BC =2a ,∴BD =BH 2+DH 2=(3a )2+(2a )2=13a ,∴CG BD =10a 13a =13013.故选:D .【点睛】本题考查了相似三角形的判定和性质,正方形的性质,全等三角形的判定和性质,添加恰当辅助线构造相似三角形是解题的关键.3(2023春·浙江丽水·九年级专题练习)如图,在△ABC 中,过点C 作CD ⊥AB ,垂足为点D ,过点D 分别作DE ⊥AC ,DF ⊥BC ,垂足分别为E ,F .连接EF 交线段CD 于点O ,若CO =22,CD =32,则EO ⋅FO 的值为( ).A.63B.4C.56D.6【答案】B【分析】由题意易得出∠DEC=∠DFC=90°,即说明点C,E,D,F四点共圆,得出∠DEO=∠FCO,从而易证△DOE∽△FOC,得出EOCO=DOFO.由题意可求出DO=CD-CO=2,即可求出EO⋅FO=CO⋅DO=4.【详解】解:∵DE⊥AC,DF⊥BC,∴∠DEC=∠DFC=90°,∴点C,E,D,F四点共圆,∴∠DEF=∠FCD,即∠DEO=∠FCO.又∵∠DOE=∠FOC,∴△DOE∽△FOC,∴EOCO=DOFO,∴EO⋅FO=CO⋅DO.∵CO=22,CD=32,∴DO=CD-CO=2,∴EO⋅FO=CO⋅DO=22×2=4.故选B.【点睛】本题考查相似三角形的判定和性质,四点共圆的知识,圆周角定理.确定点C,E,D,F四点共圆,从而可得出证明△DOE∽△FOC的条件是解题关键.4(2022·广西梧州·统考一模)如图,在△ABC中,∠C=45°,将△ABC绕着点B逆时针方向旋转,使点C的对应点C′落在CA的延长线上,得到△A′BC′,连接AA′,交BC′于点O.下列结论:①∠AC′A′= 90°;②AA′=BC′;③∠A′BC′=∠A′AC′;④△A′OC′∽△BOA.其中正确结论的个数是()A.1B.2C.3D.4【答案】C【分析】利用旋转的性质和等腰三角形的性质推出∠AC A =90°,即可判断①的正确性;通过点A 、B、A、C 四点共圆可以判断出②③④的正确性.【详解】解:由题意可得:BC=BC ,∠C=∠A C B∵∠C=45°∴∠BC A=45°∵∠AC A =∠A C B+∠BC A∴∠AC A =90°,故①正确;∵∠BC A=∠C=45°∴∠C BC=90°∵∠ABC=∠A BC ∴∠A BA=90°∴∠A BA+∠AC A =180°,∠C AB+∠C A B=180°∴点A 、B、A、C 四点共圆∵∠AC A =90°,∠BAC ≠90°∴A A是直径,BC 不是直径∴A A≠BC ,故②错误;∵点A 、B、A、C 四点共圆∴∠A BC =∠A AC ,故③正确;∵点A 、B、A、C 四点共圆∴∠AA C =∠ABC ,∠A C B=∠A AB∴△A OC ∽△BOA,故④正确;∴正确结论的个数是3个故选C.【点睛】本题考查了图形的旋转、等腰三角形的性质、四点共圆、圆周角定理的推论以及相似的判定等知识点,灵活运用这些知识点是解题的关键.5(2023·广东深圳·校联考模拟预测)如图,已知▱ABCD ,AB =3,AD =8,将▱ABCD 绕点A 顺时针旋转得到▱AEFG ,且点G 落在对角线AC 上,延长AB 交EF 于点H ,则FH 的长为.【答案】558【分析】先利用平行四边形的性质得到CD =AB =3,BC =AD =8,∠D =∠ABC ,再根据旋转的性质得到∠DAG =∠BAE ,AE =AB =3,EF =BC =8,∠E =∠ABC ,接着证明△ADC ∽△AEH ,然后利用相似比求出EH ,从而得到FH 的长.【详解】解:∵四边形ABCD 为平行四边形,∴CD =AB =3,BC =AD =8,∠D =∠ABC ,∵将▱ABCD 绕点A 顺时针旋转得到▱AEFG ,且点G 落在对角线AC 上,∴∠DAG =∠BAE ,AE =AB =3,EF =BC =8,∠E =∠ABC ,∴∠E =∠D ,∵∠DAC =∠HAE ,∴△ADC ∽△AEH ,∴AD AE =DC EH ,∴83=3EH ,∴EH =98,∴FH =EF -EH =8-98=558,故答案为:558.【点睛】本题考查了平行四边形的性质,旋转、三角形相似的判定利用三角形相似比求线段的长,根据旋转的性质得到∠DAG =∠BAE ,然后根据两组对应角分别相等的两三角形相似得出AD AE=DC EH 是本题的关键.6(2022·安徽·模拟预测)如图,将边长为3的菱形ABCD 绕点A 逆时针旋转到菱形AB C D 的位置,使点B 落在BC 上,B C 与CD 交于点E .若BB =1,则CE 的长为.【答案】34/0.75【分析】延长D D 交BC 的延长线于点M ,过点C 作CN ∥DM 交B C 于点N ,根据菱形的性质和旋转的性质证明△ABB ≌△ADD ≌△DCM ≌B C M ,求得C D =B C =2,CM =C M =1,再根据CN ∥DM ,得CN MC =B C B M ,CN DC=CE DE ,代入即可求解.【详解】解:如图,延长D D 交BC 的延长线于点M ,过点C 作CN ∥DN 交B C 于点N ,∵四边形ABCD是菱形∴AB=BC=CD=AD=3,∠B=∠ADC=∠D ,AB∥CD∴∠DCM=∠B由旋转的性质得:AB =AB=3,AD =AD=3,∠BAB =∠DAD =∠MB C ,B C =D C =3,∠ADC=∠D ,∴△ABB ≌△ADD ∴DD =BB =1∴DC =D C -DD =2∵∠CDM+∠ADC=∠DAD +∠D ∴∠BAB =∠DAD =∠CDM∴△ABB ≌△DCM≌B C M,∴DM=AB =3,∠M=∠AB B∴C M=CM=3-2=1∵CN∥DM∴△B CN∽△B MC ∴CNMC =B CB M∵B C=BC-BB =2∴CN1=23∴CN=23∵CN∥DM∴△CNE∽△DC E∴CNDC =CEDE∴232=CE3-CE∴CE=34故答案为:34【点睛】本题考查菱形的性质,旋转的性质,全等三角形的判定与性质,相似三角形的判定与性质,综合性较强,作辅助线构造全等三角形和相似三角形是解题的关键.7(2021·湖南益阳·统考中考真题)如图,Rt△ABC中,∠BAC=90°,tan∠ABC=32,将△ABC绕A点顺时针方向旋转角α(0°<α<90°)得到△AB C ,连接BB ,CC ,则△CAC 与△BAB 的面积之比等于.【答案】9:4【分析】先根据正切三角函数的定义可得ACAB=32,再根据旋转的性质可得AB=AB,AC=AC ,∠BAB=∠CAC =α,从而可得ACAC =ABAB=1,然后根据相似三角形的判定可得△CAC ∼△BAB ,最后根据相似三角形的性质即可得.【详解】解:∵在Rt△ABC中,∠BAC=90°,tan∠ABC=32,∴ACAB=32,由旋转的性质得:AB=AB ,AC=AC ,∠BAB =∠CAC =α,∴ACAC=ABAB=1,在△CAC 和△BAB 中,ACAC=ABAB∠CAC =∠BAB,∴△CAC ∼△BAB ,∴S△CACS△BAB=ACAB2=94,即△CAC 与△BAB 的面积之比等于9:4,故答案为:9:4.【点睛】本题考查了正切三角函数、旋转的性质、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题关键.8(2023秋·山东济南·九年级校考阶段练习)如图,已知∠ACB=∠DCE=90°,∠ABC=∠CED=∠CAE=30°.(1)求证:△ACD∽△BCE;(2)若AC=3,AE=8,求AD.【答案】(1)见详解(2)AD=103 3【分析】(1)根据30°的正切值得ACBC=DCEC,即可证明相似.(2)先证明∠BAE=90°,进而求出BE=10,再根据△ACD∽△BCE得出ADBE=ACBC=DCEC=33,即可求出AD=33BE=1033.【详解】(1)∵∠ACB=∠DCE=90°∴∠ACD=∠BCE∵∠ABC=∠CED=∠CAE=30°∴tan∠ABC=ACBC =33,tan∠CED=DCEC=33∴AC BC =DCEC∴△ACD∽△BCE(2)∵由(1),△ACD∽△BCE∴ADBE =ACBC=DCEC=33∵∠ABC=∠CED=∠CAE=30°∴∠BAC=60°∴∠BAE=90°∵AC=3,∠ABC=30°∴AB=2AC=6∵AE=8∴BE=10∴AD=33BE=1033【点睛】本题考查相似三角形的判定、特殊角三角函数值及勾股定理,根据特殊角得出对应线段成比例是解题关键.9(2023·安徽滁州·九年级校考阶段练习)如图,点A在线段BD上,在BD的同侧作等腰Rt△ABC和等腰Rt△ADE,CD与BE、AE分别交于点P、M.求证:(1)△BAE∽△CAD;(2)MP⋅MD=MA⋅ME.【答案】(1)证明见解析(2)证明见解析【分析】(1)由题意可得AC=2AB,AD=2AE,∠BAE=∠CAD=135°,即可证△BAE∽△CAD;(2)由△BAE∽△CAD可得∠BEA=∠CDA,即可证△PME∽△AMD,可得MP⋅MD=MA⋅ME.【详解】(1)证明:∵等腰Rt △ABC 和等腰Rt △ADE ,∴AB =BC ,AE =DE ,∠BAC =∠DAE =45°,∴AC =2AB ,AD =2AE ,∠BAE =∠CAD =135°,∴AC AB =AD AE=2,∴△BAE ∽△CAD ,(2)∵△BAE ∽△CAD ,∴∠BEA =∠CDA ,且∠PME =∠AMD ,∴△PME ∽△AMD ,∴ME MD =MP AM,∴MP ⋅MD =MA ⋅ME .【点睛】本题考查了相似三角形的判定和性质,等腰直角三角形性质,勾股定理的应用,熟练运用相似三角形的判定是本题的关键.10(2023秋·湖北孝感·九年级校联考阶段练习)问题背景:如图1,在△ABC 中,∠ACB =90°,AC =BC ,AD 是BC 边上的中线,E 是AD 上一点,将△CAE 绕点C 逆时针旋转90°得到△CBF ,AD 的延长线交BF 于点P .问题探究:(1)当点P 在线段BF 上时,证明EP +FP =2BP .①先将问题特殊化,如图2,当CE ⊥AD 时,证明:EP +FP =2BP ;②再探究一般情形,如图1,当CE 不垂直AD 时,证明:EP +FP =2BP ;拓展探究:(2)如图3,若AD 的延长线交BF 的延长线于点P 时,直接写出一个等式,表示EP ,FP ,BP 之间的数量关系.【答案】(1)①见解析,②见解析(2)EP -FP =2PB【分析】①结论:PE +PF =2PB .根据旋转的性质△ACE ≌△BCF ,再证明四边形CEPF 是正方形,可得结论.②结论不变,如图2中,过点C 作CG ⊥AD 于点G ,过点C 作CH ⊥BF 交BF 的延长线于点H .证明△CHF ≌△CGE ,可以推出FH =EG ,再利用正方形的性质解决问题即可.(2)结论:EP -FP =2PB ,证明方法类似②.【详解】(1)①证明:∵CE ⊥AD ,∴∠AEC =∠PEC =90°,在△ABC 中,∠ACB =90°,AC =AB ,∵将△CAE 绕点C 逆时针旋转90°得到△CBF ,∴△ACE ≌△BCF ,CF =CE ,∠ECF =90°,∠BFC =∠AEC =90°,∴∠BFC =∠ECF =∠PEC =90°,∴四边形CEPF 是矩形,∵CE =CF ,∴四边形CEPF 是正方形,∴CE =EP =FP =CF ,∠EPF =90°,∴∠BPD =90°=∠CED ,∵AD 是△ABC 中BC 边上的中线,∴BD =CD =12BC ,在△CED 和△BPD 中,∴∠CED =∠BPD∠CDE =∠BDP CD =BD,∴△CED ≌△BPD (AAS ),∴CE =BP ,∴BP =EP =CE =FP ,∴EP +FP =2BP②结论成立,证明:过点C 作CG ⊥AD 于点G ,过点C 作CH ⊥BF 交BF 的延长线于点H .则∠CGE =∠CGD =∠CHF =90°.由旋转性质可知,△CBF≌△CAE,∴CF=CE,∠CFB=∠CEA,∠ACE=∠BCF,∵∠CFH=180°-∠CFB,∠CEG=180°-∠CEA,∴∠CFH=∠CEG,∴△CHF≌△CGE,∴∠FCH=∠ECG,CH=CG,FH=EG.∴∠FCH+∠BCF+∠DCG=∠ECG+∠ACF+∠DCG=90°.∴∠HCG=90°.∴四边形CGPH是正方形.∴CG=GP=PH,∴EP+FP=GP+PH=2CG.∵CD=BD,∠CGD=∠BPD=90°,∠CDG=∠BDP,∴△CDG≌△BDP.∴CG=BP.∴EP+FP=2PB.(2)解:EP-FP=2PB.理由:如下图所示,过C作CN∥BP交AP于点N,CM∥DP交BP的延长线于点M,则四边形CNPM是平行四边形,△BPD∽△BMC,∴CN=PM,CM=PN,BPBM =BDBC=12,∴BM=2BP,∴PM=BP,∵∠APB=90°,∴∠NPM=90°,∴四边形CNPM是矩形,∴∠M=∠CNE=∠CNP=90°,在△CFM和△CEN中,∠H=∠CNE=90°∠CFH=∠CEN CF=CE,∴△CFM≌△CEN(AAS),∴CM=CN,FM=EN,∴四边形CNPM是正方形,∴PM=CN=PN,∴EP-FP=PN+EN-FP=PN+FM-FP=PN +PM=2PM,∴EP-FP=2BP.【点睛】本题属于几何变换综合题,考查相似三角形的判定和性质,等腰直角三角形的性质,全等三角形的判定和性质,正方形的判定和性质等知识,解题关键是正确寻找全等三角形解决问题,属于中考压轴题.11(2022·河南·九年级专题练习)规定:有一角重合,且角的两边叠合在一起的两个相似四边形叫做“嵌套四边形”,如图,四边形ABCD和AMPN就是嵌套四边形.