钣金展开的计算法

合集下载

钣金展开图计算方法

钣金展开图计算方法

钣金展开图计算方法一般铁板0.5—4MM之内的都是A+B-1.6T。

(A,B代表的是折弯的长度,T 就是板厚)例如用2.5mm的铁板折180mm*180mm的直角,那么你下的料长就是180mm+180mm再减去2.5mm*1.6也就是4mm就好了,也就是356mm钣金展开图的计算是要用一个系数来计算的,这个系数一般都用1.645!计算方法是工件的外形尺寸相加,再减去1.645*板厚*弯的个数,例如,折一个40*60的槽钢用板厚3的冷板折,那么计算方法就是40+40+60(外形尺寸相加)—1.645(系数)*3(板厚)*2(弯的个数)=130.13(下料尺寸)一般6毫米之内都是这样计算的了展开的计算法板料在弯曲过程中外层受到拉应力,内层受到压应力,从拉到压之间有一既不受拉力又不受压力的过渡层--中性层,中性层在弯曲过程中的长度和弯曲前一样,保持不变,所以中性层是计算弯曲件展开长度的基准.中性层位置与变形程度有关, 当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处,当弯曲半径变小, 折弯角度增大时,变形程度随之增大,中性层位置逐渐向弯曲中心的内侧移动.中性层到板料内侧的距离用λ表示.展开的基本公式:展开长度=料内+料内+补偿量一般折弯:(R=0, θ=90°)L=A+B+K0.3时, K=0≤T'1. 当02. 对于铁材:(如GI,SGCC,SECC,CRS,SPTE, SUS等)1.5时, K=0.4T'T'a. 当0.32.5时, K=0.35T'T≤b. 当1.52.5时, K=0.3T/c. 当T3. 对于其它有色金属材料如AL,CU:0.3时,∃当T K=0.5T2.0时, 按R=0处理.≤注: R一般折弯(R≠0 θ=90°)L=A+B+KK值取中性层弧长1.5 时'1. 当T λ=0.5T1.5时/2. 当T λ=0.4T一般折弯(R=0 θ≠90°)L=A+B+K’0.3 时≤1. 当T K’=00.3时∃2. 当T /90)*KυK’=(注: K为90∘时的补偿量一般折弯(R≠0 θ≠90°)L=A+B+K1.5 时'1. 当T λ=0.5T1.5时/2. 当T λ=0.4TK值取中性层弧长2.0, 且用折刀加工时, 则按R=0来计算, A、B依倒零角后的直边长度取值'注: 当RZ折1(直边段差).5T时, 分两次成型时,按两个90°折弯计算/1. 当H5T时, 一次成型, L=A+B+K'2. 当HK值依附件中参数取值Z折2(非平行直边段差).展开方法与平行直边Z折方法相同(如上栏),高度H取值见图示Z折3(斜边段差).2T时'1. 当H当θ≤70∘时,按Z折1(直边段差)的方式计算, 即:ϕ展开长度=展开前总长度+K (此时K=0.2)当θκ>70∘时完全按Z折1(直边段差)的方式计算2T时, 按两段折弯展开(R=0 θ≠90°)./2. 当HZ折4(过渡段为两圆弧相切):1. H≤2T 段差过渡处为非直线段为两圆弧相切展开时,则取两圆弧相切点处作垂线,以保证固定边尺寸偏移以一个料厚处理,然后按Z折1(直边段差)方式展开2. H>2T,请示后再行处理抽孔抽孔尺寸计算原理为体积不变原理,即抽孔前后材料体积不变;一般抽孔,按下列公式计算, 式中参数见右图(设预冲孔为X, 并加上修正系数–0.1):1. 若抽孔为抽牙孔(抽孔后攻牙), 则S按下列原则取值:T≤0.5时取S=100%T0.5<T<0.8时取S=70%TT≥0.8时取S=65%T一般常见抽牙预冲孔按附件一取值2. 若抽孔用来铆合, 则取S=50%T, H=T+T’+0.4 (注: T’是与之相铆合的板厚, 抽孔与色拉孔之间隙为单边0.10~0.15)3. 若原图中抽孔未作任何标识与标注, 则保证抽孔后内外径尺寸;4. 当预冲孔径计算值小于1.0时, 一律取1.0反折压平L= A+B-0.4T1. 压平的时候,可视实际的情况考虑是否在折弯前压线,压线位置为折弯变形区中部;2. 反折压平一般分两步进行V折30°反折压平故在作展开图折弯线时, 须按30°折弯线画, 如图所示:N折1. 当N折加工方式为垫片反折压平, 则按L=A+B+K 计算, K值依附件中参数取值.2. 当N折以其它方式加工时, 展开算法参见“一般折弯(R≠0 θ≠90°)”3. 如果折弯处为直边(H段),则按两次折弯成形计算:L=A+B+H+2K (K=90∘展开系数)备注:a.标注公差的尺寸设计值:取上下极限尺寸的中间值作设计标准值.b.对于方形抽孔和外部包角的展开,其角部的处理方法参照<产品展开工艺处理标准>,其直壁部分按90°折弯展开。

