三角函数的单调性周期性和奇偶性

合集下载

三角函数的定义和性质

三角函数的定义和性质
三角函数与复数的关系
三角函数与复数的基本关系:复数可以表示为三角函数的形式,即z=r(cosθ+i sinθ)。
三角函数在复平面上的表示:复平面上,三角函数可以表示为点或向量,其模长和幅角分别对应于实部和虚部。
三角函数与复数在交流电中的应用:交流电的电压和电流可以用三角函数表示,而复数则可以更方便地描述正弦波的幅度和频率。
04
三角函数的扩展知识
反三角函数
添加标题
添加标题
添加标题
添加标题
性质:反三角函数具有连续性、单调性、奇偶性和周期性等性质。
定义:反三角函数是三角函数的反函数,表示为arcsin、arccos和arctan等。
图像:反三角函数的图像与三角函数图像关系密切,可以通过三角函数图像得出反三角函数图像。
应用:反三角函数在数学、物理和工程等领域有广泛应用,例如求解三角形、解决极值问题等。
三角恒等式和不等式
三角恒等式:表示三角函数之间关系的等式,如正弦、余弦、正切等函数之间的相互转化。
三角不等式:表示三角函数值大小关系的不等式,用于比较三角函数值的大小或证明不等关系。
三角恒等变换:通过三角函数的和差、倍角、半角等公式,进行恒等变换,简化表达式或证明等式。
三角不等式的证明方法:利用三角函数的性质和几何意义等方法,证明三角不等式的关系。
三角函数与复数在信号处理中的应用:信号处理中,信号常常被表示为复数形式的三角函数,这使得信号的合成、分析和滤波变得更加方便。
汇报人:XX
感谢观看
周期性:三角函数具有明显的周期性,图像呈现规律性的重复。
奇偶性:三角函数具有奇偶性,可以根据函数值的正负判断其奇偶性。
最大值和最小值:三角函数具有最大值和最小值,可以通过函数的极值点判断其最大值和最小值。

三角函数的图像与性质

三角函数的图像与性质
3π 7π f(x)的单调递减区间为kπ+ 8 ,kπ+ 8 (k∈Z).
抓住1个考点
突破3个考向
揭秘3年高考
求较为复杂的三角函数的单调区间时,首先化简 成y=Asin(ωx+φ)形式,再求y=Asin(ωx+φ)的单调区间,只
需把ωx+φ看作一个整体代入y=sin x的相应单调区间内即
抓住1个考点
突破3个考向
揭秘3年高考
两种方法 求三角函数值域(最值)的两种方法
(1)将所给函数化为y=Asin(ωx+φ)的形式,通过分析ωx+φ
的范围,结合图象写出函数的值域; (2)换元法:把sin x(cos x)看作一个整体,化为二次函数来解 决.
抓住1个考点
突破3个考向
揭秘3年高考
考点自测 1.函数
).
抓住1个考点
突破3个考向
揭秘3年高考
1 1-cos 2x 1 1 解析 f(x)=sin x-2= -2=-2cos 2x, 故函数 2 的最小正周期为 T=π,且为偶函数.
2
答案 D
抓住1个考点
突破3个考向
揭秘3年高考
3.(2013· 安顺模拟)已知函数
π f(x)=sinωx+3(ω>0)的最小正
抓住1个考点
突破3个考向
揭秘3年高考
π 5π 在[0,2π]内,满足 sin x=cos x 的 x 为4, 4 ,再结合正弦、余 弦函数的周期是 2π,所以原函数的定义域为
π 5π x2kπ+ ≤x≤2kπ+ 4 4 ,k∈Z.
法二
利用三角函数线,如图,MN 为正弦线,OM 为余弦
解.
(2)求解三角函数的值域(最值)常见到以下几种类型的题目: ①形如y=asin x+bcos x+c的三角函数化为y=Asin(ωx+φ)+ k的形式,再求最值(值域); ②形如y=asin2x+bsin x+c的三角函数,可先设sin x=t,化

