山西2017年中考数学真题试题【带答案】

合集下载

2017年山西省中考数学试题及参考答案(word解析版)

2017年山西省中考数学试题及参考答案(word解析版)

2017年山西省中考数学试题及参考答案一、选择题(本大题共10个小题,每小题3分,共30分)1.计算﹣1+2的结果是( )A .﹣3B .﹣1C .1D .32.如图,直线a ,b 被直线c 所截,下列条件不能判定直线a 与b 平行的是( )A .∠1=∠3B .∠2+∠4=180°C .∠1=∠4D .∠3=∠43.在体育课上,甲、乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( )A .众数B .平均数C .中位数D .方差4.将不等式组26040x x -≤⎧⎨+>⎩的解集表示在数轴上,下面表示正确的是( )A .B .C .D .5.下列运算错误的是( )A .01)1=B .291(3)44-÷=C .5x 2﹣6x 2=﹣x 2D .(2m 3)2÷(2m )2=m 46.如图,将矩形纸片ABCD 沿BD 折叠,得到△BC′D ,C′D 与AB 交于点E .若∠1=35°,则∠2的度数为( )A .20°B .30°C .35°D .55° 7.化简2442x x x x ---的结果是( ) A .22x x -+ B .26x x -+ C . 2x x -+ D .2x x - 8.2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为( )A .186×108吨B .18.6×109吨C .1.86×1010吨D .0.186×1011吨9.公元前5q p(p 与q 是互质的两个正整数).于是22()2q p ==,所以,222q p =.于是2q 是偶数,进而q 是偶数.从而可设2q m =,所以2222(2)2,2m p p m ==,于是可得p 也是偶数.这与“p 与q 是互质的两个正整数”矛盾,从而可知”的假设不这种证明”的方法是( )A .综合法B .反证法C .举反例法D .数学归纳法10.如图是某商品的标志图案,AC 与BD 是⊙O 的两条直径,首尾顺次连接点A ,B ,C ,D ,得到四边形ABCD .若AC=10cm ,∠BAC=36°,则图中阴影部分的面积为( )A .5πcm 2B .10πcm 2C .15πcm 2D .20πcm 2二、填空题(本大题共5个小题,每小题3分)11.计算:= .12.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为 元.13.如图,已知△ABC 三个顶点的坐标分别为A (0,4),B (﹣1,1),C (﹣2,2),将△ABC 向右平移4个单位,得到△A′B′C′,点A ,B ,C 的对应点分别为A′、B′、C′,再将△A′B′C′绕点B′顺时针旋转90°,得到△A″B″C″,点A′、B′、C′的对应点分别为A″、B″、C″,则点A″的坐标为 .14.如图,创新小组要测量公园内一棵树的高度AB ,其中一名小组成员站在距离树10米的点E 处,测得树顶A 的仰角为54°.已知测角仪的架高CE=1.5米,则这棵树的高度为 米.(结果保留一位小数.参考数据:sin54°=0.8090,cos54°=0.5878,tan54°=1.3764)15.一副三角板按如图方式摆放,得到△ABD 和△BCD ,其中∠ADB=∠BCD=90°,∠A=60°,∠CBD=45°,E 为AB 的中点,过点E 作EF ⊥CD 于点F .若AD=4cm ,则EF 的长为 cm .三、解答题(本大题共8个小题,共75分)16.(10分)(1)计算:321(2)()sin 453--+ ; (2)分解因式:(y+2x )2﹣(x+2y )2.17.(6分)已知:如图,在▱ABCD 中,延长AB 至点E ,延长CD 至点F ,使得BE=DF .连接EF ,与对角线AC 交于点O .求证:OE=OF .18.(7分)如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,其边长为2,点A,点C分别在x轴,y轴的正半轴上,函数y=2x的图象与CB交于点D,函数kyx=(k为常数,k≠0)的图象经过点D,与AB交于点E,与函数y=2x的图象在第三象限内交于点F,连接AF、EF.(1)求函数kyx=的表达式,并直接写出E、F两点的坐标;(2)求△AEF的面积.19.(7分)“春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟”即谷子(去皮后则称为“小米”),被誉为中华民族的哺育作物.我省有着“小杂粮王国”的美誉,谷子作为我省杂粮谷物中的大类,其种植面积已连续三年全国第一.2016年全国谷子种植面积为2000万亩,年总产量为150万吨,我省谷子平均亩产量为160kg,国内其他地区谷子的平均亩产量为60kg,请解答下列问题:(1)求我省2016年谷子的种植面积是多少万亩.(2)2017年,若我省谷子的平均亩产量仍保持160kg不变,要使我省谷子的年总产量不低于52万吨,那么,今年我省至少应再多种植多少万亩的谷子?20.(12分)从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016年我国共享经济市场交易额约为34520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约1亿人.如图是源于该报告中的中国共享经济重点领域市场规模统计图:(1)请根据统计图解答下列问题:①图中涉及的七个重点领域中,2016年交易额的中位数是亿元.②请分别计算图中的“知识技能”和“资金”两个重点领域从2015年到2016年交易额的增长率(精确到1%),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识.(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同)他们将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A,B,C,D表示)21.(7分)如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C 的⊙O的切线交于点D.(1)若AC=4,BC=2,求OE的长.(2)试判断∠A与∠CDE的数量关系,并说明理由.22.(12分)综合与实践背景阅读早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被记载于我国古代著名数学著作《周髀算经》中,为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形,例如:三边长分别为9,12,15或3,4,5)型三角形,用矩形纸片按下面的操作方法可以折出这种类型的三角形.实践操作如图1,在矩形纸片ABCD中,AD=8cm,AB=12cm.第一步:如图2,将图1中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF ,再沿EF 折叠,然后把纸片展平.第二步:如图3,将图2中的矩形纸片再次折叠,使点D 与点F 重合,折痕为GH ,然后展平,隐去AF .第三步:如图4,将图3中的矩形纸片沿AH 折叠,得到△AD′H ,再沿AD′折叠,折痕为AM ,AM 与折痕EF 交于点N ,然后展平.问题解决(1)请在图2中证明四边形AEFD 是正方形.(2)请在图4中判断NF 与ND′的数量关系,并加以证明;(3)请在图4中证明△AEN (3,4,5)型三角形;探索发现(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.23.(14分)如图,抛物线2y x =++与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC 、BC .点P 沿AC 以每秒1个单位长度的速度由点A 向点C 运动,同时,点Q 沿BO 以每秒2个单位长度的速度由点B 向点O 运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ .过点Q 作QD ⊥x 轴,与抛物线交于点D ,与BC 交于点E ,连接PD ,与BC 交于点F .设点P 的运动时间为t 秒(t >0).(1)求直线BC 的函数表达式;(2)①直接写出P ,D 两点的坐标(用含t 的代数式表示,结果需化简)②在点P 、Q 运动的过程中,当PQ=PD 时,求t 的值;(3)试探究在点P ,Q 运动的过程中,是否存在某一时刻,使得点F 为PD 的中点?若存在,请直接写出此时t 的值与点F 的坐标;若不存在,请说明理由.参考答案与解析一、选择题(本大题共10个小题,每小题3分,共30分)1.计算﹣1+2的结果是( )A .﹣3B .﹣1C .1D .3【考点】有理数的加法.【分析】直接利用有理数加减运算法则得出答案.【解答】解:﹣1+2=1.故选:C.【点评】此题主要考查了有理数加法,正确掌握运算法则是解题关键.2.如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠4=180°C.∠1=∠4 D.∠3=∠4【考点】平行线的判定.【分析】根据同位角相等,两直线平行;同旁内角互补,两直线平行进行判断即可.【解答】解:由∠1=∠3,可得直线a与b平行,故A能判定;由∠2+∠4=180°,∠2=∠5,∠4=∠3,可得∠3+∠5=180°,故直线a与b平行,故B能判定;由∠1=∠4,∠4=∠3,可得∠1=∠3,故直线a与b平行,故C能判定;由∠3=∠4,不能判定直线a与b平行,故选:D.【点评】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;同旁内角互补,两直线平行.3.在体育课上,甲、乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的()A.众数B.平均数C.中位数D.方差【考点】统计量的选择;算术平均数;方差.【分析】方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好;【解答】解:因为方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好;所以要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的方差.故选D.【点评】本题考查平均数、方差、众数、中位数等知识,解题的关键是理解方差的意义,属于中考常考题型.4.将不等式组26040xx-≤⎧⎨+>⎩的解集表示在数轴上,下面表示正确的是()A.B.。