(1)问题联想:如图①,嵌套四边形ABCD,AMPN都是正方形,现把正方形AMPN以A为中心顺时针旋转150°得到正方形AM'P'N',连接BM',DN'交于点O,则BM'与DN'的数量关系为,位置关系为;(2)类比探究:如图②,将(1)中的正方形换成菱形,∠BAD=∠MAN=60,其他条件不变,则(1)中的结论还成立吗?若成立,请说明理由;若不成立,请给出正确的结论,并说明理由;(3)拓展延伸:如图3,将(1)中的嵌套四边形ABCD和AMPN换成是长和宽之比为2:1的矩形,旋转角换成α(90°<α<180°),其他条件不变,请直接写出BM'与DN'的数量关系和位置关系.【答案】(1)BM =DN ,BM ⊥DN ;(2)BM =DN 成立,BM ⊥DN 不成立,BM 与DN 相交,且夹角为60°.理由见解析;(3)BM =2DN ,BM ⊥DN .【分析】(1)根据SAS证明△ABM'≌△AND',进而得到BM =DN ,∠ABM'=∠ADN',再利用三角形内角和可推出∠BOD=90°,即BM ⊥DN ;(2)根据旋转和菱形的性质证明ΔABM ≌ΔADN ,再推出∠BOD=∠BAD=60°,故可求解;(3)根据旋转和矩形的性质证明ΔABM ∼ΔADN ,得到BM =2DN ,再推出∠BOD=∠BAD=90°即可求解.【详解】(1)如图设AB,DN 交于点H,,∵四边形ABCD,AMPN都是正方形,把正方形AMPN以A为中心顺时针旋转150°得到正方形AM'P'N',∴AB=AD,AM'=AD', ∠BAM =∠DAN =150°∴△ABM'≌△AND',∴BM =DN ,∠ABM'=∠ADN',∵∠ADN'+∠DHA+∠DAH=180°,∠ABM'+∠BHO+∠BOD=180°,又∠DHA=∠BHO∴∠BOD=∠BAD=90°,即BM ⊥DN 故答案为:BM =DN ,BM ⊥DN ;(2)BM =DN 成立,BM ⊥DN 不成立,BM 与DN 相交,且夹角为60°.理由:设AB,DN 交于点E,由旋转的性质可得∠BAM =∠DAN =150°.∵四边形ABCD,AM P N 都是菱形,∴AB=AD,AM =AN ,∴ΔABM ≌ΔADN ,∴BM =DN ,∠ABM =∠ADN .。
初中数学几何模型之——手拉手模型,跟我学-应对中考轻松自如
初中数学几何模型之——手拉手模型,跟我学-应对中考轻松自
如
一、模型一:手拉手模型----旋转型全等
(1)等边三角形
手拉手-等边旋转
【条件】:△OAB和△OCD均为等边三角形;
【结论】:①△OAC≌△OBD;②∠AEB=60°;③OE平分∠AED
(2)等腰直角三角形
手拉手-等腰直角旋转
【条件】:△OAB和△OCD均为等腰直角三角形;
【结论】:①△OAC≌△OBD;②∠AEB=90°;③OE平分∠AED
(3)顶角相等的两任意等腰三角形
手拉手-等腰旋转
【条件】:△OAB和△OCD均为等腰三角形;且∠COD=∠AOB
【结论】:①△OAC≌△OBD;②∠AEB=∠AOB;③OE平分∠AED
二、模型二:手拉手模型----旋转型相似
(1)一般情况
【条件】:CD∥AB,将△OCD旋转至右图的位置
【结论】:①右图中△OCD∽△OAB→→→△OAC∽△OBD;
②延长AC交BD于点E,必有∠BEC=∠BOA
(2)特殊情况
【条件】:CD∥AB,∠AOB=90° 将△OCD旋转至右图的位置
【结论】:①右图中△OCD∽△OAB→→→△OAC∽△OBD;
②延长AC交BD于点E,必有∠BEC=∠BOA;
③BD/AC=OD/OC=OB/OA=tan∠OCD;
④BD⊥AC;
⑤连接AD、BC,必有AD2+BC2=AB2+CD2;
⑥S△BCD=1/2AC×BD。
初中数学专题一 旋转中的几何模型(手拉手模型、对角互补模型)(解析版)
专题一旋转中的几何模型模型一 “手拉手”模型模型特征:两个等边三角形或等腰直角三角形或正方形共顶点.模型说明:如图1,△ABE,△ACF都是等边三角形,可证△AEC≌△ABF.如图2,△ABD,△ACE都是等腰直角三角形,可证△ADC≌△ABE.如图3,四边形ABEF,四边形ACHD都是正方形,可证△ABD≌△AFC.图1 图2 图3等腰图形有旋转,辩清共点旋转边,关注三边旋转角,全等思考边角边。
1【问题提出】(1)如图①,△ABC,△ADE均为等边三角形,点D,E分别在边AB,AC上.将△ADE绕点A沿顺时针方向旋转,连结BD,CE.在图②中证明△ADB≅△AEC.[学以致用](2)在(1)的条件下,当点D,E,C在同一条直线上时,∠EDB的大小为度.[拓展延伸](3)在(1)的条件下,连结CD.若BC=6,AD=4直接写出△DBC的面积S的取值范围.【思路点拨】(1)根据“手拉手”模型,证明△ADB≅△AEC即可;(2)分“当点E在线段CD上”和“当点E在线段CD的延长线上”两种情况,再根据“手拉手”模型中的结论即可求得∠EDB的大小;(3)分别求出△DBC的面积最大值和最小值即可得到结论【详解】(1)∵ABC,ADE均为等边三角形,∴AD=AE,AB=AC,∴∠DAE-∠BAE=∠BAC-∠BAE,即∠BAD=∠CAE在△ADB和△AEC中,AD=AE∠BAD=∠CAE AB=AC∴ABD ≅ACE (SAS );(2)当D ,E ,C 在同一条直线上时,分两种情况:①当点E 在线段CD 上时,如图,∵△ADE 是等边三角形,∴∠ADE =∠AED =60°,∴∠AEC =180°-∠AED =120°,由(1)可知,△ADB ≅△AEC ,∴∠ADB =∠AEC =120°,∴∠EDB =∠ADB -∠ADE =120°-60°=60°②当点E 在线段CD 的延长线上时,如图,∵△ADE 是等边三角形,∴∠ADE =∠AED =60°∴∠ADC =180°-∠ADE =120°,由(1)可知,△ADB ≅△AEC∴∠ADB =∠AEC =60°,∴∠EDB =∠ADB +∠ADE =60°+60°=120°综上所述,∠EDB 的大小为60°或120°(3)过点A 作AF ⊥BC 于点F ,当点D 在线段AF 上时,点D 到BC 的距离最短,此时,点D 到BC 的距离为线段DF 的长,如图:∵ΔABC 是等边三角形,AF ⊥BC ,BC =6∴AB =BC =6,BF =12BC =3∴AF =AB 2-BF 2=62-32=33∴DF =33-4此时S .DBC =12BC ⋅DF =12×6×(33-4)=93-12;当D 在线段FA 的延长线上时,点D 到BC 的距离最大,此时点D 到BC 的距离为线段DF 的长,如图,∵ΔABC 是等边三角形,AF ⊥BC ,BC =6∴AB =BC =6,BF =12BC =3,∴AF =AB 2-BF 2=62-32=33∵AD =4∴DF =AF +AD =33+4此时,S .DBC =12BC ⋅DF =12×6×(33+4)=93+12;综上所述,△DBC 的面积S 取值是93-12≤5≤93+12【点评】 利用“手拉手”模型,构造对应边“拉手线”组成的两个三角形全等是解题关键2已知正方形ABCD 和等腰直角三角形BEF ,BE =EF ,∠BEF =90°,按图1放置,使点F 在BC 上,取DF 的中点G ,连接EG ,CG .(1)探索EG,CG的数量关系和位置关系并证明;(2)将图(1)中△BEF绕点B顺时针旋转45°,再连接DF,取DF中点G(见图2),(1)中的结论是否仍然成立?证明你的结论;(3)将图(1)中△BEF绕点B顺时针转动任意角度(旋转角在0°到90°之间),再连接DF,取DF中点G(见图3),(1)中的结论是否仍然成立?证明你的结论.【思路点拨】(1)首先证明B、E、D三点共线,根据直角三角形斜边上的中线等于斜边的一半,即可证明EG=DG= GF=CG,得到∠EGF=2∠EDG,∠CGF=2∠CDG,从而证得∠EGC=90°;(2)首先证明△FEG≌△DHG,然后证明△ECH为等腰直角三角形.可以证得:EG=CG且EG⊥CG;(3)首先证明:△BEC≌△FEH,即可证得:△ECH为等腰直角三角形,从而得到:EG=CG且EG⊥CG.【解题过程】解:(1)EG=CG且EG⊥CG.证明如下:如图①,连接BD.∵正方形ABCD和等腰Rt△BEF,∴∠EBF=∠DBC=45°.∴B、E、D三点共线.∵∠DEF=90°,G为DF的中点,∠DCB=90°,∴EG=DG=GF=CG.∴∠EGF=2∠EDG,∠CGF=2∠CDG.∴∠EGF+∠CGF=2∠EDC=90°,即∠EGC=90°,∴EG⊥CG.(2)仍然成立,证明如下:如图②,延长EG交CD于点H.∵BE⊥EF,∴EF∥CD,∴∠1=∠2.又∵∠3=∠4,FG=DG,∴△FEG≌△DHG,∴EF=DH,EG=GH.∵△BEF为等腰直角三角形,∴BE=EF,∴BE=DH.∵CD=BC,∴CE=CH.∴△ECH为等腰直角三角形.又∵EG=GH,∴EG=CG且EG⊥CG(3)仍然成立.证明如下:如图③,延长CG至H,使GH=CG,连接HF交BC于M,连接EH、EC.∵GF=GD,∠HGF=∠CGD,HG=CG,∴△HFG≌△CDG,∴HF=CD,∠GHF=∠GCD,∴HF∥CD.∵正方形ABCD,∴HF=BC,HF⊥BC.∵△BEF是等腰直角三角形,∴BE=EF,∠EBC=∠HFE,∴△BEC≌△FEH,∴HE=EC,∠BEC=∠FEH,∴∠BEF=∠HEC=90°,∴△ECH为等腰直角三角形.又∵CG=GH,∴EG=CG且EG⊥CG.针对训练11已知ΔABC是等边三角形,AD⊥BC于点D,点E是直线AD上的动点,将BE绕点B顺时针方向旋转60°得到BF,连接EF,CF,AF.(1)问题发现:如图1,当点E在线段AD上时,且∠AFC=35°,则∠FAC的度数是;(2)结论证明:如图2,当点E 在线段AD 的延长线上时,请判断∠AFC 和∠FAC 的数量关系,并证明你的结论;(3)拓展延伸:若点E 在直线AD 上运动,若存在一个位置,使得ΔACF 是等腰直角三角形,请直接写出此时∠EBC 的度数.【答案】(1)55°;(2)∠AFC +∠FAC =90°,见解析;(3)15°或75°【解析】(1)55°,理由:∵ΔABC 是等边三角形,∴AB =AC =BC ,∠ABC =∠BAC =∠ACB =60°,∵AB =AC ,AD ⊥BC ,∴∠BAD =30°,∵将BE 绕点B 顺时针方向旋转60°得到BF ,∴BE =BF ,∠EBF =60°,∴∠EBF =∠ABC ,在△ADC 和△BDA 中,AB =BC∠ABE =∠FBC BE =BF,∴ΔABE ≌ΔCBF SAS ,∴∠BAE =∠BCF =30°,∴∠ACF =90°,∴∠AFC +∠FAC =90°;∵∠AFC =35°,∴∠FAC =55°;(2)结论:∠AFC +∠FAC =90°,理由如下:∵ΔABC 是等边三角形,∴AB =AC =BC ,∠ABC =∠BAC =∠ACB =60°,∵AB =AC ,AD ⊥BC ,∴∠BAD =30°,∵将BE 绕点B 顺时针方向旋转60°得到BF ,∴BE =BF ,∠EBF =60°,∴∠EBF =∠ABC ,在△ADC 和△BDA 中,AB =BC∠ABE =∠FBC BE =BF,∴ΔABE ≌ΔCBF SAS ,∴∠BAE =∠BCF =30°,∴∠ACF =90°,∴∠AFC +∠FAC =90°;(3)∠EBC =15°或75°分两种情况:①点E 在点A 的下方时,如图:∵ΔACF 是等腰直角三角形,∴AC =CF ,由(2)得ΔABE ≌ΔCBF ,∴CF =AE ,∴AC =AE =AB ,∴∠ABE =180°-30°2=75°,∴∠EBC =∠ABE -∠ABC =75°-60°=15°;②点E 在和点A 的上方时,如图:同理可得∠EBC =∠ABE +∠ABC =75°.2已知四边形ABCD 是正方形,将线段CD 绕点C 逆时针旋转α(0°<α<90°),得到线段CE ,联结BE 、CE 、DE . 过点B 作BF ⊥DE 交线段DE 的延长线于F .(1)如图,当BE =CE 时,求旋转角α的度数;(2)当旋转角α的大小发生变化时,∠BEF 的度数是否发生变化?如果变化,请用含α的代数式表示;如果不变,请求出∠BEF 的度数;(3)联结AF ,求证:DE =2AF .【答案】(1)30°;(2)不变;45°;(3)见解析【解析】(1)证明:在正方形ABCD 中, BC =CD .由旋转知,CE=CD,又∵BE =CE ,∴BE =CE =BC ,∴△BEC 是等边三角形,∴∠BCE=60°.又∵∠BCD=90°,∴α=∠DCE=30°.(2)∠BEF的度数不发生变化.在△CED中,CE=CD,∴∠CED=∠CDE=180°-α2=90°-α2,在△CEB中,CE=CB,∠BCE=90°-α,∴∠CEB=∠CBE=180°-∠BCE2=45°+α2,∴∠BEF=180°-∠CED-∠CEB=45°.(3)过点A作AG∥DF与BF的延长线交于点G,过点A作AH∥GF与DF交于点H,过点C作CI⊥DF于点I易知四边形AGFH是平行四边形,又∵BF⊥DF,∴平行四边形AGFH是矩形.∵∠BAD=∠BGF=90°,∠BPF=∠APD,∴∠ABG=∠ADH.又∵∠AGB=∠AHD=90°,AB=AD,∴△ABG≌△ADH.∴AG=AH,∴矩形AGFH是正方形.∴∠AFH=∠FAH=45°,∴AH=AF∵∠DAH+∠ADH=∠CDI+∠ADH=90°∴∠DAH=∠CDI又∵∠AHD=∠DIC=90°,AD=DC,∴△AHD≌△DIC∴AH=DI,∵DE=2DI,∴DE=2AH=2AF模型二 对角互补模型对角互补模型的特征:外观呈现四边形,且对角和为180°。
什么是手拉手几何模型?12个常用结论你都能证明出来吗?怎么用?