三角函数的奇偶性与周期性

三角函数的奇偶性与周期性

三角函数的奇偶性与周期性三角函数是数学中重要的函数之一,在数学和物理等领域得到了广泛的应用。

其中,奇偶性与周期性是三角函数的两个重要特征。

本文将对三角函数的奇偶性与周期性进行详细探讨。

一、正弦函数的奇偶性与周期性正弦函数是最基本的三角函数之一,用sin(x)表示。

在单位圆上,正弦函数的值等于对应角度的纵坐标值。

正弦函数具有以下特点:1. 奇偶性:正弦函数是奇函数,即满足sin(-x)=-sin(x)。

这意味着正弦函数关于原点对称,即在原点处取对称轴。

2. 周期性:正弦函数的周期为2π,即在[0,2π]范围内,正弦函数的图像重复出现。

在其他范围内,正弦函数的周期可表示为2π的整数倍。

在图像上,正弦函数的曲线呈现一种波动的形态,无论是在[-2π,2π]范围内还是在其他范围内。

这种周期性的特点使得正弦函数在描述周期性现象时非常有用,如振动、波动等。

二、余弦函数的奇偶性与周期性余弦函数是另一种常见的三角函数,用cos(x)表示。

在单位圆上,余弦函数的值等于对应角度的横坐标值。

余弦函数具有以下特点:1. 奇偶性:余弦函数是偶函数,即满足cos(-x)=cos(x)。

这意味着余弦函数关于y轴对称,即在y轴处取对称轴。

2. 周期性:余弦函数的周期也是2π,与正弦函数相同。

在[0,2π]范围内,余弦函数的图像重复出现。

余弦函数的图像与正弦函数的图像相似,同样呈现一种波动的形态。

但相对于正弦函数,余弦函数的波峰和波谷位置相反,即在同一角度上,正弦函数达到波峰时,余弦函数达到波谷。

三、其他三角函数的性质与周期除了正弦函数和余弦函数,还存在其他几个常见的三角函数,如正切函数、余切函数、正割函数和余割函数。

它们的性质和周期如下:1. 正切函数(tan(x)):正切函数是奇函数,周期为π。

2. 余切函数(cot(x)):余切函数是奇函数,周期为π。

3. 正割函数(sec(x)):正割函数是偶函数,周期为2π。

4. 余割函数(csc(x)):余割函数是奇函数,周期为2π。

三角函数的周期性和奇偶性

三角函数的周期性和奇偶性

三角函数的周期性和奇偶性三角函数是数学中重要的函数之一,包括正弦函数、余弦函数、正切函数等。

本文将探讨三角函数的周期性和奇偶性,从而帮助读者更好地理解和应用这些函数。

一、周期性1. 正弦函数的周期性正弦函数的周期是2π(或360°),即f(x) = sin(x)在一个周期内的值与下一个周期内的值相同。

换句话说,正弦函数在每个2π的间隔内会重复自身的图像。

例如,f(0) = sin(0) = 0,f(2π) = sin(2π) = 0,f(4π) = sin(4π) = 0,以此类推。

这种周期性特征使得正弦函数在描述周期性现象时非常有用,比如震荡、波动等。

2. 余弦函数的周期性余弦函数的周期同样是2π(或360°),即f(x) = cos(x)在一个周期内的值与下一个周期内的值相同。

与正弦函数类似,余弦函数也在每个2π的间隔内重复自身的图像。

例如,f(0) = cos(0) = 1,f(2π) = cos(2π) = 1,f(4π) = cos(4π) = 1,以此类推。

余弦函数的周期性可以应用于描述周期性运动、振动等现象。

3. 正切函数的周期性正切函数的周期是π(或180°),即f(x) = tan(x)在一个周期内的值与下一个周期内的值相同。

不同于正弦函数和余弦函数,正切函数在每个π的间隔内重复自身的图像。

例如,f(0) = tan(0) = 0,f(π) = tan(π) = 0,f(2π) = tan(2π) = 0,以此类推。

正切函数的周期性可以应用于解决角度相关问题,比如角度变换、角度关系等。

二、奇偶性1. 正弦函数的奇偶性正弦函数的奇偶性体现在函数的对称性上。

具体来说,f(x) = sin(x)是一个奇函数,即f(-x) = -f(x)。

这意味着当自变量的符号取反时,函数值也取反。

例如,f(-π/2) = sin(-π/2) = -1,f(π/2) = sin(π/2) = 1,它们关于y轴对称。

三角函数中的奇偶性与周期性

三角函数中的奇偶性与周期性

三角函数中的奇偶性与周期性三角函数是数学中非常重要的一类函数,包括正弦函数、余弦函数、正切函数等。

在学习三角函数时,我们会发现它们具有一些特殊的性质,即奇偶性与周期性。

本文将对三角函数中的奇偶性与周期性进行详细的探讨。

一、正弦函数的奇偶性与周期性正弦函数是最基本的三角函数之一,记作sin(x)。

我们来分别讨论正弦函数的奇偶性与周期性。

1. 奇偶性:正弦函数的图像关于y轴对称,即满足f(-x) = -f(x)。

这意味着当x取正值时,正弦函数取相应的正值;当x取负值时,正弦函数取相应的负值。

当x取0时,正弦函数的值为0。

因此,正弦函数是一个奇函数。

2. 周期性:正弦函数的图像在一个周期内重复,一个完整的周期是2π。

也就是说,对于任意实数x,有sin(x + 2π) = sin(x)。

所以正弦函数的周期为2π。

二、余弦函数的奇偶性与周期性余弦函数是三角函数中与正弦函数密切相关的函数,记作cos(x)。

现在我们来研究余弦函数的奇偶性与周期性。

1. 奇偶性:余弦函数的图像关于y轴对称,即满足f(-x) = f(x)。

这意味着当x取正值时,余弦函数取相应的正值;当x取负值时,余弦函数取相应的正值。

当x取0时,余弦函数的值为1。

因此,余弦函数是一个偶函数。

2. 周期性:余弦函数的图像在一个周期内重复,一个完整的周期是2π。

也就是说,对于任意实数x,有cos(x + 2π) = cos(x)。

所以余弦函数的周期为2π。

三、正切函数的奇偶性与周期性正切函数是另一种重要的三角函数,记作tan(x)。

我们来探讨正切函数的奇偶性与周期性。

1. 奇偶性:正切函数不具备奇偶性,即不满足f(-x) = ± f(x)。

也就是说,当x取正值时,正切函数可以是正值或负值;当x取负值时,正切函数也可以是正值或负值。

当x取0时,正切函数的值为0。

因此,正切函数是一个既非奇函数也非偶函数。

2. 周期性:正切函数的图像在一个周期内重复,一个完整的周期是π。

三角函数的周期性与奇偶性

三角函数的周期性与奇偶性

三角函数的周期性与奇偶性三角函数是数学中非常重要的一类函数,包括正弦函数sin(x),余弦函数cos(x),正切函数tan(x)等。

这些函数在数学、物理、工程等领域中有广泛的应用。

其中,周期性和奇偶性是三角函数的两个重要性质,下面将详细讨论这两个性质。

一、周期性1. 正弦函数sin(x)和余弦函数cos(x)的周期性:正弦函数sin(x)和余弦函数cos(x)都是周期函数,它们的周期都为2π。

也就是说,对于任意实数x,有sin(x+2π) = sin(x),cos(x+2π) =cos(x)。

这意味着当自变量x增加2π或减少2π时,函数值不变,即函数呈现出周期性的变化规律。

这样的周期性特点使得正弦函数和余弦函数在很多问题中具有重要的意义。

2. 正切函数tan(x)的周期性:正切函数tan(x)也是一个周期函数,它的周期为π。

也就是说,对于任意实数x,有tan(x+π) = tan(x)。

这意味着当自变量x增加π或减少π时,函数值保持不变。

需要注意的是,正切函数在一些特殊点(如π/2,3π/2等)处不定义,因为在这些点上正切函数的值会趋于无穷大,即函数的图像会有垂直渐进线。

二、奇偶性1. 正弦函数sin(x)的奇偶性:正弦函数sin(x)是一个奇函数,它的图像关于原点对称。

也就是说,对于任意实数x,有sin(-x) = -sin(x)。

这意味着当自变量x取相反数时,函数值的相反数与原来的函数值相等,即函数的图像关于y轴对称。

2. 余弦函数cos(x)的奇偶性:余弦函数cos(x)是一个偶函数,它的图像关于y轴对称。

也就是说,对于任意实数x,有cos(-x) = cos(x)。

这意味着当自变量x取相反数时,函数值保持不变,即函数的图像关于y轴对称。

3. 正切函数tan(x)的奇偶性:正切函数tan(x)既不是奇函数也不是偶函数,它的图像既没有关于原点的对称性,也没有关于y轴的对称性。

但是,正切函数有一个特殊的奇偶性质,即tan(-x) = -tan(x)。

三角函数定义及性质

三角函数定义及性质

三角函数定义及性质三角函数是中学数学中重要的概念,对于初学者来说,了解三角函数的定义及其性质是必要的。

本文将从定义、周期和奇偶性、单调性、界和差、图像和反函数等方面阐述三角函数的基本性质。

一、定义三角函数包括正弦函数、余弦函数、正切函数、余切函数、正割函数和余割函数。

数学中假设有任意角α,其余弦函数、正弦函数、余切函数和正切函数分别定义为:cosα=Adjacent/Hypotenusesinα=Opposite/Hypotenusetanα=Opposite/Adjacentcotα=Adjacent/Opposite其中,Adjacent和Opposite是直角三角形中与α有关的两条边,而Hypotenuse是斜边。

同时,正割函数和余割函数是用角度的余数定义的,分别为:secα=1/cosαcscα=1/sinα二、周期和奇偶性正弦函数和余弦函数的周期为2π,正切函数和余切函数的周期为π,而正割函数和余割函数的周期也为2π。

此外,正弦函数是奇函数,余弦函数是偶函数,而正切函数、余切函数、正割函数和余割函数都是奇函数。

三、单调性正弦函数在第一象限和第四象限单调递增,在第二象限和第三象限单调递减。

余弦函数则相反,在第一象限和第四象限单调递减,在第二象限和第三象限单调递增。

正切函数的单调性是以π/2为中心对称的,余切函数也会如此。

正割函数和余割函数的单调性与其它三角函数不同,它们的数值在第一象限和第四象限为正,在第二象限和第三象限为负。

四、界和差正弦函数和余弦函数的值都在[-1,1]之间。

正切函数的值域是所有实数,而余切函数的值域是除了nπ(n为任意整数)的所有实数。

正割函数和余割函数的取值范围与正弦函数和余弦函数相反,它们的值在[1,∞)∪(-∞,-1]之间。

另外,三角函数有许多有用的关系,比如sin(x±y)=sin(x)cos(y)±cos(x)sin(y)和cos(2x)=2cos^2(x)-1等。

三角函数的单调性、奇偶性、周期性

三角函数的单调性、奇偶性、周期性

(A)f(x+2)是奇函数
(C)f(x-2)是奇函数
(B)f(x+2)是偶函数
(D)f(x-2)是偶函数
3 .已知 函 数 f(x)=asin(πx+α)+bcos(πx+β)+4, 当 f(2001)=5 时 , f(2002)=( )B (A)1 (B)3 (C)5 (D)7
4.函数y=2sin2x+sin2x是( D ) (A)以2π为周期的奇函数 (B)以2π为周期的非奇非偶函数 (C)以π为周期的奇函数 (D)以π为周期的非奇非偶函数 5.下列命题中正确的是( D ) (A)若α,β是第一象限角,且α>β,则sinα>sinβ (B)函数y=sinx· cotx的单调递增区间是(2kπ-π/2,2kπ+ π/2),k∈Z (C)函数y=(1-cos2x)/sin2x的最小正周期是2π (D) 函 数 y=sinxcos2φ-cosxsin2φ 的 图 象 关 于 y 轴 对 称 , 则 φ=kπ/2+π/4,k∈Z
2.判断下列函数是否为周期函数;若是,判断其是否存 在最小正周期,若存在,求出它的最小正周期:
1 ①y sin 4 x 1 ②y sin x 3 3 x ③y tan 4 6 ④y 2
【 解 题 回 顾 】 若 三 角 函 数 y=f(x)的 最 小 正 周 期 为 T, 则 f(ωx+φ)的最小正周期就是T|ω|;另外,周期函数的图像必 然呈现一种“周而复始”的规律特征,反之亦然,所以判 断函数的周期性的一个有效方法是作图
5 3.已知函数 f x 5 sin x cos x 5 3 cos x 3 x R 2
2

第20讲-三角函数的图象与性质(解析版)

第20讲-三角函数的图象与性质(解析版)

