风力发电机组结构原理及技术
风力发电构造及原理
风力发电构造及原理
风力发电是一种利用风能将风轮转动,进而驱动发电机产生电能的方法。
风力发电主要由以下几个构造组成:
1. 风轮:也称风能转换装置,是将风能转化为机械能的装置。
风轮通常由多个叶片组成,具有较大的面积,可以更好地捕获风能。
风轮形状一般为高度弯曲的螺旋状,以提高风能转换效率。
2. 风轮轴:连接风轮和发电机的轴道,负责传递风能转换的机械能。
3. 发电机:将机械能转化为电能的装置。
当风轮转动时,风轮轴会带动发电机转动,发电机中的磁场和线圈之间的相对运动产生电流,从而产生电能。
4. 控制系统:用于监测和调节风力发电机组的运行状态。
控制系统能够根据风速和发电机负荷情况,自动调整风轮的转速和方向,以确保风力发电机组的安全运行和发电效率。
风力发电的原理是通过将风能转化为机械能,再将机械能转化为电能。
当风流通过风轮时,风轮会受到风力的作用而旋转。
风轮上的叶片被风力推动,使得整个风轮转动。
风轮转动的机械能通过风轮轴传递给发电机,发电机将机械能转化为电能。
发电机通过磁场和线圈之间的相对运动产生交流电,经过整流等处理后,最终输出为可用的电能。
风力发电车知识大全
风力发电车知识大全一、风力发电原理风力发电是利用风能驱动风力发电机组转动,进而驱动发电机产生电能的过程。
风能是一种可再生能源,具有清洁、绿色、可持续的优点。
风力发电的基本原理可以归纳为以下几点:1.风的动能驱动风力发电机组转动;2.风力发电机组将机械能转化为电能;3.发电机产生的电能通过电力电子装置整流、逆变等处理后,供给负载使用。
二、风力发电机组构造风力发电机组主要由风轮、齿轮箱、发电机、塔筒等组成。
其中:1.风轮:由叶片和轮毂组成,是风力发电机组中的重要部分,用于捕捉风能并传递给发电机;2.齿轮箱:将风轮的机械能转化为高速旋转的机械能,再传递给发电机;3.发电机:将机械能转化为电能;4.塔筒:支撑整个机组,并可以通过控制偏航系统来追踪最佳风向。
三、风力发电影响因素风力发电的影响因素主要包括风速、风向、温度、湿度、气压等。
其中,风速是最重要的因素之一,因为风速的大小直接决定了风力发电机组的功率输出。
此外,其他因素也会对风力发电产生影响,例如风向不稳定、温度变化等。
四、风力发电优势与局限风力发电具有以下优势:1.可再生能源:风能是一种无尽的可再生能源,与化石能源相比,具有更少的污染和更低的碳排放;2.绿色环保:风力发电不会产生有害物质排放,对环境友好;3.降低能源成本:随着技术的进步和规模效应的显现,风力发电的成本逐渐降低,成为更具竞争力的能源形式;4.灵活性强:风力发电设备可以灵活布置,适应不同的地形和气候条件。
然而,风力发电也存在一些局限:1.风速不稳定:风速的不稳定导致风力发电的电力输出波动较大,对电网稳定运行带来一定挑战;2.地理位置限制:适合建设风力发电的地理位置需要一定的资源条件,如丰富的风能资源和合适的地理环境;3.初始投资成本高:建设风力发电站需要较大的资金投入,包括设备购置、安装、运输等费用。
五、风力发电发展现状与趋势近年来,全球风力发电发展迅速,特别是在欧美国家,风电已成为重要的能源形式之一。
简述风力发电的基本原理
风力发电的基本原理概述风力发电是一种利用风能转换成电能的可再生能源技术。
它通过捕捉风力和驱动涡轮机,将机械能转换为电能。
风力发电是一种清洁、环保和可持续发展的能源选择,具有广阔的应用前景。
这篇文章将详细介绍风力发电的基本原理及其工作过程。
风力发电的基本原理风力发电利用风的动能转换为机械能,然后再转换为电能。
其基本原理如下: 1. 风力捕捉:风力发电依赖于风的存在。
当气流中的风速超过一定阈值时,风能可以被有效地捕捉。
通常在具有较高平均风速的地区布置风力发电机组或风力发电场。
2. 涡轮机驱动:国际上广泛应用的风力发电机组主要是利用涡轮机来收集风能。
涡轮机内部包含多个叶片,当风力吹向涡轮机时,叶片被迫转动。
3. 机械能转化:涡轮机转动带动发电机转子转动。
这种机械转换过程将风能转化为机械能,使发电机内部的转子产生旋转。
4. 电能产生:转子旋转会激发发电机内部的磁场,产生感应电流。
通过电磁感应原理,机械能转化为电能。
最终,通过变压器将发电机产生的低电压输送到变电站,并转变为高电压以便输送到电网。
风力发电的工作过程风力发电的工作过程包括以下几个主要步骤:步骤1:风的捕捉风力发电需要选择具有足够风资源的地点进行建设。
通常在海岸线、高山地带或平坦的荒野地区设置风力发电场。
这些地区的风速相对较高,能够为发电机组提供足够的风能。
风力发电机组的数量和布局应该考虑到地形、风向和地表覆盖情况等因素。
步骤2:风能转换当风的速度达到一定阈值时,涡轮机内的叶片就会开始旋转,进而转动涡轮机。
涡轮机通常采用水平轴或垂直轴设计。
水平轴涡轮机是目前应用最广的设计,其中叶片垂直于地面,通过主轴连接到发电机。
叶片的数量和大小根据风场设计和风速变化情况进行确定。
步骤3:机械能转化涡轮机转动带动发电机转子转动,机械能转化为电能。
发电机内部的转子由电磁铁芯、线圈和永磁体组成。
当转子旋转时,它将产生电磁感应,使得线圈中的电流产生变化。
这个电流通过导线传输到变压器。
风力发电机组构造及工作原理
风力发电机组构造及工作原理风力发电机是一种利用风能转化为电能的装置,它在现代可再生能源领域起着重要的作用。
本文将详细介绍风力发电机的构造以及其工作原理。
一、构造风力发电机由以下几个主要部件组成:1. 风轮/叶片:风轮是风力发电机的核心部件,通常由三个或更多的叶片组成。