2017年山西省中考数学试卷(含答案解析)

2017年山西省中考数学试卷(含答案解析)

2017年山西省中考数学试卷、选择题(本大题共10个小题,每小题3分,共30分)(3分)计算-1+2的结果是A.Z 仁/ 3B.Z 2+Z 4=180°C.Z 仁/4D.Z 3=7 4 3. (3分)在体育课上,甲、乙两名同学分别进行了 5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的(则7 2的度数为( ) 20° B . 30° C . 35° D . 55°(3分)化简一--的结果是宀 K -25. (3分)下列运算错误的是( A . (乙-1) 0=1 B . (- 3) I 2 )「J C. 5X 2- 6x 2=- x 2 4 4D . (2m 3) 2-(2m ) 2=m 46. (3分)如图,将矩形纸片ABCD 沿BD 折叠,得到△ BC , C 与AB 交于点E.若/仁35°-3 B .- 1 C . 1 D . 3a ,b 被直线c 所截,下列条件不能判定直线a 与b 平行的是()A .众数 B.平均数C .中位数D .方差x+4>0 4. (3分)将不等式组I 的解集表示在数轴上,下面表示正确的是(A .B.[厶 ........... I,-5-^3-2-1012 347. A .A . A .8. (3分)2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在 海域连续稳定产气的国家•据粗略估计,仅南海北部陆坡的可燃冰资源就达到 186亿吨油当量,达到我国陆上石油资源总量的 50%.数据186亿吨用科学记数法可表示为()A . 186X 108 吨B . 18.6X 109 吨 C. 1.86X 1010 吨 D . 0.186X 1011吨 9. (3分)公元前5世纪,毕达哥拉斯学派中的一名成员希伯索斯发现了无理数「,导致了第一次数学危机, 匚是无理数的证明如下:假设 二是有理数,那么它可以表示成’(p 与q 是互质的两个正整数)•于是(J 2=(匚)PP2=2,所以,q 2=2p 2.于是q 2是偶数,进而q 是偶数,从而可设q=2m,所以(2m ) 2=2p 2, p 2=2m 2, 于是可得p 也是偶数•这与“胃q 是互质的两个正整数”矛盾•从而可知“二是有理数”的假 设不成立,所以, 二是无理数.这种证明“匚是无理数”的方法是(AC 与BD 是。