什么是手拉手几何模型?12个常用结论你都能证明出来吗?怎么用?手拉手模型,是数学里最常见的一个几何图形,是属于共端点几何模型中的一个类别。
在平时的数学考试中,经常会遇到一类考题,它像旋转一样,它像两个人手拉住手一样。
所,民间称之为手拉手模型。
如上图,就是手拉手模型的基础图形。
当然考试的时候,也经常会出现变式题。
但不管怎么变,所有的题型都是从这几个基础图形,变式而来的。
所以必须先把上图,这基础的内容弄懂,理解透彻。
手拉手模型到底有什么用?在考试的时候,常常会出现在压轴题里,选择题填空题和简答题,都经常出现。
然后这个模型,基本都会推导出12个基本结论。
这12个基本结论,你熟练了。
如果,这12个结论你都知道是怎么推导出来的。
那么考试的时候,看起来特别复杂的几何题,自然都不在话下。
这就是学习方法。
上面的图,就是手拉手基础模型的12个结论。
你尝试这一个一个的推导出来。
(第11,12个结论是初三才学的内容,前面10个结论初二同学基本都能证明。
)方老师经常告诉同学们,数学要多思考,多练习,多总结归纳。
那么像这样子,一个图形,一道题目,涵盖了所有这一类题型的,所有结论和出题模式。
这就是总结和归纳。
第1题,手拉手模型的基础形式,这两个三角形全等,就是SAS,可以轻松证明出来。
第2题,第①小题,SAS证明△ABE≌△CBF就可以了。
第②,因为三角形全等,AB=CB,所以△ABC是等腰直角三角形。
结论就很简单了,自行推导。
第3题,第4题,一样的,根据手拉手模型的一般套路,根据题意找到两个三角形全等。
后面的结论,就非常简单。
总之一句话,手拉手模型的第一步,先找到手拉住手的两个三角形全等关系。
然后,对应角相等,对应边相等。
后面的结论,自然不难。
也请大家多总结,多归纳,多和同学交流,分享心得。
数学的学习,一通百通,所以一定要多钻研。
这才是提高数学成绩的法宝。
2024成都中考数学第一轮专题复习之第四章 微专题 手拉手模型解决全等、相似问题 课件
∴∠AEB=∠DCB=180°-∠BEC=150°,AE BE ,
DC BC
∴∠ECD=∠BCD-∠BCE=90°.
∵BE⊥DE,
解题关键点
∴∠BED=90°,
证明△ABE∽△DBC,
∴∠CED=∠BED-∠BEC=60°. 利用手拉手相似模型
设BC=x,则CE=2x,BE= 3 x, 求解.
CE.求 BB' 的值.
CE
解
∴∠AB′B=90°-
2
.
∵∠B′AD=α-90°,AD=AB′,
∴∠AB′D=135°- 2 ,
第1题图
微专题 手拉手模型解决全等、相似问题
∴∠EB′D=∠AB′D-∠AB′B=135°-
2
-(90°-
2
)=45°.
例1题图
微专题 手拉手模型解决全等、相似问题
例2 如图,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB= ∠OCD=30°,连接AC,连接BD并延长,分别交AO于点E,交AC于点M. (1)求 AC 的值;
BD
(1)解:∵∠AOB=∠COD=90°,∠OAB=∠OCD,
∴∠COD+∠AOD=∠AOB+∠AOD,
微专题
手拉手模型解决 全等、相似问题
微专题 手拉手模型解决全等、相似问题
一阶 认识模型
模型分析 1. 全等手拉手模型 图形特点: 双等腰:AB=AC,AD=AE, 共顶点:线段AB,AC,AD,AE交于点A, 顶角相等:∠BAC=∠DAE, 旋转得全等:△ADE绕点A旋转,连接CE,BD,则△ABD≌△ACE.
出新图如图②,若A,E,C三点共线,求
BC AE
的值.
(2)解:∵∠ABE=∠CBD,
全等与相似模型-手拉手模型(解析版)
全等与相似模型-手拉手模型全等三角形与相似三角形在中考数学几何模块中占据着重要地位。
相似三角形与其它知识点结合以综合题的形式呈现,其变化很多,难度大,是中考的常考题型。
如果大家平时注重解题方法,熟练掌握基本解题模型,再遇到该类问题就信心更足了。
本专题就手拉手模型进行梳理及对应试题分析,方便掌握。
模型1.手拉手模型【模型解读】将两个三角形绕着公共顶点(即头)旋转某一角度后能完全重合,则这两个三角形构成手拉手全等,也叫旋转型全等,常用“边角边”判定定理证明全等。
1)双等边三角形型条件:如图1,△ABC和△DCE均为等边三角形,C为公共点;连接BE,AD交于点F。
结论:①△ACD≌△BCE;②BE=AD;③∠AFM=∠BCM=60°;④CF平分∠BFD。
图1图22)双等腰直角三角形型条件:如图2,△ABC和△DCE均为等腰直角三角形,C为公共点;连接BE,AD交于点N。
结论:①△ACD≌△BCE;②BE=AD;③∠ANM=∠BCM=90°;④CN平分∠BFD。
3)双等腰三角形型条件:△ABC和△DCE均为等腰三角形,C为公共点;连接BE,AD交于点F。
结论:①△ACD≌△BCE;②BE=AD;③∠ACM=∠BFM;④CF平分∠BFD。
图3图44)双正方形形型条件:△ABCFD 和△CEFG 都是正方形,C 为公共点;连接BG ,ED 交于点N 。
结论:①△△BCG ≌△DCE ;②BG =DE ;③∠BCM =∠DNM =90°;④CN 平分∠BNE 。
1(2022·北京东城·九年级期末)如图,在等边三角形ABC 中,点P 为△ABC 内一点,连接AP ,BP ,CP ,将线段AP 绕点A 顺时针旋转60°得到AP ,连接PP ,BP .(1)用等式表示BP 与CP 的数量关系,并证明;(2)当∠BPC =120°时, ①直接写出∠P BP 的度数为;②若M 为BC 的中点,连接PM ,请用等式表示PM 与AP 的数量关系,并证明.【答案】(1)BP =CP ,理由见解析;(2)①60°;②PM =12AP ,见解析【分析】(1)根据等边三角形的性质,可得AB =AC ,∠BAC =60°,再由由旋转可知:AP =AP ,∠PAP =60°,从而得到∠BAP =∠CAP ,可证得△ABP ≌△ACP ,即可求解;(2)①由∠BPC =120°,可得∠PBC +∠PCB =60°.根据等边三角形的性质,可得∠BAC =60°,从而得到∠ABC +∠ACB =120°,进而得到∠ABP +∠ACP =60°.再由△ABP ≌△ACP ,可得∠ABP =∠ACP ,即可求解;②延长PM 到N ,使得NM =PM ,连接BN .可先证得△PCM ≌△NBM .从而得到CP =BN ,∠PCM =∠NBM .进而得到BN =BP .根据①可得∠P BP =60°,可证得△PNB ≌△PP B ,从而得到PN =PP .再由△PAP 为等边三角形,可得P P =AP .从而得到PN =AP ,即可求解.【详解】解:(1)BP =CP .理由如下:在等边三角形ABC 中,AB =AC ,∠BAC =60°,由旋转可知:AP =AP ,∠PAP =60°, ∴∠PAP -∠BAP =∠BAC -∠BAP 即∠BAP =∠CAP在△ABP 和△ACP 中AB =AC∠BAP =∠CAP AP =AP∴△ABP ≌△ACP (SAS ).∴BP =CP .(2)①∵∠BPC =120°,∴∠PBC +∠PCB =60°.∵在等边三角形ABC 中,∠BAC =60°,∴∠ABC +∠ACB =120°,∴∠ABP +∠ACP =60°.∵△ABP ≌△ACP .∴∠ABP =∠ACP ,∴∠ABP +∠ABP '=60°.即∠P BP =60°;②PM =12AP .理由如下:如图,延长PM 到N ,使得NM =PM ,连接BN .∵M 为BC 的中点,∴BM =CM .在△PCM 和△NBM 中PM =NM∠PMC =∠NMB CM =BM∴△PCM ≌△NBM (SAS ).∴CP =BN ,∠PCM =∠NBM .∴BN =BP .∵∠BPC =120°,∴∠PBC +∠PCB =60°.∴∠PBC +∠NBM =60°.即∠NBP =60°.∵∠ABC +∠ACB =120°,∴∠ABP +∠ACP =60°.∴∠ABP +∠ABP '=60°.即∠P BP =60°.∴∠P BP =∠NBP .在△PNB 和△PP B 中BN =BP∠NBP =∠P BP BP =BP∴△PNB ≌△PP B (SAS ).∴PN =PP .∵AP =AP ,∠PAP =60°, ∴△PAP 为等边三角形,∴P P =AP .∴PN =AP ,∴PM =12AP .【点睛】本题主要考查了等边三角形判定和性质,全等三角形的判定和性质,图形的旋转,熟练掌握等边三角形判定和性质定理,全等三角形的判定和性质定理,图形的旋转的性质是解题的关键.2(2022·黑龙江·中考真题)△ABC 和△ADE 都是等边三角形.(1)将△ADE 绕点A 旋转到图①的位置时,连接BD ,CE 并延长相交于点P (点P 与点A 重合),有PA +PB =PC (或PA +PC =PB )成立;请证明.(2)将△ADE 绕点A 旋转到图②的位置时,连接BD ,CE 相交于点P ,连接PA ,猜想线段PA 、PB 、PC 之间有怎样的数量关系?并加以证明;(3)将△ADE 绕点A 旋转到图③的位置时,连接BD ,CE 相交于点P ,连接PA ,猜想线段PA 、PB 、PC 之间有怎样的数量关系?直接写出结论,不需要证明.【答案】(1)证明见解析(2)图②结论:PB =PA +PC ,证明见解析(3)图③结论:PA +PB =PC【分析】(1)由△ABC 是等边三角形,得AB =AC ,再因为点P 与点A 重合,所以PB =AB ,PC =AC ,PA =0,即可得出结论;(2)在BP 上截取BF =CP ,连接AF ,证明△BAD ≌△CAE (SAS ),得∠ABD =∠ACE ,再证明△CAP ≌△BAF (SAS ),得∠CAP =∠BAF ,AF =AP ,然后证明△AFP 是等边三角形,得PF =AP ,即可得出结论;(3)在CP 上截取CF =BP ,连接AF ,证明△BAD ≌△CAE (SAS ),得∠ABD =∠ACE ,再证明△BAP ≌△CAF (SAS ),得出∠CAF =∠BAP ,AP =AF ,然后证明△AFP 是等边三角形,得PF =AP ,即可得出结论:PA +PB =PF +CF =PC .(1)证明:∵△ABC 是等边三角形,∴AB =AC ,∵点P 与点A 重合,∴PB =AB ,PC =AC ,PA =0,∴PA +PB =PC 或PA +PC =PB ;(2)解:图②结论:PB =PA +PC证明:在BP 上截取BF =CP ,连接AF ,∵△ABC 和△ADE 都是等边三角形,∴AB =AC ,AD =AE ,∠BAC =∠DAE =60°∴∠BAC +∠CAD =∠DAE +∠CAD ,∴∠BAD =∠CAE ,∴△BAD ≌△CAE (SAS ),∴∠ABD =∠ACE ,∵AC =AB ,CP =BF , ∴△CAP ≌△BAF (SAS ),∴∠CAP =∠BAF ,AF =AP ,∴∠CAP +∠CAF =∠BAF +∠CAF ,∴∠FAP =∠BAC =60°,∴△AFP 是等边三角形,∴PF =AP ,∴PA +PC =PF +BF =PB ;(3)解:图③结论:PA +PB =PC ,理由:在CP 上截取CF =BP ,连接AF ,∵△ABC 和△ADE 都是等边三角形,∴AB =AC ,AD =AE ,∠BAC =∠DAE =60°∴∠BAC +∠BAE =∠DAE +∠BAE ,∴∠BAD =∠CAE ,∴△BAD ≌△CAE (SAS ),∴∠ABD =∠ACE ,∵AB =AC ,BP =CF ,∴△BAP ≌△CAF (SAS ),∴∠CAF =∠BAP ,AP =AF ,∴∠BAF +∠BAP =∠BAF +∠CAF ,∴∠FAP =∠BAC =60°,∴△AFP 是等边三角形,∴PF =AP ,∴PA +PB =PF +CF =PC ,即PA +PB =PC .