这些叶片通过捕捉到的风能转化为机械能。
2. 主轴和发电机:主轴将风轮的旋转运动转变为发电机的旋转运动。
发电机通过旋转运动将机械能转化为电能。
3. 塔架:塔架是支撑风力发电机的结构,通常由钢铁或混凝土建造而成。
塔架的高度取决于风力发电机的设计和布置。
4. 控制系统:控制系统负责监测和调节风力发电机的运行。
它可以根据风速和电网需求来调整发电机的负载和转速。
二、工作原理风力发电机的工作原理可以分为以下几个步骤:1. 捕捉风能:当风吹过风轮时,风轮的叶片会受到风力的作用而旋转。
风轮的设计使得风能尽可能地转化为机械能。
2. 传输机械能:通过主轴,机械能从风轮传输到发电机。
主轴的旋转使发电机内部的线圈和磁场相互作用,产生感应电流。
3. 转化为电能:感应电流通过电路传输到变流器或逆变器,进一步将其转换为适合电网输入的交流电能。
4. 电网连接:通过输电线路,发电机产生的电能连接到电网中,为用户供电。
控制系统负责监测电网的需求,并调整发电机的负载和转速。
三、优势和挑战风力发电机有许多优势,包括:1. 可再生能源:风能是一种可再生能源,与化石燃料相比无排放,对环境友好。
2. 多样化的规模:风力发电机可以根据需求进行大规模或小规模的布置,适用于不同地理区域和用途。
然而,风力发电机也面临一些挑战:1. 依赖风能:风力发电机需要稳定的风能才能运行,因此在风量不稳定的地区可能发电效率较低。
2. 空间需求:风力发电机需要一定的空间来布置,这在有限的城市环境中可能存在限制。
结论风力发电机是一种重要的可再生能源装置,利用风能转化为电能。
通过了解其构造和工作原理,我们可以更好地理解风力发电机的运行原理。
风力发电机的构造及工作原理_风能发电的原理
风力发电机的构造及工作原理_风能发电的原理风力发电机是很多人都熟悉的发电机种类,但是大多数的人不清楚风力发电机是如何发电的。
下面一起来看看小编为大家整理的风力发电机的构造及工作原理,欢迎阅读,仅供参考。
风力发电机结构机舱:机舱包容着风力发电机的关键设备,包括齿轮箱、发电机。
维护人员可以通过风力发电机塔进入机舱。
机舱左端是风力发电机转子,即转子叶片及轴。
转子叶片:捉获风,并将风力传送到转子轴心。
现代600千瓦风力发电机上,每个转子叶片的测量长度大约为20米,而且被设计得很象飞机的机翼。
轴心:转子轴心附着在风力发电机的低速轴上。
低速轴:风力发电机的低速轴将转子轴心与齿轮箱连接在一起。
在现代600千瓦风力发电机上,转子转速相当慢,大约为19至30转每分钟。
轴中有用于液压系统的导管,来激发空气动力闸的运行。
齿轮箱:齿轮箱左边是低速轴,它可以将高速轴的转速提高至低速轴的50倍。
高速轴及其机械闸:高速轴以1500转每分钟运转,并驱动发电机。
它装备有紧急机械闸,用于空气动力闸失效时,或风力发电机被维修时。
发电机:通常被称为感应电机或异步发电机。
在现代风力发电机上,最大电力输出通常为500至1500千瓦。
偏航装置:借助电动机转动机舱,以使转子正对着风。
偏航装置由电子控制器操作,电子控制器可以通过风向标来感觉风向。
通常,在风改变其方向时,风力发电机一次只会偏转几度。
电子控制器:包含一台不断监控风力发电机状态的计算机,并控制偏航装置。
为防止任何故障(即齿轮箱或发电机的过热),该控制器可以自动停止风力发电机的转动,并通过电话调制解调器来呼叫风力发电机操作员。
液压系统:用于重置风力发电机的空气动力闸。
冷却元件:包含一个风扇,用于冷却发电机。
此外,它包含一个油冷却元件,用于冷却齿轮箱内的油。
一些风力发电机具有水冷发电机。
塔:风力发电机塔载有机舱及转子。
通常高的塔具有优势,因为离地面越高,风速越大。
现代600千瓦风汽轮机的塔高为40至60米。
风力发电机结构和原理
风力发电机结构原理杜容熠太阳辐射到地球的热能中有约2%被转变成风能,全球大气中总的风能量约为1014MW(10亿亿千瓦)。
其中可被开发利用的风能理论值约有3.5×109MW(3.5万亿千瓦),比世界上可利用的水能大10倍。
把风能转变为电能是风能利用中最基本的一种方式。
风力发电机一般有叶轮、发电机(包括装置)、调向器(尾翼)、塔架、限速安全机构和储能装置等构件组成。
风力发电机的工作原理比较简单,叶轮在风力的作用下旋转,它把风的动能转变为叶轮轴的机械能,发电机在叶轮轴的带动下旋转发电。
1.风力发电原理:1.1 风能的概念:风能:空气因为太阳能辐射,造成压力差,而发生运动的动能称为“风能”,风能的计算公式为:E=0.5ρsV³式中: E-风能(W)ρ-空气密度(kg/m3)S-气流截面积(m2)V-风速(m/s)风能密度(W):单位时间内通过单位面积的风能,W=0.5ρV³。
有效风能密度:指风机可利用的风速范围内的风能密度(对应的风速范围大约是3~25m/s)。
1.2 风能发电的动力学原理风力发电采用空气动力学原理,并非风推动叶轮叶片,而是风吹过叶片形成叶片正反面的压力差,这种压力差会产升力,令叶轮旋转并不断横切风流。
该原理类似于飞机上升时的原理,空气通过机翼,产生向上的升力和向前的阻力。
如果将一块薄板放在气流中,则在沿气流方向将产生一正面阻力F D和一垂直于气流方向的升力F L其值分别由下式确定L:F D=0.5CdρSV2F L=0.5C LρSV2式中:CD-阻力系数C-升力系数L S-薄板的面积ρ-空气的密度阻力型叶轮V -气流速度如果把薄片当作叶片,将其装在轮毂上组成叶轮,那么风的作用力旋转中心线就会使叶轮转动。
