2006年考研数学二真题答案解析

合集下载

2006考研数二真题及解析

2006考研数二真题及解析

2006年全国硕士研究生入学统一考试数学二试题一、填空题:1-6小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (1) 曲线4sin 52cos x xy x x+=-的水平渐近线方程为(2) 设函数2301sin ,0(),0xt dt x f x x a x ⎧≠⎪=⎨⎪=⎩⎰ 在0x =处连续,则a =(3) 广义积分22(1)xdxx +∞=+⎰(4) 微分方程(1)y x y x-'=的通解是(5) 设函数()y y x =由方程1yy xe =-确定,则x dy dx==(6) 设2112A ⎛⎫= ⎪- ⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则B = .二、选择题:9-14小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内. (7) 设函数()y f x =具有二阶导数,且()0,()0,f x f x x '''>>为自变量x 在点0x 处的增量,y 与dy 分别为()f x 在点0x 处对应增量与微分,若0x >,则( ) (A)0dy y << (B)0y dy <<(C)0y dy <<(D)0dy y <<(8) 设()f x 是奇函数,除0x =外处处连续,0x =是其第一类间断点,则0()xf t dt ⎰是( )(A)连续的奇函数 (B)连续的偶函数(C)在0x =间断的奇函数(D)在0x =间断的偶函数(9) 设函数()g x 可微,1()(),(1)1,(1)2,g x h x e h g +''===则(1)g 等于( )(A)ln31-(B)ln31--(C)ln21--(D)ln21-(10) 函数212x x xy c e c e xe -=++满足的一个微分方程是( )(A)23xy y y xe '''--= (B)23xy y y e '''--=(C)23xy y y xe '''+-=(D)23xy y y e '''+-=(11) 设(,)f x y 为连续函数,则14(cos ,sin )d f r r rdr πθθθ⎰⎰等于( )(A)(,)xdx f x y dy ⎰(B)(,)dx f x y dy ⎰(C)(,)yf x y dx ⎰(D)(,)f x y dx ⎰(12) 设(,)(,)f x y x y ϕ与均为可微函数,且(,)0,y x y ϕ'≠已知00(,)(,)x y f x y 是在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是( ) (A)若0000(,)0,(,)0x y f x y f x y ''==则 (B)若0000(,)0,(,)0x y f x y f x y ''=≠则(C)若0000(,)0,(,)0x y f x y f x y ''≠=则 (D)若0000(,)0,(,)0x y f x y f x y ''≠≠则(13) 设12,,,s ααα均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是( ) (A)若12,,,s ααα线性相关,则12,,,s A A A ααα线性相关. (B)若12,,,s ααα线性相关,则12,,,s A A A ααα线性无关.(C)若12,,,s ααα线性无关,则12,,,s A A A ααα线性相关. (D)若12,,,s ααα线性无关,则12,,,s A A A ααα线性无关.(14) 设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001P ⎛⎫⎪= ⎪⎝⎭,则( )(A)1.C P AP -=(B)1.C PAP -= (C).TC P AP =(D).TC PAP =三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)试确定常数,,A B C 的值,使得23(1)1()xe Bx Cx Ax o x ++=++,其中3()o x 是当0x →时比3x 高阶的无穷小.(16)(本题满分10分)求arcsin xxe dx e⎰ (17)(本题满分10分)设区域22{(,)|1,0}D x y x y x =+≤≥,计算二重积分2211DxyI dxdy x y +=++⎰⎰ (18)(本题满分12分)设数列{}n x 满足10x π<<,1sin (1,2,)n n x x n +==(I) 证明lim n n x →∞存在,并求该极限;(II) 计算211lim n x n n n x x +→∞⎛⎫ ⎪⎝⎭. (19)(本题满分10分)证明:当0a b π<<<时,sin 2cos sin 2cos b b b b a a a a ππ++>++. (20)(本题满分12分)设函数()(0,)f u +∞在内具有二阶导数,且Z f=满足等式22220z zx y∂∂+=∂∂(I)验证()()0f u f u u'''+=; (II)若(1)0,(1)1f f '==, 求函数()f u 的表达式. (21)(本题满分12分)已知曲线L 的方程221,(0),4x t t y t t⎧=+≥ ⎨=-⎩(I) 讨论L 的凹凸性;(II) 过点(1,0)-引L 的切线,求切点00(,)x y ,并写出切线的方程; (III) 求此切线与L (对应0x x ≤的部分)及x 轴所围成的平面图形的面积. (22)(本题满分9分)已知非齐次线性方程组1234123412341,4351,31x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪+++=⎩ 有3个线性无关的解.(I) 证明此方程组系数矩阵A 的秩()2r A =; (Ⅱ) 求,a b 的值及方程组的通解. (23)(本题满分9分)设3阶实对称矩阵A 的各行元素之和均为3,向量()()121,2,1,0,1,1TTαα=--=-是线性方程组0Ax =的两个解.(I) 求A 的特征值与特征向量;(II) 求正交矩阵Q 和对角矩阵Λ,使得TQ AQ =Λ.2006年全国硕士研究生入学统一考试数学二试题解析一、填空题 (1)【答案】15y =【详解】 由水平渐近线的定义及无穷小量的性质----“无穷小量与有界函数的乘积是无穷小量”可知4sin lim lim 52cos x x x x y x x →∞→∞+=-4sin 1lim2cos 5x xx x x→∞+=-10lim 50x →∞+=-15= 0x →时1x 为无穷小量,sin x ,cos x 均为有界量. 故,15y =是水平渐近线.(2)【答案】13【详解】按连续性定义,极限值等于函数值,故lim ()x f x →23sin lim xx tx →=⎰220sin()lim 3x x x →洛220lim 3x x x →=13= 注:00型未定式,可以采用洛必达法则;等价无穷小量的替换22sin x x(3)【答案】12 【详解】222222001111(1)2(1)212xdx dx x x x +∞+∞+∞==-⋅=+++⎰⎰(4) 【答案】xCxe-.【详解】分离变量,(1)dy y x dx x-=⇒(1)dy x dx y x -=⇒1(1)dy dx y x =-⇒1dy dx dx y x =-⎰⎰⎰ ⇒ln ln y x x c =-+ ⇒ln ln yx x cee-+= ⇒xy Cxe-=(5)【答案】e -【详解】题目考察由方程确定的隐函数在某一点处的导数.在原方程中令0(0)1x y =⇒= .将方程两边对x 求导得yyy e xe y ''=--,令0x =得(0)y e '=-(6) 【答案】 2【详解】由已知条件2BA B E =+变形得,2BA E B -=⇒()2B A E E -=, 两边取行列式, 得()244B A E E E -===其中,2110112120111A E ⎡⎤⎡⎤-=-==⎢⎥⎢⎥--⎣⎦⎣⎦, 222E 4E == 因此,2422E B A E ===-.二、选择题. (7)【答案】A 【详解】方法1: 图示法.因为()0,f x '>则()f x 严格单调增加;因为()0,f x ''> 则()f x 是凹函数,又0x >,画2()f x x =的图形y结合图形分析,就可以明显得出结论:0dy y <<. 方法2:用两次拉格朗日中值定理000()()()y dy f x x f x f x x '-=+--(前两项用拉氏定理)0()()f x f x x ξ''=- (再用一次拉氏定理)0()()f x x ηξ=-'', 其中000,x x x x ξηξ<<+<<由于()0f x ''>,从而0y dy ->. 又由于0()0dy f x x '=>,故选[]A 方法3: 用拉格朗日余项一阶泰勒公式. 泰勒公式:000()()()()f x f x f x x x '=+-()20000()()()()2!!n n n f x f x x x x x R n ''+-++-+,其中(1)00()()(1)!n nn fx R x x n +=-+. 此时n 取1代入,可得20001()()()()()02y dy f x x f x f x x f x ξ'''∆-=+∆--∆=∆> 又由0()0dy f x x '=∆>,选()A .(8)【答案】(B ) 【详解】方法1:赋值法特殊选取1,0()0,01,0x f x x x >⎧⎪==⎨⎪-<⎩,满足所有条件,则0,0(),0x x x f t dt x x x ≥⎧==⎨-<⎩⎰ .它是连续的偶函数. 因此,选(B )方法2:显然()f x 在任意区间[],a b 上可积,于是0()()xF x f t dt =⎰记处处连续,又()()()()()s txxxF x f t dt f t dt f s ds F x =----==--==⎰⎰⎰即()F x 为偶函数 . 选 (B ) .(9)【答案】(C )【详解】利用复合函数求导法1()()g x h x e +=两边对x 求导⇒1()()()g x h x g x e +''=将1x =代入上式,⇒1(1)12g e+=⇒1(1)ln 1ln 212g =-=--. 故选(C ).(10)【答案】(C )【详解】题目由二阶线性常系数非齐次方程的通解,反求二阶常系数非齐次微分方程,分两步进行,先求出二阶常系数齐次微分方程的形式,再由特解定常数项.因为212x x xy c e c e xe -=++是某二阶线性常系数非齐次方程的通解,所以该方程对应的齐次方程的特征根为1和-2,于是特征方程为2(1)(2)20λλλλ-+=+-=,对应的齐次微分方程为-20y y y '''+=所以不选(A )与(B ),为了确定是(C )还是(D ),只要将特解xy xe *=代入方程左边,计算得()()-23xy y y e ***'''+=,故选(D ). (11) 【答案】()C【详解】记14(cos ,sin )(,)Dd f r r rdr f x y dxdy πθθθ=⎰⎰⎰⎰,则区域D 的极坐标表示是:01r ≤≤ ,04πθ≤≤. 题目考察极坐标和直角坐标的互化问题,画出积分区间,结合图形可以看出,直角坐标的积分范围(注意 y x = 与 221x y +=在第一象限的交点是22,)),于是:0,2D y y x ≤≤≤≤所以,原式0(,)ydy f x y dx =. 因此选 ()C(12) 【答案】D 【详解】方法1: 化条件极值问题为一元函数极值问题。