(完整版)钣金展开计算方法

(完整版)钣金展开计算方法
=A+B-2T+0.5T
上式中取:λ=T/3
K=λ*π/2
=T/3*π/2
=0.5T
3 R≠0 θ=90°
L=(A-T-R)+(B-T-R)+(R+λ)*π/2
当R ≧5T时 λ=T/2
1T≦ R <5T λ=T/3
0 < R <t λ=t 4<="" p=""></t λ=t>
(实际展开时除使用尺寸计算方法外,也可在确定中性层位置后,通过偏移再实际测量长度的方法.以下相同)
D/2={(r+T/3)2
+2(r+T/3)*(h+T/3)
-0.86*(Rd-2T/3)*[(r+T/3)
+0.16*(Rd-2T/3)]}1/2
12卷圆压平
图(a): 展开长度
L=A+B-0.4T
图(b): 压线位置尺寸 A-0.2T
图(c): 90°折弯处尺寸为A+0.2T
图(d): 卷圆压平后的产品形状
4 R=0 θ≠90°
λ=T/3
L=[A-T*tan(a/2)]+[B
-T*tan(a/2)]+T/3*a
(a单位为rad,以下相同)
5 R≠0 θ≠90°
L=[A-(T+R)* tan(a/2)]+[B
-(T+R)*tan(a/2)]+(R+λ)*a
当R ≧5T时 λ=T/2
1T≦ R <5T λ=T/3
以下Hmax取值原则供参考.
当R≧4MM时:
材料厚度T=1.2~1.4取Hmax =4T

钣金展开计算原理及计算方法!

钣金展开计算原理及计算方法!

一、展开计算原理板料在弯曲过程中外层受到拉应力,内层受到压应力,理论上内外层之间有一既不受拉也不受压的过渡层------中性层,中性层为一假想层,在弯曲过程中中性层被假想为与弯曲前状态保持一致,即长度始终不变,所以中性层是计算弯曲件长度的基准。

中性层位置与变形程度有关,当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处;当弯曲半径变小,折弯角度增大时,变形程度随之增大。