由作用于叶片上的阻力FD而使其转动的叶轮,称为阻力型叶轮;而由升力FL而使其转动的叶轮,称为升力型叶轮。
目前为止现代风力机绝大多数采用升力型叶轮。
2.风力发电机的组成部分及特点:2.1 叶轮叶轮是将风能转化为动能的机构,风力带动风车叶片旋转,再通过齿轮箱将旋转的速度提升,来促使发电机发电。
风电机组工作原理及结构
风电机组工作原理及结构
概述:
随着清洁能源的发展,风力发电逐渐成为一种重要的可再生能源。
风电机组是将风能转化为电能的关键设备。
本文将介绍风电机组的工作原理及其结构。
一、工作原理:
风电机组的工作原理可以简单地描述为将风能转化为电能的过程。
具体来说,风能通过风轮转动传递到发电机,通过发电机的转动产生交流电能。
1. 风轮:
风轮是风电机组的核心组件,也称为风力涡轮机。
其作用是将风能直接转化为机械能。
风轮通常由数片叶片组成,可以根据所在地区的风能特征和设计要求来确定叶片的数量和形状。
当风刮过叶片时,叶片会因风压力的作用而转动,进而驱动传动系统。
2. 传动系统:
传动系统是连接风轮和发电机的重要部分。
其作用是将风轮产生的转动力矩转化为转速和转向适合于发电机的机械能。
传动系统通常包括齿轮箱、扭矩支撑装置等。
齿轮箱由一组齿轮组成,通过合理设置齿轮的大小和布局,可以实现风轮与发电机之间的匹配。
3. 发电机:
发电机是将机械能转化为电能的关键组件。
风电机组中常用的发电机有同步发电机和异步发电机两种。
- 同步发电机采用恒速运行,其转速与电网的基准频率一致。
因此,在风速变化时,需要通过调节传动系统来保持发电机的转速恒定。
同步发电机具有较高的效率和较好的稳定性,但需要额外的调速系统来控制电流输出。
- 异步发电机通过变频器控制转速,可以实现风速变化时的自动调节。
它具有较低的成本和较好的适应性,但在部分负载或低负载情况下,效率较低。
二、结构:。
《风力发电机概述》课件
风能的转换受到风速、风向、地形、气候等多种因素的 影响,需要合理选址和设计才能实现高效的风能转换。
风力发电机的工作流程
风车叶片旋转
当风吹过风车叶片时,叶片受到风的压力而 旋转。
发电机发电
传动系统
叶片的旋转通过传动系统传递到发电机转子 ,使转子转动。
发电机转子的转动产生电流,经过整流和变 压后输出电能。
噪音和视觉污染
大型风力发电机组在运行过程中会产生噪音,对周围居民 的生活产生影响,同时其庞大的结构和旋转的叶片也会对 景观造成一定程度的视觉污染。
维护和管理难度
风力发电机组通常安装在偏远地区,维护和管理难度较大 ,需要专业的技术和设备支持。
风力发电的未来发展
技术进步
随着科技的进步,风力发电机组的设计和制造技术将不断改进,提高 发电效率和降低成本。
家庭小型风力发电机
家庭小型风力发电机是一种适 合家庭和小型企业使用的风力
发电机。
家庭小型风力发电机通常采用 垂直轴或水平轴设计,利用小
型涡轮机产生电能。
家庭小型风力发电机具有较低 的安装和维护成本,能够满足 家庭和小型企业的电力需求。
家庭小型风力发电机的发电量 较小,通常用于补充电网供电 或为独立电力系统提供电力。
交通设施
在高速公路、铁路等交通设施中,可以利用 风能资源建设风力发电设施,为交通设施提 供辅助电力。
D
风力发电机的工作原理
02
风能转换原理
01
风能转换原理
风力发电机利用风的动力,通过风车叶片的旋转驱动发 电机转子的转动,从而将风能转换为电能。
02
风能的特点
风能是一种清洁、可再生的能源,具有分布广泛、能量 密度低、不稳定等特点。
浅谈风力发电机原理及风力发电技术
浅谈风力发电机原理及风力发电技术摘要:在发电领域内风能发电已经能成为当前比较先进的发电技术,可以有效改善传统发电对资源的耗费,减少对环境的污染。
风能具有可再生性同时也是清洁能源,将其应用于发电是一项重大的技术举措,希望可以进一步提升风力发电技术的实践应用。
关键词:风力发电;原理;风力发电技术1、风力发电机风力涡轮机也称为风车,是将风能转化为机械功的动力机械。
机械动力驱动转子旋转,最终输出交流电源设备。
广义上说,风能也是发点,称为风力发电机。
它是一种以太阳为热源,大气为工作介质的热发电装置。
一般来说,3级风具有利用价值。
风力发电的原理与传统风车相似。
风速带动叶轮旋转,收集风能,通过增速机加速叶轮的旋转,从而实现发电。
但单纯依靠发电机不能完成发电,而是需要一个完整的运行系统。
2、风力发电特性(一)可再生清洁能源风力发电是一种可再生的清洁能源,不消耗化石资源,不污染环境。
这是火力发电无可比拟的优势。
(二)工期短,可靠性高现代高技术在风力发电机组中的应用,大大提高了发电可靠性。
大中型风力发电机组的可靠性从80年代的50%提高到了98%,比火力发电机组的可靠性高,机组寿命可达20年。
(三)成本低,实际面积小。
从国外风电场的角度来看,风力单位千瓦成本和单位电能价格均低于火力发电,比常规发电更具竞争力。
由于国外大中型风力发电机的引入,我国的成本和电价都比火力发电机组要高。
但随着大中型风力发电机组的国产化和产业化,风力发电的成本和电价在不久的将来将低于火电厂的成本和电价。
火力发电厂、监测站、变电所等建筑物仅占火电厂土地的1%,其他地点还可用于农业、畜牧业和渔业。
(四)简单的运行维护和发电的多样化发电。
现代大中型风力发电机组自动化水平高。
他们可以在无人值守的情况下正常工作。
它们只需要进行定期检修,因此不存在火电检修问题。
风力发电不仅可以并网,还可以与柴油发电、太阳能发电、水电机组等其他能源形成互补系统,也可以独立运行。
风力发电机组基本结构与工作原理