2017山西中考数学试题解析

2017山西中考数学试题解析

山西省2017年中考数学真题试题第Ⅰ卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)-+的结果是()1.计算12A.-3 B.-1 C.1 D.3【答案】C.【解析】试题分析:﹣1+2=1.故选C.考点:有理数的加法.2.如图,直线a,b被直线c所截,下列条件不能..判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠4=180°C.∠1=∠4 D.∠3=∠4【答案】D.考点:平行线的判定.3.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的()A.众数B.平均数C.中位数D.方差【答案】D.【解析】试题分析:由于方差能反映数据的稳定性,需要比较这两名学生立定跳远成绩的方差.故选D.考点:在数轴上表示不等式的解集;解一元一次不等式组.5.下列运算错误..的是()A .0(31)1-=B .291(3)44-÷= C .22256x x x -=- D .3224(2)(2)m m m ÷= 【答案】B .考点:有理数的除法;合并同类项;整式的除法;零指数幂.6.如图,将矩形纸片ABCD 沿BD 折叠,得到△BC ′D ,C ′D 与AB 交于点E .若∠1=35°,则∠2的度数为( )A .20oB .30oC .35oD .55o【答案】A .【解析】试题分析:由翻折的性质得,∠DBC =∠DBC ′,∵∠C =90°,∴∠DBC =∠DBC ′=90°-35°=55°,∵矩形的对边AB ∥DC ,∴∠1=∠DBA =35°,∴∠2=∠DBC ′-∠DBA =55°-35°=20°.故选A .考点:平行线的性质;翻折变换(折叠问题).7.化简2442x x x x ---的结果是( ) A .22x x -+ B .26x x -+ C .2x x -+ D .2x x - 【答案】C .考点:分式的加减法.8.2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为( )A .818610⨯吨B .918.610⨯吨C .101.8610⨯吨D .110.18610⨯吨【答案】C .【解析】试题分析:将186亿用科学记数法表示为:101.8610⨯.故选C .考点:科学记数法—表示较大的数.9.公元前5世纪,2,导致了第一次数学危机.2是无理数的证明如下: 2是有理数,那么它可以表示成q p(p 与q 是互质的两个正整数).于是22()(2)2q p ==,所以,222q p =.于是2q 是偶数,进而q 是偶数.从而可设2q m =,所以2222(2)2,2m p p m ==,于是可得p 也是偶数.这与“p 与q 是互质的两个正整数”矛盾,从而可知2是有理数”的假设不成立,所以,2是无理数. 2是无理数”的方法是( )A .综合法B .反证法C .举反例法D .数学归纳法【答案】B .【解析】试题分析:显然选项A 中13不是“正方形数”;选项B 、D 中等式右侧并不是两个相邻“三角形数”之和.故选B .考点:反证法.10.右图是某商品的标志图案,AC 与BD 是⊙O 的两条直径,首尾顺次连接点A 、B 、C 、D ,得到四边形ABCD .若AC =10cm ,∠BAC =36°,则图中阴影部分的面积为( )A .25cm πB .210cm πC .215cm πD .220cm π【答案】B .考点:矩形的性质;扇形面积的计算;圆周角定理第Ⅱ卷 非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11.计算:41892-= .【答案】32 .【解析】试题分析:原式=12292-=32,故答案为:32.考点:二次根式的加减法.12.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为 元.【答案】1.08a .【解析】试题分析:根据题意得:a •(1+20%)×90%=1.08a ;故答案为:1.08a .考点:列代数式.13.如图,已知△ABC 三个顶点的坐标分别为A (0,4),B (-1,1),C (-2,2).将△ABC 向右平移4个单位,得到A B C '''∆,点A 、B 、C 的对应点分别为,,A B C ''',再将A B C '''∆绕点B '顺时针旋转90o,得到A B C ''''''∆,点,,A B C '''的对应点分别为,,A B C '''''',则点A ''的坐标为 .【答案】(6,0).考点:平移的性质;旋转的性质;综合题.14.如图,创新小组要测量公园内一棵树的高度AB ,其中一名小组成员站在距离树10米的点E 处,测得树顶A 的仰角为54°.已知测角仪的架高CE =1.5米,则这颗树的高度为 米(结果保留一位小数.参考数据:sin540.8090=o ,cos540.5878=o ,tan54 1.3764=o).21世纪教育网版权所有【答案】15.3.【解析】试题分析:如图,在Rt △ACD 中,AD =CD •tan54°≈10×1.3764=13.764米,AC ≈1.5+13.764≈15.3米. 故答案为:15.3米.考点:解直角三角形的应用﹣仰角俯角问题.15.一副三角板按如图方式摆放,得到△ABD 和△BCD ,其中∠ADB =∠BCD =90°,∠A =60°,∠CBD =45°.E 为AB 的中点,过点E 作EF ⊥CD 于点F .若AD =4cm ,则EF 的长为 cm .21·cn ·jy ·com【答案】26+ .考点:直角三角形的性质;梯形中位线定理;综合题.三、解答题 (本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(1)计算:321(2)()8sin 453--+o g . (2)分解因式:22(2)(2)y x x y +-+.【答案】(1)-1;(2)3()()x y x y +- .考点:实数的运算;完全平方公式;平方差公式;负整数指数幂;特殊角的三角函数值.17.已知:如图,在Y ABCD 中,延长线AB 至点E ,延长CD 至点F ,使得BE =DF .连接EF ,与对角线AC 交于点O .求证:OE =OF .【答案】证明见解析.【解析】试题分析:先由平行四边形的性质得出AB =CD ,AB ∥DC ,再得出∠F =∠E ,CF =AE ,∠DCA =∠CAB ,即可推出△COF ≌△AOE ,从而得到结论.试题解析:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥DC ,∴∠F =∠E ,∠DCA =∠CAB ,∵AB =CD ,FD =BE ,∴CF =AE ,在△COF 和△AOE 中,∵∠F =∠E ,CF =AE ,∠DCA =∠CAB ,∴△COF ≌△AOE ,∴∴OE =OF . 考点:平行四边形的性质;全等三角形的判定与性质.18.如图,在平面直角坐标系中,正方形OABC 的顶点O 与坐标原点重合,其边长为2,点A ,点C 分别在x 轴,y 轴的正半轴上.函数2y x =的图象与CB 交于点D ,函数k y x=(k 为常数,0k ≠)的图象经过点D ,与AB 交于点E ,与函数2y x =的图象在第三象限内交于点F ,连接AF 、EF .(1)求函数k y x=的表达式,并直接写出E 、F 两点的坐标. (2)求△AEF 的面积.【答案】(1)2yx,E(2,1),f(-1,-2);(2)32.考点:反比例函数综合题.19.“春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟”即谷子(去皮后则称为“小米”),被誉为中华民族的哺育作物.