第20讲-三角函数的图象与性质一、 考情分析1.能画出三角函数y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性、单调性、奇偶性、最大(小)值;2.借助图象理解正弦函数、余弦函数在[0,2π]上,正切函数在⎝ ⎛⎭⎪⎫-π2,π2上的性质.二、 知识梳理1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )函数y =sin xy =cos xy =tan x图象定义域 R R {x |x ∈R ,且 x ≠k π+π2}值域 [-1,1] [-1,1] R 周期性 2π 2π π 奇偶性 奇函数 偶函数 奇函数 递增区间 ⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2 [2k π-π,2k π] ⎝ ⎛⎭⎪⎫k π-π2,k π+π2 递减区间 ⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2 [2k π,2k π+π] 无 对称中心 (k π,0) ⎝ ⎛⎭⎪⎫k π+π2,0 ⎝ ⎛⎭⎪⎫k π2,0 对称轴方程x =k π+π2x =k π无[微点提醒] 1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期.2.对于y =tan x 不能认为其在定义域上为增函数,而是在每个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )内为增函数.三、 经典例题考点一 三角函数的定义域【例1】 (1)函数f (x )=-2tan ⎝ ⎛⎭⎪⎫2x +π6的定义域是( )A.⎩⎨⎧⎭⎬⎫x |x ≠π6B.⎩⎨⎧⎭⎬⎫x |x ≠-π12C.⎩⎨⎧⎭⎬⎫x |x ≠k π+π6(k ∈Z )D.⎩⎨⎧⎭⎬⎫x |x ≠k π2+π6(k ∈Z ) (2)不等式3+2cos x ≥0的解集是________.(3)函数f (x )=64-x 2+log 2(2sin x -1)的定义域是________. 【解析】 (1)由2x +π6≠k π+π2(k ∈Z ),得x ≠k π2+π6(k ∈Z ).(2)由3+2cos x ≥0,得cos x ≥-32,由余弦函数的图象,得在一个周期[-π,π]上,不等式cosx ≥-32的解集为⎩⎨⎧⎭⎬⎫x |-5π6≤x ≤56π,故原不等式的解集为⎩⎨⎧⎭⎬⎫x |-56π+2k π≤x ≤56π+2k π,k ∈Z .(3)由题意,得⎩⎨⎧64-x 2≥0,①2sin x -1>0,②由①得-8≤x ≤8,由②得sin x >12,由正弦曲线得π6+2k π<x <56π+2k π(k ∈Z ).所以不等式组的解集为⎝ ⎛⎭⎪⎫-116π,-76π∪⎝ ⎛⎭⎪⎫π6,56π∪⎝ ⎛⎦⎥⎤13π6,8.规律方法 1.三角函数定义域的求法(1)以正切函数为例,应用正切函数y =tan x 的定义域求函数y =A tan(ωx +φ)的定义域转化为求解简单的三角不等式.(2)求复杂函数的定义域转化为求解简单的三角不等式. 2.简单三角不等式的解法(1)利用三角函数线求解. (2)利用三角函数的图象求解. 考点二 三角函数的值域与最值【例2】 (1)y =3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域是________.(2)函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.(3)函数y =sin x -cos x +sin x cos x 的值域为________. 【解析】 (1)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1,故3sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,3, 即y =3sin ⎝ ⎛⎭⎪⎫2x -π6的值域为⎣⎢⎡⎦⎥⎤-32,3.(2)由题意可得f (x )=-cos 2x +3cos x +14=-(cos x -32)2+1.∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴cos x ∈[0,1].∴当cos x =32,即x =π6时,f (x )max =1. (3)设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x cos x , sin x cos x =1-t 22,且-2≤t ≤2,所以y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-2时,y min =-12- 2.所以函数的值域为⎣⎢⎡⎦⎥⎤-12-2,1.规律方法 求解三角函数的值域(最值)常见三种类型:(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+c 的形式,再求值域(最值); (2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值); (3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).考点三 三角函数的单调性 角度1 求三角函数的单调区间【例3-1】 (1)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤k π12-π12,k π2+5π12(k ∈Z ) B.⎝ ⎛⎭⎪⎫k π12-π12,k π2+5π12(k ∈Z ) C.⎝ ⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z ) D.⎝ ⎛⎭⎪⎫k π-π12,k π+5π12(k ∈Z ) (2)函数y =sin ⎝ ⎛⎭⎪⎫-2x +π3的单调递减区间为________. 【解析】 (1)由k π-π2<2x -π3<k π+π2(k ∈Z ),得k π2-π12<x <k π2+5π12(k ∈Z ),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ).(2)y =-sin ⎝⎛⎭⎪⎫2x -π3,它的减区间是y =sin ⎝ ⎛⎭⎪⎫2x -π3的增区间.令2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故其单调递减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z .角度2 利用单调性比较大小【例3-2】 已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫x +π6,设a =f ⎝ ⎛⎭⎪⎫π7,b =f ⎝ ⎛⎭⎪⎫π6,c =f ⎝ ⎛⎭⎪⎫π4,则a ,b ,c 的大小关系是( ) A.a >b >c B.a >c >b C.c >a >bD.b >a >c【解析】 令2k π≤x +π6≤2k π+π,k ∈Z , 解得2k π-π6≤x ≤2k π+5π6,k ∈Z ,∴函数f (x )=2cos ⎝ ⎛⎭⎪⎫x +π6在⎣⎢⎡⎦⎥⎤-π6,5π6上是减函数,∵-π6<π7<π6<π4<5π6,∴f ⎝ ⎛⎭⎪⎫π7>f ⎝ ⎛⎭⎪⎫π6>f ⎝ ⎛⎭⎪⎫π4. 角度3 利用单调性求参数【例3-3】 (2018·全国Ⅱ卷)若f (x )=cos x -sin x 在[-a ,a ]是减函数,则a 的最大值是( ) A.π4B.π2C.3π4D.π【解析】 f (x )=cos x -sin x =2cos ⎝ ⎛⎭⎪⎫x +π4,由题意得a >0,故-a +π4<π4,因为f (x )=2cos ⎝ ⎛⎭⎪⎫x +π4在[-a ,a ]是减函数,所以⎩⎪⎨⎪⎧-a +π4≥0,a +π4≤π,a >0,解得0<a ≤π4,所以a 的最大值是π4.规律方法 1.已知三角函数解析式求单调区间:(1)求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”;(2)求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错.2.对于已知函数的单调区间的某一部分确定参数ω的范围的问题,首先,明确已知的单调区间应为函数的单调区间的子集,其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解,另外,若是选择题利用特值验证排除法求解更为简捷. 考点四 三角函数的周期性、奇偶性、对称性 角度1 三角函数奇偶性、周期性【例4-1】 (1)已知函数f (x )=2cos 2x -sin 2x +2,则( ) A.f (x )的最小正周期为π,最大值为3 B.f (x )的最小正周期为π,最大值为4 C.f (x )的最小正周期为2π,最大值为3 D.f (x )的最小正周期为2π,最大值为4(2)设函数f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ⎝ ⎛⎭⎪⎫|θ|<π2的图象关于y 轴对称,则θ=( )A.-π6B.π6C.-π3D.π3【解析】 (1)易知f (x )=2cos 2x -sin 2x +2=3cos 2x +1=3cos 2x +12+1=32cos 2x +52,则f (x )的最小正周期为π,当2x =2k π,即x =k π(k ∈Z )时,f (x )取得最大值,最大值为4. (2)f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ=2sin ⎝ ⎛⎭⎪⎫12x +θ-π3,由题意可得f (0)=2sin ⎝ ⎛⎭⎪⎫θ-π3=±2,即sin ⎝ ⎛⎭⎪⎫θ-π3=±1,∴θ-π3=π2+k π(k ∈Z ),∴θ=5π6+k π(k ∈Z ).∵|θ|<π2,∴k =-1时,θ=-π6.规律方法 1.若f (x )=A sin(ωx +φ)(A ,ω≠0),则 (1)f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z ); (2)f (x )为奇函数的充要条件是φ=k π(k ∈Z ).2.函数y =A sin(ωx +φ)与y =A cos(ωx +φ)的最小正周期T =2π|ω|,y =A tan(ωx +φ)的最小正周期T=π|ω|.角度2 三角函数图象的对称性【例4-2】 (1)已知函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,则函数g (x )=sin x +a cos x 的图象( ) A.关于点⎝ ⎛⎭⎪⎫π3,0对称B.关于点⎝ ⎛⎭⎪⎫2π3,0对称C.关于直线x =π3对称D.关于直线x =π6对称 (2)已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,则ω的最大值为( )A.11B.9C.7D.5【解析】 (1)因为函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称, 所以f (0)=f ⎝ ⎛⎭⎪⎫π3,所以1=32a +12,a =33, 所以g (x )=sin x +33cos x =233sin ⎝ ⎛⎭⎪⎫x +π6,函数g (x )的对称轴方程为x +π6=k π+π2(k ∈Z ),即x =k π+π3(k ∈Z ),当k =0时,对称轴为直线x =π3,所以g (x )=sin x +a cos x 的图象关于直线x =π3对称.(2)因为x =-π4为f (x )的零点,x =π4为f (x )的图象的对称轴,所以π4-⎝ ⎛⎭⎪⎫-π4=T 4+kT 2,即π2=2k +14T=2k +14·2πω(k ∈Z ),所以ω=2k +1(k ∈Z ).