电气工程新技术专题题目:风力发电机组基本结构与工作原理及其控制技术专业:电气工程及其自动化班级:*********姓名:*********学号:*********指导老师:*********本周的电气工程新技术专题中,主要讲解了一些关于风力发电机组的基本姐与工作原理方面的知识,使我们对此有了初步的认识,下面我将简单叙述一下我对风力发电机的了解。
风力发电机是将风能转换为机械功的动力机械,又称风车。
广义的说,它是一种以太阳微热源,以大气为工作介质的热能利用发电机。
风力发电机利用的是自然能源,相对柴油发电要好得多。
但若应急来用的话还是不如柴油发电机。
风力发电不可视为备用电源,但是却可以长期利用。
一、风力发电机的基本结构风力发电机组是由风轮、传动系统、偏航系统、液压系统、制动系统、发电机、控制与安全系统、机舱、塔架和基础等组成。
各主要组成部分功能简述如下:(1)叶片叶片是吸收风能的单元,用于将空气的动能转换为叶轮转动的机械能。
(2)变浆系统变浆系统通过改变叶片的桨距角,使叶片在不同风速时处于最佳的吸收风能的状态,当风速超过切出风速时,使叶片顺桨刹车。
(3)齿轮箱齿轮箱是将风轮在风力作用下所产生的动力传递给发电机,并使其得到相应的转速。
(4)发电机发电机是将叶轮转动的机械动能转换为电能的部件。
转子与变频器连接,可向转子回路提供可调频率的电压,输出转速可以在同步转速±30%范围内调节。
(5)偏航系统偏航系统采用主动对风齿轮驱动形式,与控制系统相配合,使叶轮始终处于迎风状态,充分利用风能,提高发电效率。
同时提供必要的锁紧力矩,以保障机组安全运行。
(6)轮毂系统轮毂的作用是将叶片固定在一起,并且承受叶片上传递的各种载荷,然后传递到发电机转动轴上。
轮毂结构是3个放射形喇叭口拟合在一起的。
(7)底座总成底座总成主要有底座、下平台总成、内平台总成、机舱梯子等组成。
通过偏航轴承与塔架相连,并通过偏航系统带动机舱总成、发电机总成、变浆系统总成。
浅谈风力发电机原理及风力发电技术
浅谈风力发电机原理及风力发电技术摘要:风能作为自然资源,是新能源的重要组成内容,借助于风能进行发电是当前新能源发电的主导方法,而且该发电方法越来越受到世界各国的关注。
基于此,本文将对风力发电机原理及风力发电技术进行分析。
关键词:风力发电机;发电原理;风力发电技术1 风力发电的技术原理风能是一种清洁无公害的能源,在当前社会发展过程中,合理应用风力发电技术,不仅能够实现风力资源的有效利用,还能满足人们生活、生产对电能的需要。
风力发电机的工作原理比较简单,风轮在风力的作用下旋转,把风的动能转变为风轮轴的机械能。
发电机在风轮轴的带动下旋转发电。
近年来,随着人们环保节能意识的不断深入,为了进一步提升风能的利用率,风力发电系统越发复杂,当前的风力发电机系统中除了风轮系统、发电机外,还有齿轮箱、控制系统、偏航系统和塔架等部分。
具体来说,首先,在风力发电系统运转过程中,齿轮箱中齿轮的相互作用可以有效提升发电机的转速,在提升发电机工作效率的同时,保证了电力供应的稳定性。
其次,在风电系统运转过程中,控制系统是保证系统整体稳定工作的关键系统,不仅能够对风电系统中的各个模块进行有效的管控,对风电系统并网、脱网状态进行控制,保证风力发电机能够保持电压频率的稳定性,还能对系统整体工作状态加以监控,一旦发现系统运转过程中出现问题,则及时发出警报信号,便于工作人员对故障进行排除。
再次,偏航系统在实际应用过程中,能够依据风电系统安装位置风力变化情况,对风轮的扫掠面进行控制,通过保证扫掠面与风向始终保持垂直状态的方式,进一步提升风力资源的利用效率。
最后,在风力发电系统停止工作时,为切实降低风力发电系统停机的难度,可以通过合理应用伺服控制技术,调整桨距角改变风轮转速,从而实现风电发动机的速度的管控,在保证系统能够稳定停止运转的同时,不会给后续发电系统的重启造成不利影响。
2 风力发电技术要点2.1 变速风力发电技术简单理解,这一技术就是改变原有发电机恒速运动,在风速发生变化时,风力发电机组的状态也会出现改变,这样就能够依照风速的大小实时调节发电系统运行中各类设备的运行状态,以此获取恒定的发电频率。
风力发电机概述,风力发电机工作原理,风力发电机各个部件介绍
风力发电机概述一、风力发电机风力发电的原理简单来说:风力发电原理是把风的动能转换为风轮轴的机械能最后到电能!工作原理现代变速双馈风力发电机的工作原理就是通过叶轮将风能转变为机械转距(风轮转动惯量),通过主轴传动链,经过齿轮箱增速到异步发电机的转速后,通过励磁变流器励磁而将发电机的定子电能并入电网。
如果超过发电机同步转速,转子也处于发电状态,通过变流器向电网馈电。
齿轮箱可以将很低的风轮转速(1500千瓦的风机通常为12-22转/分)变为很高的发电机转速(发电机同步转速通常为1500转/分)。
风机是有许多转动部件的,机舱在水平面旋转,随时偏航对准风向;风轮沿水平轴旋转,以便产生动力扭距。
对变桨矩风机,组成风轮的叶片要围绕根部的中心轴旋转,以便适应不同的风况而变桨距。
在停机时,叶片要顺桨,以便形成阻尼刹车。
就1500千瓦风机而言,一般在3米/秒左右的风速自动启动,在11.5米/秒左右发出额定功率。
然后,随着风速的增加,一直控制在额定功率附近发电,直到风速达到25米/秒时自动停机。
二、风力发电机结构风力发电机整机主要包括:1.机座2.传动链(主轴、齿轮箱)3. 偏航组件(偏航驱动、偏航刹车钳、偏航轴承)4.踏板和棒5.电缆线槽6.发电机7.联轴器8.液压站9.冷却泵(风冷型无) 10.滑环组件11.自动润滑12.吊车13.机舱柜14.机舱罩15.机舱加热器16.轮毂17.叶片18.电控系统等。