我省有着“小杂粮王国”的美誉,谷子作为我省杂粮面积为2000万亩,年总产量为150万吨,我省谷子平均亩产量为160kg,国内其他地区谷子的平均亩产量为60kg.请解答下列问题:(1)求我省2016年谷子的种植面积是多少万亩.(2)2017年,若我省谷子的平均亩产量仍保持160kg不变,要使我省谷子的年总产量不低于52万吨,那么,今年我省至少应再多种植多少万亩的谷子?【答案】(1)300;(2)25.考点:一元一次不等式的应用;二元一次方程组的应用.20.从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016年我国共享经济市场交易额约为34520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约1亿人.下图是源于该报告中的中国共享经济重点领域市场规模统计图:(1)请根据统计图解答下列问题:①图中涉及的七个重点领域中,2016年交易额的中位数是_________亿元.②请分别计算图中的“知识技能”和“资金”两个重点领域从2015年到2016年交易额的增长率(精确到1%),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识.(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同).他们将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张.请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A,B,C,D表示).【答案】(1)①2038;②答案见解析;(2)16.②“知识技能”的增长率=610200200-=2.05=205%“资金”的增长率=208631000010000-=1.0863≈109%对两个领域的认识,答案不唯一.例如:“知识技能”领域交易额较小,但增长率最高,达到了200%以上,其发展速度惊人,或“资金”交易额最大,2016年达到2万亿以上,成倍增长,带动共享经济市场规模不断扩大.21教育名师原创作品(2)列表如下:由列表可知一共有12种可能出现的结果,且每种结果出现的可能性相同,其中抽到“共享出行”和“共享知识”的结果有2种,∴,P(抽到“共享出行”和“共享知识”)=212=16.考点:列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.21.如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.(1)若AC=4,BC=2,求OE的长.(2)试判断∠A与∠CDE的数量关系,并说明理由.【答案】(1)52;(2)∠CDE=2∠A.(2)∠CDE=2∠A.理由如下:连结OC,∵OA=OC,∴∠1=∠A,∵CD是⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∴∠2+∠CDE=90°,∵OD ⊥AB,∴∠2+∠3=90°,∴∠3=∠CDE.∵∠3=∠A+∠1=2∠A,∴∠CDE=2∠A.2-1-c-n-j-y考点:切线的性质;探究型;和差倍分.22.综合与实践背景阅读早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三,股四,弦五”.它被记载于我国古代著名数学著作《周髀算经》中.为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形.例如:三边长分别为9,12,15或32,42,52的三角形就是(3,4,5)型三角形.用矩形纸片按下面的操作方法可以折出这种类型的三角形.【出处:21教育名师】实践操作如图1,在矩形纸片ABCD中,AD=8cm,AB=12cm.第一步:如图2,将图1中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.第二步:如图3,将图2中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.第三步:如图4,将图3中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF 交于点N,然后展平.21·世纪*教育网问题解决(1)请在图2中证明四边形AEFD是正方形.(2)请在图4中判断NF与ND′的数量关系,并加以证明.(3)请在图4中证明△AEN是(3,4,5)型三角形.探索发现(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.2·1·c·n·j·y【答案】(1)证明见解析;(2)NF=ND′,证明见解析;(3)证明见解析;(4)△MFN,△MD′H,△MDA.考点:勾股定理的应用;新定义;阅读型;探究型;压轴题.23.综合与探究 如图,抛物线2333393y x x =-++x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC 、BC .点P 沿AC 以每秒1个单位长度的速度由点A 向点C 运动,同时,点Q 沿BO 以每秒2个单位长度的速度由点B 向点O 运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ ,过点Q 作QD ⊥x 轴,与抛物线交于点D ,与BC 交于点E .连接PD ,与BC 交于点F .设点P 的运动时间为t 秒(0t >).(1)求直线BC 的函数表达式.(2)①直接写出P 、D 两点的坐标(用含t 的代数式表示,结果需化简).②在点P 、Q 运动的过程中,当PQ =PD 时,求t 的值.(3)试探究在点P 、Q 运动的过程中,是否存在某一时刻,使得点F 为PD 的中点.若存在,请直接写出此时t 的值与点F 的坐标;若不存在,请说明理由.【版权所有:21教育】【答案】(1)333y x =-+;(2)①P (132t -,3t ),D (92t -,24383t t -+ );②154;(3)t =3,F (34,1134).(3)由中点坐标公式和F 在直线BC 上得到2690t t -+=,解得t =3.把t =3代入得到F 的坐标. 试题解析:(1)由y =0,得232333093x x -++=,解得:13x =-,29x =,∴点A 的坐标为(-3,0),点B 的坐标为(9,0).由x =0,得33y =C 的坐标为(0,33).(2)①过点P 作PG ⊥x 轴于点G .∵A (-3,0),B (9,0),C (0,33 )∴AO =3,BO =9,OC =33,∴tan ∠CAO =333CO AO == ,∴∠CAO =60°,∴∠APG =30°,∵AP =t ,∴AG =12t ,PG =3t ,∴OG =3-12t ,∴P (132t -,32t ).∵OQ =92t -,∴D 的横坐标为92t -,∵D 在抛物线23233393y x x =-++上,∴D 的纵坐标为2323(92)(92)3393y t t =--+-+=2438393t t -+,∴D D (92t -,2438393t t -+ ). 综上所述:P (132t -,3t ),D (92t -,24383t t -+ ); ②过点P 作PG ⊥x 轴于点G ,PH ⊥QD 于点H .∵QD ⊥x 轴,∴四边形PGQH 是矩形,∴HQ =PG .∵PQ =PD ,PH ⊥QD ,∴QD =2HQ =2PG .∵P 、D 两点的坐标分别为P (132t -,32t ),D (92t -,2438393t t -+ ),∴2438393t t -+=322t ⨯,解得:10t =(舍去),2154t =,∴当PQ =PD 时,t 的值为154.考点:二次函数综合题;动点型;存在型;压轴题.。