又因为f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,所以5π36-π18=π12≤T 2=2π2ω,即ω≤12,ω=11验证不成立(此时求得f (x )=sin ⎝ ⎛⎭⎪⎫11x -π4在⎝ ⎛⎭⎪⎫π18,3π44上单调递增,在⎝ ⎛⎭⎪⎫3π44,5π36上单调递减),ω=9满足条件,由此得ω的最大值为9.规律方法 1.对于可化为f (x )=A sin(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可;如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z ),求x 即可. 2.对于可化为f (x )=A cos(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=k π(k ∈Z ),求x ;如果求f (x )的对称中心的横坐标,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可. [方法技巧]1.讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式.2.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t (或y =cos t )的性质.3.数形结合是本节的重要数学思想.4.闭区间上最值或值域问题,首先要在定义域基础上分析单调性;含参数的最值问题,要讨论参数对最值的影响.5.要注意求函数y =A sin(ωx +φ)的单调区间时A 和ω的符号,尽量化成ω>0时情况,避免出现增减区间的混淆.6.求三角函数的单调区间时,当单调区间有无穷多个时,别忘了注明k ∈Z .四、 课时作业1.(2020·宝鸡中学高一期中)函数π()tan 23f x x ⎛⎫=-⎪⎝⎭的单调递增区间为( ) A .πππ2π,()2623k k k ⎡⎤++∈⎢⎥⎣⎦ZB .πππ5π,()212212k k k ⎡⎤-+∈⎢⎥⎣⎦Z C .π5ππ,π()1212k k k ⎛⎫-+∈ ⎪⎝⎭Z D .π2ππ,π()63k k k ⎛⎫++∈ ⎪⎝⎭Z 【答案】C 【解析】()π2232k x k k Z ππππ-<-<+∈得:5212212k k x ππππ-<<+,所以函数π()tan 23f x x ⎛⎫=- ⎪⎝⎭的单调递增区间为π5ππ,π()1212k k k ⎛⎫-+∈ ⎪⎝⎭Z . 2.(2020·陕西省西安中学高一期中)设函数12sin y x =-,则函数的最大值及取到最大值时的x 取值集合分别为( ) A .3,|2,2x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭B .1,3|2,2x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭C .3,3|2,2x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭D .1,|2,2x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭【答案】C【解析】由于22sin 2,22sin 2,112sin 3x x x -≤≤-≤-≤-≤-≤, 所以当32,2x k k Z ππ=+∈时,函数12sin y x =-有最大值为3. 3.(2020·吉林省高三其他(文))下列函数中,是奇函数且在其定义域上是增函数的是( ) A .1y x=B .y tanx =C .x x y e e -=-D .2,02,0x x y x x +≥⎧=⎨-<⎩【答案】C【解析】对于A 选项,反比例函数1y x=,它有两个减区间, 对于B 选项,由正切函数y tanx =的图像可知不符合题意;对于C 选项,令()x xf x e e -=-知()x x f x e e --=-,所以()()0f x f x +-=所以()x xf x e e -=-为奇函数,又x y e =在定义内单调递增,所以xy e -=-单调递增, 所以函数xxy e e -=-在定义域内单调递增;对于D ,令2,0()2,0x x g x x x +≥⎧=⎨-<⎩,则2,0()2,0x x g x x x -+≤⎧-=⎨-->⎩,所以()()0g x g x +-≠,所以函数2,02,0x x y x x +≥⎧=⎨-<⎩不是奇函数.4.(2020·武功县普集高级中学高一月考)函数y =的定义域是( )A .()2,266k k k Z ππ⎡⎤⎢⎥⎣⎦π-π+∈ B .()22,333k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦C .()2,233k k k Z 2π2⎡⎤⎢⎥⎣⎦ππ-π+∈ D .()2,233k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦【答案】C【解析】由2cos 10x +≥得:2222,33k x k k πππ-≤≤π+∈Z . 所以函数2cos 1y x =+的定义域是()2,233k k k Z 2π2⎡⎤⎢⎥⎣⎦ππ-π+∈. 5.(2020·武功县普集高级中学高一月考)函数sin y x x =的部分图像是( )A .B .C .D .【答案】A【解析】:因为sin y x x =,所以()f x 为偶函数,其图象关于y 轴对称,故可以排除B ,D.又因为函数()f x 在()0,π上函数值为正,故排除C.6.(2019·呼玛县高级中学高一月考)若函数()sin()(0,0,)2πωϕωϕ=+>><f x A x A 的部分图像如图所示,则函数()f x 的解析式为( )A .()sin(2)6f x x π=+B .()cos(2)6f x x π=+ C .()cos(2)3f x x π=+D .()sin(2)3f x x π=+【答案】D【解析】由函数的部分图像可知1A =,22T π=,故T π=,所以2ππω=即2ω=.由函数图像的对称轴为12x π=,所以22,122k k Z ππϕπ⨯+=+∈,因2πϕ<,故3πϕ=,所以()sin 23f x x π⎛⎫=+⎪⎝⎭,故选D . 7.(2019·呼玛县高级中学高一月考)设cos 12a π=,41sin6b π=,7cos 4c π=,则( ) A .a c b >> B .c b a >> C .c a b >> D .b c a >>【答案】A 【解析】4155b sinsin 6sin sin cos 66663ππππππ⎛⎫==+=== ⎪⎝⎭,7c cos cos 44ππ== 因为3412πππ>>,且y cos 0,2x π=在(,)是单调递减函数,所以a c b >>,故选A 8.(2019·延安市第一中学高三月考(理))已知函数()sin()(0)2f x x πωφωϕ=+><,图象相邻两条对称轴之间的距离为2π,将函数()y f x =的图象向左平移3π个单位后,得到的图象关于y 轴对称,那么函数()y f x =的图象( )A .关于点,012π⎛⎫- ⎪⎝⎭对称B .关于点,012π⎛⎫⎪⎝⎭对称C .关于直线12x π=-对称D .关于直线12x π=对称【答案】B【解析】因为相邻两条对称轴的距离为2π,故22T π=,T π=,从而2ω=. 设将()f x 的图像向左平移3π单位后,所得图像对应的解析式为()g x , 则()2sin 23g x x πφ⎛⎫=++⎪⎝⎭,因()g x 的图像关于y 轴对称,故()01g =±, 所以2sin 13πφ⎛⎫+=±⎪⎝⎭,2,32k k Z ππφπ+=+∈,所以,6k k Z πφπ=-∈, 因2πφ<,所以6πφ=-.又()sin 26f x x π⎛⎫=- ⎪⎝⎭,令2,62x k k Z πππ-=+∈,故对称轴为直线,23k x k Z ππ=+∈,所以C ,D 错误; 令2,6x k k π-=π∈Z ,故,212k x k Z ππ=+∈,所以对称中心为,0,212k k Z ππ⎛⎫+∈⎪⎝⎭,所以A 错误,D 正确.9.(2020·河北省故城县高级中学高一期中)关于函数sin(),2y x π=+在以下说法中正确的是( )A .[,]22ππ-上是增函数 B .[0,]π上是减函数 C .[,0]π-上是减函数 D .[,]-ππ上是减函数【答案】B【解析】sin()cos 2y x x π=+=,它在[0,]π上是减函数.10.(2020·上海高一课时练习)下列命题中正确的是( ) A .cos y x =在第一象限和第四象限内是减函数 B .sin y x =在第一象限和第三象限内是增函数 C .cos y x =在,22ππ⎡⎤-⎢⎥⎣⎦上是减函数 D .sin y x =在,22ππ⎡⎤-⎢⎥⎣⎦上是增函数 【答案】D【解析】对于cos y x =,该函数的单调递减区间为:[]2,2,k k k Z πππ+∈,故A 错,C 错. 对于sin y x =,该函数的单调递增区间为:2,2,22k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,故B 错,D 对.11.(2020·陕西省西安中学高三其他(理))关于函数()2sinsin 222x x f x x π⎛⎫=+- ⎪⎝⎭有下述四个结论: ①函数()f x 的图象把圆221x y +=的面积两等分②()f x 是周期为π的函数③函数()f x 在区间(,)-∞+∞上有3个零点④函数()f x 在区间(,)-∞+∞上单调递减 其中所有正确结论的编号是( ) A .①③④ B .②④C .①④D .①③【答案】C【解析】f (x )=2sin2x sin (2π+2x )﹣x =2sin 2x cos 2x﹣x =sin x ﹣x , 对于①,因为f (﹣x )=sin (﹣x )﹣(﹣x )=﹣sin x +x =﹣f (x ),所以函数f (x )为奇函数,关于原点对称,且过圆心,而圆x 2+y 2=1也是关于原点对称,所以①正确;对于②,因为f (x +π)=sin (x +π)﹣(x +π)=﹣sin x ﹣x ﹣π≠f (x ),所以f (x )的周期不是π,即②错误;对于③,因为()'f x =cos x ﹣1≤0,所以f (x )单调递减,所以f (x )在区间(﹣∞,+∞)上至多有1个零点, 即③错误; 对于④,()'fx =cos x ﹣1≤0,所以f (x )单调递减,即④正确.12.(2020·山西省高三其他(文))已知()()cos 0,2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的图象关于直线524x π=对称,把()f x 的图象向左平移4π个单位后所得的图象关于点,012π⎛⎫⎪⎝⎭对称,则ω的最小值为( ) A .2 B .3C .4D .6【答案】C【解析】因为()f x 的图象向左平移4π个单位后所得的图象关于点,012π⎛⎫⎪⎝⎭对称, 所以()f x 关于点,03π⎛⎫⎪⎝⎭对称, 又()f x 的图象既关于直线524x π=对称, 设()f x 的最小正周期为T ,则()()2153244k T k N ππ+-=∈, 即()21284k k N ππω+⎛⎫=⋅∈ ⎪⎝⎭,所以()84k k N ω=+∈,取0k =,得4ω=,13.(2020·上海高二课时练习)设直线的斜率(,1][1,)k ∈-∞-⋃+∞,则该直线的倾斜角α满足( ). A .44ππα- B .42ππα<或324ππα< C .04πα或34παπ< D .04πα或34παπ【答案】B【解析】因为tan k α=, 所以当1k ≤-时,324ππα<≤, 当1k时,42ππα≤<,即直线的倾斜角α满足42ππα<或324ππα<, 14.(2020·调兵山市第一高级中学高一月考)方程10sin x x =的根的个数是( ) A .6 B .7C .8D .9【答案】B【解析】分别作函数,10sin y x y x ==图象,如图,由图可得交点个数为7,所以方程10sin x x =的根的个数是715.(2020·福建省高三其他(文))图数()1cos f x x x x ⎛⎫=+ ⎪⎝⎭,[)(],00,x ππ∈-的图象可能为( )A .B .C .D .