1、机座:机座是风力发电整机的主要设备安装的基机座:础,风电机的关键设备都安装在机座上。
(包括传动链(主轴、齿轮箱)、偏航组件(偏航驱动、偏航刹车钳、偏航轴承)、踏板和棒、电缆线槽、发电机、联轴器、液压站、冷却泵(风冷型无)、滑环组件、自动润滑、吊车、机舱柜、机舱罩、机舱加热器等。
机座与现场的塔筒连接,人员可以通过风电机塔进入机座。
机座前端是风电机转子,即转子叶片和轴。
2、偏航装置偏航装置::自然界的风,方向和速度经常变化,为了使风力机能有效地捕捉风能,就相应设置了对风装置以跟踪风向的变化,保证风轮基本上始终处于迎风状况。
风力发电机原理及结构
风力发电机原理及结构风力发电机是一种将风能转换为电能的能量转换装置,它包括风力机和发电机两大部分。
空气流动的动能作用在风力机风轮上,从而推动风轮旋转起来,将空气动力能转变成风轮旋转机械能,风轮的轮毂固定在风力发电机的机轴上,通过传动系统驱动发电机轴及转子旋转,发电机将机械能变成电能输送给负荷或电力系统,这就是风力发电的工作过程。
1、风机基本结构特征风力机主要有风轮、传动系统、对风装置(偏航系统)、液压系统、制动系统、控制与安全系统、机舱、塔架和基础等组成。
(1)风轮风力机区别于其他机械的主要特征就是风轮。
风轮一班有2~3个叶片和轮毂所组成,其功能是将风能转换为机械能。
风力发电厂的风力机通常有2片或3片叶片,叶尖速度50~70m/s,3也片叶轮通常能够提供最佳效率,然而2叶片叶轮及降低2%~3%效率。
更多的人认为3叶片从审美的角度更令人满意。
3叶片叶轮上的手里更平衡,轮毂可以简单些。
1)叶片叶片是用加强玻璃塑料(GRP)、木头和木板、碳纤维强化塑料(CFRP)、钢和铝职称的。
对于小型的风力发电机,如叶轮直径小于5m,选择材料通常关心的是效率而不是重量、硬度和叶片的其他特性,通常用整块优质木材加工制成,表面涂上保护漆,其根部与轮毂相接处使用良好的金属接头并用螺栓拧紧。
对于大型风机,叶片特性通常较难满足,所以对材料的选择更为重要。
目前,叶片多为玻璃纤维增强负荷材料,基体材料为聚酯树脂或环氧树脂。
环氧树脂比聚酯树脂强度高,材料疲劳特性好,且收缩变形小,聚酯材料较便宜它在固化时收缩大,在叶片的连接处可能存在潜在的危险,即由于收缩变形,在金属材料与玻璃钢之间坑能产生裂纹。
2)轮毂轮毂是风轮的枢纽,也是叶片根部与主轴的连接件。
所有从叶片传来的力,都通过轮毂传到传动系统,在传到风力机驱动的对象。
同时轮毂也是控制叶片桨距(使叶片作俯仰转动)的所在。
轮毂承受了风力作用在叶片上的推理、扭矩、弯矩及陀螺力矩。
通常安装3片叶片的水平式风力机轮毂的形式为三角形和三通形。
风力发电机组原理及应用
风力发电机组原理及应用风力发电机组是一种通过风力驱动涡轮叶片旋转,进而转化为机械能,最终转化为电能的设备。
它是一种利用可再生能源的电力发电方式,具有环保、可持续等优点,得到了广泛的关注和应用。
风力发电机组原理:风力发电机组的基本原理是利用风的动能和风轮的转动来带动发电机转动,进而将机械能转化为电能。
风力发电机组的主要部分包括风轮、发电机、传动系统和控制系统。
风轮是风力发电机组的核心部件,其作用是将风能转化为机械能。
通常,风轮由多个叶片组成,叶片的角度和形状设计得非常精细,以最大化地利用风的动能。
当风经过叶片时,叶片会受到风压力,从而使风轮开始旋转。
风轮旋转后,通过传动系统将转动能量传递给发电机。
传动系统通常包括风轮轴、变速器和发电机轴。
变速器的作用是根据风轮的转速调整发电机的转速,以使发电机能够工作在最佳状态。
发电机轴将机械能转化为电能,通过电缆将发电机产生的电能输送到外部电网中。
控制系统是风力发电机组的关键部分,其作用是监测和控制风力发电机组的运行状态。
控制系统能够根据风力的强弱调整风轮的转速,并根据电网的负荷情况控制发电机的输出功率。
风力发电机组的应用:风力发电机组广泛应用于各种规模的电力系统中,包括家庭、工业、商业和公共领域。
以下是一些常见的应用领域:1.分布式发电:风力发电机组可以安装在建筑物的屋顶、农田或其他适合的地方,用于为当地供电。
这种分布式发电方式可以减少电力输送过程中的能量损失,并减轻电力系统的负荷。
2.大规模发电场:在适合的地区建设大规模的风力发电场,可以大幅度增加电力的产量。
这些发电场通常由数十至数百台风力发电机组组成,可以为城市和地区提供大量的电力。
3.农村电力供应:在偏远的农村地区,由于电力供应不稳定或无法普及,可以利用风力发电机组为当地居民提供电力。
这种方式不仅能够满足居民的基本用电需求,还可改善农村经济发展和生活条件。
4.工业用电:许多大型工业企业需要大量的电力供应,通过建设自己的风力发电场,可以大幅度降低能源成本,并减少对传统能源的依赖。
风力发电机组的结构设计与风载荷分析
风力发电机组的结构设计与风载荷分析随着对可再生能源的重视和全球气候变化的影响,风力发电成为最具潜力和广泛应用的可再生能源之一。
风力发电机组的结构设计和风载荷分析是确保风力发电系统高效运行和安全稳定的关键因素。
本文将探讨风力发电机组的结构设计原理和风载荷分析的方法。
一、风力发电机组的结构设计原理风力发电机组的结构设计旨在提供足够的结构强度和稳定性,使风机能够承受来自风力的荷载并保持运行稳定。
以下是风力发电机组常见的结构设计原理:1. 塔架设计:塔架是支撑风力发电机组叶片和机舱的关键组件。
塔架的高度和稳定性直接影响风力发电机组的性能和寿命。