2006年全国硕士研究生入学统一考试数学真题数二

2006年全国硕士研究生入学统一考试数学真题数二

2006年全国硕士研究生入学统一考试数学二试题一、填空题:1~6小题,每小题4分,共24分.把答案填在题中横线上. (1)曲线xx xx ycos 25sin 4-+=的水平渐近线方程为______.【答案】51=y【考点】水平渐近线 【难易度】★★ 【详解】解析:,51cos 25sin 41lim cos 25sin 4lim lim =-+=-+=∞→∞→∞→xx x xx x x x y x x x 所以水平渐近线方程为51=y . (2)设函数⎪⎩⎪⎨⎧==/=⎰,,0,d sin 1)(023x a x t t x x f x在x =0处连续,则a =______.【答案】13【考点】函数连续的概念 【难易度】★★ 【详解】解析:按连续性定义,313sin lim d sin lim)(lim )0(220320=====→→→⎰x x x t t x f f a x xx x . (3)广义积分⎰+∞+022)1(d x xx =______.【答案】12【考点】无穷限的反常积分 【难易度】★★ 【详解】 解析:211121)1(d 21)1(d 02022222=+-=+=++∞∞+∞+⎰⎰x x x x x x(4)微分方程xx y y )1(-='的通解是______. 【答案】xy Cxe -=,C 为∀常数 【考点】变量可分离的微分方程【难易度】★★ 【详解】解析:这是可变量分离的一阶方程,分离变量得x xy y d )11(d -=. 积分得 1ln ln y x x C =-+,即1C x y ex e -=.因此,通解为xy Cxe -=,C 为∀常数. (5)设函数()y y x =由方程1yy xe =-确定,则0|d d =x xy=______. 【答案】e -【考点】隐函数的导数 【难易度】★★ 【详解】解析:在原方程中令0(0)1x y =⇒=.将方程两边对x 求导,并令0x =得y y y e xe y ''=--,(0)(0)y y e e '=-=-.(6)设矩阵⎪⎪⎭⎫⎝⎛-=2112A ,E 为2阶单位矩阵,矩阵B 满足BA =B +2E ,则B =______.【答案】2【考点】抽象型行列式的计算 【难易度】★★★ 【详解】解析:由BA =B +2E 得()2B A E E -=,两边取行列式,有4B A E ⋅-=.因为11211A E -==-,所以2B =. 二、选择题:7~14小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7)设函数y =f (x )具有二阶导数,且x x f x f ∆>">',0)(,0)(为自变量x 在点x 0处的增量,∆y 与d y 分别为f (x )在点x 0处对应的增量与微分,若∆x >0,则( ) (A )0<d y <∆y . (B )0<∆y <d y . (C )∆y <d y <0. (D )d y <∆y <0. 【答案】(A )【考点】函数单调性的判别;函数图形的凹凸性 【难易度】★★★ 【详解】解析:方法1:因为()0,f x '>则()f x 严格单调增加()0,f x ''> 则()f x 是凹的又0x >V ,故0dy y <<V .方法2:用两次拉格朗日中值定理000()()()y dy f x x f x f x x '-=+--V V V0()()f x f x x ξ''=-V V0()()f x x ηξ''=-V 其中000,x x x x ξηξ<<+<<V由于()0f x ''>,从而0y dy ->V 又由于0()0dy f x x '=>V ,故选(A )(8)设()f x 是奇函数,除x =0外处处连续,x =0是其第一类间断点,则t t f xd )(0⎰是( )(A )连续的奇函数. (B )连续的偶函数.(C )在x =0间断的奇函数. (D )在x =0间断的偶函数.【答案】(B )【考点】积分上限的函数及其导数 【难易度】★★★ 【详解】解析:方法1(排除法): 设 ()f x =1,00,01,0x x x >⎧⎪=⎨⎪-<⎩此()f x 满足题设条件,它是一个奇函数,除0x =外处处连续,0x =是其第一类间断点.0()()0xxx F x f t dt xx >⎧==⎨-<⎩⎰当当并且0(0)()0F f t dt ==⎰即 0()()000xx x F x f t dt x x x >⎧⎪==>⎨⎪-<⎩⎰当当当 ()F x 是一个连续的偶函数,所以不选(A )、(C )、(D ),只能选(B ).方法2(论证法):由题设条件,()f x 除0x =外,处处连续,在0x =处为第一类间断点,且()f x 为奇函数,从而知,(0)0f =,且00lim ()lim ()0x x f x A f x A A +-→→-≠存在记为,存在, 作函数 (),0)0,0(),0f x A x x x f x A x ϕ->⎧⎪==⎨⎪-<⎩当(当当)x ϕ(为连续的奇函数,0()xt dt ϕ⎰为可导的偶函数.另一方面,00(),0()0,0(),0x x xf t dt Ax x t dt x f t dt Ax x ϕ⎧->⎪⎪==⎨⎪+<⎪⎩⎰⎰⎰当当当所以,00(),0()0,0(),0x xxt dt Ax x f t dt x t dt Ax x ϕϕ⎧->⎪⎪==⎨⎪+<⎪⎩⎰⎰⎰当当当 即()()xxf t dt t dt A x ϕ=+⎰⎰,所以0()xf t dt ⎰为连续的偶函数,故选(B ).(9)设函数()g x 可微,1()()g x h x e +=,(1)1h '=,(1)2g '=,则(1)g 等于( )(A )ln3-1. (B )-ln3-1.(C )-ln2-1.(D )ln2-1.【答案】(C )【考点】复合函数的求导法则 【难易度】★★ 【详解】 解析:由1()()g x h x e +=两边对x 求导,得1()()()g x h x g x e+''=,再以1x =代入,并由已知数值得1(1)12g e+=,于是1(1)ln1ln 212g =-=--.故选(C ). (10)函数212x x xy C e C e xe -=++满足的一个微分方程是( )(A ).e 32xx y y y =-'-" (B ).e 32xy y y =-'-"(C ).e 32xx y y y =-'+" (D ).e 32xy y y =-'+"【答案】(D ) 【考点】线性微分方程解的结构定理;自由项为指数函数的二阶常系数非齐次线性微分方程 【难易度】★★★ 【详解】解析:该方程对应的齐次方程的特征根为1和-2,于是特征方程为2(1)(2)20λλλλ-+=+-=对应的齐次微分方程为 -20y y y '''+= 所以不选(A )与(B ),为了确定是(C )还是(D ),只要将特解xy xe *=代入方程左边,计算得()()-23xy y y e ***'''+=,故选(D ).(11)设f (x ,y )为连续函数,则r r r r f d )sin ,cos (d 14π0θθθ⎰⎰等于( )(A )⋅⎰⎰-y y x f x x xd ),(d 21220(B )⋅⎰⎰-y y x f x x d ),(d 210220(C ).d ),(d 22012x y x f y y y⎰⎰- (D ).d ),(d 210220x y x f y y ⎰⎰-【答案】(C )【考点】交换累次积分的次序与坐标系的转换 【难易度】★★ 【详解】 解析:y x y x f r r r r f Dd d ),(d )sin ,cos (d 14π0⎰⎰⎰⎰=θθθ.D 的极坐标表示是:0≤r ≤1,4π0≤≤θ.见右图.现转换为先x 后y 的积分顺序. 原式x y x f y y yd ),(d 21220⎰⎰-=.因此选(C ).(12)设(,)f x y 与(,)x y ϕ均为可微函数,且0),(=/'y x y ϕ.已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是( ) (A )若00(,)0x f x y '=,则00(,)0y f x y '=. (B )若00(,)0x f x y '=,则00(,)0y f x y '≠. (C )若00(,)0x f x y '≠,则00(,)0y f x y '=. (D )若00(,)0x f x y '≠,则00(,)0y f x y '≠.【答案】(D )【考点】多元函数极值存在的必要条件;拉格朗日乘数法 【难易度】★★★ 【详解】解析:引入函数(,,)(,)(,)F x y f x y x y λλϕ=+,有(,)(,)0(1)(,)(,)0(2)(,)0x x xy y y f x y x y f x y x y x y λλϕλϕϕ'''⎧+=⎪'''+=⎨⎪'=⎩F =F =F =000000(,)(,)0,(,)y y y f x y x y x y ϕλϕ''≠∴=-'Q 代入(1)得00000000(,)(,)(,)(,)y xx y f x y x y f x y x y ϕϕ'''='若00(,)0x f x y '≠,则00(,)0y f x y '≠.故选D.(13)设12,,,s αααL 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是( ) (A )若12,,,s αααL 线性相关,则12,,,s A A A αααL 线性相关. (B )若12,,,s αααL 线性相关,则12,,,s A A A αααL 线性无关. (C )若12,,,s αααL 线性无关,则12,,,s A A A αααL 线性相关. (D )若12,,,s αααL 线性无关,则12,,,s A A A αααL 线性无关. 【答案】(A )【考点】向量组线性相关的判别法 【难易度】★★ 【详解】解析:方法1:若12,,,s αααL 线性相关,则存在不全为0的数12s ,,,k k k L 使得11220s s k k k ααα+++=L用A 左乘等式两边,得11220s s k A k A k A ααα+++=L于是12,,,s A A A αααL 线性相关. 方法2:因为:1.12,,,s αααL 线性相关⇔ 12(,,,)s r s ααα<L .2.()()r AB r B <. 所以有:矩阵1212(,,,)(,,,)s s A A A A αααααα=L L ,因此1212(,,,)(,,,)s s r A A A r s αααααα≤<L L由此可判断答案应为A .(14)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100010011P ,则( ) (A )1C P AP -=. (B )1C PAP -=.(C )T C P AP =.(D )TC PAP =.【答案】(B )【考点】矩阵的初等变换;逆矩阵的计算 【难易度】★★ 【详解】解析:将A 的第2行加到第1行得B ,即 110010001B A ⎛⎫ ⎪= ⎪ ⎪⎝⎭=PA将B 的第1列的-1倍加到第2列得C ,即110010001C B -⎛⎫ ⎪= ⎪ ⎪⎝⎭记 BQ因PQ =110010001⎛⎫ ⎪ ⎪ ⎪⎝⎭110010001-⎛⎫⎪ ⎪ ⎪⎝⎭E =,故1Q P -=从而 11C BP PAP --== ,故选(B ).三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)试确定常数A ,B ,C 的值,使得23(1)1()x e Bx Cx Ax o x ++=++,其中3()o x 是当0x →时比3x 高阶的无穷小.【考点】高阶无穷小;泰勒公式;洛必达法则 【难易度】★★★ 【详解】解析:方法一:泰勒公式2331()26xx x e x o x =++++代入已知等式得 23323[1()][1]1()26x x x o x Bx Cx Ax o x ++++++=++整理得233111(1)()()1()226BB xC B x C o x Ax o x ⎛⎫+++++++++=++ ⎪⎝⎭比较两边同次幂函数得11021026B A C B B C ⎧⎪+=⎪⎪++=⎨⎪⎪++=⎪⎩由此可解得13A =, 23B =-,16C =方法二:用洛必达法则.由23(1)1()x e Bx Cx Ax o x ++=++,(0x →)⇒ )(记J0)1(e )1(lim 320=+-++-→x Ax Cx Bx x x ⇒ 203])1[(e 2limx Ax A Cx B x x +-++-→ (要求分子极限为0,即1+B -A =0,否则J =∞)⇒ xAx A C J x x 6)12(e 2lim0--+=-→ (要求分子极限为0,即2A +2C -1=0,否则J =∞),⇒ 06316)31(e lim0=-=+-=-→AAx A J x x ,即1-3A =0. 解 ⎪⎩⎪⎨⎧=-=-+=-+,031,0122,01A C A A B 得61,32,31=-==C B A . (16)(本题满分10分)求.d e e sin arc x xx⎰【考点】不定积分的分部积分法;不定积分的第二类换元法 【难易度】★ 【详解】解析:x x xx x x x xx x x 2e1d e ee sin arc e de e sin arc d e e sin arc -+-=-=---⎰⎰⎰ 1)e (de e sin arc e 2---=---⎰x x xx其中,22sec tan sec sec ln sec tan ln ()1tan ()1x x x x x t te t dt tdt t t C e e C te -----===++=+-+-⎰⎰⎰因此,x x xd ee sin arc ⎰.|1e e |ln e sin arc e 2C x x x x +-+--=--- (17)(本题满分10分)设区域{}22(,)1,0D x y x y x =+≤≥,计算二重积分⎰⎰⋅+++-=Dy x y x xyI d d 1122【考点】二重积分的计算;利用极坐标计算二重积分 【难易度】★★★ 【详解】解析:D 为右半单位圆,它关于x 轴对称,于是0d d 122=++⎰⎰y x y x xyD, 从而 ⎰⎰⎰⎰++=++=122221d d 2d d 11D Dy x yx y x yxI . 又 {}10D D y =⋂≥,如图,作极坐标变换,cos x r θ=,sin y r θ=, 则 10,2π0:1≤≤≤≤r D θ.因此 2ln 2π)1ln(2πd 11d 21221022π0=+=+=⎰⎰r r r r I θ.(18)(本题满分12分)设数列{}n x 满足10x π<<,1sin n n x x +=(1,2,n =L ). (Ⅰ)证明n n x ∞→lim 存在,并求该极限;(Ⅱ)计算.)(lim 211n x nn n x x +∞→【考点】函数极限与数列极限的关系;单调有界准则【难易度】★★★★ 【详解】解析:(Ⅰ)由于0x π<<时,0sin x x <<,于是10sin n n n x x x +<=≤ 说明数列{}n x 单调减少且0n x >.由单调有界准则知lim n n x →∞存在.记为A递推公式两边取极限得 sin ,0A A A =∴=(Ⅱ)原式21sin lim(),n x n n nx x →∞=为∞"1"型 由于离散型不能直接用洛比达法则先考虑22011sin lim ln()0sin lim()t ttt t t t e t→→=用洛比达法则2323203311(cos sin )1110()0()lim 26cos sin sin 1262limlim2262t t t t t t t t t t t t t t tt t t ttteeeee →→→⎡⎤⎡⎤--+--+⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦-=====g g(19)(本题满分10分)证明:当0a b π<<<时,sin 2cos sin 2cos b b b b a a a a ππ++>++. 【考点】函数单调性的判别 【难易度】★★★ 【详解】证明:令()sin 2cos f x x x x x π=++ 只需证明0x π<<时,()f x 单调增加(严格)()sin cos 2sin f x x x x x π'=+-+cos sin x x x π=-+ ()cos sin cos sin 0f x x x x x x x ''=--=-<()f x '∴ 单调减少(严格)又()cos 0f ππππ'=+=,故0()0()x f x f x π'<< >时则单调增加(严格)()()b a f b f a >>由则,即sin 2cos sin 2cos b b b b a a a a ππ++>++.(20)(本题满分12分)设函数()f u 在(0,)+∞内具有二阶导数,且)(22y x f z +=满足等式.02222=∂∂+∂∂yzx z (Ⅰ)验证;0)()(='+"uu f u f (Ⅱ)若1)1(,0)1(='=f f ,求函数()f u 的表达式. 【考点】多元复合函数的求导法;变量可分离的微分方程 【难易度】★★★ 【详解】解析:(I)z zf fx y∂∂''==∂∂()22222z xf fx x y x y ∂'''=+∂++()()22322222x yf fx y x y '''=+++()() 22232 22222z y xf fy x y x y∂'''=+∂++同理222200()()0z zfx yf uf uu∂∂''+==∂∂'''∴+=代入得成立(II)令(),f u p'=于是上述方程成为dp pdu u=-,则dp ducp u=-+⎰⎰ln ln,()cp u c f u pu'=-+∴==22(1)1,1,()ln||,(1)0,0()ln||f c f u u c f c f u u'===+===由得,于是22(1)1,1,()ln||,(1)0,0()ln||f c f u u c f c f u u'===+==∴=由,(21)(本题满分12分)已知曲线L的方程为)0(4,122≥⎪⎩⎪⎨⎧-=+=tttytx,(Ⅰ)讨论L的凹凸性;(Ⅱ)过点(-1,0)引L的切线,求切点(x0,y0),并写出切线的方程;(Ⅲ)求此切线与L(对应于x≤x0的部分)及x轴所围成的平面图形的面积.【考点】导数的几何意义;由参数方程所确定的函数的导数;平面图形的面积【难易度】★★★【详解】解析:(Ⅰ)4222,42,12dx dy dy tt tdt dt dx t t-==-==-222312110(0)2dydd y dxtdxdx dt t t tdt⎛⎫⎪⎛⎫⎝⎭=⋅=-⋅=-<>⎪⎝⎭处∴曲线L (在0t >处)是凸.(Ⅱ)切线方程为201(1)y x t ⎛⎫-=-+⎪⎝⎭,设2001x t =+,20004y t t =-,则 2223200000000241(2),4(2)(2)t t t t t t t t ⎛⎫-=-+-=-+⎪⎝⎭得 200000020,(1)(2)001t t t t t t +-=-+=>∴=Q点为(2,3),切线方程为1y x =+(Ⅲ)设L 的方程()x g y =, 则 ()3()(1)S g y y dy =--⎡⎤⎣⎦⎰(2240221t t y x -+==±=±+解出t 得由于(2,3)在L上,由(23221()y x x g y ===-+=得可知(309(1)S y y d y ⎡⎤=----⎣⎦⎰33(102)4y dy y =--⎰33332202(10)4(4)214(4)3y y y y =-+-=+⨯⨯-8642213333=+-=-(22)(本题满分9分)已知非齐次线性方程组⎪⎩⎪⎨⎧=+++-=-++-=+++13,1534,1432143214321bx x x ax x x x x x x x x有3个线性无关的解.(Ⅰ)证明方程组系数矩阵A 的秩()2r A =;(Ⅱ)求a ,b 的值及方程组的通解.【考点】非齐次线性方程组的解与相应的齐次线性方程组(导出组)的解之间的关系;非齐次线性方程组的通解 【难易度】★★★ 【详解】解析:(Ⅰ)设123,,ααα是方程组的3个线性无关的解,则2131,αααα--是0Ax =的两个线性无关的解.于是0Ax =的基础解系中解的个数不少于2,即4()2r A -≥,从而()2r A ≤.又因为A 的行向量是两两线性无关的,所以()2r A ≥. 两个不等式说明()2r A =.(Ⅱ)对方程组的增广矩阵作初等行变换:[]A b = 1111|11111|14351|10115|3,13|1004245|42a b a a b a --⎡⎤⎡⎤⎢⎥⎢⎥--→--⎢⎥⎢⎥⎢⎥⎢⎥-+--⎣⎦⎣⎦由()2r A =,得出 2,a = 3b =-.代入后继续作初等行变换:1024|20115|3.0000|0-⎡⎤⎢⎥→---⎢⎥⎢⎥⎣⎦得同解方程组 1342342-24-3-5x x x x x x =+⎧⎨=+⎩求出一个特解(2,3,0,0)T-和0Ax =的基础解系(2,1,1,0)T-,(4,5,0,1)T-.得到方程组的通解: 12(2,3,0,0)(2,1,1,0)(4,5,0,1)T T Tc c -+-+-,12,c c 任意.(23)(本题满分9分)设3阶实对称矩阵A 的各行元素之和均为3,向量1(1,2,1)T α=--,2(0,1,1)Tα=-是线性方程组0Ax =的两个解.(Ⅰ)求A 的特征值与特征向量;(Ⅱ)求正交矩阵Q 和对角矩阵Λ,使得Q T AQ =Λ.【考点】矩阵的特征值的计算;矩阵的特征向量的计算;施密特正交化;相似对角矩阵 【难易度】★★★ 【详解】解析:(Ⅰ) 由A 的每行元素之和为3,有(1,1,1)(3,3,3)T TA =故,0(1,1,1)Tα=是A 的特征向量,特征值为3.又12,αα都是0AX =的解说明它们也都是A 的特征向量,特征值为0.由于12,αα线性无关, 特征值0的重数大于1. 于是A 的特征值为3,0,0.属于3的特征向量:0c α, c 0≠.属于0的特征向量: 1122c c αα+,12,c c 不都为0. (Ⅱ)将0α单位化,得0333(, , )333T η=. 对12,αα作施密特正交化,得122(0, , )22T η=-,2666( )366Tη=--. 作123(,,)Q ηηη=,则Q 是正交矩阵,并且-13 0 00 0 00 0 0T Q AQ Q AQ ⎛⎫ ⎪== ⎪ ⎪⎝⎭。