中性层位置逐渐向弯曲中心的内侧移动。

中性层到板料内侧的距离用A表示(图1)。

二、折弯方法的确定折弯方法有单发冲床模具折弯和折弯机模具折弯两种方法。

单发冲床模具折弯的方式及精度是由模具来实现的。

因此只要做出合格的模具,就能够生产出合格的折弯产品。

而采用折弯机折弯不仅需要选用合适的折弯模,还必须调试折弯参数。

因此,如采用折弯机折弯,计算展开尺寸时就必须考虑折弯机的折弯方法。

1.一次一道弯。

此种折弯由普通通用折弯模来完成。

包括折直角,钝角和锐角(图2)。

2. 一次折两道弯——压锻差。

此种折弯由专用特殊模来完成,但折弯难度比普通折弯大(图3)。

3. 压死边。

此种折弯也须用特殊模来完成(图4)。

4.大R圆弧折弯。

些种折弯如R在一定范围内,可用专用R模压成形,如R值过大,则须用小R模多次压制成形(图5)。

这四种折弯的展开计算是不同的。

因此在看图时,要根据零件的折弯尺寸来确定使用何种折弯方法。

其折弯机所配套的普通通用折弯模具V形槽宽度通常为适用该折弯模的板厚的5-6倍。

如采用一次折一道弯的方法,必须考虑到折弯模的V形槽的宽度W1及V形槽一边到模具外侧的宽度L1,如图6所示。

折弯高度H的经验值根据产品形状有如下三种(以90度为例,钝角和锐角与直角相近相似)。

1.简单的90度单边折弯(图7)。

如图7所示,此种折弯只需考虑下模V形槽中心到折弯机定位挡块的距离即可确定。

通常H值为H≥3.5 T + R (R 在1mm 以下)。

钣金展开计算方法

钣金展开计算方法

附表
1.直边段差展开系数一览表
N折展开系数一览表
• 一般折弯 3 (R=0, θ≠90°): L=A+B+K’
1. 当T<0.3 时, K’=0 2. 当T>=0.3时, K’= (θ / 90) * K
注: K为90∘时的补偿量.
• 一般折弯4 (R≠0 , θ≠90°):
L=A+B+K (K值取中性层弧长) 1. 当T<1.5 时, λ=0.5T 2. 当T>=1.5时, λ=0.4T
T>0.3时, K=0.25T 4. 对于软铁材SPCC 当 0.3<T<1.5时 K=0.4T 当T≧1.5时 K=0.35T 5. 对于其它有色金属材料 (如Al﹑Cu等): 当 T>0.3时, K=0.5T
• 一般折弯2 (R≠0, θ=90°): L=A+B+K (K值取中性层弧长) 1. 当T<1.5时, λ=0.5T 2. 当T≧1.5时, λ=0.4T 注: 当用折刀加工时: 1. 当R≦2.0时, 按R=0处理. 2. 当2.0<R<3.0时, 按R=3.0处理. 3. 当R≧3.0时, 按原值处理.
二 展开计算方法
• 展开计算的基本公式: 展开长度 (L)= 料内(A) + 料内(B) + 补偿量(K)
• 一般折弯1 (R=0, θ=90°): L=A+B+K
1. 当0<T≦0.3时, K=0 2. 对于铁材 (如SGCC﹑SECC﹑SPTE等): (1) 当0.3<T<1.5时, K=0.4T (2) 当1.5≦T<2.5时, K=0.35T (3) 当 T≧2.5时, K=0.3T 3.对于SUS

钣金加工计算公式

钣金加工计算公式