2017年山西省中考数学试题及答案

2017年山西省中考数学试题及答案

数•学第I卷选择题(共24分)选择題(本大題共12个小题,毎小题2分,共24分.在毎个小题给出的四个选项中,只有一项符合題目要求,请选出并在答題卡上将该项涂黑)t I -61的值是(D )3. 4. 5.7. 9.G十C.第二娥限D・6D・第四象限C.a6 r a1 = aD.a' • a3 =2aA・-6 s — wo 点(-2, 1)所在的象限是(B ) A.第一象限 B.第二象限下列运算正确的足(A )A. (-2a2)3 = -8ci6 B a5 =2a6 2011年第一季度,我省固定资产投资完成475・6亿元,这个数据用科学记数法可表示为(C ) A. 47.56 x 109元B. 0.4756 xlO n元C. 4.756xlO w%D. 如图所示,"0〃的两边(M、0〃均为平面反光傥,iC/10B=35% 在0〃上冇一点艮从E点射出一束光线经%上的点D反肘后■反射光线X恰好与O〃平行•则厶QE3的皮数是(B )A. 35°B. 70°C. 110°D. 120°B.将一个矩形纸片依次按图(1)、图(2)的方式对折,然后沿图(3)中的虑线裁剪,最后将图(4)的纸再展开钠平,所得到的图案是(A )Q f 2* Pn⑴⑥ O DO 口A它的每…个外角都等于45。