2006年考研数学二真题及答案

2006年考研数学二真题及答案

2006年考研数学二真题一、填空题(1~6小题,每小题4分,共24分。

) (1)曲线y =x+4sinx 5x−2cosx的水平渐近线方程为_________。

【答案】y =15。

【解析】limx→∞x+4sinx 5x−2cosx=limx→∞1+4sinxx 5−2cosx x=15故曲线的水平渐近线方程为y =15。

综上所述,本题正确答案是y =15【考点】高等数学—一元函数微分学—函数图形的凹凸性、拐点及渐近线(2)设函数f (x )={1x 3∫sint 2dt,x ≠0,x0a,x =0在x =0处连续,则a =_________。

【答案】13。

【解析】a =lim x→01x 3∫sint 2dt x0=limx→0sinx 23x 2=13.综上所述,本题正确答案是13【考点】高等数学—函数、极限、连续—初等函数的连续性 (3)反常积分∫xdx (1+x 2)2+∞=_________。

【答案】12。

【解析】∫xdx (1+x 2)2+∞=lim b→+∞∫xdx (1+x 2)2b0=lim b→+∞12∫d (1+x 2)(1+x 2)2=12b 0lim b→+∞(−11+x 2)|b =12lim b→+∞(1−11+b 2)=12综上所述,本题正确答案是12【考点】高等数学—一元函数积分学—反常积分 (4)微分方程y ′=y(1−x)x的通解为__________。

【答案】y =Cxe −x ,C 为任意常数。

【解析】dyy =1−x xdx⇒ln |y |=ln |x |−lne x +ln |C |即y =Cxe −x ,C 为任意常数综上所述,本题正确答案是y =Cxe −x 。

【考点】高等数学—常微分方程—一阶线性微分方程 (5)设函数y =y(x)由方程y =1−xe y 确定,则dy dx |x=0=__________。

【答案】−e 。

【解析】等式两边对x 求导得y ′=−e y −xe y y ′ 将x =0代入方程y =1−xe y 可得y =1。

2006年考研数学二真题及解析

2006年考研数学二真题及解析

您所下载的资料来源于弘毅考研资料下载中心 获取更多考研资料,请访问
[]
三 、解答题:15-23 小题,共 94 分.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分 10 分)
试确定 A, B, C 的值,使得
ex (1 + Bx + Cx2 ) = 1+ Ax + o( x3 ) ,
2…….【分析】本题为已知分段函数连续反求参数的问题 .直接利用函数的连续性定义即 可.
【详解】 由题设知,函数 f (x)在 x = 0 处连续,则
lim f ( x) = f (0) = a ,
x →0
∫ 又因为
lim f ( x) = lim
x→ 0
x→ 0
x sin t 2dt
0
x3
=
sin x2
lim
x→ 0
3x2
=
1
.
3
所以
1 a= .
3
【评注】遇到求分段函 数在分段点的连续性问题,一般从 定义入手 .本题还考查了积 分
上限函数的求导,洛必达法则和等价无穷小代换等多个基本知识点,属基本题型.
完全类似例题见文登暑期辅导班《高等数学》第 1 讲第 1 节【例 13】,《数学复习指
南》(理工类)P.35【例 1.51】.88 年,89 年,94 年和 03 年均考过该类型的试题,本题属重
增量, ∆y与dy 分别为 f (x) 在点 x0 处对应的增量与微分,若 ∆x > 0 ,则
(A) 0 < dy < ∆y .
(B) 0 < ∆y < dy .
(C) ∆y < dy < 0.
(D) dy < ∆y < 0 .