钣金加工计算公式钣金加工是一种常见的金属加工技术,用于将金属板材加工成所需形状的工艺。

在进行钣金加工时,我们需要考虑一些基本的计算公式,以确保加工质量和精度。

下面是钣金加工中常用的一些计算公式:1.板材展开长度计算公式:展开长度=(外周长+冗余值)/压延系数其中,外周长指的是材料未加工前的周长,冗余值一般选取材料厚度的1-2倍,压延系数是指未加工前材料与加工后展开形状之间的长度比例。

2.弯曲件折弯长度计算公式:折弯长度=弯曲半径*弯曲角度*(π/180)弯曲半径是指折弯件曲面的半径,弯曲角度是指折弯件的弯曲角度。

3.压铆螺栓强度计算公式:F=P*n其中,F代表螺栓预紧力,P代表螺栓所受的拉力,n代表螺栓数量。

4.膨胀螺栓强度计算公式:F=A*σ其中,F代表螺栓所受的拉力,A代表螺栓横截面积,σ代表应力。

5.拉伸区域面积计算公式:A=b*t其中,A代表拉伸区域的面积,b代表宽度,t代表厚度。

6.承载能力计算公式:P=(0.6*σ*A)/γ其中,P代表承载能力,σ代表应力,A代表横截面积,γ代表安全系数。

7.拉伸量计算公式:δ=(F*L)/(E*A)其中,δ代表拉伸量,F代表受力,L代表长度,E代表弹性模量,A 代表横截面积。

8.扭矩计算公式:T=k*F*r其中,T代表扭矩,k代表比例系数,F代表力,r代表力臂。

以上仅为钣金加工中一些常见的计算公式,具体的计算公式还会受到材料性质、工艺要求和实际应用等因素的影响。

在实际应用中,我们需要根据具体情况进行选择和调整,以确保加工质量和安全性。

钣金展开计算公式大全

钣金展开计算公式大全

钣金展开计算公式大全
1. 矩形零件的展开计算公式:
长方形展开长度 = 原料长度 + 2 弯曲圆弧压缩量。

长方形展开宽度 = 原料宽度 + 弯曲线圆弧长度 + 弯曲线直线长度。

2. 圆柱形零件的展开计算公式:
圆周展开长度 = 弧长公式,L = π D(D为圆柱直径)。

圆周展开宽度 = 圆周展开长度 / 2。

3. 圆锥形零件的展开计算公式:
圆锥展开长度= π D tan(α)(D为圆锥底部直径,α为锥角)。

圆锥展开宽度 = 圆锥母线长度。

4. 不规则形状零件的展开计算公式:
可使用数学软件进行建模计算,或者通过测量得到各部分的尺寸,然后进行展开计算。

以上是一些常见的钣金展开计算公式,钣金加工中展开计算需要根据具体的零件形状和加工要求来确定使用哪种公式进行计算。

同时,还需要考虑材料的弹性变形、加工工艺等因素,以确保展开后的尺寸能够满足设计要求。

希望以上信息能够对你有所帮助。

钣金展开计算方法

钣金展开计算方法

展开的计算法
板料在弯曲过程中外层受到拉应力,内层受到压应力,从拉到压之间有一既不受拉力又不受压力的过渡层--中性层,中性层在弯曲过程中的长度和弯曲前一样,保持不变,所以中性层是计算弯曲件展开长度的基准.中性层位置与变形程度有关, 当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处,当弯曲半径变小, 折弯角度增大时,变形程度随之增大,中性层位置逐渐向弯曲中心的内侧移动.中性层到板料内侧的距离用λ表示.
展开的基本公式:
展开长度=料内+料内+补偿量。