,則该正多边形是(C )C.正八边形D.正九边形一个正多边形,A.正六边形如图是一个工件的三视图,图中标有尺寸.则这个工件的体积是(B )A. 137rctn'B・正七边形B. 177rcmC. 66力cm'D.lent: I 1 (『"C 0(主视图)(左视图)4cm()(»8«)C. « =2分式方程士二島的解为(A・ x= -1 B. x = 1D. x =311❾五一”节期间,某电器按成本价提為30%后标价,再打8折(标价的80%)繪售.1§价为2080元.设该电器的成本价为力元.根据题意.下面所列方程正确的是(A ) A. x(l *30%) x80% =2080 B.x-30%・80%〒2080・C. 2080 x 30% x80% 二尤D. x-30% =2080 x 80%11・如图,AMC中,AB=AC.点0、E分别是边仙、AC的中点,点G、F在BC边上.四边形DEFG足正方形・若DE=2g则AC的长为(D )• 13 •(8分)⑵ 解不導式皿£:〔;:]"几并圮它的解集表示在数轴匕* 14 ■・ A, 3 再cm 、Bl 4em . C 2^Tcm D« 2 -^um1Z 巳知二次感数尸应4加址的图象如Bl 所示,对称轴为直线21,则下列结论正确的是(B } A- ac >0 B-方程as 1 t is + c= 0的购根卮黑严“ ■曲=3c. 2a-fr=o D,当"0时’随践的増大而就小第II 卷非选择题(共96分)二、填空题(本光題梵&牛小塾,毎小爛3分,共18分.把番案写在题中横践上)13, 计算:质+廿1 -血皿宀 j ”14, 如图,四边形朋口)是平行弭边腕 运加一亍条件: 匚皿 =WF ^AC = BD^]_f 可便它域为駆形.■‘15, "十—五”时期,山西将建成中西部秋衢舉省,以跌游业为龙头的 服务业将成为推动血西经济发展的主要动力.2010邙全脅全年施浙: (第 总收人大约10()0亿兀,如果和2012年金省全邨旅游总收人耍达到1440亿元,邯盘年平均地 长率欣为_20%1丘如图星用相同长產的小棒崔成的一炯有规沖的图案,图案(1)需烫4根小棒.图案(2)需要• ,按此规律摆下去*第□于图案需要小揷 (血 J ) (^£ [4«+2(n- n]⑴ £2) H 根/卜禅 __________ _ 或一二+65二1)]或〔加一 S-l )7]刑 根(用青有®的代数我表示).18. ⑶(第 16 題) 17JQ ) 如图,△佃G 杲等腰立用ufft 形* AACB=90\ AC ^HC 把色磁绕点A 按JWi 时针方向旋 转45。

2017年山西省中考数学试卷及答案-(word整理版)

2017年山西省中考数学试卷及答案-(word整理版)

2017年山西省中考数学试卷-(word 整理版)一、选择题(共10小题;共50分) 1. 计算 的结果是A. B. C. D.2. 如图,直线 , 被直线 所截,下列条件不能判定直线 与 平行的是 A.B. C.D.第2题图 第6题图 第8题图 第10题图 3. 在体育课上,甲、乙两名同学分别进行了 次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的 A. 众数B. 平均数C. 中位数D. 方差4. 将不等式组的解集表示在数轴上,下面表示正确的是A. B.C.D.5. 下列运算错误的是A.B.C. D.6. 如图,将矩形纸片 沿 折叠,得到 , 与 交于点 .若 ,则 的度数为 A.B. C. D.7. 化简的结果是A. B. C.D.8. 年 月 日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到 亿吨油当量,达到我国陆上石油资源总量的 .数据 亿吨用科学记数法可表示为A. 吨B. 吨C. 吨D. 吨9. 公元前 世纪,毕达哥拉斯学派中的一名成员希伯索斯发现了无理数 ,导致了第一次数学危机. 是无理数的证明如下:假设 是有理数,那么它可以表示成( 与 是互质的两个正整数).于是,所以, .于是 是偶数,进而 是偶数.从而可设 ,所以 , ,于是可得 也是偶数.这与“ 与 是互质的两个正整数”矛盾,从而可知“ 是有理数”的假设不成立,所以, 是无理数.这种证明“ 是无理数”的方法是A. 综合法B. 反证法C. 举反例法D. 数学归纳法10. 如图是某商品的标志图案, 与 是 的两条直径,首尾顺次连接点 , , , ,得到四边形 .若 , ,则图中阴影部分的面积为A.B.C.D.二、填空题(共5小题;共25分)11. 计算: .12. 某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为 元,商店将进价提高 后作为零售价进行销售,一段时间后,商店又以 折优惠价促销,这时该型号洗衣机的零售 价为 元.13. 如图,已知 三个顶点的坐标分别为 , , .将 向右平移 个单位,得到 ,点 , , 的对应点分别为 , , ,再将 绕点 顺 时针旋转 ,得到 ,点 , , 的对应点分别为 , , ,则点 的坐标为 .14. 如图,创新小组要测量公园内一棵树的高度 ,其中一名小组成员站在距离树 米的点 处,测得树顶 的仰角为 .已知测角仪的架高 米,则这颗树的高度为 米(结果保留一位小数.参考数据: , , ). 15. 一副三角板按如图方式摆放,得到 和 ,其中 , , . 为 的中点,过点 作 于点 .若 ,则 的长 为 .三、解答题(共8小题;共104分)16. (1)计算:.(2)分解因式:.17. 已知:如图,在平行四边形中,延长至点,延长至点,使得.连接,与对角线交于点.求证:.18. 如图,在平面直角坐标系中,正方形的顶点与坐标原点重合,其边长为,点,点分别在轴,轴的正半轴上.函数的图象与交于点,函数(为常数,)的图象经过点,与交于点,与函数的图象在第三象限内交于点,连接,.(1)求函数的表达式,并直接写出,两点的坐标.(2)求的面积.19. “春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟”即谷子(去皮后则称为“小米”),被誉为中华民族的哺育作物.我省有着“小杂粮王国”的美誉,谷子作为我省杂粮谷物中的大类,其种植面积已连续三年全国第一.年全国谷子种植面积为万亩,年总产值为万吨,我省谷子平均亩产量为,国内其他地区谷子的平均亩产量为.请解答下列问题:(1)求我省年谷子的种植面积是多少万亩?(2)年,若我省谷子的平均亩产量仍保持不变,要使我省谷子的年总产量不低于万吨,那么,今年我省至少应再多种植多少万亩的谷子?20. 从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告》显示,年我国共享经济市场交易额约为亿元,比上年增长;超亿人参与共享经济活动,比上年增加约亿人.如图是源于该报告中的中国共享经济重点领域市场规模统计图:(1)请根据统计图解答下列问题:①图中涉及的七个重点领域中,年交易额的中位数是亿元.②请分别计算图中的“知识技能”和“资金”两个重点领域从年到年交易额的增长率(精确到),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识.(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同).他们将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张.请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A,B,C,D 表示).21. 如图,内接于,且为的直径.,与交于点,与过点的的切线交于点.(1)若,,求的长.(2)试判断与的数量关系,并说明理由.22. 综合与实践背景阅读:早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三,股四,弦五”.它被记载于我国古代著名数学著作《周髀算经》中.为了方便,在本题中,我们把三边的比的三角形称为(,,)型三角形.例如:三边长分别为,,或,,的三角形就是(,,)型三角形.用矩形纸片按下面的操作方法可以折出这种类型的三角形.实践操作:如图,在矩形纸片中,,.第一步:如图,将图中的矩形纸片沿过点的直线折叠,使点落在上的点处,折痕为,再沿折叠,然后把纸片展平.第二步:如图,将图中的矩形纸片再次折叠,使点与点重合,折痕为,然后展平,隐去.第三步:如图,将图中的矩形纸片沿折叠,得到,再沿折叠,折痕为,与折痕交于点,然后展平.(1)问题解决()请在图中证明四边形是正方形.()请在图中判断和的数量关系,并加以证明.()请在图中证明是(,,)型三角形.(2)探索发现()在不添加字母的情况下,图中还有哪些三角形是(,,)型三角形?请找出并直接写出它们的名称.23. 如图,抛物线与轴交于,两点(点在点的左侧),与轴交于点,连接,.点沿以每秒个单位长度的速度由点向点运动,同时,点沿以每秒个单位长度的速度由点向点运动,当一个点停止运动时,另一个点也随之停止运动,连接.过点作轴,与抛物线交于点,与交于点.连接,与交于点,设点的运动时间为秒.(1)求直线的函数表达式.(2)①直接写出,两点的坐标(用含的代数式表示,结果需化简).②在点,运动的过程中,当时,求的值.(3)试探究在点,运动的过程中,是否存在某一时刻,使得点为的中点.若存在,请直接写出此时的值与点的坐标;若不存在,请说明理由.2017年山西省中考数学试卷答案1. C2. D3. D4. A5. B6. A7. C8. C9. B 10. B 11. 12. 13. 14. 15.16. (1)(2)解法一:【解析】解法二:17. 如图,四边形是平行四边形,,.,,即.,.,.在和中,,.18. (1)正方形的边长为,点的纵坐标为,即.将代入,得.点的坐标为.函数的图象经过点,,.函数的表达式为,,.(2)过点作,与的延长线交于点.,两点的坐标分别为,,,.的面积为:.19. (1)设我省年谷子的种植面积为万亩.由题意,得解,得答:我省年谷子的种植面积是万亩.(2)设我省今年应再多种植万亩谷子.由题意,得解,得答:我省今年至少应多种植万亩谷子.20. (1)①;②“知识技能”的增长率为:.“资金”的增长率为:.对两个领域的认识,答案不唯一.例如:“知识技能”领域交易额较小,但增长率最高,达到以上,其发展速度惊人.【解析】②或“资金”领域交易额最大,年达到万亿以上,成倍增长,带动了共享经济市场规模不断扩大.(2)列表如下:由列表可知一共有种可能出现的结果,且每种结果出现的可能性相同,其中抽到“共享出行”和“共享知识”的结果有种.抽到共享出行和共享知识.【解析】画树状图如下:由树状图可知一共有种可能出现的结果,且每种结果出现的可能性相同,其中抽到“共享出行”和“共享知识”的结果有种.抽到共享出行和共享知识.21. (1)是的直径,.在中,由勾股定理得..,,又,...(2).理由如下:如图,连接.,.是的切线,.,.,,.,.22. (1)()四边形是矩形,.由折叠知:,..四边形是矩形.,矩形是正方形.().证明:连接.由折叠知:,。