【答案】A【解析】由题知:()()11cos cos ()f x x x x x f x x x ⎛⎫⎛⎫-=---=-+=- ⎪ ⎪⎝⎭⎝⎭, 所以()f x 为奇函数,故排除B ,D. 又因为02x π⎛⎫∈ ⎪⎝⎭,时,()0f x >,故排除C.16.(2020·上海高一期中)函数sin cos y x x =⋅的最小正周期和最大值分别为( ) A .π,1 B .π,12C .2π,1D .2π,12【答案】B【解析】1sin cos =sin 22y x x x =⋅, 函数sin cos y x x =⋅的最小正周期22T ππ==, 1sin 21x -≤≤,∴111sin 2222x -≤≤,∴函数sin cos y x x =⋅的最大值为12. 17.(2020·山西省高三其他(文))对于函数()()1122f x sinx cosx sinx cosx =+--.有下列说法:①()f x 的值城为[]1,1-;②当且仅当()24x k k Z ππ=+∈时,函数()f x 取得最大值;③函数()f x 的最小正周期是π;④当且仅当()222x k kk Z πππ⎛⎫∈+∈ ⎪⎝⎭,时,()0f x >.其中正确结论的个数是( ) A .1 B .2C .3D .4【答案】B【解析】因为()()1122cosx sinx cosx f x sinx cosx sinx cosx sinx sinx cosx≥⎧=+--=⎨<⎩,,,作出函数()f x 的图象,如图所示:所以,()f x 的值城为21,2⎡-⎢⎣⎦,①错误; 函数()f x 的最小正周期是2π,③错误; 当且仅当()24x k k Z ππ=+∈时,函数()f x 取得最大值,②正确;当且仅当()222x k k k Z πππ⎛⎫∈+∈ ⎪⎝⎭,时,()0f x >,④正确. 18.(多选题)(2020·海南省海南中学高三月考)已知函数()()sin f x A x =+ωϕ(0,0A ω>>)在1x =处取得最大值,且最小正周期为2,则下列说法正确的有( ). A .函数()1f x -是奇函数B .函数()1f x +是偶函数C .函数()2f x +在[]0,1上单调递增D .函数()3f x +是周期函数【答案】BCD【解析】因为()()sin f x A x =+ωϕ在1x =处取得最大值, 所以有2()2k k Z πωϕπ+=+∈,又因为()()sin f x A x =+ωϕ的最小正周期为2, 所以有22,0πωωπω=>∴=,因此()()sin sin 2cos 2f x A x A x k A x πωϕπππ⎛⎫=+=+-=- ⎪⎝⎭.选项A :设()()1cos[(1)]cos g x f x A x A x ππ=-=--=, 因为()cos[()]cos ()g x A x A x g x ππ-=-==, 所以()()1g x f x =-是偶函数,故本选项说法不正确; 选项B :设()()1cos[(1)]cos h x f x A x A x ππ=+=-+= 因为()cos[()]cos ()h x A x A x h x ππ-=-==, 所以()()1h x f x =+是偶函数,故本选项说法正确;选项C :设()()2cos[(2)]cos m x f x A x A x ππ=+=-+=-,因为[]0,1x ∈,所以[]0,x ππ∈,又因为0A >,所以函数()()2m x f x =+在[]0,1上单调递增,故本选项说法正确;选项D :设()()3cos[(3)]cos n x f x A x A x ππ=+=-+=, 函数()n x 最小正周期为:22ππ=,所以本选项说法正确.19.(2020·山东省微山县第一中学高一月考)已知函数()cos 6f x x π⎛⎫=+ ⎪⎝⎭,则( )A .2π为()f x 的一个周期B .()y f x =的图象关于直线43x π=对称 C .()f x 在,2ππ⎛⎫⎪⎝⎭上单调递减 D .()f x π+的一个零点为3π【答案】AD【解析】根据函数()6f x cos x π⎛⎫=+⎪⎝⎭知最小正周期为2π,A 正确.当43x π=时,443cos cos 03362f ππππ⎛⎫⎛⎫=+== ⎪ ⎪⎝⎭⎝⎭,由余弦函数的对称性知,B 错误;函数()6f x cos x π⎛⎫=+ ⎪⎝⎭在5,26ππ⎛⎫ ⎪⎝⎭上单调递减,在5,6ππ⎛⎫⎪⎝⎭上单调递增,故C 错误; ()76f x cos x ππ⎛⎫+=+⎪⎝⎭,73cos cos 03632f πππππ⎛⎫⎛⎫∴+=+== ⎪ ⎪⎝⎭⎝⎭,故D 正确.20.(2020·山东省高一期中)将函数()2sin 2f x x x =+12π个单位,再把各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数()g x 的图象,则下列说法中正确的是( )A .()f xB .()g x 是奇函数C .()f x 的图象关于点,06π⎛⎫- ⎪⎝⎭对称 D .()g x 在2,63ππ⎛⎫⎪⎝⎭上单调递减 【答案】CD【解析】函数2()sin 2sin 22sin(2)3f x x x x x x π=++=+,把函数图象向左平移12π个单位,得到2sin[2()]2sin(2)2cos 21232y x x x πππ=++=+=, 再把各点的横坐标伸长到原来的2倍(纵坐标不变),得到()2cos g x x =. ①故()f x 函数的最大值为2,故选项A 错误. ②函数()2cos g x x =为偶函数,故选项B 错误. ③当6x π=-时,2sin 20663f πππ⎡⎤⎛⎫⎛⎫-=⨯-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以()f x 的图象关于点,06π⎛⎫- ⎪⎝⎭对称,故选项C 正确.④由于()2cos g x x =,在[]2,2k k πππ+,()k Z ∈上单调递减,故函数()g x 在2,63ππ⎛⎫⎪⎝⎭上单调递减.故选项D 正确.21.(2020·上海高一期中)函数()tan 6f x x π=的单调递增区间为________【答案】(63,63)k k -+,k ∈Z 【解析】由622x k k πππππ-+<<+,k Z ∈,解得6363k x k -<<+,k Z ∈,故函数的单调增区间为()63,63k k -+,k Z ∈,22.(2020·河北省故城县高级中学高一期中)已知函数()sin()f x x π=-,()cos()g x x π=+,有以下结论: ①函数()()y f x g x =的最小正周期为π; ②函数()()y f x g x =的最大值为2;③将函数()y f x =的图象向右平移2π个单位后得到函数()y g x =的图象; ④将函数()y f x =的图象向左平移2π个单位后得到函数()y g x =的图象.其中正确结论的序号是____________. 【答案】①④【解析】()sin()sin f x x x π=-=-,()cos()cos g x x x π=+=-. 因为1()()(sin )(cos )sin cos sin 22y f x g x x x x x x ==-⋅-=⋅=, 所以1()()sin 22y f x g x x ==的最小正周期为:22ππ=,故结论①正确; 因为1()()sin 22y f x g x x ==的最大值为12,所以结论②不正确;因为函数()y f x =的图象向右平移2π个单位后得到函数的解析式为: ()sin()cos 22y f x x x ππ=-=--=,所以结论③不正确;因为函数()y f x =的图象向左平移2π个单位后得到函数的解析式为: ()sin()cos ()22y f x x x g x ππ=+=-+=-=,所以结论④正确.23.(2020·宝鸡中学高一期中)函数()sin()f x A x B ωϕ=++的一部分图象如图所示,其中0A >,0>ω,π||2ϕ<.(1)求函数()y f x =解析式;(2)求[0,π]x ∈时,函数()y f x =的值域; (3)将函数()y f x =的图象向右平移π4个单位长度,得到函数()y g x =的图象,求函数()y g x =的单调递减区间.【解析】(1)根据函数()sin()f x A x B ωϕ=++的一部分图象,其中0A >,0>ω,π||2ϕ<, ∵40A B A B +=⎧⎨-+=⎩,∴22A B =⎧⎨=⎩;∵12π5ππ44126T ω=⋅=-,∴2ω=, 再根据π46f ⎛⎫= ⎪⎝⎭,可得ππ22π62k ϕ⨯+=+,k ∈Z ,∴π2π6k ϕ=+,k ∈Z ,∵π||2ϕ<,∴π6ϕ=,∴函数()y f x =的解析式为π()2sin 226f x x ⎛⎫=++ ⎪⎝⎭; (2)∵[]0,πx ∈,∴ππ13π2,666x ⎡⎤+∈⎢⎥⎣⎦,∴πsin 2[1,1]6x ⎛⎫+∈- ⎪⎝⎭, ∴函数()y f x =的值域为[]0,4; (3)将函数()y f x =的图象向右平移π4个单位长度, 得到函数πππ()2sin 222sin 22463g x x x ⎡⎤⎛⎫⎛⎫=-++=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,对于函数π()2sin 223g x x ⎛⎫=-+ ⎪⎝⎭, 令ππ3π2π22π232k x k +≤-≤+,k ∈Z , 求得5π11πππ1212k x k +≤≤+,k ∈Z , 故函数()g x 的单调减区间为5π11ππ,π1212k k ⎡⎤++⎢⎥⎣⎦,k ∈Z .24.(2020·山西省平遥中学校高一月考)已知函数()4sin cos 3f x x x π⎛⎫=++ ⎪⎝⎭(1)求函数()f x 的最小正周期及单调增区间; (2)求函数()f x 在区间,46ππ⎡⎤-⎢⎥⎣⎦上的值域和取得最大值时相应的x 的值.【解析】(1)()4sin cos cos sin sin 33f x x x x ππ⎛⎫=-+ ⎪⎝⎭22sin cos x x x =-)sin 21cos2x x =-+sin 22x x =+2sin 23x π⎛⎫=+ ⎪⎝⎭.∴22T ππ==. 由222232k x k πππππ-+≤+≤+,k Z ∈得:51212k x k ππππ-+≤≤+,k Z ∈ ∴单调增区间为()5,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦.(2)∵46x ππ-≤≤,∴22633x πππ-≤+≤. ∴1sin 2123x π⎛⎫-≤+≤ ⎪⎝⎭,即12sin 223x π⎛⎫-≤+≤ ⎪⎝⎭.∴函数()f x 在区间,46ππ⎡⎤-⎢⎥⎣⎦上的值域为[]1,2- 且当232x ππ+=,即12x π=时,()max 2f x =.25.(2020·武功县普集高级中学高一月考)在已知函数()sin(),f x A x x R ωϕ=+∈(其中0,0,02A πωϕ>><<)的图象与x 轴的交点中,相邻两个交点之间的距离为2π,且图象上一个最低点为2,23M π⎛⎫- ⎪⎝⎭. (1)求()f x 的解析式;(2)当,122x ππ⎡⎤∈⎢⎥⎣⎦时,求()f x 的值域. 【解析】(1)依题意,由最低点为2,23M π⎛⎫- ⎪⎝⎭,得2A =,又周期T π=,∴2ω=. 由点2,23M π⎛⎫-⎪⎝⎭在图象上,得42sin 23πϕ⎛⎫+=- ⎪⎝⎭, ∴4232k ππϕπ+=-+,k Z ∈,1126k k Z πϕπ∴=-+∈,. ∵0,2πϕ⎛⎫∈ ⎪⎝⎭,∴6πϕ=,∴()2sin 26f x x π⎛⎫=+ ⎪⎝⎭. 由222262k x k πππππ-≤+≤+,k Z ∈,得36k x k k Z ππππ-≤≤+∈,.∴函数()f x 的单调增区间是(),36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. (2),122x ππ⎡⎤∈⎢⎥⎣⎦,∴72,636x πππ⎡⎤+∈⎢⎥⎣⎦. 当262x ππ+=,即6x π=时,()f x 取得最大值2; 当7266x ππ+=,即2x π=时,()f x 取得最小值1-,故()f x 的值域为[]1,2-.。