【点睛】本题考查等边三角形的判定与性质,全等三角形的判定与性质,熟练掌握等边三角形的判定与性质、全等三角形的判定与性质是解题的关键.3(2022·湖北·襄阳市九年级阶段练习)如图,已知△AOB 和△MON 都是等腰直角三角形22OA <OM =ON ,∠AOB =∠MON =90°.(1)如图①,连接AM ,BN ,求证:△AOM ≌△BON ;(2)若将△MON 绕点O 顺时针旋转,①如图②,当点N 恰好在AB 边上时,求证:BN 2+AN 2=20N 2;②当点A ,M ,N 在同一条直线上时,若OB =4,ON =3,请直接写出线段BN 的长.【答案】(1)见解析;(2)①见解析;②46+322或46-322.【分析】(1)利用SAS 定理证明△AOM ≌△BON 即可;(2)①连接AM ,证明△AOM ≌△BON ,即可证BN 2+AN 2=2ON 2;②当点N 在线段AM 上时,连接BN ,在Rt △ANB 中构造勾股定理的等量关系;当点M 在线段AN 上时,同理即可求得.(1)证明:∵∠AOB =∠MON =90°,∴∠MON +∠AON =∠AOB +∠AON ,即∠AOM =∠BON .∵△MON 和△AOB 是等腰直角三角形,∴OM =ON ,OA =OB ,∴△AOM ≌△BON (SAS ).(2)解:①证明:如图,连接AM .∵∠AOB =∠MON =90°,∴∠MON -∠AON =∠AOB -∠AON ,即∠AOM =∠BON .∵△MON 和△AOB 是等腰直角三角形,∴OM =ON ,OA =OB ,∠OAB =∠OBA =45°,∴△AOM ≌△BON .(SAS )∴∠MAO =∠OBA =45°,AM =BN ,∴∠MAN =90°,∴AM 2+AN 2=MN 2.∵△MON 是等腰直角三角形,∴MN 2=2ON 2,∴BN 2+AN 2=2ON 2.②46+322或46-322.∵△AOB 和△MON 都是等腰直角三角形,OB =4,ON =3,∴AB =42,MN =32.当点N 在线段AM 上时,如图,连接BN ,设BN =x ,由(1)可知△AOM ≌△BON .∴∠OAM =∠OBN ,AM =BN =x .∴∠NAB +∠ABN =∠OAM +∠OAB +∠ABN =∠OBN +∠ABN +∠OAB =∠OBA +∠OAB =180°-∠AOB =90°,∴∠ANB =180°-∠NAB +∠ABN =90°,∴△ANB 是直角三角形,AN 2+BN 2=AB 2.又∵AN =AM -MN =BN -MN =x -32,∴(x -32)2+x 2=(42)2,解得:x 1=46+322,x 2=-46+322(舍去)∴BN =46+322;当点M 在线段AN 上时,如图,连接BN ,设BN =x ,由(2)①可知△AOM ≌△BON .∴∠OAM =∠OBN ,AM =BN =x .∴∠NAB +∠ABN =∠OAM +∠OAB +∠ABN =∠OBN +∠ABN +∠OAB =∠OBA +∠OAB =180°-∠AOB =90°,∴∠ANB =180°-∠NAB +∠ABN =90°,∴△ANB 是直角三角形,AN 2+BN 2=AB 2.又∵AN =AM +MN =BN +MN =x +32,∴(x +32)2+x 2=(42)2,解得:x 1=46-322,x 2=-46-322(舍去)∴BN =46-322综上所述:BN 的长为46+322或46-322.【点睛】本题主要考查全等三角形的判定与性质、等腰直角三角形的性质,三点共线分类讨论,对几何题目的综合把握是解题关键.4(2022·重庆忠县·九年级期末)已知等腰直角△ABC 与△ADE 有公共顶点A ,∠BAC =∠DAE =90°,AB =AC =4,AD =AE =6.(1)如图①,当点B ,A ,E 在同一直线上时,点F 为DE 的中点,求BF 的长;(2)如图②,将△ADE 绕点A 旋转α0°<α≤360° ,点G 、H 分别是AB 、AD 的中点,CE 交GH 于M ,交AD 于N .①猜想GH 与CE 的数量关系和位置关系,并证明你猜想的结论;②参考图③,若K 为AC 的中点,连接KM ,在△ADE 旋转过程中,线段KM 的最小值是多少(直接写出结果).【答案】(1)BF =58;(2)①GH =12CE ,GH ⊥CE ;证明见解析;②线段KM 的最小值是5-1.【分析】(1)如图:过点F 作FQ ⊥AE 于点Q ,先说明FQ 是△ADE 的中位线,然后再求得FQ 、BQ ,最后再运用勾股定理解答即可;(2)①连接BD 交CE 于P ,先证明△ABD ≌△ACE 可得AB =AC ,∠BAD =∠CAE ,AD =AE ,然后再说明GM 是△ABD 的中位线可得GH =12CE ,然后再根据角的关系证明GH ⊥CE ﹔②如图:连接CG ,取中点O ,连接OK 、OM ,再根据勾股定理和三角形中位线的性质求得CG 和OK ,进而求得OM ,最后根据三角形的三边关系即可解答.【详解】解:(1)过点F 作FQ ⊥AE 于点Q ,∵点F 是DE 的中点,∴FQ 是△ADE 的中位线∴FQ =12AD =3,AQ =12AE =3,∴BQ =AB +AQ =7∴BF =FQ 2+BQ 2=32+72=58;(2)①GH =12CE ,GH ⊥CE ﹔证明:连接BD 交CE 于P .∵∠ABC =∠DAE =90°,∴∠ABC +∠CAD =∠DAE +∠CAD .即∠BAD =∠CAE ;在△ABD 和△ACE 中,∵AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△ABD ≌△ACE (SAS ),∴BD =CE ,∠ADB =∠AEC∵G ,H 分别是AB ,AD 的中点,∴GM 是△ABD 的中位线∴GH =12BD =12CE 且GH ⎳BD ∵∠AEN +∠ANE =90°,∠ANE =∠DNP ,∴∠ADP +∠DNP =90°∴∠DPN =90°∴∠HMN =∠DPN =90°,∴GH ⊥CE ﹔②如图:连接CG ,取中点O ,连接OK 、OM ∴CG =AG 2+AC 2=22+42=25,OK =12AG =1∵∠CMG =90°,O 为CG 的中点∴OM =12CG =5∵MK >OM -OK ∴当O 、K 、M 共线时,MK 取最小值OM -OK =5-1.【点睛】本题主要考查了三角形的中线、勾股定理、全等三角形的判定与性质等知识点,灵活运用相关知识点成为解答本题的关键.5(2022·山西大同·九年级期中)综合与实践:已知△ABC 是等腰三角形,AB =AC .(1)特殊情形:如图1,当DE ∥BC 时,DB EC .(填“>”“<”或“=”);(2)发现结论:若将图1中的△ADE 绕点A 顺时针旋转α(0°<α<180°)到图2所示的位置,则(1)中的结论还成立吗?请说明理由.(3)拓展运用:某学习小组在解答问题:“如图3,点P 是等腰直角三角形ABC 内一点,∠BAC =90°,且BP =1,AP =2,CP =3,求∠BPA 的度数”时,小明发现可以利用旋转的知识,将△BAP 绕点A 顺时针旋转90°得到△CAE ,连接PE ,构造新图形解决问题.请你根据小明的发现直接写出∠BPA 的度数.【答案】(1)=;(2)成立,理由见解析;(3)∠BPA =135°.【分析】(1)由DE ∥BC ,得到∠ADE =∠B ,∠AED =∠C ,结合AB =AC ,得到DB =EC ;(2)由旋转得到的结论判断出△DAB ≌△EAC ,得到DB =CE ;(3)由旋转构造出△APB ≌△AEC ,再用勾股定理计算出PE ,然后用勾股定理逆定理判断出△PEC 是直角三角形,在简单计算即可.【详解】解:(1)∵DE ∥BC ,∴∠ADE =∠B ,∠AED =∠C ,∵AB =AC ,∴∠B =∠C ,∴∠ADE =∠AED ,∴AD =AE ,∴DB =EC ,故答案为:=;(2)成立.证明:由①易知AD =AE ,∴由旋转性质可知∠DAB =∠EAC ,在△DAB 和△EAC 中AD =AE∠DAB =∠EAC AB =AC,∴△DAB ≌△EAC (SAS ),∴DB =CE ;(3)如图,将△APB绕点A旋转90°得△AEC,连接PE,∴△APB≌△AEC,∴AE=AP=2,EC=BP=1,∠PAE=90°,∴∠AEP=∠APE=45°,在Rt△PAE中,由勾股定理可得,PE=22,在△PEC中,PE2=(22)2=8,CE2=12=1,PC2=32=9,∵PE2+CE2=PA2,∴△PEC是直角三角形,∴∠PEC=90°,∴∠AEC=135°,又∵△APB≌△AEC,∴∠BPA=∠CEA=135°.【点睛】本题主要考查了旋转的性质,平行线的性质,全等三角形的性质和判定,勾股定理及其逆定理,解本题的关键是构造全等三角形,也是本题的难点.6(2022·青海·中考真题)两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来,则形成一组全等的三角形,把具有这个规律的图形称为“手拉手”图形.(1)问题发现:如图1,若△ABC和△ADE是顶角相等的等腰三角形,BC,DE分别是底边.求证:BD= CE;(2)解决问题:如图2,若△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一条直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系并说明理由.图1 图2【答案】(1)见解析(2)∠DCE=90°;AE=AD+DE=BE+2CM【分析】(1)先判断出∠BAD=∠CAE,进而利用SAS判断出△BAD≌△CAE,即可得出结论;(2)同(1)的方法判断出△BAD≌△CAE,得出AD=BE,∠ADC=∠BEC,最后用角的差,即可得出结论.【解析】(1)证明:∵△ABC和△ADE是顶角相等的等腰三角形,∴AB=AC,AD=AE,∠BAC=∠DAE,∴∠BAC-∠CAD=∠DAE-∠CAD,∴∠BAD=∠CAE.在△BAD和△CAE中,AB=AC∠BAD=∠CAEAD=AE,∴△BAD≌△CAE SAS ,∴BD=CE.(2)解:∠AEB=90°,AE=BE+2CM,理由如下:由(1)的方法得,△ACD≌△BCE,∴AD=BE,∠ADC=∠BEC,∵△CDE是等腰直角三角形,∴∠CDE=∠CED=45°,∴∠ADC=180°-∠CDE=135°,∴∠BEC=∠ADC=135°,∴∠AEB=∠BEC-∠CED=135°-45°=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM,∴DE=2CM.∴AE=AD+DE=BE+2CM.【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,等腰三角形,等边三角形,等腰直角三角形的性质,判断出△ACD≌△BCE是解本题的关键.7(2022·广东广州市·八年级期中)如图,两个正方形ABCD与DEFG,连结AG,CE,二者相交于点H.(1)证明:△ADG≌△CDE;(2)请说明AG和CE的位置和数量关系,并给予证明;(3)连结AE和CG,请问△ADE的面积和△CDG的面积有怎样的数量关系?并说明理由.