山西省2017中考数学试卷(解析新版)

山西省2017中考数学试卷(解析新版)

2017年山西省中考数学试卷一、选择题(本大题共 10 个小题,每小题 3分,共 30 分)1.计算﹣ 1+2 的结果是( )A .﹣3B .﹣1C .1D .3A .20°B .30°C .35°D .55°7.化简 ﹣ 的结果是( )b 被直线c 所截,列条件不能判定直线 a 与 b 平行的是( A .∠ 1=∠3 B .∠ 2+∠4=180° C .∠1=∠4 D .∠ 3=∠43.在体育课上,甲、乙两名同学分别进行了 5次跳远测试, 经计算他们的平均成绩相同. 若 要比较这两名同学的成绩哪一个更为稳定,通常需要比较他A .众数B .平均数C .中位数D .方差的解集表示在数轴上,下面表示正确的是(4. 将不等式组 A . B ..D . D .5.下列运算错误的是( )A .( ﹣1)0=1B .(﹣ 3)2÷ =C .5x 2﹣6x 2=﹣x 2D .(2m 3)2÷(2m )2=m 46.如图,将矩形纸片 ABCD 沿 BD 折叠,得到△ BC ′D,C ′D 与 AB 交于点 .若∠ °,则∠2 的度数A .﹣x2+2x B.﹣x2+6x C.﹣D.8.2017 年 5 月18 日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186 亿吨油当量,达到我国陆上石油资源总量的50%.数据186 亿吨用科学记数法可表示为()A.186×108吨B.18.6×109吨C.1.86×1010吨D.0.186×1011吨9.公元前 5 世纪,毕达哥拉斯学派中的一名成员希伯索斯发现了无理数,导致了第一次数学危机,是无理数的证明如下:假设是有理数,那么它可以表示成(p 与q 是互质的两个正整数).于是()2= ()2=2,所以,q2=2p2.于是q2是偶数,进而q 是偶数,从而可设q=2m,所以(2m)2=2p2,p2=2m2,于是可得p 也是偶数.这与“p与q 是互质的两个正整数”矛盾.从而可知“ 是有理数”的假设不成立,所以,是无理数.这种证明“ 是无理数”的方法是()A .综合法B.反证法C.举反例法D.数学归纳法10.如图是某商品的标志图案,AC 与BD 是⊙ O 的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD .若AC=10cm,∠ BAC=36°,则图中阴影部分的面积为()15π cm2 D.20π cm2A .5π cm2 B.10π cm2 C二、填空题(本大题共 5 个小题,每小题 3 分)11.计算: 4 ﹣9 =.12.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为 a 元,商店将进价提高 20%后作为零售价进行销售,一段时间后,商店又以 9 折优惠价促销,这时该型号洗13.如图,已知△ ABC 三个顶点的坐标分别为 A (0,4),B (﹣ 1,1),C (﹣2,2), 将△ABC 向右平移 4个单位,得到△ A ′B ′,C ′点A ,B ,C 的对应点分别为 A ′、B ′、C ′,再将△ A ′B ′绕C ′点 B ′顺时针旋转 90°,得到△A ″B ″C ,″点 A ′、B ′、C ′的对应点分别为 A ″、B ″、的点E 处,测得树顶A 的仰角为 54°.已知测角仪的架高 CE=1.5M ,则这棵树的高度为 M (.结果保留一位小数.参考数据: sin54 °=0.8090,cos54°=0.5878,tan54 °=1.3764)15.一副三角板按如图方式摆放, 得到△ ABD 和△ BCD ,其中∠ ADB= ∠BCD=90°,∠A=60°, ∠CBD=4°5 ,E 为AB 的中点,过点 E 作EF ⊥CD于点14.如图,创新小组要测量公园内一棵树的高度 AB ,其中一名小组成员站在距离树10M衣机的零售价为F.若AD=4cm,则EF的长为cm.三、解答题(本大题共 8 个小题,共 75分)﹣ 2) 3+( )﹣ 2﹣ ?sin45 22 y+2x )2﹣(x+2y )2.17.已知:如图,在 ?ABCD 中,延长 AB 至点E ,延长 CD 至点 F ,使得BE=DF .连接EF ,与对角线 AC 交于点 O . 求证: OE=OF .18.如图,在平面直角坐标系中,正方形 OABC 的顶点 O 与坐标原点重合,其边长为 2, 点 A ,点 C 分别在 x 轴,y 轴的正半轴上,函数 y=2x 的图象与 CB 交于点 D ,函数 y= (k 为常数,k ≠0)的图象经过点 D ,与AB 交于点 E ,与函数 y=2x 的图象在第三象限内交于点 F ,连接 AF 、 EF .(1)求函数 y= 的表达式,并直接写出 E 、F 两点的坐标;16.( 1)计算:,唐代诗人李绅这句诗粟”即谷子(去皮后则称为“小M”),被誉为中华民族的哺育作物.我省有着“小杂粮王国”的美誉,谷子作为我省杂粮谷物中的大类,其种植面积已连续三年全国第一.2016 年全国谷子种植面积为2000 万亩,年总产量为150 万吨,我省谷子平均亩产量为160kg,国内其他地区谷子的平均亩产量为60kg,请解答下列问题:(1)求我省2016 年谷子的种植面积是多少万亩.(2)2017年,若我省谷子的平均亩产量仍保持160kg 不变,要使我省谷子的年总产量不低于52 万吨,那么,今年我省至少应再多种植多少万亩的谷子?20.从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016年我国共享经济市场交易额约为34520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约 1 亿人.如图是源于该报告中的中国共享经济重点领域市场规模统计图:(1)请根据统计图解答下列问题:①图中涉及的七个重点领域中,2016 年交易额的中位数是亿元.②请分别计算图中的“知识技能”和“资金”两个重点领域从2015年到2016年交易额的增长率(精确到1%),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识.(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为 A ,B,C,D 的四张卡片(除编号和内容外,其余完全相同)他们将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A,B,C,D表示)21.如图,△ ABC 内接于⊙ O,且AB 为⊙ O的直径,OD⊥AB ,与AC 交于点E,与过点 C 的⊙O 的切线交于点D.(1)若AC=4,BC=2,求OE 的长.(2)试判断∠ A 与∠ CDE 的数量关系,并说明理由.22.综合与实践背景阅读早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被记载于我国古代著名数学著作《周髀算经》中,为了方便,在本题中,我们把三边的比为3:4:5 的三角形称为(3,4,5)型三角形,例如:三边长分别为9,12,15 或 3 ,4 ,5 的三角形就是(3,4,5)型三角形,用矩形纸片按下面的操作方法可以折出这种类型的三角形.实践操作如图1,在矩形纸片ABCD 中,AD=8cm ,AB=12cm.第一步:如图2,将图1中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点 E 处,折痕为AF,再沿EF 折叠,然后把纸片展平.第二步:如图3,将图2中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.第三步:如图 4,将图 3中的矩形纸片沿 AH 折叠,得到△ AD ′H,再沿 AD ′折叠,折痕为(1)请在图 2中证明四边形 AEFD 是正方形.(2)请在图 4中判断 NF 与 ND ′的数量关系,并加以证明;(3)请在图 4中证明△ AEN (3,4,5)型三角形; 探索发现 (4)在不添加字母的情况下,图 4 中还有哪些三角形是( 3,4,5)型三角形?请找出并 直接写出它们的名称.23.如图,抛物线 y=﹣ x 2+ x+3 与 x 轴交于 A 、 B 两点(点 A 在点 B 的左侧),与y 轴交于点 C ,连接 AC 、BC .点 P 沿AC 以每秒 1个单位长度的速度由点 A 向点 C 运 动,同时,点 Q 沿BO 以每秒 2个单位长度的速度由点 B 向点O 运动,当一个点停止运动 时,另一个点也随之停止运动,连接 PQ .