2006考研数二真题及解析

2006考研数二真题及解析

2006年全国硕士研究生入学统一考试数学二试题一、填空题:1-6小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (1) 曲线4sin 52cos x xy x x+=-的水平渐近线方程为(2) 设函数2301sin ,0(),0xt dt x f x x a x ⎧≠⎪=⎨⎪=⎩⎰ 在0x =处连续,则a =(3) 广义积分22(1)xdxx +∞=+⎰(4) 微分方程(1)y x y x-'=的通解是(5) 设函数()y y x =由方程1yy xe =-确定,则0x dy dx==(6) 设2112A ⎛⎫=⎪- ⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则B = .二、选择题:9-14小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7) 设函数()y f x =具有二阶导数,且()0,()0,f x f x x '''>>为自变量x 在点0x 处的增量,y 与dy 分别为()f x 在点0x 处对应增量与微分,若0x >,则( ) (A)0dy y << (B)0y dy <<(C)0y dy <<(D)0dy y <<(8) 设()f x 是奇函数,除0x =外处处连续,0x =是其第一类间断点,则0()xf t dt ⎰是( )(A)连续的奇函数 (B)连续的偶函数(C)在0x =间断的奇函数(D)在0x =间断的偶函数(9) 设函数()g x 可微,1()(),(1)1,(1)2,g x h x e h g +''===则(1)g 等于( )(A)ln 31-(B)ln 31--(C)ln 21--(D)ln 21-(10) 函数212x x x y c e c e xe -=++满足的一个微分方程是( ) (A)23xy y y xe '''--= (B)23xy y y e '''--=(C)23x y y y xe '''+-=(D)23xy y y e '''+-=(11) 设(,)f x y 为连续函数,则14(cos ,sin )d f r r rdr πθθθ⎰⎰等于( )(A)(,)xf x y dy ⎰(B)(,)f x y dy ⎰(C)(,)yf x y dx ⎰(D)(,)f x y dx ⎰(12) 设(,)(,)f x y x y ϕ与均为可微函数,且(,)0,y x y ϕ'≠已知00(,)(,)x y f x y 是在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是( )(A)若0000(,)0,(,)0x y f x y f x y ''==则 (B)若0000(,)0,(,)0x y f x y f x y ''=≠则(C)若0000(,)0,(,)0x y f x y f x y ''≠=则 (D)若0000(,)0,(,)0x y f x y f x y ''≠≠则(13) 设12,,,s ααα均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是( ) (A)若12,,,s ααα线性相关,则12,,,s A A A ααα线性相关. (B)若12,,,s ααα线性相关,则12,,,s A A A ααα线性无关.(C)若12,,,s ααα线性无关,则12,,,s A A A ααα线性相关. (D)若12,,,s ααα线性无关,则12,,,s A A A ααα线性无关.(14) 设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001P ⎛⎫⎪= ⎪⎝⎭,则( )(A)1.C P AP -=(B)1.C PAP -= (C).TC P AP =(D).TC PAP =三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)试确定常数,,A B C 的值,使得23(1)1()x e Bx Cx Ax o x ++=++,其中3()o x 是当0x →时比3x 高阶的无穷小.(16)(本题满分10分)求arcsin xxe dx e ⎰ (17)(本题满分10分)设区域22{(,)|1,0}D x y x y x =+≤≥,计算二重积分2211DxyI dxdy x y +=++⎰⎰ (18)(本题满分12分)设数列{}n x 满足10x π<<,1sin (1,2,)n n x x n +==(I) 证明lim n n x →∞存在,并求该极限;(II) 计算211lim n x n n n x x +→∞⎛⎫ ⎪⎝⎭. (19)(本题满分10分)证明:当0a b π<<<时,sin 2cos sin 2cos b b b b a a a a ππ++>++. (20)(本题满分12分)设函数()(0,)f u +∞在内具有二阶导数,且Z f=满足等式22220z zx y∂∂+=∂∂(I)验证()()0f u f u u'''+=; (II)若(1)0,(1)1f f '==, 求函数()f u 的表达式. (21)(本题满分12分)已知曲线L 的方程221,(0),4x t t y t t⎧=+≥ ⎨=-⎩(I) 讨论L 的凹凸性;(II) 过点(1,0)-引L 的切线,求切点00(,)x y ,并写出切线的方程; (III) 求此切线与L (对应0x x ≤的部分)及x 轴所围成的平面图形的面积. (22)(本题满分9分)已知非齐次线性方程组1234123412341,4351,31x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪+++=⎩ 有3个线性无关的解.(I) 证明此方程组系数矩阵A 的秩()2r A =; (Ⅱ) 求,a b 的值及方程组的通解. (23)(本题满分9分)设3阶实对称矩阵A 的各行元素之和均为3,向量()()121,2,1,0,1,1TTαα=--=-是线性方程组0Ax =的两个解.(I) 求A 的特征值与特征向量;(II) 求正交矩阵Q 和对角矩阵Λ,使得TQ AQ =Λ.2006年全国硕士研究生入学统一考试数学二试题解析一、填空题 (1)【答案】15y =【详解】 由水平渐近线的定义及无穷小量的性质----“无穷小量与有界函数的乘积是无穷小量”可知4sin lim lim 52cos x x x x y x x →∞→∞+=-4sin 1lim2cos 5x xx x x→∞+=-10lim 50x →∞+=-15= 0x →时1x为无穷小量,sin x ,cos x 均为有界量. 故,15y =是水平渐近线.(2)【答案】13【详解】按连续性定义,极限值等于函数值,故lim ()x f x →203sin limx x t x →=⎰220sin()lim 3x x x →洛220lim 3x x x→=13= 注:00型未定式,可以采用洛必达法则;等价无穷小量的替换22sin x x(3)【答案】12【详解】222222001111(1)2(1)212xdx dx x x x +∞+∞+∞==-⋅=+++⎰⎰(4) 【答案】xCxe-.【详解】分离变量,(1)dy y x dx x -=⇒(1)dy x dx y x -=⇒1(1)dy dx y x =-⇒1dy dx dx y x=-⎰⎰⎰ ⇒ln ln y x x c =-+ ⇒ln ln y x x ce e -+= ⇒xy Cxe -=(5)【答案】e -【详解】题目考察由方程确定的隐函数在某一点处的导数.在原方程中令0(0)1x y =⇒= .将方程两边对x 求导得y y y e xe y ''=--,令0x =得(0)y e '=-(6) 【答案】 2【详解】由已知条件2BA B E =+变形得,2BA E B -=⇒()2B A E E -=, 两边取行列式, 得()244B A E E E -=== 其中,2110112120111A E ⎡⎤⎡⎤-=-==⎢⎥⎢⎥--⎣⎦⎣⎦, 222E 4E == 因此,2422E B A E===-.二、选择题.(7)【答案】A 【详解】方法1: 图示法.因为()0,f x '>则()f x 严格单调增加;因为()0,f x ''> 则()f x 是凹函数,又0x >,画2()f x x =的图形yy结合图形分析,就可以明显得出结论:0dy y <<. 方法2:用两次拉格朗日中值定理000()()()y dy f x x f x f x x '-=+--(前两项用拉氏定理)0()()f x f x x ξ''=- (再用一次拉氏定理)0()()f x x ηξ=-'', 其中000,x x x x ξηξ<<+<<由于()0f x ''>,从而0y dy ->. 又由于0()0dy f x x '=>,故选[]A 方法3: 用拉格朗日余项一阶泰勒公式. 泰勒公式:000()()()()f x f x f x x x '=+-()20000()()()()2!!n n n f x f x x x x x R n ''+-++-+,其中(1)00()()(1)!n nn fx R x x n +=-+. 此时n 取1代入,可得20001()()()()()02y dy f x x f x f x x f x ξ'''∆-=+∆--∆=∆> 又由0()0dy f x x '=∆>,选()A .(8)【答案】(B ) 【详解】方法1:赋值法特殊选取1,0()0,01,0x f x x x >⎧⎪==⎨⎪-<⎩,满足所有条件,则0,0(),0x x x f t dt x x x ≥⎧==⎨-<⎩⎰ . 它是连续的偶函数. 因此,选(B )方法2:显然()f x 在任意区间[],a b 上可积,于是0()()xF x f t dt =⎰记处处连续,又()()()()()s txxxF x f t dt f t dt f s ds F x =----==--==⎰⎰⎰即()F x 为偶函数 . 选 (B ) .(9)【答案】(C )【详解】利用复合函数求导法1()()g x h x e +=两边对x 求导⇒1()()()g x h x g x e +''=将1x =代入上式,⇒1(1)12g e+=⇒1(1)ln 1ln 212g =-=--. 故选(C ).(10)【答案】(C )【详解】题目由二阶线性常系数非齐次方程的通解,反求二阶常系数非齐次微分方程,分两步进行,先求出二阶常系数齐次微分方程的形式,再由特解定常数项.因为212x x x y c e c e xe -=++是某二阶线性常系数非齐次方程的通解,所以该方程对应的齐次方程的特征根为1和-2,于是特征方程为2(1)(2)20λλλλ-+=+-=,对应的齐次微分方程为-20y y y '''+=所以不选(A )与(B ),为了确定是(C )还是(D ),只要将特解x y xe *=代入方程左边,计算得()()-23x y y y e ***'''+=,故选(D ). (11) 【答案】()C【详解】记140(cos ,sin )(,)Dd f r r rdr f x y dxdy πθθθ=⎰⎰⎰⎰,则区域D 的极坐标表示是:01r ≤≤ ,04πθ≤≤. 题目考察极坐标和直角坐标的互化问题,画出积分区间,结合图形可以看出,直角坐标的积分范围(注意 y x = 与 221x y += 在第一象限的交点是22(,),于是:02D y y x ≤≤≤≤所以,原式0(,)yf x y dx =. 因此选 ()C(12) 【答案】D 【详解】方法1: 化条件极值问题为一元函数极值问题。

2006数学二--考研数学真题详解

2006数学二--考研数学真题详解

一、填空题:每小题 4 分,共 24 分
(1)曲线 y = x + 4 sin x 的水平渐近线方程为 y = 1
5x − 2 cos x
5
1 + 4sin x
【解析与点评】 lim y = lim
x
=1
x →∞
x→∞ 5 − 2 cos x 5
x
渐近线问题的实质是极限问题,参见水木艾迪 2006 考研数学百分训练营模拟试题数二
的积分次序即得。参见水木艾迪 2006 考研数学强化班第十一讲例 6,例 13 等题目。
(12)设 f (x, y) 与ϕ(x, y) 均为可微函数,且ϕ ′(x, y) ≠ 0 . 已知 (x0 , y0 ) 是 f (x, y) 在约
束条件ϕ (x, y) = 0 下的一个极值点,下列选项正确的是【 D 】

f x′(x0 ,
y 0)≠
0
时,加上
ϕ
′ y
(
x0
,
y0 )

0
,可推出
f y′( x0,
y0
)

ϕ

x
(
x0
,
y0 )

0
,由此可推
出: f y′ (x0 , y0 ) ≠ 0 。
【解法 2】由极值点必要条件得到
dz dx
x0
=
f x (x0 , y0 ) +
f y (x0 , y0 ) y′ x=x0
【解析与点评】因为 f ′(x) > 0, 则f (x) 严格单调增加, f ′′(x) > 0, 则f (x) 为凹
又 ∆x > 0 ,故 0 < dy < ∆y 。或直接划草图更为直观。

2006考研数学二真题及答案解析

2006考研数学二真题及答案解析

( ) 设函数 f (u)在(0, +∞) 内具有二阶导数,= 且 Z f
x2 + y2
满足等式
∂2z ∂x2
+
∂2z ∂y 2
= 0
(I)验证 f ′′(u) + f ′(u) = 0 ; (II)若= f (1) 0= , f ′(1) 1, 求函数 f (u)的表达式 . u
(21)(本题满分 12 分)
增量, y 与 dy 分别为 f (x) 在点 x0 处对应增量与微分,若 x > 0 ,则( )
(A) 0 < dy < y
(B) 0 < y < dy
(C) y < dy < 0
(D) dy < y < 0
x
∫ (8) 设 f (x) 是奇函数,除 x = 0 外处处连续, x = 0 是其第一类间断点,则 f (t)dt 是( ) 0
=1 3
注: 0 型未定式,可以采用洛必达法则;等价无穷小量的替换 sin x2 x2 0

(3)【答案】1 2
【详解】
∫ ∫ +∞ xdx =1 +∞ dx2 =− 1 ⋅ 1 +∞ =1
0 (1+ x2 )2 2 0 (1+ x2 )2 2 1+ x2 0 2
(4) 【答案】 Cxe− x .
(A)连续的奇函数
(C)在 x = 0 间断的奇函数
(B)连续的偶函数
(D)在 x = 0 间断的偶函数
(9) 设函数 g(x) 可微,= h(x) e1+g(x)= , h′(1) 1,= g′(1) 2, 则 g(1) 等于( )