【答案】(1)答案见解析;(2)AG=CE,AG⊥CE;(3)△ADE的面积=△CDG的面积【分析】(1)利用SAS证明△ADG≌△CDE;(2)利用△ADG≌△CDE得到AG=CE,∠DAG=∠DCE,利用∠DAG+∠AMD=90°得到∠DCE+∠CMG=90°,即可推出AG⊥CE;(3)△ADE的面积=△CDG的面积,作GP⊥CD于P,EN⊥AD交AD的延长线于N,证明△DPG≌△DNE,得到PG= EN,再利用三角形的面积公式分别表示出△ADE的面积,△CDG的面积,即可得到结论△ADE的面积=△CDG的面积.【详解】(1)∵四边形ABCD与DEFG都是正方形,∴AD=CD,DG=DE,∠ADC=∠EDG=90°,∴∠ADC+∠CDG=∠EDG+∠CDG,∴∠ADG=∠CDE,∴△ADG≌△CDE(SAS),(2)AG=CE,AG⊥CE,∵△ADG≌△CDE,∴AG=CE,∠DAG=∠DCE,∵∠DAG+∠AMD=90°,∠AMD=∠CMG,∴∠DCE+∠CMG=90°,∴∠CHA=90°,∴AG⊥CE;(3)△ADE的面积=△CDG的面积,作GP⊥CD于P,EN⊥AD交AD的延长线于N,则∠DPG=∠DNE=90°,∵∠GDE=90°,∴∠EDN+∠GDN=90°,∵∠PDG+∠GDN=90°,∴∠EDN=∠PDG,∵DE=DG,∴△DPG≌△DNE,∴PG=EN,∵△ADE的面积=12AD⋅EN,△CDG的面积=12CD⋅GP,∴△ADE的面积=△CDG的面积.【点睛】此题考查正方形的性质,三角形全等的判定及性质,利用三角形面积公式求解,根据图形得到三角形全等的条件是解题的关键.8(2023·福建福州市·九年级月考)如图,和均为等边三角形,连接BE、CD.(1)请判断:线段BE与CD的大小关系是;(2)观察图,当和分别绕点A旋转时,BE、CD之间的大小关系是否会改变?(3)观察如图和4,若四边形ABCD、DEFG都是正方形,猜想类似的结论是,在如图中证明你的猜想.(4)这些结论可否推广到任意正多边形(不必证明),如图,BB1与EE1的关系是;它们分别在哪两个全等三角形中;请在如图中标出较小的正六边形AB1C1D1E1F1的另五个顶点,连接图中哪两个顶点,能构造出两个全等三角形?【答案】(1)BE=CD(2)线段BE与CD的大小关系不会改变(3)AE=CG,证明见解析(4)这些结论可以推广到任意正多边形.如图5,BB1=EE1,它们分别在△AE1E和△AB1B中,如图6,连接FF1,可证△AB1B≌△AF1F.图形见解析.【分析】本题是变式拓展题,图形由简单到复杂,需要从简单图形中探讨解题方法,并借鉴用到复杂图形中;证明三角形全等时,用旋转变换寻找三角形全等的条件.【详解】(1)线段BE与CD的大小关系是BE=CD;(2)线段BE与CD的大小关系不会改变;(3)AE=CG.证明:如图4,正方形ABCD与正方形DEFG中,∵AD=CD,DE=DG,∠ADC=∠GDE=90°,又∠CDG=90°+∠ADG=∠ADE,∴△ADE≌△CDG,∴AE=CG.(4)这些结论可以推广到任意正多边形.如图5,BB1=EE1,它们分别在△AE1E和△AB1B中,如图6,连接FF1,可证△AB1B≌△AF1F.【点睛】本题综合考查全等三角形、等边三角形和多边形有关知识.注意对三角形全等的证明方法的发散.模型2.“手拉手”模型(旋转模型)【模型解读与图示】“手拉手”旋转型定义:如果将一个三角形绕着它的项点旋转并放大或缩小(这个顶点不变),我们称这样的图形变换为旋转相似变换,这个顶点称为旋转相似中心,所得的三角形称为原三角形的旋转相似三角形。
疯狂解题——共顶点旋转相似(手拉手)
疯狂解题——共顶点旋转相似(手拉手)
一、共顶点等线段
条件:△ABC∽△ADE且AB=AC
解析:连接对应点BD、CE并延长,相交于点F,△ABC∽△ADE,AB=AC→AD=AC,∠BAC=∠DAE→∠BAD=∠CAE→△ABD≌△ACE →BD=CE,∠ABD=∠ACE→∠BFC=∠BAC.
当△ADE绕点A旋转时,因为∠BFC=∠BAC,所以A、B、C、F四点共圆,点F的运动轨迹为△ABC的外接圆的一部分.
结论:1、△ABD≌△ACE 2、BD=CE 3、A、B、C、F四点共圆
二、共顶点成比例线段
条件:△ABC∽△ADE且AB:AC=k
解析:连接对应点BD、CE并延长,相交于点F,△ABC∽△ADE,AB:AC=k→AD:AE=k,∠BAC=∠DAE→∠BAD=∠CAE →△ABD∽△ACE→BD:CE=k,∠ABD=∠ACE→∠BFC=∠BAC.
当△ADE绕点A旋转时,因为∠BFC=∠BAC,所以A、B、C、F四点共圆,点F的运动轨迹为△ABC的外接圆的一部分.
结论:1、△ABD∽△ACE 2、BD:CE=k 3、A、B、C、F四点共圆
三、旋转构图
条件:AB:AC=k
解析:将△ABD绕点A逆时针旋转∠BAC的度数并按k倍缩放,使得AB旋转到AC的位置,点B的对应点与点C重合,连接对应点DE.
△ABD∽△ACE→AB:AC=AD:AE,∠BAD=∠CAE→AB:AD=AC:AE,∠BAC=∠DAE→△ABC∽△ADE→BC:DE=k.
总结:共顶点相似的一组三角形,两组对应点与顶点形成的新一组三角形相似,俗称手拉手模型.。
【模型2】手拉手模型——旋转相似
模型二:手拉手模型——旋转相似【模型分类】一、一般情况已知条件:如图1,CD//AB,将△OCD旋转至图2位置。
图1 图2图3图4 已知条件:如图5,CD//AB,∠AOB=90°,将△OCD旋转至图6位置。
图5 图6结论1:在图6中,△OCD ∽△OAB ⇔△OAC ∽△OBD证明:(如图7所示)∵△OCD ∽△OAB∴∠COD =∠AOB ,OBOD OA OC = ∴∠COD +∠COB =∠AOB +∠COB 即: ∠BOD =∠AOC ,OB OA OD OC =【转化对应边的比】 ABCD 2结论6:连接AD 、BC ,必有2222CD AB BC AD +=+证明:(如图10所示)∵AC ⊥BD∴22222222CD AB BE CE AE DE BC AD +=+++=+【勾股定理】图7 图8 图9 图10【典型例题】1.(1)(4分)问题发现:如图①,在Rt △ABC 中,∠A =90°,AB =kAC ,点D 是AB 上一点,DE ∥BC .填空:BD ,CE 的数量关系为 ;位置关系为 ;(2)(4分)类比探究:如图②,将△ADE 绕着点A 顺时针旋转,旋转角为α(0°<α≤90°),连接BD ,CE ,请问(1)中的结论还成立吗?若成立,请给出证明,若不成立,请说明理由.(3)(4分)拓展延伸:在(2)的条件下,将△ADE 绕点A 顺时针旋转,旋转角为α(0°CF 的值.(1∵DE ∥BC ,∴AD AE AB AC=, ∴AD AB AE AC=, ∴△ABD ∽△ACE ,…………………………………………………………6分∴BD ABCE AC==k,∠ABD=∠ACE,∴BD=k•EC;………………………………………………………………………………7分∵∠CBF+∠BCF=∠ABD+∠ABC+∠BCF=∠ACE+∠BCF+∠ABC=∠ACB+∠ABC=90°,∴∠BFC=90°,∴BD⊥CE;…………………………………………………………………………………8分②α>90°时,如图③所示:设CF=a,在BF上取点G,使∠BCG=15°∵∠BCF=60°+15°=75°,∠CBF=∠ABC﹣∠ABD=30°﹣15°=15°,∴∠CFB=90°,∴∠GCF=60°,∠CBF=∠BCG,∴CG=BG=2a,GF.∴BF =BG +GF =(a ,∵CF 2+BF 2=BC 2∴a 2+(2a ) 2=22,解得:a 2=22.(1,CE EB (2(3(1(2)延长BD ,分别交AC 、CE 于F 、G ,证明ABD ACE ∆≅∆,根据全等三角形的性质、垂直的定义解答;(3)①根据BCE DCE BCDE S S S ∆∆=+四边形计算,求出四边形BCDE 的面积;②根据勾股定理计算即可.【解答】解:(1)BD CE =,BD CE ⊥,理由如下:延长BD ,分别交AC 、CE 于F 、G ,ABC ∆和ADE ∆都是等腰直角三角形,AB AC ∴=,AD AE =,90BAC DAE ∠=∠=︒, BAD BAC DAC ∠=∠-∠,CAE DAE DAC ∠=∠-∠ BAD CAE ∴∠=∠,在ABD ∆和ACE ∆中,AB AC BAD CAE=⎧⎪∠=∠⎨⎪,ABC ∆和AB AC =,BAD ∠=∠BAD ∴∠=∠ABD ∴∆≅∆BD CE =,===。
2024中考数学总复习冲刺专题:手拉手模型(全等与相似)通用版
《“手拉手”模型常用结论的证明及应用》手拉手模型,也叫整体旋转法,是中考最重要的模型之一,全国一年176套中考卷中,有40%的卷子考到此模型。
手拉手模型分为“全等手拉手”和“相似手拉手”,在解决手拉手模型的问题时,需要灵活运用全等三角性和相似三角形的性质与判定方法,以及轴对称的性质和判定方法来进行证明。
同时,还需要掌握基本的手拉手模型形式及其变形情况,才能更好的解决相关问题。
一、教学目标知识与技能:了解手拉手模型的组成条件,探究“全等手拉手”模型和“相似手拉手”模型的常用结论,会利用手拉手模型来解决几何问题;过程与方法:在探究手拉手模型常用结论的过程中,培养分析问题、解决问题的能力,培养模型思想;情感态度与价值观:养成主动探索、获取知识的习惯,感受探索的乐趣和成功的体验,激发学生学好数学的愿望和信心.二、重点难点重点:探索全等手拉手模型、相似手拉手模型的常用结论;难点:利用旋转、全等、相似等知识解决手拉手模型的相关问题.三、教学过程(一)全等手拉手模型精典例题例1:如图,在线段BD上取一点A,在同侧作等边△ABC和等边△ADE,连接BE、CD,求证:(1)△ABE≌△ACD;(2)BE=CD;(3)△AFB≌△AGC;(4)△AFE≌△AGD;(5)△AFG是等边三角形;(6)∠COB=∠CAB;(7)OA平分∠BOD;(8)FG//BD.例2:如图,已知正方形ABCD和正方形DEFG有公共顶点D,连接AG,CE,相交于点H.求证:(1)△ADG≌△CDE;(2)AG⟂CE;(3)HD平分∠AHE;(4)AC2+EG2=AE2+CG2.跟踪练习1.(2022秋•界首市校级月考)如图,AB=AC,AD=AE,∠BAC=∠DAE,∠BAD=30°,∠ACE=25°,则∠ADE的度数为()A.50°B.55°C.60°D.65°2.(2023秋•江阳区校级月考)已知:如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②∠ACE+∠=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中结论正确的个数是()A.1B.2C.3D.43.(2020春•富县期末)如图,已知四边形ABCD和四边形CEFG都是正方形,且AB>CE,连接BG,DE.(1)求证:BG=DE;(2)连接BD,若CG∥BD,BG=BD,求∠BDE 的度数.4.(2019秋•新都区期末如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D在边AB上,点E在边AC的左侧,连接AE.(1)求证:AE=BD;(2)试探究线段AD、BD与CD之间的数量关系;(3)过点C作CF⊥DE交AB于点F,若BD:AF=1:2,CD=,求线段AB的长.(二)相似手拉手模型精典例题例3:如图,已知△ABC∽△ADE,求证:(1)△ABD∽△ACE;(2)∠BFC=∠BAC.跟踪练习1.如图,四边形ABCD中,AB=3,BC=2,AC=AD,∠ACD=60°,则对角线BD长的最大值为()A.5B.2C.2D.12.