塔架通常采用钢结构设计,通过合理布置构件和增加加强材料来提高整体刚度和抗风性能。
2. 叶片设计:叶片是转化风能的关键部分。
叶片的设计旨在提高转化效率和减小风载荷。
材料的选择、叶片形状和空气动力学原理的应用是叶片设计的重要考虑因素。
现代叶片采用复合材料和独特的扭曲形状,以提高刚度和减小风阻力。
3. 发电机设计:发电机是将风能转化为电能的关键部分。
发电机的设计考虑因素包括转速、功率输出、能量转化效率和可靠性。
现代风力发电机组通常采用永磁同步发电机或感应发电机,具有高效率和可靠性。
二、风载荷分析的方法风载荷分析是对风力发电机组在风力作用下的结构响应进行评估和预测的过程。
风载荷分析方法的选择和精确度对于风力发电机组的安全和性能至关重要。
以下是常见的风载荷分析方法:1. 风场建模:风载荷分析的第一步是建立逼真的风场模型。
根据风速、风向和风场的非均匀性,利用数学建模或计算流体力学方法模拟风场的分布和变化。
高精度的风场模型可以提供准确的荷载预测。
2. 结构响应分析:结构响应分析是预测风力发电机组在风载荷作用下的变形和应力分布。
通过使用有限元方法或解析方法,将结构划分为小的单元,分析每个单元的响应并进行整体结构的耦合计算。
结构响应分析可以为结构设计和强度验证提供基础数据。
3. 极限状态分析:极限状态分析是评估风力发电机组在极端风载荷条件下是否能够保持正常运行和安全运行的分析。
风电原理及结构详解
风电原理及结构详解
一、风电原理
风力发电是利用风能转化为电能的原理,通过风力发电机组将风能转化为电能。
当风吹向风力发电机时,风力发电机叶片受到风的冲击而旋转,从而带动发电机转动,产生电能。
通过调节发电机的输出电压和频率,可以实现并网发电,为电网提供稳定的电能。
二、风电结构
风电结构包括风力发电机组、输电线路、变电站等部分。
其中,风力发电机组是风电的核心部分,包括叶片、齿轮箱、发电机、塔筒等部分。
1. 叶片:是风力发电机组中最重要的部分之一,它能够吸收风能并将其转化为机械能,从而驱动发电机转动。
叶片的形状和材料直接影响着风能利用率和发电效率。
2. 齿轮箱:是连接叶片和发电机的中间部分,它将叶片传来的低速旋转转化为高速旋转,从而提高发电机的发电效率。
齿轮箱是风力发电机组中较为昂贵的部分,同时也是故障率较高的部分。
3. 发电机:是风力发电机组中的主要部分之一,它将机械能转化为电能。
发电机通常采用无刷双馈异步发电机或永磁同步发电机等类型。
4. 塔筒:是支撑整个风力发电机组的部分,高度一般在60-100米之间。
塔筒通常采用钢材或混凝土制成,其结构必须能够承受强风、暴雪等极端天气的影响。
5. 输电线路:是将电能从风力发电机组输送到变电站的线路,通常采用高压输电线路,以保证电能传输的稳定性和经济性。
6. 变电站:是将电能从输电线路进一步升压或降压,以满足不同地区用电需求的部分。
变电站通常包括变压器、开关柜等设备。
1。
风力发电机组的工作原理及主要组成部分
风力发电机组的工作原理及主要组成部分以风力发电机组的工作原理及主要组成部分为标题,我们来详细介绍一下。
一、工作原理:风力发电机组利用风能产生机械能,进而将机械能转化为电能的装置。
其工作原理主要包括风能的捕捉、转化和传输三个过程。
1. 风能的捕捉:风力发电机组通过风轮(叶片)捕捉风能。
当风经过风轮时,风轮会受到风力的作用而旋转。
这里的关键是风轮的设计,通过合理的叶片形状和角度,可以最大程度地捕捉到风能。
2. 风能的转化:风轮的旋转会带动发电机转子的转动。
发电机内部有线圈和永磁体,在转子旋转的过程中,磁场会产生变化,从而在线圈中产生感应电动势。
这个感应电动势经过整流装置后,转化为直流电能。
3. 电能的传输:直流电能经过变流器转化为交流电能,然后通过变压器升压,最终输送到电网中供给用户使用。
二、主要组成部分:1. 风轮:风轮是风力发电机组的核心部件,也是捕捉风能的关键。
它通常由数片叶片组成,叶片的形状和材料会影响到风轮的效率。
同时,风轮也需要有足够的强度和刚度来承受风力的作用。
2. 发电机:发电机是将机械能转化为电能的关键装置。
发电机通常由定子和转子组成,转子通过风轮的旋转带动。
在转子内部,线圈和永磁体会产生电磁感应,从而产生感应电动势。
发电机的性能和效率直接影响风力发电机组的发电能力。
3. 整流装置:整流装置用于将发电机输出的交流电能转化为直流电能。
直流电能更容易储存和传输,因此需要通过整流装置将其转化为直流电。
4. 变流器:变流器将直流电能转化为交流电能,使其能够与电网连接。
变流器不仅可以将电能输送到电网中,还可以实现对发电机组的控制和调节,以适应电网的需求。
5. 变压器:变压器用于将发电机组产生的低压电能升压,以满足电网输电的要求。
变压器可以将电能的电压转化为更高的电压,减小输电损耗。
除了以上主要组成部分外,风力发电机组还包括塔架、控制系统、传感器等辅助设备。
塔架起到支撑和稳定风力发电机组的作用,控制系统和传感器用于监控和控制发电机组的运行。
风力发电工作原理及操作流程
风力发电工作原理及操作流程标题:风力发电工作原理及操作流程引言:风力发电作为一种环保、可再生的能源形式,越来越受到全球关注。
本文将深入探讨风力发电的工作原理及操作流程,并分享对这一关键词的观点和理解。
通过探索风力发电的深度与广度,我们将为读者提供一个全面、深刻和灵活的理解。
一、风力发电的工作原理1. 风的产生和动能转化:- 风的形成机制:从太阳能到风能的转化过程。
- 大气层的影响:地形、气压差异等因素对风产生的影响。
2. 风力机的组成和作用:- 主要部件介绍:包括风轮、发电机、塔筒等。