2006考研数二真题及解析

2006考研数二真题及解析

2006 年全国硕士研究生入学一致考试数学二试题一、填空题:1-6 小题,每题 4分,共 24 分,请将答案写在答题纸指定地点上.(1)曲线 y x4sin x的水平渐近线方程为5x2cos x1x2(2)设函数 f ( x)x30sin t dt ,x0在 x 0 处连续,则aa,x0(3)广义积分xdx0 (1 x2 ) 2(4)微分方程 y y(1x)x的通解是xe y确立,则dy(5)设函数 y y( x)由方程 y1dx x 0(6)21B知足 BA B 2E,则 B.设 A1, E为 2 阶单位矩阵,矩阵2二、选择题: 9-14 小题,每题 4 分,共 32 分,以下每题给出的四个选项中,只有一项切合题目要求,把所选项前的字母填在题后的括号内.(7)设函数 y f (x) 拥有二阶导数,且 f ( x) 0, f( x)0,Vx 为自变量x 在点 x0处的增量, Vy 与dy分别为 f (x)在点x0处对应增量与微分,若Vx 0,则 ()(A) 0dy Vy(B) 0Vy dy(C) Vy dy0(D) dy Vy0x(8)设 f ( x) 是奇函数,除x0 外到处连续, x0 是其第一类中断点,则 f (t) dt 是( )(A) 连续的奇函数(B) 连续的偶函数(C)在x0中断的奇函数(D) 在x0 中断的偶函数(9)设函数 g(x) 可微, h( x)e1g ( x) ,h (1)1, g (1)2, 则 g (1)等于()(A) ln31(B)ln31(C)ln 2 1(D) ln2 1(10)函数 y c1e x c2e 2x xe x知足的一个微分方程是()(A) y y 2 y3xe x(B)y y 2 y3e x(C) y y 2 y3xe x(D) y y 2 y3e x4 1(11) 设 f ( x, y) 为连续函数,则d f ( r cos , r sin)rdr 等于 ( )2x 22 1 x 221 2(A)dxf ( x, y)dy(B)dxf ( x, y)dyx2 1 y 22 1 y 222(C)dyf ( x, y) dx(D)dyf (x, y)dxy(12) 设 f ( x, y)与 ( x, y) 均为可微函数,且y ( x, y) 0,已知 ( x 0 , y 0 )是 f (x, y) 在拘束条件( x, y)0 下的一个极值点,以下选项正确的选项是( )(A) 若 f x (x 0 , y 0 )(C)若 f x (x 0 , y 0 )0,则 f y ( x 0 , y 0 ) 0 (B) 若 f x ( x 0 , y 0 ) 0,则 f y ( x 0 , y 0 ) 00, 则 f y ( x 0 , y 0 )(D) 若 f x ( x 0 , y 0 ) 0, 则f y ( x 0 ,y 0 )(13) 设 1, 2 , L , s 均为 n 维列向量, A 是 m n 矩阵,以下选项正确的选项是 ( )(A) 若 1, 2,L ,s 线性有关,则A 1,A 2,L ,A(B) 若 1 ,2,L , s 线性有关,则A 1,A 2,L ,A (C)若1 ,2,L , s 线性没关,则 A 1,A2,L ,A(D) 若 1,2,L ,s 线性没关,则A 1,A 2,L ,As 线性有关 .s 线性没关 .s 线性有关 .s 线性没关 .(14) 设 A 为 3 阶矩阵,将 A 的第 2 行加到第 1 行得 B ,再将 B 的第 1 列的-1 倍加到第 2 列1 1 0得C ,记 P 01 0 ,则 ()0 0 1(A) C P 1AP.(B) CPAP 1. (C) C P T AP. (D) C PAP T .三、解答题: 15- 23 小题,共 94 分 .请将解答写在答题纸指定的地点上 .解答应写出文字说明、证明过程或演算步骤 . (15)( 此题满分 10 分 )试确立常数A, B, C 的值,使得 e x (1 Bx Cx 2 ) 1 Ax o(x 3 ) ,此中 o(x 3 ) 是当x0 时比 x 3 高阶的无量小 .(16)( 此题满分 10 分 )求 arcsin e x dxe x(17)( 此题满分 10 分 )设地区 D{( x, y) | x2y21, x0} ,计算二重积分I12xy2 dxdyD 1 x y(18)( 此题满分12 分)设数列 { x n } 知足 0x1, x n 1sin x n (n1,2,L)1x n x n2(I) 证明lim x n存在,并求该极限 ;(II)计算 lim1.x nn n(19)( 此题满分10 分)证明:当0 a b时, b sin b2cos b b a sin a2cos a a .(20)( 此题满分12 分)设函数 f (u)在 (0,) 内拥有二阶导数,且Z f x2y2知足等式 2 z 2 z0x2y2(I) 考证 f (u)f (u);(II) 若f (1)0, f (1)1,求函数 f (u)的表达式. u0(21)( 此题满分12 分)已知曲线 L 的方程x t21,(t 0) , y4t t 2(I)议论 L 的凹凸性;(II)过点 ( 1,0) 引L的切线,求切点 ( x0 , y0 ) ,并写出切线的方程;(III) 求此切线与L (对应x x0的部分)及 x 轴所围成的平面图形的面积.(22)( 此题满分 9 分 )x1x2x3 x41,已知非齐次线性方程组4x13x25x3x41,有3个线性没关的解.ax1x23x3bx41(I) 证明此方程组系数矩阵 A 的秩r ( A) 2 ;(Ⅱ ) 求a, b的值及方程组的通解 .(23)( 此题满分 9 分 )A 的各行元素之和均为T T设 3 阶实对称矩阵3,向量11,2,1 ,20, 1,1 是线性方程组 Ax0 的两个解.(I)求 A 的特点值与特点向量;(II)求正交矩阵Q 和对角矩阵,使得Q T AQ.2006 年全国硕士研究生入学一致考试数学二试题分析一、填空题(1) 【答案】 y 15【详解】 由水平渐近线的定义及无量小量的性质---- “无量小量与有界函数的乘积是无量小量”可知x 4sin x1 4sin x1 01lim ylim limx lim5x 2cos x 2cos x 5 0 5xxxx5xx0 时 1为无量小量, sin x , cos x 均为有界量 . 故, y 1 是水平渐近线 .x51 (2) 【答案】3【详解】按连续性定义,极限值等于函数值,故xsint 2sin( x 2)x 21lim f ( x)lim洛 lim limx 32 2x 0x 0x 0 3x x 0 3x 3注: 0型不决式,能够采纳洛必达法例;等价无量小量的替代sin x 2 : x 2(3) 【答案】 1 2【详解】xdx1 dx 21 11(1 x 2 )22(1 x 2 )22 1 x 22x(4) 【答案】 Cxe . 【详解】分别变量,dy y(1x)dy (1 x) dxdy (11)dxdy 1dx dxdxxyxyxyxln yln x x ce ln y e ln xx cyCxex(5) 【答案】 e【详解】题目观察由方程确立的隐函数在某一点处的导数.在原方程中令x 0 y(0) 1 .将方程两边对 x 求导得 ye y xe y y ,令 x0 得 y (0)e(6) 【答案】 2【详解】由已知条件BA B 2E 变形得, BA 2E BB( A E)2E , 两边取队列式, 得B( A E) 2E 4 E 4 211 0 1 1 此中,AE20 1 1 2, 2E 22E 41 12E 4 2.所以, BE2A二、选择题 . (7) 【答案】 A 【详解】方法 1: 图示法 .因为 f (x)0, 则 f (x) 严格单一增添;因为 f ( x) 0, 则 f ( x) 是凹函数,又Vx 0 ,画 f ( x) x 2 的图形yy=f(x) ydy联合图形剖析,就能够明显得出结论: 0dy Vy .方法 2:用两次拉格朗日中值定理Vy dyf ( x 0 Vx) f ( x 0 ) f ( x 0 )Vx (前两项用拉氏定理 )f ( )Vxf (x 0 )Vx(再用一次拉氏定理 )f ( )(x 0)Vx ,此中 x 0 x 0 Vx, x 0因为 f ( x) 0 ,进而 Vydy0 . 又因为 dyf ( x 0 )Vx 0,应选 [A]方法 3:用拉格朗日余项一阶泰勒公式. 泰勒公式:f ( x)f (x 0 )f ( x 0 )(x x 0 ) f( x 0 )(xx 0 ) 2Lf (n)(x 0 )( xx 0 )nR n ,2!n!( n 1)此中 R nf( x 0 )( x x0 )n . 此时 n 取 1 代入,可得(n 1)!y dyf ( x 0x)f ( x 0 ) f ( x 0 ) x1f ( )( x) 22又由 dyf ( x 0 ) x 0,选 (A) .(8) 【答案】 ( B ) 【详解】方法 1:赋值法1, x 0x x,x0 特别选用 f ( x)0, x0 ,知足全部条件,则f (t)dtx .1,xx, x它是连续的偶函数 . 所以,选 ( B )方法 2:明显 f ( x) 在随意区间a, b记 x上可积,于是 F (x)f (t)dt到处连续,又F ( x)xx s t xF (x)f (t)dt0 f ( t) dtf (s)ds 0即 F (x) 为偶函数 . 选 ( B ) .(9) 【答案】 (C )【详解】利用复合函数求导法h( x) e 1 g( x) 两边对 x 求导h ( x) g ( x)e 1 g ( x)将 x 1 代入上式,1 2e1g (1)g(1) ln 11ln 2 1 . 应选 ( C ).2(10)【答案】 ( C )【详解】 题目由二阶线性常系数非齐次方程的通解,反求二阶常系数非齐次微分方程,分两步进行,先求出二阶常系数齐次微分方程的形式,再由特解定常数项.因为 yc 1e x c 2e 2 xxe x 是某二阶线性常系数非齐次方程的通解,所以该方程对应的齐次方程的特点根为 1 和 -2,于是特点方程为 22 0 ,对应的齐次( 1)( 2)微分方程为 yy - 2 y 0所以不选 ( A )与 ( B ),为了确立是 ( C )仍是 ( D ),只需将特解 yxe x 代入方程左侧,计算得 (y ) ( y ) - 2 y3 xe ,应选 ( D ).(11) 【答案】 (C )【详解】记4 d1f (r cos , r sin )rdrf (x, y)dxdy ,则地区 D 的极坐标表示是:Dr 1 , 04 . 题目观察极坐标和直角坐标的互化问题,画出积分区间, 联合图形y xx 2 y 2能够看出,直角坐标的积分范围(注意与1 在第一象限的交点是 (2, 2)),于是D : 0 y2, y x1y 222221 y 2所以,原式02dy f (x, y)dx .所以选(C )y(12) 【答案】 D 【详解】方法 1: 化条件极值问题为一元函数极值问题。

(完整版)2006考研数学二真题及答案解析

(完整版)2006考研数学二真题及答案解析

2006年数学(二)考研真题及解答一、填空题 (1)曲线4sin 52cos x xy x x+=-的水平渐近线方程为 .(2)设函数231sin ,0,(),x t dt x f x x a x ⎧≠⎪=⎨⎪=⎩⎰在0x =处连续,则a = .(3)广义积分22(1)xdxx +∞=+⎰.(4)微分方程(1)y x y x-'=的通解是 . (5)设函数()y y x =由方程1yy xe =-确定,则0A dy dx== .(6)设矩阵2112A ⎛⎫= ⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则B =.二、选择题(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在0x 处的增量,y ∆与dy分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A )0.dy y <<∆ (B )0.y dy <∆<(C )0.y dy ∆<<(D )0.dy y <∆<【 】(8)设()f x 是奇函数,除0x =外处处连续,0x =是其第一类间断点,则()x f t dt ⎰是(A )连续的奇函数. (B )连续的偶函数(C )在0x =间断的奇函数 (D )在0x =间断的偶函数. 【 】(9)设函数()g x 可微,1()(),(1)1,(1)2g x h x e h g +''===,则(1)g 等于(A )ln31-. (B )ln3 1.--(C )ln 2 1.--(D )ln 2 1.-【 】(10)函数212x x xy C e C e xe -=++满足一个微分方程是(A )23.xy y y xe '''--=(B )23.xy y y e '''--=(C )23.xy y y xe '''+-=(D )23.xy y y e '''+-=(11)设(,)f x y 为连续函数,则140(cos ,sin )d f r r rdr πθθθ⎰⎰等于(A )(,).xf x y dy ⎰⎰(B )(,).f x y dy ⎰⎰(C )(,).yf x y dx ⎰⎰(D )(,).f x y dx ⎰⎰【 】(12)设(,)f x y 与(,)x y ϕ均为可微函数,且1(,)0y x y ϕ≠. 已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是(A )若00(,)0x f x y '=,则00(,)0y f x y '=. (B )若00(,)0x f x y '=,则00(,)0y f x y '≠. (C )若00(,)0x f x y '≠,则00(,)0y f x y '=. (D )若00(,)0x f x y '≠,则00(,)0y f x y '≠.【 】(13)设12,,,,a a a L 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是 (A )若12,,,,a a a L 线性相关,则12,,,,Aa Aa Aa L 线性相关. (B )若12,,,,a a a L 线性相关,则12,,,,Aa Aa Aa L 线性无关.(C )若12,,,,a a a L 线性无关,则12,,,,Aa Aa Aa L 线性相关.(D )若12,,,,a a a L 线性无关,则12,,,,Aa Aa Aa L 线性无关. 【 】(14)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001P ⎛⎫⎪= ⎪ ⎪⎝⎭,则(A )1.C P AP -= (B )1.C PAP -=(C ).T C P AP =(D ).TC PAP =三 解答题15.试确定A ,B ,C 的常数值,使得23(1)1()xe Bx Cx Ax o x ++=++,其中3()o x 是当30x x →时比的高阶无穷小。

2006年考研数学二真题及答案

2006年考研数学二真题及答案

2006年考研数学二真题一、填空题(1~6小题,每小题4分,共24分。

) (1)曲线y =x+4sinx 5x−2cosx的水平渐近线方程为_________。

【答案】y =15。

【解析】limx→∞x+4sinx5x−2cosx=limx→∞1+4sinxx 5−2cosx x=15故曲线的水平渐近线方程为y =15。

综上所述,本题正确答案是y =15【考点】高等数学—一元函数微分学—函数图形的凹凸性、拐点及渐近线 (2)设函数f (x )={1x 3∫sint 2dt,x ≠0,x 0a,x =0在x =0处连续,则a =_________。

【答案】13。

【解析】a =lim x→01x 3∫sint 2dt x 0=limx→0sinx 23x 2=13.综上所述,本题正确答案是13【考点】高等数学—函数、极限、连续—初等函数的连续性 (3)反常积分∫xdx (1+x 2)2+∞=_________。

【答案】12。

【解析】∫xdx (1+x 2)2+∞=lim b→+∞∫xdx(1+x 2)2b0=lim b→+∞12∫d (1+x 2)(1+x 2)2=12b 0lim b→+∞(−11+x 2)|0b=12lim b→+∞(1−11+b 2)=12综上所述,本题正确答案是12【考点】高等数学—一元函数积分学—反常积分(4)微分方程y′=y(1−x)x的通解为__________。

【答案】y=Cxe−x,C为任意常数。

【解析】dyy =1−xxdx⇒ln|y|=ln|x|−lne x+ln|C|即y=Cxe−x,C为任意常数综上所述,本题正确答案是y=Cxe−x。

【考点】高等数学—常微分方程—一阶线性微分方程(5)设函数y=y(x)由方程y=1−xe y确定,则dydx |x=0=__________。

【答案】−e。

【解析】等式两边对x求导得y′=−e y−xe y y′将x=0代入方程y=1−xe y可得y=1。

06年考研数二真题及答案解析(word)

06年考研数二真题及答案解析(word)