如图,在四边形ABCD中,∠ABC=30°,将△DCB绕点C顺时针旋转60°后,点D 的对应点恰好与点A重合,得到△ACE,若AB=3,BC=4,则BD=()A.5B.5.5C.6D.73.两个顶角相等的等腰三角形,如果具有公共的顶角顶点,并把它们的底角顶点连接起来,形成一组全等的三角形,那么把具有这个规律的图形称为“手拉手”图形.(1)如图1,△ABC与△ADE都是等腰三角形,AB=AC,AD=AE,且∠BAC=∠DAE,则有△BAD≌.(2)如图2,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点B,D,E在同一条直线上,连接CE,试探究线段BE,CE,DE之间的数量关系,并说明理由.(3)如图3,△ABC为等腰直角三角形,∠BAC=90°,∠AEC=135°,求证:BE⊥CE.(三)手拉手综合题例5:(2019•玄武区一模)如图,四边形ABCD和四边形AEFG均为正方形,连接CF,DG,则=()A.B.C.D.例6:(2022•深圳中考)已知△ABC是直角三角形,∠ABC=90°,AB=3,BC=5,AE =2,连接CE,以CE为底作直角三角形CDE,且CD=DE.F是AE边上的一点,连接BD和BF,且∠FBD=45°,则AF长为.跟综练习1.(2022•无锡)△ABC是边长为5的等边三角形,△DCE是边长为3的等边三角形,直线BD与直线AE交于点F.如图,若点D在△ABC内,∠DBC=20°,则∠BAF=°;现将△DCE绕点C旋转1周,在这个旋转过程中,线段AF长度的最小值是.2.(2023•成都)探究式学习是新课程倡导的重要学习方式,某兴趣小组拟做以下探究.在Rt△ABC中,∠C=90°,AC=BC,D是AB边上一点,且=(n为正整数),E 是AC边上的动点,过点D作DE的垂线交直线BC于点F.【初步感知】(1)如图1,当n=1时,兴趣小组探究得出结论:AE+BF=AB,请写出证明过程.【深入探究】(2)①如图2,当n=2,且点F在线段BC上时,试探究线段AE,BF,AB之间的数量关系,请写出结论并证明;②请通过类比、归纳、猜想,探究出线段AE,BF,AB之间数量关系的一般结论(直接写出结论,不必证明).【拓展运用】(3)如图3,连接EF,设EF的中点为M,若AB=2,求点E从点A运动到点C的过程中,点M运动的路径长(用含n的代数式表示).四、教学反思本节课从全等手拉手模型、相似手拉手模型、手拉手综合题三个模块进行探索,题目从易到难,每个模块都有两个精典例题,2-4道跟综练习。
2023中考数学---中考数学手拉手旋转相似模型
手拉手模型的特点
如下图所示,手拉手模型是由两个具有公共顶点的相似三角形( △ABB'∽△ACC'),分别连接两个左手顶点(点B和点C)和右手顶点(点B'和 点C')所组成的图形(左手拉左手,右手拉右手)。
手拉手模型的重要结论
证明:▲BAC全等于是以公共顶点为顶点
旋转到A、D、E三点共线的时候
等腰三角形时,得到旋转全等形
▲共顶点的两个三角形为等腰三角形
证明:▲BAC相似于▲B'AC'
结论2: 当两个三角形不是等腰三角
形时,得到旋转相似形
▲共顶点的两个三角形为相似的非等腰三角形
证明:∠BOB'=∠BAB'
结论3: 拉手两条线的夹角等于旋转
相似三角形的顶角。
共顶点等边三角形中的六大结论
2024年上海数学中考一轮复习 重难点6相似三角形中的“手拉手”旋转模型含详解
重难点专项突破06相似三角形中的“手拉手”旋转模型【知识梳理】“手拉手”旋转型模型展示:如图,若△ABC ∽△ADE ,则△ABD ∽△ACE .[来.Com]【考点剖析】例1.如图,直角梯形ABCD 中,90BCD ∠=︒,AD //BC ,BC =CD ,E 为梯形内一点,且90BEC ∠=︒,将BEC ∆绕点C 旋转90°使BC 与DC 重合,得到DCF ∆,联结EF 交CD 于M .已知BC =5,CF =3,则DM :MC 的值为()A .53B .35C .43D .34AB CDEFM例2、如图,D 为△ABC 内一点,E 为△ABC 外一点,且∠ABC =∠DBE ,∠3=∠4.求证:(1)△ABD ∽△CBE ;(2)△ABC ∽△DBE .例3.把两块全等的直角三角板ABC 和DEF 叠放在一起,使三角板DEF 的锐角顶点D 与三角板ABC 的斜边中点O 重合,其中90ABC DEF ∠=∠=︒,45C F ∠=∠=︒,AB =DE =4,把三角板ABC 固定不动,让三角板DEF绕点O 旋转,设射线DE 与射线AB 相交于点P ,射线DF 与线段BC 相交于点Q .(1)如图1,当射线DF 经过点B ,即点Q 与点B 重合时,易证APD ∆∽CDQ ∆,则此时AP CQ = ______;(2)将三角板DEF 由图1所示的位置绕点O 沿逆时间方向旋转,设旋转角为α.其中090α︒<<︒,问AP CQ 的值是否改变?请说明理由.FAB (Q )CD (O )EP PABCD (O )ABCD (O )QP Q EFEF图1图2图3例4.如图,已知ABC ∆和DEF ∆是两个全等的等腰直角三角形,且90BAC EDF ∠=∠=︒,DEF ∆的顶点E 与ABC ∆的斜边BC 的中点重合.将DEF ∆绕点E 旋转,旋转过程中,线段DE 与线段AB 相交于点P ,线段EF 与射线CA 相交于点Q .(1)如图1,当点Q 在线段AC 上,且AP =AQ 时,求证:BPE ∆≌CQE ∆;(2)如图2,当点Q 在线段CA 的延长线上时,求证:BPE ∆∽CEQ ∆;并求当BP =a ,92CQ a=时,P 、Q 两点间的距离(用含a 的代数式表示).ABCDE FABCDE FPP Q图1图2Q例5.在△ABC 中,CA =CB ,∠ACB =α.点P 是平面内不与点A ,C 重合的任意一点.连接AP ,将线段AP 绕点P 逆时针旋转α得到线段DP ,连接AD ,BD ,CP .(1)观察猜想如图1,当α=60°时,的值是,直线BD 与直线CP 相交所成的较小角的度数是.(2)类比探究如图2,当α=90°时,请写出的值及直线BD 与直线CP 相交所成的小角的度数,并就图2的情形说明理由.(3)解决问题当α=90°时,若点E ,F 分别是CA ,CB 的中点,点P 在直线EF 上,请直接写出点C ,P ,D在同一直线上时的值.【过关检测】一.填空题(共1小题)1.(2022秋•黄浦区期末)如图,在矩形ABCD中,过点D作对角线AC的垂线,垂足为E,过点E作BE的垂线,交边AD于点F,如果AB=3,BC=5,那么DF的长是.二.解答题(共7小题)2.(2022秋•杨浦区期中)如图,已知在Rt△ABC中,∠ACB=90°,点D在边AC上,联结BD,以BD为斜边作等腰直角三角形BDE(点E在直线BD右侧),联结CE.(1)如果∠A=45°,求证:△ABD∽△CBE;(2)如果BC=12,CD=5,求线段CE的长.3.(2021春•徐汇区校级期末)如图,∠1=∠2,AD=AE,∠B=∠ACE,且B、C、D三点在一条直线上,若∠B =60°.(1)△BAD与△CAE是否全等,请说明理由;(2)△ABC是否是等边三角形,如果是.请说明理由;(3)CE=AC+CD是否成立,如果成立请说明理由.4.(2022•静安区二模)如图①,已知梯形ABCD中,AD∥BC,∠A=90°,AB=,AD=6,BC=7,点P是边AD上的动点,联结BP,作∠BPF=∠ADC,设射线PF交线段BC于E,交射线DC于F.(1)求∠ADC的度数;(2)如果射线PF经过点C(即点E、F与点C重合,如图②所示),求AP的长;(3)设AP=x,DF=y,求y关于x的函数解析式,并写出定义域.5.(2023•静安区校级一模)在等腰直角△ABC中,∠C=90°,AC=4,点D为射线CB上一动点(点D不与点B、C重合),以AD为腰且在AD的右侧作等腰直角△ADF,∠ADF=90°,射线AB与射线FD交于点E,联结BF.(1)如图所示,当点D在线段CB上时,①求证:△ACD∽△ABF;②设CD=x,tan∠BFD=y,求y关于x的函数解析式,并写出x的取值范围;(2)当AB=2BE时,求CD的长.6.(2021秋•静安区期末)如图1,四边形ABCD中,∠BAD的平分线AE交边BC于点E,已知AB=9,AE=6,AE2=AB•AD,且DC∥AE.(1)求证:DE2=AE•DC;(2)如果BE=9,求四边形ABCD的面积;(3)如图2,延长AD、BC交于点F,设BE=x,EF=y,求y关于x的函数解析式,并写出定义域.7.(虹口区期中)如图,在△ABC和△ADE中,∠BAD=∠CAE,∠ABC=∠ADE.(1)求证:△ABC∽△ADE;(2)判断△ABD与△ACE是否相似?并证明.8.(闵行区期末)如图,已知在△ABC中,∠ADE=∠B,∠BAC=∠DAE (1)求证:;(2)当∠BAC=90°时,求证:EC⊥BC.重难点专项突破06相似三角形中的“手拉手”旋转模型【知识梳理】“手拉手”旋转型模型展示:如图,若△ABC ∽△ADE ,则△ABD ∽△ACE .[来.Com]【考点剖析】例1.如图,直角梯形ABCD 中,90BCD ∠=︒,AD //BC ,BC =CD ,E 为梯形内一点,且90BEC ∠=︒,将BEC ∆绕点C 旋转90°使BC 与DC 重合,得到DCF ∆,联结EF 交CD 于M .已知BC =5,CF =3,则DM :MC 的值为()A .53B .35C .43D .34ABCDEFM【答案】C .【解析】旋转后,CEB CFD ∆≅∆.5CB CD ∴==,3CE CF ==,BE DF =,90BEC DFC ∠=∠= .在Rt CBE ∆中,222BE CE BC +=,4BE ∴=.4DF ∴=. 90ECF ∠= ,90ECD DCF ∴∠+∠= .又90DCF FDC ∠+∠= ECD FDC ∴∠=∠//CE DF∴43DM DF MC EC ∴==.【总结】本题考查旋转的相关知识,平行的判定、三角形一边的平行线的知识.例2、如图,D 为△ABC 内一点,E 为△ABC 外一点,且∠ABC =∠DBE ,∠3=∠4.求证:(1)△ABD ∽△CBE ;(2)△ABC ∽△DBE .证明:(1)∵∠ABC =∠DBE ,∴∠ABC -∠DBC =∠DBE -∠DBC ,即∠1=∠2.又∠3=∠4,∴△ABD ∽△CBE .(2)∵△ABD ∽△CBE ,∴AB CB =DB EB .∴AB DB =CB EB.又∠ABC =∠DBE ,∴△ABC ∽△DBE .例3.把两块全等的直角三角板ABC 和DEF 叠放在一起,使三角板DEF 的锐角顶点D 与三角板ABC 的斜边中点O 重合,其中90ABC DEF ∠=∠=︒,45C F ∠=∠=︒,AB =DE =4,把三角板ABC 固定不动,让三角板DEF绕点O 旋转,设射线DE 与射线AB 相交于点P ,射线DF 与线段BC 相交于点Q .(1)如图1,当射线DF 经过点B ,即点Q 与点B 重合时,易证APD ∆∽CDQ ∆,则此时AP CQ = ______;(2)将三角板DEF 由图1所示的位置绕点O 沿逆时间方向旋转,设旋转角为α.其中090α︒<<︒,问AP CQ 的值是否改变?请说明理由.FAB (Q )CD (O )EPPABCD (O )ABC D (O )QP Q EFEF图1图2图3【答案】(1)8;(2)不改变.【解析】(1)略;(2)易证APD CDQ ∆∆∽,得:AP ADCD CQ=AP CQ CD AD ∴∙=∙.又AC =CD AD ∴==,8AP CQ ∴∙=.【总结】本题考查旋转的相关知识,等腰三角形,“一线三等角”得相似等的相关知识.例4.如图,已知ABC ∆和DEF ∆是两个全等的等腰直角三角形,且90BAC EDF ∠=∠=︒,DEF ∆的顶点E 与ABC ∆的斜边BC 的中点重合.