钣金件的展开计算准确计算

钣金件的展开计算准确计算

钣金件的展开计算准确计算The document was prepared on January 2, 2021钣金中的展开计算一、钣金的计算方法概论钣金零件的工程师和钣金材料的销售商为保证最终折弯成型后零件所期望的尺寸,会利用各种不同的算法来计算展开状态下备料的实际长度.其中最常用的方法就是简单的“掐指规则”,即基于各自经验的算法.通常这些规则要考虑到材料的类型与厚度,折弯的半径和角度,机床的类型和步进速度等等.总结起来,如今被广泛采纳的较为流行的钣金折弯算法主要有两种,一种是基于折弯补偿的算法,另一种是基于折弯扣除的算法.为了更好地理解在钣金设计的计算过程中的一些基本概念,先了解以下几点:1、折弯补偿和折弯扣除两种算法的定义,它们各自与实际钣金几何体的对应关系2、折弯扣除如何与折弯补偿相对应,采用折弯扣除算法的用户如何方便地将其数据转换到折弯补偿算法3、K因子的定义,实际中如何利用K因子,包括用于不同材料类型时K因子值的适用范围二、折弯补偿法为更好地理解折弯补偿,请参照图1中表示的是在一个钣金零件中的单一折弯.图2是该零件的展开状态.折弯补偿算法将零件的展开长度LT描述为零件展平后每段长度的和再加上展平的折弯区域的长度.展平的折弯区域的长度则被表示为“折弯补偿”值BA.因此整个零件的长度就表示为方程1:LT = D1 + D2 + BA 1折弯区域图中表示为淡的区域就是理论上在折弯过程中发生变形的区域.简而言之,为确定展开零件的几何尺寸,让我们按以下步骤思考:1、将折弯区域从折弯零件上切割出来2、将剩余两段平坦部分平铺到一个桌子上3、计算出折弯区域在其展平后的长度4、将展平后的弯曲区域粘接到两段平坦部分之间,结果就是我们需要的展开后的零件图15. K-因子法K-因子是描述钣金折弯在广泛的几何形状参数情形下如何弯曲/展开的一个独立值.也是一个用于计算在各种材料厚度、折弯半径/折弯角度等广泛情形下的弯曲补偿BA的一个独立值.图4和图5将用于帮助我们了解K-因子的详细定义.我们可以肯定在钣金零件的材料厚度中存在着一个中性层或轴,钣金件位于弯曲区域中的中性层中的钣金材料既不伸展也不压缩,也就是在折弯区域中唯一不变形的地方.在图4和图5中表示为粉红区域和蓝色区域的交界部分.在折弯过程中,粉红区域会被压缩,而蓝色区域则会延伸.如果中性钣金层不变形,那么处于折弯区域的中性层圆弧的长度在其弯曲和展平状态下都是相同的.所以,BA折弯补偿就应该等于钣金件的弯曲区域中中性层的圆弧的长度.该圆弧在图4中表示为绿色.钣金中性层的位置取决于特定材料的属性如延展性等.假设中性钣金层离表面的距离为“t”,即从钣金零件表面往厚度方向进入钣金材料的深度为t.因此,中性钣金层圆弧的半径可以表示为R+t.利用这个表达式和折弯角度,中性层圆弧的长度BA就可以表示为:BA = PiR+TA/180为简化表示钣金中性层的定义,同时考虑适用于所有材料厚度,引入k-因子的概念.具体定义是:K-因子就是钣金的中性层位置厚度与钣金零件材料整体厚度的比值,即:K = t/T因此,K的值总是会在0和1之间.一个k-因子如果为的话就意味着中性层位于零件钣金材料厚度的25%处,同样如果是,则意味着中性层即位于整个厚度50%的地方,以此类推.综合以上两个方程,我们可以得到以下的方程8:BA = PiR+KTA/180 8其中几个值如A、R和T都是由实际的几何形状确定的.所以回到原来的问题,K-因子到底从何而来同样,回答还是那几个老的来源,即钣金材料供应商、试验数据、经验、手册等.但是,在有些情况下,给定的值可能不是明显的K,也可能不完全表达为方程8的形式,但无论如何,即使表达形式不完全一样,我们也总是能据此找到它们之间的联系.例如,如果在某些手册或文献中描述中性轴层为“定位在离钣料表面材料厚度”的地方,显然这就可以理解为K因子为,即K=.这样如果将K 的值代入方程8后则可以得到以下算式:BA = A +如果用另一种方法改造一下方程8,把其中的常量计算出结果,同时保留住所有的变量,则可得到:BA = A R + KT比较一下以上的两个方程,我们很容易得到:=,实际上也很容易计算出K=.仔细地研究后得知,在SolidWorks系统中还提供了以下几类特定材料在折弯角为90度时的折弯补偿算法,具体计算公式如下:软黄铜或软铜材料:BA = T + R半硬铜或黄铜、软钢和铝等材料:BA = T + R青铜、硬铜、冷轧钢和弹簧钢等材料:BA = T + R实际上如果我们简化一下方程7,将折弯角设为90度,常量计算出来,那么方程就可变换为:BA = K T + R所以,对软黄铜或软铜材料,对比上面的计算公式即可得到 = ,K==.同样的方法很容易计算出书中列举的几类材料的k-因子值:软黄铜或软铜材料:K =半硬铜或黄铜、软钢和铝等材料:K =青铜、硬铜、冷轧钢和弹簧钢等材料:K =前面已经讨论过,有多种获取K-因子的来源如钣金材料供应商,试验数据,经验和手册等.如果我们要用K-因子的方法建立我们的钣金模型,我们就必须找到满足工程需求的K-因子值的正确来源,从而得到完全满足所期望精度的物理零件结果.在一些情况下,因为要适应可能很广泛的折弯情形,仅靠输入单一的数字即使用单一的K-因子方法可能无法得到足够准确的结果.这种情况下,为了获得更为准确的结果,应该对整个零件的单个折弯直接使用BA 值,或者使用折弯表描述整个范围内不同的A、R、T的所对应的不同BA、BD或K-因子值等.在R≠0, θ=90°时;的折弯系数列表:单位:mm注意:折弯系数不是绝对的,各加工工厂的钣金工艺工程师会根据所用GB材料以及加工机器而略有微弱变化.三.展开计算方法其它参考:一.冷轧钢板SPCC电镀锌板SECC二.压铆螺件底孔尺寸表1.压铆螺母柱注:SO SOS 为通孔不通牙,SOO SOOS 为通孔通牙,加B为不通孔,加S为不锈钢材料,H为螺母柱的高度.2.压铆螺母注:CLS为不锈钢材料,S为普通A3钢,A为螺母适用板厚材代号.3.镶入螺母注:加S为不锈钢材料,A为螺母适用板厚代号.4.涨铆螺母注:加S为不锈钢材料,、、为常用适用板厚.5.压铆螺钉注:加S为不锈钢材料,FH为圆头,NFH为六角头,L为螺钉总长度.。