- 风轮工作原理:空气动力学原理解析。
- 发电机转化原理:机械能转化为电能的过程。
二、风力发电的操作流程1. 风力资源评估:- 风能资源测算:测量风速和风向,评估风能资源潜力。
- 环境因素考虑:地理特点、风的季节性变化等对风力发电的影响。
2. 建设项目规划:- 地点选择:考虑地形条件、地处的风能资源潜力等。
- 设备选型:根据地区的特点和需求选择适合的风力机型号。
- 建设许可和环评:申请相关许可证,进行环境评估。
3. 风力发电机组安装:- 土建工程:建造风电场的基础设施,例如塔筒和基础。
- 风力机组组装:安装风轮、发电机和控制系统。
4. 运行和维护:- 启动和停机:根据风速选择启动和停机策略。
- 监测和控制:实时监测风力机组的运行状态和电力输出。
- 常规维护和检修:定期保养,故障排除。
总结:通过对风力发电的工作原理和操作流程的深入探讨,我们可以清楚地了解风力发电的原理和操作步骤。
风力发电充分利用了自然资源,不会产生温室气体和污染物,具有可持续发展的潜力。
然而,要在实际操作中实现高效利用风能,需要密切关注风资源评估、建设规划和运维管理等方面的问题。
通过深入研究和实践经验的积累,我们可以进一步改进风力发电技术,推动其在全球范围内的应用和发展。
观点和理解:作为我对风力发电这一关键词的观点和理解,我认为风力发电是一项非常重要的可再生能源技术,对缓解全球能源压力和环境问题具有重要意义。
风力发电的原理与应用
风力发电的原理与应用风力发电是一种利用风能转化为电能的技术,它已经成为可再生能源领域中最为重要的能源之一。
本文将介绍风力发电的基本原理和应用。
一、风力发电的原理风力发电的原理是利用风能驱动风力发电机转动,进而产生电能。
风力发电机一般由风轮、轴、发电机、塔架和控制系统等组成。
1. 风轮:风轮是风力发电机的核心部件,它由多个叶片组成,可以捕捉风能并转化为机械能。
2. 轴:轴连接着风轮和发电机,它将风轮转动的动力传递给发电机。
3. 发电机:风力发电机使用转动的机械能驱动发电,将机械能转化为电能。
常用的发电机类型包括同步发电机和异步发电机。
4. 塔架:塔架是风力发电机的支撑结构,是将风轮安装在离地面较高位置的关键部件。
5. 控制系统:风力发电机的控制系统负责监测风速、控制风轮的角度和转速等参数,以确保风力发电的安全运行。
二、风力发电的应用风力发电作为一种清洁、可再生的能源,已经在全球范围内得到广泛应用。
以下是风力发电的主要应用领域:1. 发电厂:风力发电厂是利用风能进行大规模发电的场所。
风力发电厂通常由多台风力发电机组成,并连接到电网中,实现电能的供应。
2. 农村和偏远地区电力供应:对于一些偏远地区和无法接入传统电网的农村地区,风力发电成为解决电力供应问题的有效手段。
通过建设风力发电机组,可以为这些地区提供稳定的电力供应。
3. 工业和商业领域:风力发电也被广泛应用于工业和商业领域,为大型工厂、商业建筑和商业区提供电力供应,降低能源成本并减少环境影响。
4. 家庭和小型应用:风力发电机也可以用于家庭和小型应用。
小型风力发电机可以设置在住宅或农场附近,满足个人或小型机构的电力需求。
5. 海上风电:海上风电是近年来兴起的发展方向。
由于海上风能资源更加丰富,同时避免了陆地使用和环境影响等问题,海上风电具有巨大的发展潜力。
总结:风力发电的原理是利用风能转化为电能,通过风力发电机的转动产生电能。
风力发电被广泛应用于发电厂、农村地区、工业和商业领域,以及家庭和小型应用等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江风电公司 吴金城
6
风力发电机原理
一台2MW的风电机叶片半径在40米左右。在普通空气密度下,温度 10°C,风速6米/秒(= 21 km/h)的情况下,风电机的功率是780KW 。在这个风速下,每秒流经风电机的空气是43吨。其中所蕴含的能量 相当于一辆小型货车(2.5吨重)开90公里/小时的时候,或者一台小 轿车(700公斤)开170公里/小时的时候的能量。
2
2
能量和功率
空气的质量
空气密度随着空气压力的增大而增大,随着温度的升高而减小:
• 冷空气比热空气密度大(热气球升空就是利用的这个原理)。在普通大气压力和20°C 温度的条件下每立方米空气的质量是 1.204 kg ;在 -10°C 的温度下,每立方米空气重 1.342 kg,比常温下重了11%。 也就是说,同样的风速同样的风电机,-10 °C冷风比 20 °C热风能够多产生11%的电能。
浙江风电公司 吴金城
2
时间安排
12日
08:30 – 09:30
介绍
风力发电机原理、发展
空气动力学原理
风力发电机发展历史
09:30 – 10:00
休息
10:00 – 11:30
风力发电机分类
各类风力发电机的特点
14:00 – 15:00
风力发电机结构及主要部件
15:00 – 15:30
休息
15:30 – 17:00
A small irrigation pump could be driven by a savonius windmill at a wind velocity of 3 m/s or more. Energy conversion efficiency is a maximum of 0.05 at a tip speed ratio of 0.25. Torque coefficient decreases at a tip speed ratio of 0.25 or over.