将DEF ∆绕点E 旋转,旋转过程中,线段DE 与线段AB 相交于点P ,线段EF 与射线CA 相交于点Q .(1)如图1,当点Q 在线段AC 上,且AP =AQ 时,求证:BPE ∆≌CQE ∆;(2)如图2,当点Q 在线段CA 的延长线上时,求证:BPE ∆∽CEQ ∆;并求当BP =a ,92CQ a =时,P 、Q 两点间的距离(用含a 的代数式表示).A B C D EF AB C DE F P P Q图1图2Q【答案】(1)略;(2)52PQ a =.【解析】(1)E 是中点,BE EC ∴=.AP AQ = ,BP CQ ∴=.AB AC = ,B C ∴∠=∠.BPE CQE ∴∆≅∆.(2)DEF FEC B BPE ∠+∠=∠+∠ ,而45B DEF ∠=∠= ,BPE QEC ∴∠=∠.45B C ∠=∠= ,BPE CEQ ∴∆∆∽,BP BE CE CQ ∴=,92a BE aCE ∴=,292CE BE a ∴⋅=,BC ∴=.在Rt ABC ∆中,3AB AC a ==,32AQ a ∴=,2AP a =.∴在Rt APQ ∆中,52PQ a =.【总结】本题考查了“一线三等角”相似模型.例5.在△ABC 中,CA =CB ,∠ACB =α.点P 是平面内不与点A ,C 重合的任意一点.连接AP ,将线段AP 绕点P 逆时针旋转α得到线段DP ,连接AD ,BD ,CP .(1)观察猜想如图1,当α=60°时,的值是1,直线BD与直线CP相交所成的较小角的度数是60°.(2)类比探究如图2,当α=90°时,请写出的值及直线BD与直线CP相交所成的小角的度数,并就图2的情形说明理由.(3)解决问题当α=90°时,若点E,F分别是CA,CB的中点,点P在直线EF上,请直接写出点C,P,D在同一直线上时的值.【分析】(1)如图1中,延长CP交BD的延长线于E,设AB交EC于点O.证明△CAP≌△BAD(SAS),即可解决问题.(2)如图2中,设BD交AC于点O,BD交PC于点E.证明△DAB∽△PAC,即可解决问题.(3)分两种情形:①如图3﹣1中,当点D在线段PC上时,延长AD交BC的延长线于H.证明AD=DC即可解决问题.②如图3﹣2中,当点P在线段CD上时,同法可证:DA=DC解决问题.【解答】解:(1)如图1中,延长CP交BD的延长线于E,设AB交EC于点O.∵∠PAD=∠CAB=60°,∴∠CAP=∠BAD,∵CA=BA,PA=DA,∴△CAP≌△BAD(SAS),∴PC=BD,∠ACP=∠ABD,∴∠BEO=∠CAO=60°,∴=1,线BD与直线CP相交所成的较小角的度数是60°,故答案为1,60°.(2)如图2中,设BD交AC于点O,BD交PC于点E.∵∠PAD=∠CAB=45°,∴∠PAC=∠DAB,∵==,∴△DAB∽△PAC,∴∠PCA=∠DBA,==,∵∠EOC=∠AOB,∴∠CEO=∠OABB=45°,∴直线BD与直线CP相交所成的小角的度数为45°.(3)如图3﹣1中,当点D在线段PC上时,延长AD交BC的延长线于H.∵CE=EA,CF=FB,∴EF∥AB,∴∠EFC=∠ABC=45°,∵∠PAO=45°,∴∠PAO=∠OFH,∵∠POA=∠FOH,∵∠APC=90°,EA=EC,∴PE=EA=EC,∴∠EPA=∠EAP=∠BAH,∴∠H=∠BAH,∴BH=BA,∵∠ADP=∠BDC=45°,∴∠ADB=90°,∴BD⊥AH,∴∠DBA=∠DBC=22.5°,∵∠ADB=∠ACB=90°,∴A,D,C,B四点共圆,∠DAC=∠DBC=22.5°,∠DCA=∠ABD=22.5°,∴∠DAC=∠DCA=22.5°,∴DA=DC,设AD=a,则DC=AD=a,PD=a,∴==2﹣.如图3﹣2中,当点P在线段CD上时,同法可证:DA=DC,设AD=a,则CD=AD=a,PD=a,∴PC=a﹣a,∴==2+.【过关检测】一.填空题(共1小题)1.(2022秋•黄浦区期末)如图,在矩形ABCD中,过点D作对角线AC的垂线,垂足为E,过点E作BE的垂线,交边AD于点F,如果AB=3,BC=5,那么DF的长是.【分析】利用矩形的性质求出AC,利用三角形的面积、勾股定理求出DE、CE的长,再利用等角的余角相等说明∠BAE=∠ADE、∠AEB=∠DEF,得△DEF∽△BEA,最后利用相似三角形的性质得结论.【解答】解:∵四边形ABCD是矩形,∴∠ABC=∠ADC=90°,AB=CD=3,BC=AD=5,AB∥CD,∴AC===.=AD•CD=AC•DE,∵S△ADC∴DE=.∵DE⊥AC,∴CE===.∴AE=AC﹣CE=.∵AB∥CD,∴∠BAE=∠DCA.∵∠DCA+∠CDE=∠CDE+∠ADE=90°,∴∠BAE=∠ADE.∵BE⊥FE,DE⊥AC,∴∠FEA+∠AEB=∠DEF+∠FEA=90°.∴∠AEB=∠DEF.∴△DEF∽△BEA.∴==.∴DF=×3=.故答案为:.【点评】本题主要考查了相似三角形,掌握相似三角形的性质与判定、三角形的内角和定理及勾股定理是解决本题的关键.二.解答题(共7小题)2.(2022秋•杨浦区期中)如图,已知在Rt△ABC中,∠ACB=90°,点D在边AC上,联结BD,以BD为斜边作等腰直角三角形BDE(点E在直线BD右侧),联结CE.(1)如果∠A=45°,求证:△ABD∽△CBE;(2)如果BC=12,CD=5,求线段CE的长.【分析】(1)根据∠A=45°可得Rt△ABC是等腰直角三角形,根据角的和差得出∠ABD=∠CBE,根据等腰直角三角形的性质可得==,即可判定△ABD∽△CBE;(2)点D在线段AC上时,过点E作EM⊥BC于M,作EN⊥AC,交AN的延长线于点N,设DE、BC交于点F,易得△DCF∽△BEF,=,可推出△BDF∽△ECF,∠3=∠4=45°,可得四边形CMEN是正方形,设EM=x,证明△DEN≌△BEM,得出BM=DN,即5+x=12﹣x,求出x,即可得CE的长,同理,可得出点D 在线段AC的延长线上时,CE的长;【解答】(1)证明:∵∠A=45°,∠ACB=90°,∴∠ABC=45°,Rt△ABC是等腰直角三角形,∴=,∵△BDE是等腰直角三角形,∴∠DBE=45°,=,∴∠ABC﹣∠DBC=∠DBE﹣∠DBC,即∠ABD=∠CBE,==,∴△ABD∽△CBE;(2)解:如图1,点D在线段AC上时,过点E作EM⊥BC于M,作EN⊥AC,交AN的延长线于点N,设DE、BC交于点F,∵∠ACB=90°,△BDE是等腰直角三角形,∴∠DCF=∠BEF=90°,∠3=45°,∠1=∠2,∴△DCF∽△BEF,∴,=∵∠BFD=∠EFC,∴△BDF∽△ECF,∴∠3=∠4=45°,∵∠ACB=90°,EM⊥BC,EN⊥AC,∴四边形CMEN是正方形,∠BME=∠N=90°,∴CN=EM=CM=NE,在△DEN和△BEM中,,∴△DEN≌△BEM,∴BM=DN,设EM=x,∵BC=12,CD=5,∴5+x=12﹣x,解得:x=,在Rt△CME中,∠4=45°,∴CE=EM=;同理,如图2点D在线段AC的延长线上时,CE=;【点评】此题属于相似形综合题综合题,主要考查了三角形相似的性质和判定,等腰直角三角形的性质,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考压轴题.3.(2021春•徐汇区校级期末)如图,∠1=∠2,AD=AE,∠B=∠ACE,且B、C、D三点在一条直线上,若∠B =60°.(1)△BAD与△CAE是否全等,请说明理由;(2)△ABC是否是等边三角形,如果是.请说明理由;(3)CE=AC+CD是否成立,如果成立请说明理由.【分析】(1)先判断出∠BAD=∠CAD,即可得出结论;(2)先判断出AB=AC,即可得出结论;(3)先判断出AB=AC=BC,即可得出结论.【解答】解:(1)△ABD≌△ACE;理由如下:∵∠1=∠2,∴∠1+∠CAD=∠2+∠CAD,即∠BAD=∠CAD,在△ABD与△ACE中,,∴△ABD≌△ACE(AAS);(2)△ABC是等边三角形,理由:由(1)知,△ABD≌△ACE,∴BD=CE,AB=AC,∵∠B=60°,∴△ABC是等边三角形;(3)CE=AC+CD成立,理由如下:由(2)知,△ABC是等边三角形,∴AB=BC=AC,由(2)知,BD=CE,∴BD=CE=BC+CD=AC+CD,即CE=AC+CD.【点评】此题是三角形综合题,主要考查了全等三角形的判定和性质,等边三角形的判定和性质,判断出△ABD ≌△ACE是解本题的关键.4.(2022•静安区二模)如图①,已知梯形ABCD中,AD∥BC,∠A=90°,AB=,AD=6,BC=7,点P是边AD上的动点,联结BP,作∠BPF=∠ADC,设射线PF交线段BC于E,交射线DC于F.(1)求∠ADC的度数;(2)如果射线PF经过点C(即点E、F与点C重合,如图②所示),求AP的长;(3)设AP=x,DF=y,求y关于x的函数解析式,并写出定义域.【分析】(1)如图①,过点D作DH⊥BC于点H,则∠DHB=∠DHC=90°,再证四边形ABHD是矩形,利用三角函数可得∠CDH=30°,即可求得答案;(2)设AP=x,则PD=6﹣x,可证△DPC∽△PCB,求得:PC=,BP=,利用勾股定理建立方程求解即可得出答案;(3)如图③,在AD上取点G,连接AG,使∠ABG=30°,则∠AGB=60°,可证△BPG∽△PFD,即可求得答案.【解答】解:(1)如图①,过点D作DH⊥BC于点H,则∠DHB=∠DHC=90°,∵AD∥BC,∠A=90°,∴∠ABC=180°﹣∠A=180°﹣90°=90°,∴∠A=∠ABC=∠DHB=90°,∴四边形ABHD是矩形,∴AD=BH=6,DH=AB=,∠ADH=90°,∴CH=BC﹣BH=7﹣6=1,∴tan∠CDH===,∴∠CDH=30°,∴∠ADC=∠ADH+∠CDH=90°+30°=120°;(2)设AP=x,则PD=6﹣x,在图①Rt△CDH中,CD===2,如图②∵∠BPC=∠D=120°,AD∥BC,∴∠DPC=∠PCB,∴△DPC∽△PCB,∴==,∴==,∴PC=,BP=,在RtABP中,AB2+AP2=BP2,∴()2+x2=()2,整理得:x3﹣6x2+3x+10=0,∴(x﹣2)(x﹣5)(x+1)=0,∴x1=2,x2=5,x3=﹣1(舍去),∴AP=2或5;(3)如图③,在AD上取点G,连接AG,使∠ABG=30°,则∠AGB=60°,∴∠BGP=120°,∴∠BGP=∠BPF=∠ADC=120°,∵∠BPG+∠PBG=∠BPG+∠DPF=60°,∴∠PBG=∠DPF,∴△BPG∽△PFD,∴=,即=,∴y=x2+x﹣3,根据题意,0≤x≤6,y≥2,当x2+x﹣3=2时,解得:x=2或x=5,∵<0,∴当y≥2时,2≤x≤5,故y关于x的函数解析式为y=x2+x﹣3,定义域为2≤x≤5.【点评】本题是四边形综合题,考查了直角梯形的性质,矩形的判定和性质,解直角三角形,勾股定理,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.5.(2023•静安区校级一模)在等腰直角△ABC中,∠C=90°,AC=4,点D为射线CB上一动点(点D不与点B、C重合),以AD为腰且在AD的右侧作等腰直角△ADF,∠ADF=90°,射线AB与射线FD交于点E,联结BF.(1)如图所示,当点D在线段CB上时,①求证:△ACD∽△ABF;②设CD=x,tan∠BFD=y,求y关于x的函数解析式,并写出x的取值范围;(2)当AB=2BE时,求CD的长.