钣金展开计算方法

钣金展开计算方法

钣金展开计算方法钣金展开计算是钣金工艺中的重要内容,也是完成钣金产品制作的关键步骤之一、钣金展开计算的目的是根据钣金产品的三维图纸,确定其展开长度和表面形状,以便进行钣金零件的切割和加工。

钣金展开计算主要包括平展面展开和曲面展开两种方法。

平展面展开是指将平面图形进行展开,形成展开图。

平展面展开计算方法主要适用于钣金产品的各种平面零件,如箱体、支架等。

(1)定积法展开计算方法:该方法适用于钣金产品的部分各种平面形状,如圆筒、弯管等。

定积法展开计算需要确定钣金材料的长度、重量、宽度等参数。

具体计算步骤如下:1)根据钣金产品的图纸,确定钣金的外径、内径、高度等参数。

2)计算钣金的周长和截面积,得到钣金的长度和重量。

3)根据钣金的长度和宽度,计算出钣金的展开图纸。

4)根据展开图纸进行钣金零件的切割和加工。

(2)图形展开计算方法:该方法适用于钣金产品的各种复杂平面形状,如弯曲的盖板、折弯的箱体等。

图形展开计算需要根据钣金产品的图纸,利用图形的几何关系和三角函数等知识进行计算。

具体计算步骤如下:1)根据钣金产品的图纸,将图纸投影到平面上。

2)根据图纸上的线段长度和角度,利用几何关系和三角函数等知识,推导出展开图形的边长和角度。

3)根据展开图形的边长和角度,计算出展开图纸。

4)根据展开图纸进行钣金零件的切割和加工。

曲面展开是指将曲面图形进行展开,形成展开图。

曲面展开计算方法主要适用于钣金产品的各种曲面零件,如球体、圆锥体等。

曲面展开计算方法较为复杂,需要借助计算机辅助设计和数学知识进行计算。

常用的曲面展开计算方法有拉伸展开法、分割展开法和均分展开法等。

具体计算步骤如下:1)根据钣金产品的图纸,将曲面投影到平面上。

2)根据曲面的曲率半径和展开的高度,进行拉伸和分割。

3)利用数学知识,计算出展开图形的边长和曲率。

4)根据展开图形进行钣金零件的切割和加工。

(完整版)钣金展开计算方法

(完整版)钣金展开计算方法
以下Hmax取值原则供参考.
当R≧4MM时:
材料厚度T=1.2~1.4取Hmax =4T
材料厚度T=0.8~1.0取Hmax =5T
材料厚度T=0.7~0.8取Hmax =6T
材料厚度T≦0.6取Hmax =8T
当R<4MM时,请示上级.
10压缩抽形1 (Rd≦1.5T)
原则:直边部分按弯曲展开,圆角部分按拉伸展开,然后用三点切圆(PA-P-PB)的方式作一段与两直边和直径为D的圆相切的圆弧.
0 < R <t λ=t 4<="" p=""></t λ=t>
6 Z折1.
计算方法请示上级,以下几点原则仅供参考:
(1)当C≧5时,一般分两次成型,按两个90°折弯计算.(要考虑到折弯冲子的强度)
L=A-T+C+B+2K
(2)当3T<c<5时:</c<5时
L=A-T+C+B+K
(3)当C≦3T时<一次成型>:
1.8
#6-32
1.2
1.5
1.5(1.8)
1.8
说明:
1以上攻牙形式均为无屑式.
2抽牙高度:一般均取H=3P,P为螺纹距离(牙距).
3.内径:M3 Φ2.75 M3.50 Φ3.20 M 4 Φ3.65 # 6-32 Φ3.10
在R≠0, θ=90°时;的折弯系数列表:(单位:mm)
板材↓/板厚→
D/2={(r+T/3)2
+2(r+T/3)*(h+T/3)
-0.86*(Rd-2T/3)*[(r+T/3)

钣金展开计算方法

钣金展开计算方法

钣金展开计算方法钣金展开计算是钣金加工中非常重要的一环,它直接影响到钣金零件的加工质量和效率。

在进行钣金展开计算时,需要考虑到材料的厚度、弯曲角度、展开长度等因素,以确保最终加工出的零件能够符合设计要求。

下面将介绍钣金展开计算的方法,希望能对大家有所帮助。

1. 理论基础。

钣金展开计算的理论基础是平面展开理论,即将三维曲面展开成二维平面。

在进行展开计算时,需要根据设计图纸上的三维形状,推导出相应的展开图纸,以便进行后续的加工和制作。

2. 展开计算步骤。

(1)确定展开图纸的起点和方向。

根据设计图纸上的曲面形状,确定展开图纸的起点和展开方向,通常选择曲面的最长边作为展开的起点,并沿着曲面的延伸方向进行展开。

(2)测量展开长度。

使用测量工具(如卷尺、游标卡尺等)测量展开长度,即展开后的平面图纸的长度。

在测量时需要考虑到材料的厚度和弯曲角度,以确保展开后的图纸能够准确地覆盖到设计要求的范围内。

(3)绘制展开图纸。

根据测量得到的展开长度,在平面图纸上绘制出展开后的形状,包括边界线、弯曲线等。

在绘制时需要考虑到材料的厚度和弯曲角度,以确保展开图纸与设计要求一致。

3. 注意事项。

(1)展开计算需要考虑到材料的弹性变形和厚度的影响,因此在进行计算时需要进行适当的修正,以确保展开后的图纸能够准确地反映设计要求。

(2)在进行展开计算时,需要考虑到材料的拉伸和收缩,以及弯曲线的影响,因此在测量和绘制过程中需要进行适当的修正,以确保展开图纸与设计要求一致。

总结。

钣金展开计算是钣金加工中非常重要的一环,它直接影响到钣金零件的加工质量和效率。

在进行展开计算时,需要考虑到材料的厚度、弯曲角度、展开长度等因素,以确保最终加工出的零件能够符合设计要求。

希望以上介绍的钣金展开计算方法能够对大家有所帮助,谢谢!。

钣金展开长度计算公式

钣金展开长度计算公式

钣金展开长度计算公式
钣金的展开长度和钣金的厚度、折弯半径、折弯角度,以及钣金材料属性(通过Y和K因子来表示)有关系。

首先介绍Y因子和K因子:
1)K因子为钣金内侧边到折弯中线距离和钣金厚度的比值,如图1中K因子的方程式:K=A/T。

图1
2)Y因子是根据折弯中线相对于钣金厚度计算出来的比值,此教程由软件自学网首发,Y因子公式:Y=K*(π/2)。

Proe中Y因子默认为0.5。

钣金展开计算公式:
如图2中钣金的展开长度 L=L1+L2+L3
L2=(π/2*R+Y*T)θ/90
其中π=3.1415,R为钣金内侧折弯半径,T为钣金厚度,θ为折弯角度(单位度)
图2
常用材料Y因子和K因子数值:
材料:软黄铜、铜,Y因子:0.55,K因子:0.35。