2006年全国硕士研究生入学考试数学(二)一、填空题 (1)曲线4sin 52cos x xy x x+=-的水平渐近线方程为 .(2)设函数231sin ,0,(),x t dt x f x x a x ⎧≠⎪=⎨⎪=⎩⎰在0x =处连续,则a = .(3)广义积分22(1)xdxx +∞=+⎰.(4)微分方程(1)y x y x-'=的通解是 . (5)设函数()y y x =由方程1yy xe =-确定,则A dy dx== .(6)设矩阵2112A ⎛⎫= ⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则B = .二、选择题(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在0x 处的增量,y ∆与dy 分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A )0.dy y <<∆ (B )0.y dy <∆<(C )0.y dy ∆<<(D )0.dy y <∆<【 】(8)设()f x 是奇函数,除0x =外处处连续,0x =是其第一类间断点,则()x f t dt ⎰是(A )连续的奇函数.(B )连续的偶函数(C )在0x =间断的奇函数 (D )在0x =间断的偶函数. 【 】(9)设函数()g x 可微,1()(),(1)1,(1)2g x h x e h g +''===,则(1)g 等于(A )ln 31-.(B )ln 3 1.--(C )ln 2 1.--(D )ln 2 1.-【 】(10)函数212xxx y C e C e xe -=++满足一个微分方程是(A )23.xy y y xe '''--= (B )23.xy y y e '''--=(C )23.xy y y xe '''+-=(D )23.xy y y e '''+-=(11)设(,)f x y 为连续函数,则140(cos ,sin )d f r r rdr πθθθ⎰⎰等于(A )(,).xf x y dy ⎰⎰(B )(,).f x y dy ⎰⎰(C )(,).yf x y dx ⎰⎰(D )(,).f x y dx ⎰⎰【 】(12)设(,)f x y 与(,)x y ϕ均为可微函数,且1(,)0y x y ϕ≠. 已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是 (A )若00(,)0x f x y '=,则00(,)0y f x y '=. (B )若00(,)0x f x y '=,则00(,)0y f x y '≠. (C )若00(,)0x f x y '≠,则00(,)0y f x y '=. (D )若00(,)0x f x y '≠,则00(,)0y f x y '≠.【 】(13)设12,,,,a a a 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是 (A )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性相关. (B )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性无关.(C )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性相关.(D )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性无关. 【 】 (14)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001P ⎛⎫⎪= ⎪ ⎪⎝⎭,则(A )1.C P AP -= (B )1.C PAP -=(C ).T C P AP =(D ).TC PAP =三 解答题15.试确定A ,B ,C 的常数值,使得23(1)1()xe Bx Cx Ax o x ++=++,其中3()o x 是当30x x →时比的高阶无穷小。

2006年考研数学二真题及解析

2006年考研数学二真题及解析

B
满足
BA
=
B
+
2
E
,则
B= .
二、选择题:7-14 小题,每小题 4 分,共 32 分. 每小题给出的四个选项中,只有一项符 合题目要求,把所选项前的字母填在题后的括号内.
(7)设函数 y = f ( x) 具有二阶导数,且 f ′(x) > 0, f ′′(x) > 0 , ∆x 为自变量 x 在点 x0 处的
增量, ∆y与dy 分别为 f (x) 在点 x0 处对应的增量与微分,若 ∆x > 0 ,则
(A) 0 < dy < ∆y .
(B) 0 < ∆y < dy .
(C) ∆y < dy < 0.
(D) dy < ∆y < 0 .
[]
x
∫ (8)设 f (x)是奇函数,除 x = 0 外处处连续, x = 0 是其第一类间断点,则 f (t )dt 是 0
[]
(14)设 A为 3 阶矩阵,将 A的第 2 行加到第 1 行得 B ,再将 B 的第 1 列的 −1倍加到第 2
⎛1 1 0⎞
列得
C
,记
P
=
⎜ ⎜
0
1
0⎟⎟ ,则
⎜⎝ 0 0 1⎟⎠
(A) C = P−1 AP .
(B) C = PAP−1 .
(C) C = PT AP .
(D) C = PAPT .
∫ ∫ (B) 2 dx
f ( x, y)dy .
0
0
[]
2
1− y2
∫ ∫ (C) 2 dy
f ( x, y)dx .
0
y