【分析】(1)①利用等腰直角三角形的性质和两边对应成比例且夹角相等的两个三角形相似解答即可;②过点E作EH⊥BD于点H,设BH=HE=m,利用相似三角形的拍等于性质和直角三角形的边角关系定理解答即可;(2)利用分类讨论的思想方法,画出图形,列出关于x的方程,解方程即可得出结论.【解答】(1)①证明:∵△ABC和△ADF是等腰直角三角形,∴AB=AC,AF=AD,∠CAB=∠DAF=45°.∴,∠CAD=∠BAF,∴△ACD∽△ABF;②解:过点E作EH⊥BD于点H,如图,∵△ABC是等腰直角三角形,∴∠ABC=45°,∵EH⊥BD,∴BH=HE.设BH=HE=m,则BE=m,∴DH=BC﹣CD﹣BM=4﹣x﹣m.∵∠ADF=90°,∴∠ADC+∠FDH=90°,∵∠CAD+∠ADC=90°,∴∠CAD=∠FDH.∵∠ACD=∠DHE=90°,∴△ACD∽△DHE,∴,∴,∴m=,∴BH=HE=.由①知:△ACD∽△ABF,∴∠ACD=∠ABF=90°.∵∠ADF=90°,∴∠ADF=∠ABF=90°.∵∠AED=∠BEF,∴∠BFD=∠DAE.∴tan∠BFD=tan∠DAE=.∵△ACD∽△DHE,∴,∴y=tan∠BFD==,∴y关于x的函数解析式y=,x的取值范围:0<x<4;(2)①解:当点D在线段CB上时,如图,由(1)②知:BH=HE=.∴BE=BH=•.∵AB=2BE,AB=AC=4,∴4=2ו,∴8+2x=4x﹣x2,∴x2﹣2x+8=0.∵Δ=(﹣2)2﹣4×1×8=4﹣32=﹣28<0,∴此方程没有实数根,∴当点D在线段CB上时,不存在AB=2BE;②当点D在线段CB的延长线上时,如图,过点E作EH⊥BD于点H,∵△ABC和△ADF是等腰直角三角形,∴AB=AC,AF=AD,∠CAB=∠DAF=45°.∴,∠CAD=∠BAF,∴△ACD∽△ABF.∴∠ACD=∠ABF=90°.∵△ABC是等腰直角三角形,∴∠ABC=45°,∴∠EBH=∠ABC=45°.∵EH⊥BD,∴BH=HE.设BH=HE=n,则BE=n,∴DH=BC﹣CD﹣BM=x﹣4﹣n.∵∠ADF=90°,∴∠ADE=90°,∴∠ADC+∠EDH=90°,∵∠CAD+∠ADC=90°,∴∠CAD=∠EDH.∵∠ACD=∠DHE=90°,∴△ACD∽△DHE,∴,∴,∴n=.∴BH=HE=.∴BE=BH=•.∵AB=2BE,AB=4,∴4=2ו.∴8+2x=x2﹣4x,∴x2﹣6x﹣8=0,解得:x==3±,∵x>0,∴x=3+.∴CD=3+.综上,当AB=2BE时,CD的长为3+.【点评】本题主要考查了等腰直角三角形的性质,直角三角形的性质,相似三角形的判定与性质,函数的解析式,一元二次方程的解法,本题是相似三角形的综合题,熟练掌握相似三角形的判定与性质是解题的关键.6.(2021秋•静安区期末)如图1,四边形ABCD中,∠BAD的平分线AE交边BC于点E,已知AB=9,AE=6,AE2=AB•AD,且DC∥AE.(1)求证:DE2=AE•DC;(2)如果BE=9,求四边形ABCD的面积;(3)如图2,延长AD、BC交于点F,设BE=x,EF=y,求y关于x的函数解析式,并写出定义域.【分析】(1)先证明△ABE∽△AED,可得∠AEB=∠ADE,再由平行线性质可推出∠ADE=∠DCE,进而证得△ADE∽△ECD,根据相似三角形性质可证得结论;(2)如图2,过点B作BG⊥AE,运用等腰三角形性质可得G为AE的中点,进而可证得△ADE≌△ECD(SAS),=×AE×BG=18,根据△ABE∽△AED且相似比为3:2,可求得S△AED=S△CDE=8,由再求得S△ABES四边形ABCD=S△ABE+S△AED+S△CDE可求得答案;(3)由△ABE∽△AED,可求得:DE=x,进而得出DC=x2,再利用△ADE∽△ECD,可得:CE=x,再利用DC∥AE,可得△AEF∽△DCF,进而求得:CF=EF,再结合题意得出答案.【解答】(1)证明:如图1,∵AE平分∠BAD,∴∠BAE=∠DAE,∵AE2=AB•AD,∴=,∴△ABE∽△AED,∴∠AEB=∠ADE,∵DC∥AE,∴∠AEB=∠DCE,∠AED=∠CDE,∴∠ADE=∠DCE,∴△ADE∽△ECD,∴=,∴DE2=AE•DC;(2)解:如图2,过点B作BG⊥AE,∵BE=9=AB,∴△ABE是等腰三角形,∴G为AE的中点,由(1)可得△ADE、△ECD也是等腰三角形,∵AE2=AB•AD,AB=BE=9,AE=6,∴AD=4,DE=6,CE=4,AG=3,∴△ADE≌△ECD(SAS),在Rt△ABG中,BG===6,=×AE×BG=×6×6=18,∴S△ABE∵△ABE∽△AED且相似比为3:2,:S△AED=9:4,∴S△ABE=S△CDE=8,∴S△AED=S△ABE+S△AED+S△CDE=18+8+8=34;∴S四边形ABCD(3)解:如图3,由(1)知:△ABE∽△AED,∴=,∵BE=x,AB=9,AE=6,AE2=AB•AD,AD=4,∴=,∴DE=x,由(1)知:DE2=AE•DC,∴DC=x2,∵△ADE∽△ECD,∴==,∴CE=x,∵DC∥AE,∴△AEF∽△DCF,∴==,∴CF=EF,∴===,∴y=EF=CE=×x=,∵即,∴3<x<9,∴y关于x的函数解析式为y=,定义域为3<x<9.【点评】本题是相似三角形综合题,考查了角平分线定义,平行线的性质,勾股定理,相似三角形的判定和性质,等腰三角形的性质,三角形面积等知识,熟练掌握相似三角形的判定和性质是解题关键.7.(虹口区期中)如图,在△ABC和△ADE中,∠BAD=∠CAE,∠ABC=∠ADE.(1)求证:△ABC∽△ADE;(2)判断△ABD与△ACE是否相似?并证明.【分析】(1)由∠BAD=∠CAE,可得∠BAC=∠DAE,又有∠ABC=∠ADE,即可得出相似;(2)有(1)中可得对应线段成比例,又有以对应角相等,即可判定其相似.【解答】证明:(1)∵∠BAD=∠CAE,∴∠BAC=∠DAE,∵∠ABC=∠ADE,∴△ABC∽△ADE.(2)△ABD∽△ACE.证明:由(1)知△ABC∽△ADE,∴,∴AB×AE=AC×AD,∴,∵∠BAD=∠CAE,∴△ABD∽△ACE.【点评】本题主要考查了相似三角形的判定及性质问题,应熟练掌握.8.(闵行区期末)如图,已知在△ABC中,∠ADE=∠B,∠BAC=∠DAE(1)求证:;(2)当∠BAC=90°时,求证:EC⊥BC.【分析】(1)根据∠ADE=∠B,∠BAC=∠DAE即可求证△BAC∽△DAE,即可求证,(2)根据(1)的结论可以求证△ABD∽△ACE,即可求得∠ACE=∠B,即可求得∠DCE=90°,即可解题.【解答】证明:(1)∵∠ADE=∠B,∠BAC=∠DAE∴△BAC∽△DAE,∴=,∴,(2)∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵=,∴△ABD∽△ACE,∴∠ACE=∠B,又∵∠B+∠ACB=90°∴∠ACE+∠ACB=∠DCE=90°,∴EC⊥BC.【点评】本题考查了相似三角形的证明,考查了相似三角形对应角相等、对应边比值相等的性质,本题中求证△ABD ∽△ACE是解题的关键.。
初三数学旋转相似讲义
专题:旋转相似模型:手拉手相似模型,旋转相似成双对。
条件:CD∥AB(本质即为△OCD∽△OAB),将△OCD绕点O旋转到图1和图2的位置。
结论:⑴、△OCD∽△OAB △OAC∽△OBD。
即连接对应点所得的一对新三角形相似。
⑵、延长AC交BD于点E,则∠AEB=∠BOA(用蝴蝶形图证明)(能得到点A、O、E、B四点共圆)模型特例:共直角顶点的直角三角形相似当∠AOB=∠COD=90°时,除⑴、△OCD ∽△OAB ⇔ △OAC ∽△OBD⑵、延长AC 交BD 于点E ,则∠AEB=∠BOA=90°(用蝴蝶形图证明) 外,还有结论 ⑶、OAB OCD OAOBOC OD AC BD ∠=∠===tan tan ⑷、因为AC ⊥BD 于点E ,那么,若连AD 、BC ,则四边形ABCD 对角线互相垂直,则 ①BD AC S ABCD ⋅=21四边形 ②2222CD AB BC AD +=+DE O FE O BCA DAB FC例题讲解例1.已知△ABC 与△DEF 都是等腰三角形,AB 、EF 的中点均为O ,且顶角∠ACB=∠EDF. (1)如图1,若∠ACB=900,探究BF 与CD 间的数量关系; (2)如图2,若tan ∠ACB=43,求BF CD 的值;(3)如图3,若△ABC 中AC=BC=a ,将△DEF 绕点O 旋转,设直线CD 与直线BF 交于点H ,则BCH S ∆最大值为__________(用含a 的式子表示)。
分析:(1)连OC ,OD ,△OBF ≌ △OCD ,BF=CD(2)构造手拉手旋转相似。
可证△OBC ∽ △OFD, △ODC ∽ △OFBBF CD =OB OC =tan ACB ∠21问题转化为已知tan ∠ACB=43,求tan ACB ∠21的问题,必须熟悉等腰三角形中有关三角函数值的常见处理方法。
由右图提示可得tan ACB ∠21=31; (3)由(2)△OBC ∽ △OFD, △ODC ∽ △OFB ,蝴蝶形图易得∠CHB=∠COB=90°;又BC=a ,定边定角,点H 在以BC 为直径的圆上,易求()2max 412121a a a S BCH =⋅⋅=∆例2.如图1,已知在正方形ABCD 和正方形BEFG 中,①求证:AG =CE ;②求AGDF的值分析:①如图2,证CBE ABG △△≅,∴AG=CE ②如图2,连接BD ,BF ,DF , 易证2==BEBFBC BD ,︒=∠=∠45FBE DBC , CB E ∠=DB F ∠∴ ∴CBE DBF △△~ ∴2==BCBDCE DF CE =AG ∵ ∴2==CEDFAG DF 变式:如图3,正方形ABCD 和EFGH 中,O 为BC ,EF 中点(1)求证:AH=DG;(2)求CFAH的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12
C B
E D
1、“旋转型”相似三角形图形识别
如图,∠1=∠2, ∠B=∠D 则△ABC∽ △ADE
A
12
E
C B
D
2、“旋转型”相似三角形的特
征
A
①由一点发出四条线段对应成比例
AB AC
12
E
AD AE
②两对相似三角形
C B
△ABC∽ △ADE 和 △ABD∽ △ACE
D
③ BD AB AD CE AC AE
F E
B
C
1、由图形自编问题:等边三角形 一边中点重合,旋转一定角度, 从图中你能得到哪些结论?
C
E
F
B
AG D
2、如图,在△ABC中,∠ACB=900,CH⊥AB 于点H,△ACD和△BCE均为等边三角形. 求证: △DAH∽△ECH
E
D
C
AH
B
畅谈我的收获!
A
12
C B
E D
本课小结: A
3、“旋转型”相似三角形的变式图
形
A
A
12
A
12
2
1E
CE
CE
Bቤተ መጻሕፍቲ ባይዱ
CD
B
B
D
D
1、如图,已知: ∠DAB= ∠EAC, ∠ADE= ∠ABC,求证: ∠ABD= ∠ACE
D B
A E
C
2、如图,在Rt△ABC中, ∠ACB=90°, AC=6,AB=10,点E是AB边上一点, ∠ECF=90°,∠CEF= ∠ B,当△AEF的 面积为75/8时,求线段BEA的长。
1、“旋转型”相似三角形的识别
12
2、“旋转型”相似三角形的特征
①成一点发出四条线段对应成比例
C
②两对相似三角形同时出现
B
③ BD AB AD
CE AC AE
3、“旋转型”相似三角形的变式图形
A
12
CE B
A
2
1E
CD
B
A
12
CE
B
D
D
D
E D
EB AC