材料:硬黄铜、铜、软钢、铝,Y因子:0.64,K因子:0.41。

材料:硬铜、青铜、冷轧钢、弹簧钢,Y因子:0.71,K因子:0.45。

钣金展开计算方法

钣金展开计算方法
0.8
1.0
1.2
1.5
2.0
2.5
3.0
4.0
冷板
1.5
1.8
2.1
2.5
3.2
4.0
4.7
6.2
铝板

1.5
1.9
2.3
3.1
3.8
4.4
6.1
注意:折弯系数不是绝对的,各加工工厂的钣金工艺工程师会根据所用GB材料以及加工机器而略有微弱变化。
在R≠0, θ=90°时;的折弯系数列表:(单位:mm)
1.8
#6-32
1.2
1.5
1.5(1.8)
1.8
说明:
1以上攻牙形式均为无屑式.
2抽牙高度:一般均取H=3P,P为螺纹距离(牙距).
3.内径:M3 Φ2.75 M3.50 Φ3.20 M 4 Φ3.65 # 6-32 Φ3.10
在R≠0, θ=90°时;的折弯系数列表:(单位:mm)
板材↓/板厚→
钣金展开计算方法
计算方法
展开的基本公式:
展开长度=料内+料内+补偿量
1 R=0,折弯角θ=90°(T<1.2,不含1.2mm)
L=(A-T)+(B-T)+K
=A+B-2T+0.4T
上式中取:λ=T/4
K=λ*π/2
=T/4*π/2
=0.4T
2 R=0, θ=90° (T≧1.2,含1.2mm)
L=(A-T)+(B-T)+K
板材↓/板厚→
0.8
1.0
1.2
1.5
2.0
2.5
3.0
4.0
冷板
1.5

钣金展开计算法

钣金展开计算法

钣金展开计算法
钣金展开计算法是指一种能够准确计算钣金工件复杂形状的方法,是钣金加工中非常重要和有用的数学运算法则。

它的基本原理是:通过对不规则图形进行展开,就可以准确计算不规则图形所占面积。

1、建立三角形网格:在需要计算的不规则图形上,经过三角剖分,把不规则
图形分解为多个基本三角形拼接小块,其中包括端点、边缘、定点等;
2、优化展开:在钣金加工中,需要把不规则的图形展开二维平面,这时候就
要考虑展开的优化问题,即把最细小的三角形拼接小块变为一个连续的矩形面板展开出来,以节省原钣金件厚度和面积;
3、计算展开角度:利用三角函数和距离计算方法,计算每个三角形分块所需
要展开的角度以及展开之后矩形面板的尺寸;
4、确定初始位置:在三角形网格分解之后,确定每个三角形分块所在的初始
位置,一般是从面板的中心位置出发;
5、计算面积:将每个三角形分块展开后即可统计总的展开面积,用来比较选
择出最合理及最合适的复杂形状;
6、编程处理:利用计算机自动编程进行三角形钣金展开计算,可以实现快速
精准的展开计算,提高钣金加工效率。

使用钣金展开计算法需要注意以下几点:
钣金展开计算法是钣金加工中常用的一种数学运算法,其有效解决了复杂形状的计算问题,提高了钣金加工的精度及效率,使钣金加工制造更加高效和精确。

钣金展开详细计算方法

钣金展开详细计算方法
板材↓/板厚→
0.8
1.0
1.2
1.5
2.0
2.5
3.0
4.0
冷板
1.5
1.8
2.1
2.5
3.2
4.0
4.7
6.2
铝板

1.5
1.9
2.3
3.1
3.8
4.4
6.1
注意:折弯系数不是绝对的,各加工工厂的钣金工艺工程师会根据所用GB材料以及加工机器而略有微弱变化。
备注:
a标注公差的尺寸设计值:取上下极限尺寸的中间值作为设计标准值.
b孔径设计值:一般圆孔直径小数点取一位(以配合冲头加工方便性),例:3.81取3.9.有特殊公差时除外,例:Φ3.80+0.050取Φ3.84.
c 产品图中未作特别标注的圆角,一般按R=0展开.
附件一:常见抽牙孔孔径一览表
料厚
类型
0.6
0 < R <t λ=t 4<="" p=""></t λ=t>
6 Z折1.
计算方法请示上级,以下几点原则仅供参考:
(1)当C≧5时,一般分两次成型,按两个90°折弯计算.(要考虑到折弯冲子的强度)
L=A-T+C+B+2K
(2)当3T<c<5时:</c<5时
L=A-T+C+B+K
(3)当C≦3T时<一次成型>:
∴ AB={H*EF+(π/4-1)*EF2}/T
∴预冲孔孔径=D – 2AB
T≧0.8时,取EF=60%T.
在料厚T<0.8时,EF的取值请示上级.