2006年数二真题、标准答案及解析

2006年数二真题、标准答案及解析

2006年全国硕士研究生入学考试数学(二)一、填空题 (1)曲线4sin 52cos x xy x x+=-的水平渐近线方程为 .(2)设函数231sin ,0,(),x t dt x f x xa x ⎧≠⎪=⎨⎪=⎩⎰在0x =处连续,则a = .(3)广义积分22(1)xdxx +∞=+⎰ .(4)微分方程(1)y x y x-'=的通解是 . (5)设函数()y y x =由方程1y y xe =-确定,则A dydx== .(6)设矩阵2112A ⎛⎫= ⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则B = . 二、选择题(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在0x 处的增量,y ∆与dy 分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则 (A )0.dy y <<∆ (B )0.y dy <∆<(C )0.y dy ∆<< (D )0.dy y <∆< 【 】(8)设()f x 是奇函数,除0x =外处处连续,0x =是其第一类间断点,则0()xf t dt⎰是(A )连续的奇函数. (B )连续的偶函数(C )在0x =间断的奇函数 (D )在0x =间断的偶函数. 【 】 (9)设函数()g x 可微,1()(),(1)1,(1)2g x h x e h g +''===,则(1)g 等于(A )ln 31-. (B )ln 3 1.--(C )ln 2 1.-- (D )ln 2 1.- 【 】(10)函数212x x x y C e C e xe -=++满足一个微分方程是 (A )23.x y y y xe '''--= (B )23.x y y y e '''--=(C )23.x y y y xe '''+-= (D )23.x y y y e '''+-=(11)设(,)f x y 为连续函数,则140(cos ,sin )d f r r rdr πθθθ⎰⎰等于(A )0(,).x f x y dy ⎰⎰(B )00(,).f x y dy ⎰⎰(C )0(,).yf x y dx ⎰⎰(D )00(,).f x y dx ⎰⎰ 【 】(12)设(,)f x y 与(,)x y ϕ均为可微函数,且1(,)0y x y ϕ≠. 已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是 (A )若00(,)0x f x y '=,则00(,)0y f x y '=. (B )若00(,)0x f x y '=,则00(,)0y f x y '≠. (C )若00(,)0x f x y '≠,则00(,)0y f x y '=.(D )若00(,)0x f x y '≠,则00(,)0y f x y '≠. 【 】 (13)设12,,,,a a a 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是 (A )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性相关. (B )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性无关. (C )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性相关.(D )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性无关. 【 】(14)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001P ⎛⎫⎪= ⎪ ⎪⎝⎭,则 (A )1.C P AP -= (B )1.C PAP -= (C ).T C P AP = (D ).T C PAP = 三 解答题15.试确定A ,B ,C 的常数值,使得23(1)1()x e Bx Cx Ax o x ++=++,其中3()o x 是当30x x →时比的高阶无穷小.16.arcsin xxe dx e ⎰求. 17.{}22(,)1,0D x y x y x =+≤≥设区域,221.1DxyI dxdy x y+=++⎰⎰计算二重积分 18.{}110,sin (0,1,2,)n n n x x x x n π+<<==设数列满足1lim n x x +→∞证明: (1) 存在,并求极限;211(2)lim(n x n x nx x +→∞计算. 19.sin 2cos sin cos .<a <b b b b b a a a a a πππ<++>++证明: 当0时, 20 设函数()()0,,f u +∞在内具有二阶导数且z f =满足等式22220z zx y∂∂+=∂∂.(Ⅰ)验证()()0f u f u u'''+=;(Ⅱ)若()()()10,11,f f f u '==求函数的表达式. 21 已知曲线L 的方程为221,(0),4x l t y l t⎧=+≥⎨=-⎩(Ⅰ)讨论L 的凹凸性;(Ⅱ)过点(-1,0)引L 的切线,求切点00(,)x y ,并写出切线的方程; (Ⅲ)求此切线与L (对应于0x x ≤的部分)及x 轴所围成的平面图形的面积.22 已知非齐次线性方程组12341234123414351331x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪++-=⎩有个线性无关的解Ⅰ证明方程组系数矩阵A 的秩()2r A =; Ⅱ求,a b 的值及方程组的通解.23 设3阶实对称矩阵A 的各行元素之和均为3,向量()()121,2,1,0,1,1T Tαα=--=-是线性方程组A x =0的两个解, (Ⅰ)求A 的特征值与特征向量 (Ⅱ)求正交矩阵Q 和对角矩阵A,使得T Q AQ A =.2006年全国硕士研究生入学考试数学(二)真题解析一、填空题 (1)曲线4sin 52cos x xy x x+=-的水平渐近线方程为15y =4sin 11lim lim2cos 55x x xx y x x→∞→∞+==-(2)设函数2301sin ,0(),0xt dt x f x x a x ⎧≠⎪=⎨⎪=⎩⎰ 在x =0处连续,则a =132200()1lim ()lim 33x x sm x f x x →→== (3)广义积分220(1)xdxx +∞=+⎰1222222201(1)11110(1)2(1)2(1)22xdx d x x x x +∞+∞+∞+==-⋅=+=+++⎰⎰(4)微分方程(1)y x y x-'=的通解是xy cxe -=)0(≠x(5)设函数()y y x =由方程1y y xe =-确定,则0x dy dx==e-当x =0时,y =1,又把方程每一项对x 求导,y y y e xe y ''=-- 001(1)1x x y yyyye y xe ey e xe ===''+=-=-=-+(6) 设A = 2 1 ,2阶矩阵B 满足BA =B +2E ,则|B |= .-1 2解:由BA =B +2E 化得B (A -E )=2E ,两边取行列式,得|B ||A -E |=|2E |=4,计算出|A -E |=2,因此|B |=2.二、选择题(7)设函数()y f x =具有二阶导数,且()0,()0,f x f x x '''>>∆为自变量x 在点x 0处的增量,0()y dy f x x ∆与分别为在点处对应增量与微分,若0x ∆>,则[A] (A )0dy y <<∆ (B )0y dy <∆< (C )0y dy ∆<< (D )0dy y <∆< 由()0()f x f x '>可知严格单调增加 ()0()f x f x ''>可知是凹的 即知(8)设()f x 是奇函数,除0x =外处处连续,0x =是其第一类间断点,则()xf t dt ⎰是[B](A )连续的奇函数 (B )连续的偶函数(C )在x =0间断的奇函数 (D )在x =0间断的偶函数 (9)设函数()g x 可微,1()(),(1)1,(1)2,g x h x e h g +''===则g (1)等于[C] (A )ln 31- (B )ln 31-- (C )ln 21-- (D )ln 21- ∵ 1()()()g x h x g x e +''=,1(1)12g e += g (1)= ln 21-- (10)函数212x x x y c e c xe -=++满足的一个微分方程是[D] (A )23x y y y xe '''--= (B )23x y y y e '''--= (C )23x y y y xe '''+-= (D )23x y y y e '''+-=将函数212x x x y c e c xe -=++代入答案中验证即可.(11)设(,)f x y 为连续函数,则140(cos ,sin )d f r r rd πθθθγ⎰⎰等于[C](A)0(,)xdxf x y dy ⎰(B)0(,)dxf x y dy ⎰(C)0(,)yf x y dx ⎰(D)0(,)f x y dx ⎰(12)设(,)(,)f x y x y ϕ与均为可微函数,且(,)0,y x y ϕ'≠已知00(,)(,)x y f x y 是在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是[D](A )若0000(,)0,(,)0x y f x y f x y ''==则 (B )若0000(,)0,(,)0x y f x y f x y ''=≠则 (C )若0000(,)0,(,)0x y f x y f x y ''≠=则 (D )若0000(,)0,(,)0x y f x y f x y ''≠≠则(,)(,)(,)(,)0(1)(,)(,)0(2)(,)0x x xy y y F f x y x y F f x y x y F f x y x y F x y λλϕλϕλϕϕ=+'''=+=⎧⎪'''=+=⎨⎪'==⎩令今 000000(,)(,)0,(,)y y y f x y x y x y ϕλϕ''≠∴=-'代入(1) 得 00000000(,)(,)(,)(,)y xx y f x y x y f x y x y ϕϕ'''=' 今 00000000(,)0,(,)(,)0(,)0x y xy f x y f x y x y f x y ϕ''''≠∴≠≠则 故选[D] (13)设1,2,…,s都是n 维向量,A 是m ⨯n 矩阵,则( )成立.(A) 若1,2,…,s线性相关,则A 1,A 2,…,A s线性相关. (B) 若1,2,…,s 线性相关,则A 1,A 2,…,A s线性无关. (C) 若1,2,…,s 线性无关,则A 1,A 2,…,A s线性相关. (D) 若1,2,…,s 线性无关,则A1,A2,…,As线性无关.解: (A)本题考的是线性相关性的判断问题,可以用定义解.若1,2,…,s线性相关,则存在不全为0的数c1,c2,…,c s使得c11+c22+…+c s s=0,用A左乘等式两边,得c1A1+c2A2+…+c s A s=0,于是A1,A2,…,A s线性相关.如果用秩来解,则更加简单明了.只要熟悉两个基本性质,它们是:1.1,2,…,s⇔ r(1,2,…,s)=s.2. r(AB)≤ r(B).矩阵(A1,A2,…,A s)=A(1,2,…,s),因此r(A1,A2,…,A s)≤ r(1,2,…,s).由此马上可判断答案应该为(A).(14)设A是3阶矩阵,将A的第2列加到第1列上得B,将B的第1列的-1倍加到第2列上得C.记 1 1 0P= 0 1 0 ,则0 0 1(A) C=P-1AP. (B) C=PAP-1.(C) C=P T AP. (D) C=PAP T.解: (B)用初等矩阵在乘法中的作用得出B=PA ,1 -1 0C =B 0 1 0 =BP -1= PAP -1.0 0 1三、解答题(15)试确定A ,B ,C 的常数值,使23(1)1()x e Bx Cx Ax o x ++=++其中3()o x 是当30x x →时比的高阶无穷小.解:泰勒公式2331()26xx x e x o x =++++代入已知等式得23323[1()][1]1()26x x x o x Bx Cx Ax o x ++++++=++整理得233111(1)(()1()226BB xC B x C o x Ax o x ⎛⎫+++++++++=++ ⎪⎝⎭比较两边同次幂函数得 B +1=A ①C +B +12=0 ②1026B C ++= ③ 式②-③得120233B B +==-则 代入①得 13A =代入②得 16C =(16)求arcsin xxe dx e ⎰.解:原式=22arcsin arcsin ()x x xx e t de e t dt e t =⎰⎰令1arcsin arcsin ()t td t t =-=-+⎰2arcsin arcsin 1(2)2(1)t t udu t t u u -=-+=-+-⎰ 2arcsin 1t dut u =-+-⎰ arcsin 11ln 21t u C t u -=-+++arcsin arcsin 12x x x x e e dx C e e ∴=-++⎰. (17)设区域22{(,)||,0}D x y x y x =+≤≥, 计算二重积分2211DxyI dxdy x y +=++⎰⎰. 解:用极坐标系2201D xydxdy x y ⎛⎫=⎪++⎝⎭⎰⎰11222002ln(1)ln 2122r I d dr r r ππππθ-==+=+⎰⎰. (18)设数列{}n x 满足10x π<<,1sin (1,2,3,)n n x x n +==证明:(1)1limn n x +→∞存在,并求极限;(2)计算211lim n x n n n x x +→∞⎛⎫ ⎪⎝⎭. 证:(1)212sin ,01,2x x x n =∴<≤≥因此1sin ,{}n n n n x x x x +=≤单调减少有下界()0n x ≥根据准则1,limn n x A →∞=存在 在1sin n n x x +=两边取极限得sin 0A A A =∴=因此1lim 0n n x +→∞=(2)原式1sin lim "1"n xn n n x x ∞→∞⎛⎫= ⎪⎝⎭为型离散型不能直接用洛必达法则先考虑 2011sin lim lnsin lim t t t t t t t e t →⎡⎤⎢⎥⎣⎦→⎛⎫= ⎪⎝⎭用洛必达法则2011(cos sin )limsin 2t t t t t t t te→-=2323330010()0()26cos sin lim lim22t t t t t t t t t t tt te e→→⎡⎤⎡⎤-+--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦==3330110()261lim26t t t t ee →⎛⎫-+ ⎪⎝⎭-==.(19)证明:当0a b π<<<时,1sin 2cos sin 2cos b b b b a a a aππ++>++. 证:令()sin 2cos f x x x x x π=++只需证明0a x π<<<时,()f x 严格单调增加()sin cos 2sin f x x x x x π'=+-+cos sin x x x π=-+()cos sin cos sin 0f x x x x x x x ''=--=-< ()f x '∴严格单调减少又()cos 0f ππππ'=+=故0()0()a x f x f x π'<<<>时则单调增加(严格)()()b a f b f a>>由则得证(20)设函数()(0,)f u +∞在内具有二阶导数,且Z f =满足等式22220z zx y∂∂+=∂∂.(I )验证()()0f u f u u'''+=; (II )若(1)0,(1)1f f '==求函数()f u的表达式. 证:(I)zzf f xy∂∂''==∂∂()()2223222222zx y f f xx y x y ∂'''=+∂++()()2223222222zy x f f yx y x y ∂'''=+∂++22220()()0z zf x y f u f u u∂∂''+=+=∂∂'''∴+=代入方程得成立(II )令(),;,dp p dp du c f u p c p du u p u u'==-=-+=⎰⎰则22(1)1,1,()ln ||,(1)0,0()ln ||f c f u u c f c f u u '===+==∴=由(21)已知曲线L 的方程221(0)4x t t y t t⎧=+≥⎨=-⎩(I )讨论L 的凹凸性;(II )过点(1,0)-引L 的切线,求切点00(,)x y ,并写出切线的方程; (III )求此切线与L (对应0x x ≤部分)及x 轴所围的平面图形的面积. 解:(I )4222,42,12dx dy dy t t t dt dt dx t t-==-==-222312110(0)2dy d d y dx t dx dx dt t t t dt⎛⎫ ⎪⎛⎫⎝⎭=⋅=-⋅=-<> ⎪⎝⎭处 (0L t ∴>曲线在处)是凸(II )切线方程为201(1)y x t⎛⎫-=-+ ⎪⎝⎭,设2001x t =+,20004y t t =-, 则2223200000000241(2),4(2)(2)t t t t t t t t⎛⎫-=-+-=-+ ⎪⎝⎭得200000020,(1)(2)001t t t t t t +-=-+=>∴=点为(2,3),切线方程为1y x =+ (III )设L 的方程()x g y =则()3()(1)S g y y dy =--⎡⎤⎣⎦⎰(2240221t t y x -+==±=+解出t 得 由于(2,3)在L上,由(23221()y x x g y ===+=得可知(309(1)S y y dy ⎡⎤=----⎣⎦⎰33(102)4y dy =--⎰333322002(10)4(4)214(4)3y y y y =-+-=+⨯⨯-8642213333=+-=-(22)已知非齐次线性方程组x 1+x 2+x 3+x 4=-1,4x 1+3x 2+5x 3-x 4=-1,ax 1+x 2+3x 3+bx 4=1有3个线性无关的解.① 证明此方程组的系数矩阵A 的秩为2. ② 求a,b 的值和方程组的通解. 解:① 设1,2,3是方程组的3个线性无关的解,则2-1,3-1是AX =0的两个线性无关的解.于是AX =0的基础解系中解的个数不少于2,即4-r(A )≥2,从而r(A )≤2.又因为A 的行向量是两两线性无关的,所以r(A )≥2. 两个不等式说明r(A )=2.② 对方程组的增广矩阵作初等行变换:1 1 1 1 -1 1 1 1 1 -1 (A |)= 4 3 5 -1 -1 → 0 –1 1 –5 3 ,a 1 3b 1 0 0 4-2a 4a+b-5 4-2a 由r(A )=2,得出a=2,b=-3.代入后继续作初等行变换: 1 0 2 -4 2 → 0 1 -1 5 -3 . 0 0 0 0 0 得同解方程组 x 1=2-2x 3+4x 4, x 2=-3+x 3-5x 4,求出一个特解(2,-3,0,0)T 和AX =0的基础解系(-2,1,1,0)T ,(4,-5,0,1) T .得到方程组的通解: (2,-3,0,0)T +c 1(-2,1,1,0)T +c 2(4,-5,0,1)T , c 1,c 2任意. (23) 设3阶实对称矩阵A 的各行元素之和都为3,向量1=(-1,2,-1)T ,2=(0,-1,1)T 都是齐次线性方程组AX =0的解. ① 求A 的特征值和特征向量.② 求作正交矩阵Q 和对角矩阵Λ,使得 Q T AQ =Λ. 解:① 条件说明A (1,1,1)T =(3,3,3)T ,即=(1,1,1)T 是A 的特征向量,特征值为3.又1,2都是AX =0的解说明它们也都是A 的特征向量,特征值为0.由于1,2线性无关, 特征值0的重数大于1.于是A 的特征值为3,0,0.属于3的特征向量:c 0, c ≠0. 属于0的特征向量:c 11+c 22, c 1,c 2不都为0.② 将单位化,得=(33,33,33)T .对1,2作施密特正交化,的1=(0,-22,22)T ,2=(-36,66,66)T. 作Q =(,1,2),则Q 是正交矩阵,并且3 0 0 Q T AQ =Q -1AQ = 0 0 0 . 0 0 0分数分配:11+11+11+12+12+10+9+9+9。

2006年考研数学二真题及解析

2006年考研数学二真题及解析
2006 年数学二试题分析、详解和评注
一、填空题:1-6 小题,每小题 4 分,共 24 分. 把答案填在题中横线上. (1)曲线 y =
x + 4 sin x 的水平渐近线方程为 5 x − 2 cos x
⎧1 x 2 ⎪ 3 ∫0 sin t d t, x ≠ 0 (2)设函数 f ( x ) = ⎨ x 在 x = 0 处连续,则 a = ⎪ ⎩a , x = 0
e x (1 + Bx + Cx2 ) = 1 + Ax + o( x3 ) ,
3 其中 o ( x 3 ) 是当 x → 0 时比 x 高阶的无穷小.
(16) (本题满分 10 分) 求
arcsin ex ∫ e x dx .
(17) (本题满分 10 分) 设区域 D = ( x, y) x2 + y2 ≤ 1, x ≥ 0 , 计算二重积分 (18) (本题满分 12 分) 设数列 { xn } 满足 0 < x1 < π , xn +1 = sin xn ( n = 1, 2,⋯) (Ⅰ)证明 lim xn 存在,并求该极限;
dy ∫
y
f ( x, y)d x .
(D)

0
dy ∫
1− y 2
f ( x , y )dx .
[
]
(12 )设 f ( x , y )与ϕ ( x, y) 均为可微函数,且 ϕ y ′ ( x, y) ≠ 0 ,已知 ( x0 , y0 ) 是 f ( x , y ) 在约 束条件 ϕ (x , y ) = 0 下的一个极值点,下列选项正确的是 (A) 若 f x′ ( x 0 , y 0 ) = 0 ,则 f y′ ( x 0 , y 0 ) = 0 .

2006数学二

2006数学二

关于 原函数的一些重要结论,它们是:
结论 1 连续奇函数之原函数必为偶函数。
结论 2 连续偶函数之原函数必为奇函数与常数之和,
其中只有一个为奇函数( C = 0 )。
结论 3 连续周期函数之原函数必为周期函数与线性数之和,
且周期不变。
连续周期函数 f (x) 之原函数为周期函数的充要条件是
∫T f (x)dx = 0 ,其中T > 0 为周期。
【解析与点评】 当 x = 0 时, y = 1,
又把方程每一项对 x求导, y′ = −e y − xe y y′
y′(1 + xe y ) = −e y
y′ = − ey
= −e
x=0
1 + xe y x=0
y =1
(6)设矩阵
A
=
⎜⎜⎝⎛
2 −1
1 2
⎟⎟⎠⎞

E

2
阶单位矩阵,矩阵 B 满足 BA = B + 2E
(
x0
,
y0
)
=
0

而由此推不出:
f

y
(
x0
,
y0
)
≠ 0,或
f

y
(
x0
,
y0
)
=0,
因而否定
(A)和(B)。
4

f x′(x0 ,
y 0)≠
0
时,加上
ϕ
′ y
(
x0
,
y0 )

0
,可推出
f y′( x0,
y0
)