高考总复习一轮数学精品课件 第五章 三角函数 第五节 三角函数的图象与性质

高考总复习一轮数学精品课件 第五章 三角函数 第五节 三角函数的图象与性质
π
A. 2
B.π
(2)函数 f(x)=cos x+2cos
A.π
B.2π
C.4π
1
x
2
D.2π
的一个周期为(
C.3π
)
)
D.4π
(3)(2023新高考Ⅰ,15)已知函数f(x)=cos ωx-1(ω>0)在区间[0,2π]上有且仅
有3个零点,则ω的取值范围是
.
答案 (1)D
(2)D
2
(3)[2,3)
2
π

A.[ +4kπ, +4kπ](k∈Z)
3
3
1
5
B.[3+4k,3+4k](k∈Z)
π

C.[6+4kπ, 6 +4kπ](k∈Z)
1
5
D.[6+4k,6+4k](k∈Z)
)
(2)函数y=tan(
π
4
-2x)的定义域是
答案 (1)B (2) ≠
解析
π

+ ,
2
8
.

π
(1)由题意得,2sin x-1≥0,所以
,则(
A.函数f(x)的周期为π
B.函数f(x)的图象关于原点对称
C.f(x)的最大值为2
D.函数 f(x)在区间
答案 AC
π
0,
2
上单调递增
)
解析由三角函数周期得函数 f(x)的周期为
f(0)=2sin
π
3

T= 2 =π,A
正确;
=-√3≠0,B 错误;
由正弦函数性质知 f(x)max=2,C 正确;

三角函数的单调性、奇偶性、周期性、最值、对称性

三角函数的单调性、奇偶性、周期性、最值、对称性

1.(13年北京T15)已知函数.(I)求的最小正周期及最大值;(II)若,且,求的值.【测量目标】正弦定理、余弦定理及三角函数与三角恒等变换.【考查方式】给出关于的三角函数及某区间,求的最小正周期、最大值及满足某区间的的值.【试题解析】(I)因为===,所以的最小正周期为,最大值为.(II)因为,所以,(步骤1)因为,所以,所以,故.(步骤2)2.(13年江苏T1)函数的最小正周期为 .【测量目标】三角函数的周期性.【考查方式】求解函数的最小正周期.【参考答案】【试题解析】函数的最小正周期.3.(13年浙江T6)函数的最小正周期和振幅分别是()A.,1B. ,2C.2,1D.2,2【测量目标】三角函数公式、三角恒等变换.【考查方式】根据三角恒等变换求出最简三角函数解析式,然后得到结果.【参考答案】A【试题解析】,∵,∴振幅为1,∵ω=2,∴T=π.4.(13年陕西T16)已知向量,,设函数.(Ⅰ)求的最小正周期.(Ⅱ)求在上的最大值和最小值.【测量目标】平面向量的数量积运算,三角恒等变化,正弦函数.【考查方式】利用向量数量积的运算,两角和的正弦公式、二倍角公式、正弦函数的性质进行求解.【试题解析】.(步骤1)(Ⅰ)最小正周期为,即函数的最小正周期为.(步骤2)(Ⅱ)(步骤3)由正弦的性质得,当,即时,取得最大值1.(步骤4)当,即时,.(步骤5)当,即时,,(步骤6)的最小值为.因此,在上的最大值是1,最小值是.(步骤7)5.(13年天津T6)函数在区间上的最小值是()A. B. C. D. 0【测量目标】三角函数的最值.【考查方式】给出正弦函数及其定义域,由正弦函数的单调性判断最小值.【参考答案】B【试题解析】确定的范围,根据正弦函数的单调性求出最小值.,(步骤1)当时,有最小值.(步骤2)。

142三角函数的周期性50278

142三角函数的周期性50278
24
练习2
(1)函数y=sinπx的周期是T= ___ (2)函数y=cos2πx的周期是T=_____.
3.下面函数是周期函数吗?如果是周期
函数,你能找出最小正周期吗?
(1) f ( x) 5
(2)f
(
x
)

1 0
xQ x CRQ
4.y=sinx(x∈[0,4π])是周期函数吗?
周期求法:
(3)
y

1 2sin(
x


),
x

R
26
解(2) sin(2x) sin(2x 2 )
sin(2x) sin2(x )
y sin 2x 的周期为π .
(3) 2sin( 1 x ) 2sin( 1 x 2 )
26
26

2 sin(
1 2
4
32
3
就是说 不能对x在定义域内的每一个值使
2
sin( x ) sin x,因此 不是y sin x的周期.
2
2
判断下列说法是否正确
(1) x 时,sin( x 2 ) sin x 则 2
3
3
3
一定不是 y sin x 的周期 (√)
(2)x 7
x


6
)

2 sin

1 2
(
x

4
)


6


y

2sin( 1 2
x)
6
的周期为4π
另法
归纳总结
一般地, 函数y Asin(x ), x R及函 数y Acos(x ), x R(其中A,,为常 数,且A 0, 0)的周期为:T 2 .