浙江风电公司 吴金城
14
Savonius风力机
A small irrigation pump could be driven by a savonius windmill at a wind velocity of 3 m/s or more. Energy conversion efficiency is a maximum of 0.05 at a tip speed ratio of 0.25. Torque coefficient decreases at a tip speed ratio of 0.25 or over.
浙江风电公司 吴金城
11
Drag-type turbines
Ref: www.ifb.uni-stuttgart.de/~doerner/edesignphil.html
浙江风电公司 吴金城
12
古波斯的风力机
浙江风电公司 吴金城
13
阻力型风力机
1922年,芬兰工程 师 S. J. Savonius发 明了 Savonious风机
浙江风电公司 吴金城
10
阻力型风力机
阻力与下面的参数成比例关系:
风速 U 的平方 切割面积 A 该面积的阻力系数 CD 空气密度 ρ
FD
1 CD [ 2
(U
r)2
A]
•阻力系数CD (D是英语里“阻力”的第一个字母) 。这个值是用来表 示某个物体对空气形成阻力的大小的,可以在风洞里进行测定。 •CD值越小,空气阻力也就越小。比如一个圆盘横向对风的 CD值大 约是1.11,而方盘大约是1.10,球体大约是0.45。 •在汽车工业中,工程师们都在研究如何将汽车的CD值变的更小,这 样汽车在行进时的阻力就会最小化。比如丰田的Prius的 CD值是0.26 ,而大众的Golf CD是0.325
浙江风电公司 吴金城
4
两天课程的最低目标:
了解风力发电基本原理、风电机的主要结构和 几个基本概念。
浙江风电公司 吴金城
5
风力发电机原理
风中蕴含的能量
风电机将风的动能转化为机械能并进而转化为电能。从动能到机械能的转化是通过叶片 来实现的,而从机械能到电能则是通过发电机实现的。
动能ቤተ መጻሕፍቲ ባይዱ
E 1 mv2 1 Adsv2
浙江风电公司 吴金城
15
阻力型风力机
风杯风速仪也是利用阻力原理来实现的。风杯风速计上风杯的CD-值 分别是1.33和0.33(迎风时和背风时)。风杯迎风时的阻力要比背风 时的阻力大很多,所以风杯风速计才会迎风旋转。 通过阻力定律来运动的转子无法转动的比风速更快(增速值小于1), 属于亚风速转子。这种转子能量损失较大,功率系数(流体动力学上 的作用参数)非常小。(波斯风车大概0.17,风杯风速计大概0.08)
风力发电机齿轮箱
齿轮箱结构特点、发展趋势和常见故障
浙江风电公司 吴金城
3
时间安排
13日 08:30 – 09:30 09:30 – 10:00 10:00 – 11:30
14:00 – 15:00
15:00 – 15:30 15:30 – 17:00
风力发电机偏航系统 休息 风力发电机液压系统和刹车结构 风力发电机的控制和安全系统 风力发电机的塔架和基础 塔架种类、基础设计特点 休息 风电机特性及环境影响 功率特性、噪声特性、风电机对环境影响
风力发电机组技术
风电场中,高级工程技术及管理人员培训班 2008年9月12日
浙江风电公司 吴金城
1
吴金城:浙江风电公司副总经理
1992:Bonus合作生产120千瓦风电机 1993:参加200千瓦风力发电机研制 1994:浙江风电公司
NTK550千瓦、Micon600千瓦、V42、D4、V52-V80 250千瓦、750千瓦风电机
当风速达到18米/秒(= 65 公里/小时)的时候,每秒流经风电机的空 气大约是110吨。风速增长到3倍,但风的功率却要增长到3的3次方倍 ,也就是27倍。这个时候风的功率大约是21兆瓦。
浙江风电公司 吴金城
7
基本原理
Pmech v v1
空气是不可压缩的,高速气流 减慢后必然扩散。
v2
A1 A
A2
浙江风电公司 吴金城
8
基本原理
动能: 风能: 风电机吸收的能量:
E 1 mv2 1 Adsv2
2
2
Pw
1 2
Av3
Pw
1 2
A1v13
A2v23
Max Pw ?
浙江风电公司 吴金城
9
将风能转化为机械能
升力型和阻力型风力机
风会对切割它移动方向上的任意面积A 形成一个力,这个力就是阻力。 阻力型机器利用阻力产生动力。