ϕ

x
(
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2006年全国硕士研究生入学考试数学(二)解析一、填空题 (1)曲线4sin 52cos x xy x x+=-的水平渐近线方程为15y =4sin 11lim lim2cos 55x x xx y x x→∞→∞+==-(2)设函数2301sin ,0(),0xt dt x f x x a x ⎧≠⎪=⎨⎪=⎩⎰ 在x =0处连续,则a =132200()1lim ()lim 33x x sm x f x x →→== (3)广义积分22(1)xdxx +∞=+⎰1222222201(1)11110(1)2(1)2(1)22xdx d x x x x +∞+∞+∞+==-⋅=+=+++⎰⎰(4)微分方程(1)y x y x-'=的通解是xy cxe -=)0(≠x(5)设函数()y y x =由方程1yy xe =-确定,则0x dy dx==e-当x =0时,y =1,又把方程每一项对x 求导,yyy e xe y ''=--01(1)1x x y yyyye y xe ey e xe ===''+=-=-=-+(6) 设A = 2 1 ,2B 满足BA =B +2E ,则|B |= .-1 2解:由BA =B +2E 化得B (A -E )=2E ,两边取行列式,得|B ||A -E |=|2E |=4, 计算出|A -E |=2,因此|B |=2. 二、选择题(7)设函数()y f x =具有二阶导数,且()0,()0,f x f x x '''>>∆为自变量x 在点x 0处的增量,0()y dy f x x ∆与分别为在点处对应增量与微分,若0x ∆>,则[A](A )0dy y <<∆(B )0y dy <∆<(C )0y dy ∆<<(D )0dy y <∆<由()0()f x f x '>可知严格单调增加()0()f x f x ''>可知是凹的即知(8)设()f x 是奇函数,除0x =外处处连续,0x =是其第一类间断点,则()xf t dt ⎰是[B](A )连续的奇函数 (B )连续的偶函数(C )在x =0间断的奇函数 (D )在x =0间断的偶函数(9)设函数()g x 可微,1()(),(1)1,(1)2,g x h x e h g +''===则g (1)等于[C](A )ln31- (B )ln31--(C )ln21--(D )ln21- ∵ 1()()()g x h x g x e+''=,1(1)12g e+= g (1)= ln21--(10)函数212x x xy c e c xe -=++满足的一个微分方程是[D](A )23xy y y xe '''--= (B )23xy y y e '''--=(C )23xy y y xe '''+-=(D )23xy y y e '''+-=将函数212x x xy c e c xe -=++代入答案中验证即可.(11)设(,)f x y 为连续函数,则14(cos ,sin )d f r r rd πθθθγ⎰⎰等于[C](A )(,)xf x y dy ⎰(B )(,)f x y dy ⎰(C )(,)yf x y dx ⎰(D )(,)f x y dx ⎰(12)设(,)(,)f x y x y ϕ与均为可微函数,且(,)0,y x y ϕ'≠已知00(,)(,)x y f x y 是在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是[D](A )若0000(,)0,(,)0x y f x y f x y ''==则(B )若0000(,)0,(,)0x y f x y f x y ''=≠则 (C )若0000(,)0,(,)0x y f x y f x y ''≠=则 (D )若0000(,)0,(,)0x y f x y f x y ''≠≠则(,)(,)(,)(,)0(1)(,)(,)0(2)(,)0x x xy y y F f x y x y F f x y x y F f x y x y F x y λλϕλϕλϕϕ=+'''=+=⎧⎪'''=+=⎨⎪'==⎩令 今000000(,)(,)0,(,)y y y f x y x y x y ϕλϕ''≠∴=-'代入(1) 得 00000000(,)(,)(,)(,)y xx y f x y x y f x y x y ϕϕ'''='今 00000000(,)0,(,)(,)0(,)0x y xy f x y f x y x y f x y ϕ''''≠∴≠≠则 故选[D] (13)设α1,α2,…,αs 都是n 维向量,A 是m ⨯n 矩阵,则( )成立.(A) 若α1,α2,…,αs 线性相关,则A α1,A α2,…,A αs 线性相关. (B) 若α1,α2,…,αs 线性相关,则A α1,A α2,…,A αs 线性无关. (C) 若α1,α2,…,αs 线性无关,则A α1,A α2,…,A αs 线性相关. (D) 若α1,α2,…,αs 线性无关,则A α1,A α2,…,A αs 线性无关. 解: (A)本题考的是线性相关性的判断问题,可以用定义解.若α1,α2,…,αs 线性相关,则存在不全为0的数c 1,c 2,…,c s 使得c 1α1+c 2α2+…+c s αs =0,用A 左乘等式两边,得c 1A α1+c 2A α2+…+c s A αs =0,于是A α1,A α2,…,A αs 线性相关.如果用秩来解,则更加简单明了.只要熟悉两个基本性质,它们是: 1. α1,α2,…,αs 线性无关⇔ r(α1,α2,…,αs )=s. 2. r(AB )≤ r(B ).矩阵(A α1,A α2,…,A αs )=A ( α1, α2,…,αs ),因此r(A α1,A α2,…,A αs )≤ r(α1, α2,…,αs ).由此马上可判断答案应该为(A).(14)设A 是3阶矩阵,将A 的第2列加到第1列上得B ,将B 的第1列的-1倍加到第2列上得C .记 1 1 0P = 0 1 0 ,则 0 0 1(A) C =P -1AP . (B) C =PAP -1. (C) C =P TAP . (D) C =PAP T. 解: (B)用初等矩阵在乘法中的作用得出B =PA , 1 -1 0C =B 0 1 0 =BP -1= PAP -1. 0 0 1三、解答题(15)试确定A ,B ,C 的常数值,使23(1)1()xe Bx Cx Ax o x ++=++其中3()o x 是当30x x →时比的高阶无穷小.解:泰勒公式2331()26xx x e x o x =++++代入已知等式得 23323[1()][1]1()26x x x o x Bx Cx Ax o x ++++++=++整理得233111(1)()()1()226BB xC B x C o x Ax o x ⎛⎫+++++++++=++ ⎪⎝⎭比较两边同次幂函数得B +1=A ①C +B +12=0 ② 1026B C ++= ③ 式②-③得120233B B +==-则 代入①得13A = 代入②得 16C =(16)求arcsin xxe dx e ⎰.解:原式=22arcsin arcsin ()x x xx e t de e t dt e t =⎰⎰令1arcsin arcsin ()t td t t =-=-+⎰2arcsin arcsin 1(2)2(1)t t udu t t u u -=-+=-+-⎰2arcsin 1t du t u =-+-⎰arcsin 11ln 21t u C t u -=-+++arcsin arcsin 1ln 2x x x x e e dx C e e ∴=-++⎰. (17)设区域22{(,)||,0}D x y x y x =+≤≥, 计算二重积分2211DxyI dxdy x y +=++⎰⎰.解:用极坐标系2201D xydxdy x y ⎛⎫=⎪++⎝⎭⎰⎰11222002ln(1)ln 2122r I d dr r r ππππθ-==+=+⎰⎰. (18)设数列{}n x 满足10x π<<,1sin (1,2,3,)n n x x n +==证明:(1)1lim n n x +→∞存在,并求极限;(2)计算211lim n x n n n x x +→∞⎛⎫ ⎪⎝⎭. 证:(1)212sin ,01,2x x x n =∴<≤≥因此 1sin ,{}n n n n x x x x +=≤单调减少有下界()0n x ≥根据准则1,lim n n x A →∞=存在在1sin n n x x +=两边取极限得sin 0A A A =∴=因此1lim 0n n x +→∞=(2)原式21sin lim "1"n x n n n x x ∞→∞⎛⎫= ⎪⎝⎭为型离散型不能直接用洛必达法则先考虑 22011sin lim lnsin lim t t t t t t t e t →⎡⎤⎢⎥⎣⎦→⎛⎫= ⎪⎝⎭用洛必达法则2011(cos sin )limsin 2t t t t t tt te→-=23233310()0()26cos sin limlim22t t t t t t t t t t tt t ee →→⎡⎤⎡⎤-+--+⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦==3330110()261lim26t t t t ee →⎛⎫-++ ⎪⎝⎭-==.(19)证明:当0a b π<<<时,1sin 2cos sin 2cos b b b b a a a aππ++>++. 证:令()sin 2cos f x x x x x π=++ 只需证明0a x π<<<时,()f x 严格单调增加()sin cos 2sin f x x x x x π'=+-+cos sin x x x π=-+()cos sin cos sin 0f x x x x x x x ''=--=-<()f x '∴严格单调减少又()cos 0f ππππ'=+=故0()0()a x f x f x π'<<<>时则单调增加(严格)()()b a f b f a >>由则得证(20)设函数()(0,)f u +∞在内具有二阶导数,且Z f=满足等式22220z zx y ∂∂+=∂∂. (I )验证()()0f u f u u'''+=; (II )若(1)0,(1)1f f '== 求函数()f u 的表达式.证:(I)zzf f xy∂∂''==∂∂()()2223222222zx y f f x x y x y ∂'''=+∂++()()2223222222zy x f f yx y x y ∂'''=+∂++22220()()0z zf x y f u f u u∂∂''+==∂∂'''∴+=代入方程得成立(II )令(),;,dp p dp du c f u p c p du u p u u'==-=-+=⎰⎰则22(1)1,1,()ln ||,(1)0,0()ln ||f c f u u c f c f u u '===+==∴=由(21)已知曲线L 的方程221(0)4x t t y t t⎧=+≥⎨=-⎩(I )讨论L 的凹凸性;(II )过点(1,0)-引L 的切线,求切点00(,)x y ,并写出切线的方程; (III )求此切线与L (对应0x x ≤部分)及x 轴所围的平面图形的面积.解:(I )4222,42,12dx dy dy t t t dt dt dx t t-==-==-222312110(0)2dy d d y dx t dx dx dt t t t dt ⎛⎫⎪⎛⎫⎝⎭=⋅=-⋅=-<> ⎪⎝⎭处(0L t ∴>曲线在处)是凸(II )切线方程为201(1)y x t ⎛⎫-=-+⎪⎝⎭,设2001x t =+,20004y t t =-,则2223200000000241(2),4(2)(2)t t t t t t t t ⎛⎫-=-+-=-+ ⎪⎝⎭得200000020,(1)(2)001t t t t t t +-=-+=>∴=点为(2,3),切线方程为1y x =+(III )设L 的方程()x g y =则()3()(1)S g y y dy =--⎡⎤⎣⎦⎰(2240221t t y x -+==±=+解出t 得由于(2,3)在L上,由(23221()y x x g y ===+=得可知(309(1)S y y d y ⎡⎤=----⎣⎦⎰33(102)4y dy y =--⎰33332202(10)4(4)214(4)3y y y y =-+-=+⨯⨯-8642213333=+-=-(22)已知非齐次线性方程组x 1+x 2+x 3+x 4=-1, 4x 1+3x 2+5x 3-x 4=-1,a x 1+x 2+3x 3+bx 4=1 有3个线性无关的解.① 证明此方程组的系数矩阵A 的秩为2. ② 求a,b 的值和方程组的通解.解:① 设α1,α2,α3是方程组的3个线性无关的解,则α2-α1,α3-α1是AX =0的两个线性无关的解.于是AX =0的基础解系中解的个数不少于2,即4-r(A )≥2,从而r(A )≤2.又因为A 的行向量是两两线性无关的,所以r(A )≥2. 两个不等式说明r(A )=2.② 对方程组的增广矩阵作初等行变换:1 1 1 1 -1 1 1 1 1 -1(A |β)= 4 3 5 -1 -1 → 0 –1 1 –5 3 ,a 1 3b 1 0 0 4-2a 4a+b-5 4-2a 由r(A )=2,得出a=2,b=-3.代入后继续作初等行变换:1 02 -4 2 → 0 1 -1 5 -3 .0 0 0 0 0 得同解方程组x 1=2-2x 3+4x 4, x 2=-3+x 3-5x 4,求出一个特解(2,-3,0,0)T和AX =0的基础解系(-2,1,1,0)T,(4,-5,0,1) T.得到方程组的通解: (2,-3,0,0)T+c 1(-2,1,1,0)T+c 2(4,-5,0,1)T, c 1,c 2任意.(23) 设3阶实对称矩阵A 的各行元素之和都为3,向量α1=(-1,2,-1)T, α2=(0,-1,1)T都是齐次线性方程组AX =0的解. ① 求A 的特征值和特征向量.② 求作正交矩阵Q 和对角矩阵Λ,使得 Q TAQ =Λ.解:① 条件说明A (1,1,1)T=(3,3,3)T,即 α0=(1,1,1)T是A 的特征向量,特征值为3.又α1,α2都是AX =0的解说明它们也都是A 的特征向量,特征值为0.由于α1,α2线性无关, 特征值0的重数大于1.于是A 的特征值为3,0,0.属于3的特征向量:c α0, c ≠0.属于0的特征向量:c 1α1+c 2α2, c 1,c 2不都为0. ② 将α0单位化,得η0=(33,33,33)T. 对α1,α2作施密特正交化,的η1=(0,-22,22)T , η2=(-36,66,66)T. 作Q =(η0,η1,η2),则Q 是正交矩阵,并且3 0 0Q T AQ =Q -1AQ = 0 0 0 . 0 0 0。

相关文档
最新文档