三角函数的性质

三角函数的性质
方法规律总结:
(2)T = 2π
2π (3)T = |ω |
师生互动
使 y = sin ω x(ω > 0) 在 [ 0,1] 内至少出现2次最大值,则
ω 的最小值为( A ) 5π A、 A、 2
C、 、
B、 B、
π
5π 4 3π D、 、 2
题型五: 题型五:三角函数的单调性 例5、求下列函数的单调递增区间
π
3 (1)[kπ − , kπ + π ](k ∈ Z ) 8 8
(2)整理得y = −3sin( − ) 3 6 所以单调递增区间为 x ∈ [6kπ + 2π , 6kπ + 5π ](k ∈ Z )
(3)y = sin 2 x + 3 cos 2 x )
(3)原式 = 2sin(2 x + ) 3 所以函数的单调递增区间为 5 π x ∈ [kπ − π , kπ + ](k ∈ Z ) 12 12
π
互动探究
求下列函数的定义域
(1) y = sin x + 25 − x 2 (2) y = 2 sin x − 2 + 2 cos x − 1
互动探究
求25 − x 2 (1)
[−5, −π ] U [0, π ]
(2) y = 2 sin x − 2 + 2 cos x − 1
A.
x=−
2
B.
x=−
4
C.
x=
π
8
D.
5π x= 4
A )
题型四: 题型四:三角函数的周期性 例4、求下列函数的周期
(1)
范例解析
y = sin 2 x
π

三角函数与平面向量

三角函数与平面向量
向量旋转与三角函数: 通过三角函数可以实
现向量的旋转。
向量角度与三角函数: 向量的夹角可以通过 三角函数进行计算。
向量投影与三角函数: 向量的投影长度和方 向可以通过三角函数
进行计算。
三角函数在向量 运算中的应用, 如向量的点乘和
叉乘
向量在三角函数 中的应用,如利 用向量表示三角 函数图像的平移
和旋转
三角函数与平面向量的运算性质 及其相互转化
三角函数与平面向量在解题中的 综合运用
总结三角函数与平面向量之间的 关系及其对数学发展的影响
发展趋势:随着数学理论和 应用的不断发展,三角函数 和平面向量理论将进一步完 善,其在物理、工程等领域 的应用将更加广泛。
未来研究方向:深入研究三角函 数和平面向量的性质和关系,探 索其在解决实际问题中的应用, 同时寻求与其他数学领域的交叉 融合,以推动数学理论的发展。
增大而增大或减小。
三角函数定义:以角 为变量,单位圆上点
的坐标为值的函数
三角函数周期性:单位 圆上三角函数值的周期
性变化
单位圆上三角函数表 示:通过单位圆上点 的坐标计算三角函数

三角函数性质:在单 位圆上表示的三角函 数的性质,如正弦、
余弦、正切等
向量的模:表示 向量的大小,计 算公式为 $\sqrt{x^2 + y^2}$
复合函数:通过 将一个三角函数 作为另一个函数 的自变量,可以 形成复合函数。
向量加法:满足平行四边形法则和三角形法则 向量数乘:标量与向量的乘积,结果仍为向量 向量点乘:两个向量的点乘结果为标量,满足分配律和交换律 向量叉乘:两个向量的叉乘结果仍为向量,垂直于原向量构成的平面
三角函数与向量 点乘的性质
向量垂直:当两个 向量的夹角为90 度时,它们被称为 垂直向量。

六种三角函数性质

六种三角函数性质

六种三角函数性质、公式三角函数包括。

它包含六种基本函数:正弦、余弦、正切、余切、正割、余割1-1y=sinx-3π2-5π2-7π27π25π23π2π2-π2-4π-3π-2π4π3π2ππ-πoy x1-1y=cosx-3π2-5π2-7π27π25π23π2π2-π2-4π-3π-2π4π3π2ππ-πoyxy=tanx3π2ππ2-3π2-π-π2oyxy=cotx3π2ππ22π-π-π2oyx.反三角函数:arcsinx arccosxarctanx arccotx函数y=sinx y=cosx y=tanx y=cotx定义域R R {x|x∈R且x≠kπ+2π,k∈Z}{x|x∈R且x≠kπ,k∈Z}值域[-1,1]x=2kπ+2π时y max=1x=2kπ-2π时y min=-1[-1,1]x=2kπ时y max=1x=2kπ+π时y min=-1R无最大值无最小值R无最大值无最小值周期性周期为2π周期为2π周期为π周期为π奇偶性奇函数偶函数奇函数奇函数单调性在[2kπ-2π,2kπ+2π]上都是增函数;在在[2kπ-π,2kπ]上都是增函数;在[2kπ,2kπ+π]上都是减函数在(kπ-2π,在(kπ,kπ+π)内都是减函数(k∈Z)y=secx的性质:(1)定义域,{x|x≠π/2+kπ,k∈Z}(2)值域,|secx|≥1.即secx≥1或secx≤-1;(3)y=secx是偶函数,即sec(-x)=secx.图像对称于y轴;(4)y=secx是周期函数.周期为2kπ(k∈Z,且k≠0),最小正周期T=2π.(5)正割与余弦互为倒数;余割与正弦互为倒数;(6)正割函数无限趋于直线x=π/2+Kπ;(7) 正割函数是无界函数;(8)正割函数的导数:(secx)′=secx×tarx;(9正割函数的不定积分:∫secxdx=ln∣secx+tanx∣+Cy=cscx的性1、定义域:{x|x≠kπ,k∈Z}2、值域:{y|y≤-1或y≥1}3、奇偶性:奇函数4、周期性:最小正周期为2π5、图像:图像渐近线为:x=kπ ,k∈Z 余割函数与正弦函数互为倒数第一部分三角函数公式·两角和与差的三角函数cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·和差化积[/url]公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·积化和差[/url]公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·倍角公式[/url]:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=(cosα)^2-(sinα)^2=2(cosα)^2-1=1-2(sinα)^2tan(2α)=2tanα/(1-tan^2α)cot(2α)=(cot^2α-1)/(2cotα)sec(2α)=sec^2α/(1-tan^2α)csc(2α)=1/2*secα·cscα·三倍角公式:sin(3α) = 3sinα-4sin^3α = 4sinα·sin(60°+α)sin(60°-α)cos(3α) = 4cos^3α-3cosα = 4cosα·cos(60°+α)cos(60°-α)tan(3α) = (3tanα-tan^3α)/(1-3tan^2α) = tanαtan(π/3+α)tan(π/3-α)cot(3α)=(cot^3α-3cotα)/(3cot^2α-1)·n倍角公式:sin(nα)=ncos^(n-1)α·sinα-C(n,3)cos^(n-3)α·sin^3α+C(n,5)cos^(n-5)α·sin^5α-…cos(nα)=cos^nα-C(n,2)cos^(n-2)α·sin^2α+C(n,4)cos^(n-4)α·sin^4α-…·半角公式[/url]:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinαcot(α/2)=±√((1+cosα)/(1-cosα))=(1+cosα)/sinα=sinα/(1-cosα)sec(α/2)=±√((2secα/(secα+1))csc(α/2)=±√((2secα/(secα-1))·辅助角公式:Asinα+Bcosα=√(A^2+B^2)sin(α+φ)(tanφ=B/A)Asinα+Bcosα=√(A^2+B^2)cos(α-φ)(tanφ=A/B)·万能公式sin(a)= (2tan(a/2))/(1+tan^2(a/2))cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))tan(a)= (2tan(a/2))/(1-tan^2(a/2))·降幂公式sin^2α=(1-cos(2α))/2=versin(2α)/2cos^2α=(1+cos(2α))/2=covers(2α)/2tan^2α=(1-cos(2α))/(1+cos(2α))·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·si nγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·co sγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)·其它公式·两角和与差的三角函数cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)=sinα/(1-cosα) ·和差化积[/url]公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·积化和差[/url]公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·倍角公式[/url]:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=(cosα)^2-(sinα)^2=2(cosα)^2-1=1-2(sinα)^2tan(2α)=2tanα/(1-tan^2α)cot(2α)=(cot^2α-1)/(2cotα)sec(2α)=sec^2α/(1-tan^2α)csc(2α)=1/2*secα·cscα·三倍角公式:sin(3α) = 3sinα-4sin^3α = 4sinα·sin(60°+α)sin(60°-α)cos(3α) = 4cos^3α-3cosα = 4cosα·cos(60°+α)cos(60°-α)tan(3α) = (3tanα-tan^3α)/(1-3tan^2α) = tanαtan(π/3+α)tan(π/3-α)cot(3α)=(cot^3α-3cotα)/(3cot^2α-1)·n倍角公式:sin(nα)=ncos^(n-1)α·sinα-C(n,3)cos^(n-3)α·sin^3α+C(n,5)cos^(n-5)α·sin^5α-…cos(nα)=cos^nα-C(n,2)cos^(n-2)α·sin^2α+C(n,4)cos^(n-4)α·sin^4α-…·半角公式[/url]:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinαcot(α/2)=±√((1+cosα)/(1-cosα))=(1+cosα)/sinαsec(α/2)=±√((2secα/(secα+1))csc(α/2)=±√((2secα/(secα-1))·辅助角公式:Asinα+Bcosα=√(A^2+B^2)sin(α+φ)(tanφ=B/A)Asinα+Bcosα=√(A^2+B^2)cos(α-φ)(tanφ=A/B)·万能公式sin(a)= (2tan(a/2))/(1+tan^2(a/2))cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))tan(a)= (2tan(a/2))/(1-tan^2(a/2))·降幂公式sin^2α=(1-cos(2α))/2=versin(2α)/2cos^2α=(1+cos(2α))/2=covers(2α)/2tan^2α=(1-cos(2α))/(1+cos(2α))·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·si nγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·co sγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)·其它公式1+sin(a)=(sin(a/2)+cos(a/2))^2 1-sin(a)=(sin(a/2)-cos(a/2))^2csc(a)=1/sin(a) sec(a)=1/cos(a)cos30=sin60sin30tanα+cotα=2/sin2αtanα-cotα=-2cot21+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=[sin(α/2)+cos(α/2)]^21+sin(a)=(sin(a/2)+cos(a/2))^2 1-sin(a)=(sin(a/2)-cos(a/2))^2 csc(a)=1/sin(a) sec(a)=1/cos(a)cos30=sin60sin30=cos60·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=[sin(α/2)+cos(α/2)]^2。