钣金件展开计算方法及工艺处理

钣金件展开计算方法及工艺处理

钣金件展开计算方法及工艺处理钣金件是由薄板材料制成的各种零部件,常用于电子、汽车、航空航天等行业。

展开计算方法和工艺处理是制作钣金件的重要环节,下面将详细介绍一下这方面的内容。

一、钣金件展开计算方法:钣金件的展开计算是指将三维的零部件展开成二维的平面图纸。

常用的展开计算方法有以下几种:1.直线展开法:适用于直线边和直线边的切换。

首先根据三维图件绘制出展开前的原型图,然后根据图纸给出的尺寸和角度确定展开后的几何形状。

最后跟据展开前和展开后的几何形状,按比例缩放展开图。

2.迭代法:适用于弧形边和直线边的切换。

首先根据三维图件绘制出展开前的原型图,然后根据图纸给出的尺寸和角度确定展开后的几何形状。

然后将展开后的图形对折,与原始形状进行相应的修改,使其与展开图完全一致。

最后跟据展开前和展开后的几何形状,按比例缩放展开图。

3.利用数学方法计算:适用于复杂形状的展开。

通过将钣金件切割成各个小块,并对每个小块进行展开计算,最后将所有小块的展开图拼接在一起,得出最终的展开图。

这种方法需要使用专业的数学软件进行计算,对计算机操作水平要求较高。

二、钣金件的工艺处理:钣金件的工艺处理是指制作钣金件时的一系列加工工艺,包括材料选择、剪切、冲孔、折弯、焊接、表面处理等。

1.材料选择:根据钣金件的使用环境和要求选择合适的材料,常见的有不锈钢、铝板、铜板等。

2.剪切:将原材料按照尺寸要求切割成所需的形状和尺寸,常见的剪切方法有机械剪切和激光切割。

3.冲孔:将钣金件上需要开孔的位置进行冲孔加工,常用的冲孔设备有冲床和数控冲床。

4.折弯:将已经剪切和冲孔的钣金件按照设计要求进行折弯加工,常用的折弯设备有折弯机和数控折弯机。

5.焊接:对于需要焊接的钣金件,根据不同的材料和要求选择合适的焊接方法,常见的有氩弧焊、激光焊等。

6.表面处理:对于需要表面处理的钣金件,包括除油、除锈、喷涂等工艺,以保护钣金件的表面免受腐蚀和氧化。

以上就是钣金件展开计算方法及工艺处理的相关内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南通特雷卡电梯产品有限公司资料
展开的计算法
板料在弯曲过程中外层受到拉应力,内层受到压应力,从拉到压之间有一既不受拉力又不受压力的过渡层--中性层,中性层在弯曲过程中的长度和弯曲前一样,保持不变,所以中性层是计算弯曲件展开长度的基准.中性层位置与变形程度有关, 当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处;当弯曲半径变小, 折弯角度增大时,变形程度随之增大,中性层位置逐渐向弯曲中心的内侧移动.中性层到板料内侧的距离用λ表示.
展开的基本公式:
展开长度=料内+料内+补偿量
一般折弯:(R=0, θ=90°)
L=A+B+K
1. 当0T时, K=0
2. 对于铁材:(如
GI,SGCC,SECC,CRS,SPTE, SUS等)
a.当T时, K=
b. 当T时, K=
c. 当T时, K=
3. 对于其它有色金属材料如AL,CU:
当T时, K=
注: R时, 按R=0处理.
一般折弯(R≠0 θ=90°)
L=A+B+K
K值取中性层弧长
1. 当T时λ=
2. 当T时λ=
一般折弯(R=0 θ≠90°)
L=A+B+K’
1. 当T时K’=0
2. 当T时K’=(/90)*K
注: K为90∘时的补偿量
一般折弯(R≠0 θ≠90°)
L=A+B+K
1. 当T时λ=
2. 当T时λ=
K值取中性层弧长
注: 当R, 且用折刀加工时, 则按R=0来计算, A﹑B依倒零角后的直边
Z折1(直边段差).
1. 当H5T时, 分两次成型时,按两个90°
折弯计算
2. 当H5T时, 一次成型, L=A+B+K
K值依附件中参数取值
Z折3(斜边段差).
1. 当H2T时
当θ≦70∘时,按Z折1(直边段差)的方
式计算, 即: 展开长度=展开前总长度+K (此时K=
当θ>70∘时完全按Z折1(直边段差)的方式计算
2. 当H2T时, 按两段折弯展开(R=0 θ
≠90°).。

相关文档
最新文档