三角函数的周期性、奇偶性、对称性-高考数学复习

三角函数的周期性、奇偶性、对称性-高考数学复习

π
直线 x = 对称,则函数 g ( x )=
6
sin x + a cos x 的图象(
C )
(1)因为函数 f ( x )= a sin x + cos x ( a 为常数, x ∈R)的图象关于直线 x
π
π
= 对称,所以 f (0)= f
6
3
= sin x +
3
2 3
cos x =
sin
3
3
,所以1=
π
= k π, k ∈Z,即φ= k π- , k ∈Z.
4
π
++
4
π
为奇函数,所以φ+
4
因此,选项D正确.
3.
π
(2024·河北衡水模拟)已知 x 0= 是函数 f ( x )=
6
cos
π
2
− 3 cos φ+
cos 3 x sin φ的一个极小值点,则 f ( x )的一个单调递增区间是(

则f
π

4
=- 2 sin 2 −
π
4
= 2 cos 2 x ,为偶函数,A正确.
π
π

令2 x = + k π, k ∈Z,则 x = + π, k ∈Z,
2
4
2
π

即 f ( x )的对称轴为 x = + π, k ∈Z,B错误.
4
2
因为 x ∈
π
π

3
2
,所以2 x ∈
所以 f ( x )单调递增,C正确.
(1)(2024·江苏苏州模拟)已知函数 f ( x )= cos (π- x )- cos
C. π

三角函数的奇偶性与周期性

三角函数的奇偶性与周期性

三角函数的奇偶性与周期性三角函数是数学中的重要概念之一,它们在几何学、物理学等多个领域中有广泛的应用。

在研究三角函数时,我们常常关注它们的奇偶性与周期性。

本文将着重探讨三角函数的奇偶性与周期性,并且介绍它们在实际问题中的应用。

一、正弦函数与余弦函数的奇偶性与周期性在三角函数中,最常见且重要的是正弦函数和余弦函数。

它们的图像是波浪形的曲线,具有独特的奇偶性和周期性。

1. 正弦函数的奇偶性与周期性正弦函数的定义域是实数集,记作f(x)=sin(x)。

正弦函数的图像关于原点对称,即满足奇函数的性质。

具体地说,对于任意实数x,有f(-x)=-f(x)。

这表明正弦函数的图像以原点为中心,关于x轴对称。

此外,正弦函数的周期是2π,即对任意实数x,有f(x+2π)=f(x)。

也就是说,正弦函数的图像沿x轴方向平移2π后,与原图像完全相同。

2. 余弦函数的奇偶性与周期性余弦函数的定义域是实数集,记作g(x)=cos(x)。

与正弦函数类似,余弦函数的图像也关于y轴对称,即满足偶函数的性质。

具体地说,对于任意实数x,有g(-x)=g(x)。

这表明余弦函数的图像以y轴为中心,关于y轴对称。

余弦函数的周期也是2π,即对任意实数x,有g(x+2π)=g(x)。

也就是说,余弦函数的图像沿x轴方向平移2π后,与原图像完全相同。

二、正切函数与余切函数的奇偶性与周期性除了正弦函数和余弦函数,另外两个常见的三角函数是正切函数和余切函数。

它们的奇偶性和周期性与正弦函数和余弦函数略有不同。

1. 正切函数的奇偶性与周期性正切函数的定义域是实数集,记作h(x)=tan(x)。

正切函数是奇函数,即对于任意实数x,有h(-x)=-h(x)。

与正弦函数和余弦函数不同的是,正切函数没有固定的周期。

正切函数的图像在每个π的倍数处都有无穷多个垂直渐近线,这是因为在这些点上,tan(x)的值无穷大或负无穷大。

2. 余切函数的奇偶性与周期性余切函数的定义域是实数集,记作k(x)=cot(x)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、函数 y sin(x ) 在(B )
4
A.[ , ] 上是增函数 B. [ 3 , ]上是增函数
22
44
C. [,0] 上是增函数 D. [ ,3 ] 上是增函数
44
3.函数f (x) sin(x)( 0)在区间[0, ]上递增
3
在区间[ , ]上单调递减,则的值为___C__
四、牛刀小试
1.使 f(x)=sin(2x+y)+ 3cos(2x+y)为奇函数,且在
0,π4上是减函数的 y 的一个值是
(D )
π



A.3
B. 3
C. 3
D. 3
2.已知 f(x)=cos 3x+φ- 3sin( 3x+φ)为偶函数,则
φ 可以取的一个值为
4
( 0)的周期为 . (1)求的值;
(2)讨论f (x)在区间[0, ]的单调性。
2
(1) 1
(2)增区间:(0, );减区间:( , )
8
82
考点三.函数y Asin(x )的奇偶性
1. y Asin(x )为奇函数 k 2. y Asin(x )为偶函数 k
(D )
A.π6
B.π3
C.-π6
D.-π3
Hale Waihona Puke 3.(2012·温州模拟)已知函数y=2sin(ωx+φ)(ω>0)为偶
函数(0<φ<π),其图象与直线y=2某两个交点的横坐
标分别为x1,x2,若|x2-x1|的最小值为π,则该函数
的一个递增区间可以是
( )A
A.-π2,-π4 C.0,π2
B.-π4,π4 D.π4,34π
32
A.3 B.2 C. 3 D. 2
2
3
4.函数f (x) 2sin(x)( 0)在区间[ , 2 ]上
43
单调递增,则的取值范围为_____C________
A.(0,2]
B.[2,)
C.(0, 3] 4
D.[3 ,) 4
7.已知函数f (x) 4 cosx sin(x )
2
这里的k属于整数集
三、例题选讲
[例 2] (2013·广州调研)已知函数 f(x)=sin2x+32π (x∈R),给出下面四个命题:
①函数 f(x)的最小正周期为 π;②函数 f(x)是偶函数; ③函数 f(x)的图象关于直线 x=π4对称;④函数 f(x)在 区间0,π2上是增函数.其中正确命题的序号是 ①___②__③_
相关文档
最新文档