过点 Q 作 QD ⊥x 轴,与抛物线交于点 D ,与 BC 交于点 E ,连接 PD ,与 BC 交于点 F .设点 P 的运动时间为 t 秒( t > 0).(1)求直线 BC 的函数表达式;(2)①直接写出 P ,D 两点的坐标(用含 t 的代数式表示,结果需化简) ②在点 P 、Q 运动的过程中,当 PQ=PD 时,求 t 的值;3)试探究在点 P ,Q 运动的过程中,是否存在某一时刻,使得点F 为 PD 的中点?若存2017 年山西省中考数学试卷参考答案与试卷解读一、选择题(本大题共 10 个小题,每小题 3分,共 30 分)1.计算﹣ 1+2 的结果是( )A .﹣3B .﹣1C .1D .3【考点】 19:有理数的加法.【分析】 直接利用有理数加减运算法则得出答案.【解答】 解:﹣ 1+2=1.故选: C .2.如图,直线 a ,b 被直线 c 所截,下列条件不能判定直线 a 与 b 平行的是( )A .∠ 1=∠3B .∠ 2+∠4=180°C .∠1=∠4D .∠ 3=∠4【考点】 J9:平行线的判定.【分析】 根据同位角相等,两直线平行;同旁内角互补,两直线平行进行判断即可.【解答】解:由∠ 1=∠3,可得直线 a 与 b 平行,故 A 能判定;由∠ 2+∠4=180°,∠ 2=∠5,∠ 4=∠3,可得∠ 3+∠5=180°,故直线 a 与b若不存在,请说明理由.平行,故B能判定;由∠1=∠4,∠4=∠3,可得∠1=∠3,故直线a与b平行,故C能判定;由∠ 3=∠4,不能判定直线a与 b 平行,3.在体育课上,甲、乙两名同学分别进行了 5次跳远测试, 经计算他们的平均成绩相同. 若 要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( )A .众数B .平均数C .中位数D .方差【考点】 WA :统计量的选择; W1:算术平均数; W7:方差.【分析】 方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大, 稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好;【解答】 解:因为方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散 程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,所以要 比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的方差.故选 D .D .考点】 CB :解一元一次不等式组; C4:在数轴上表示不等式的解集.分析】 首先解出两个不等式的解;根据在数轴上表示不等式解集的方法分别把每个不等 式的解集在数轴上表示出来即可.解答】 解: 解不等式①得, x ≤3解不等式②得, x >﹣ 4在数轴上表示为:故选: A .5.下列运算错误的是( )4.将不等式组面表示正确的是 B . CA.(﹣1)0=1 B.(﹣3)2÷ = C.5x2﹣6x2=﹣x2 D.(2m3)2÷(2m)2=m4【考点】4H:整式的除法;1D:有理数的除法;1E:有理数的乘方;35:合并同类项;47:幂的乘方与积的乘方;6E:零指数幂.【分析】根据整式和有理数的除法的法则,乘方的性质,合并同类项的法则,零指数的性质,幂的乘方与积的乘方的运算法则计算即可.【解答】解:A、(﹣1)0=1,正确,不符合题意;B、(﹣3)2÷ =4,错误,符合题意;C、5x2﹣6x2=﹣x2,正确,不符合题意;D、(2m3)2÷(2m)2=m4,正确,不符合题意;故选B.6.如图,将矩形纸片ABCD 沿BD 折叠,得到△ BC′D,C′D与AB 交于点E.若∠ 1=35°,则∠2 的度数为()A.20°B.30°C.35°D.55°【考点】JA:平行线的性质.【分析】根据矩形的性质,可得∠ ABD=3°5 ,∠ DBC=5°5 ,根据折叠可得∠DBC'=∠DBC=5°5 ,最后根据∠ 2=∠DBC'﹣∠ DBA 进行计算即可.【解答】解:∵∠ 1=35°,CD∥AB,∴∠ ABD=3°5 ,∠ DBC=5°5 ,由折叠可得∠ DBC'= ∠DBC=5°5 ,∴∠ 2=∠DBC' ﹣∠ DBA=5°5 ﹣35°=20°,故选: A .7.化简的结果是()A .﹣x2+2x﹣x2+6x C.﹣D.B.考点】6B:分式的加减法.分析】根据分式的运算法则即可求出答案.解答】解:原式=故选(C)8.2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186 亿吨油当量,达到我国陆上石油资源总量的50%.数据186 亿吨用科学记数法可表示为()A.186×108吨B.18.6×109吨C.1.86×1010吨D.0.186×1011吨【考点】1I:科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤| a|<10,n 为整数,据此判断即可.【解答】解:186亿吨=1.86×1010吨.故选:C.9.公元前 5 世纪,毕达哥拉斯学派中的一名成员希伯索斯发现了无理数,导致了第一次数学危机,是无理数的证明如下:假设是有理数,那么它可以表示成(p 与q 是互质的两个正整数).于是()2= ()2=2,所以,q2=2p2.于是q2是偶数,进而q是偶数,从而可设q=2m,所以(2m)2=2p2,p2=2m2,于是可得p也是偶数.这与“p与q 是互质的两个正整数”矛盾.从而可知“ 是有理数”的假设不成立,所以,是无理数.这种证明“ 是无理数”的方法是()A .综合法B.反证法C.举反例法D.数学归纳法【考点】O3:反证法.【分析】利用反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确,进而判断即可.【解答】解:由题意可得:这种证明“ 是无理数”的方法是反证法.故选: B .10.如图是某商品的标志图案,AC 与BD 是⊙ O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD .若AC=10cm,∠ BAC=36°,则图中阴影部分的面积为()A .5π cm2 B.10π cm2 C.15π cm2 D .20π cm2【考点】MO:扇形面积的计算;M5:圆周角定理.【分析】根据已知条件得到四边形ABCD 是矩形,求得图中阴影部分的面积=S 扇形AOD+S扇形BOC=2S 扇形AOD ,根据等腰三角形的性质得到∠ BAC= ∠ ABO=3°6 ,由圆周角定理得到∠ AOD=72°,于是得到结论..【解答】解:∵ AC 与BD是⊙ O的两条直径,∴∠ABC=∠ADC=∠DAB= ∠BCD=9°0 ,∴四边形ABCD 是矩形,∴△ABO于△CDO的面积=△AOD 与△BOD 的面积,∴图中阴影部分的面积=S 扇形AOD +S扇形BOC=2S扇形AOD ,∵ OA=OB ,∴∠ BAC=∠ABO=3°6 ,∴∠ AOD=7°2 ,∴图中阴影部分的面积=2×=10π,故选B.二、填空题(本大题共 5 个小题,每小题 3 分)11.计算: 4 ﹣9 = 3 .【考点】78:二次根式的加减法.【分析】先化简,再做减法运算即可.【解答】解:原式=12 =3 ,故答案为: 3 .12.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为 a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9 折优惠价促销,这时该型号洗衣机的零售价为 1.08a 元.考点】32:列代数式.分析】根据题意可以得到最后打折后的零售价,从而可以解答本题.解答】解:由题意可得,该型号洗衣机的零售价为:a(1+20%)×0.9=1.08a(元),故答案为: 1.08a.13.如图,已知△ ABC 三个顶点的坐标分别为A(0,4),B(﹣1,1),C(﹣2,2),将△ABC向右平移4个单位,得到△ A′B′,C′点A,B,C的对应点分别为A′、B′、C′,再将△ A′B′绕C′点B′顺时针旋转90°,得到△A″B″C″,点A′、B′、C′的对应点分别为A″、B″、C″,则点A″的坐标为(6,0).考点】R7:坐标与图形变化﹣旋转;Q3:坐标与图形变化﹣平移.分析】由平移的性质和旋转的性质作出图形,即可得出答案.解答】解:如图所示:∵A(0,4),B(﹣1,1),C(﹣2,2),将△ABC 向右平移 4 个单位,得到△ A′B′,C′ ∴A′、B′、C′的坐标分别为(4,4),B(3,1),C(2,2),再将△ A′B′绕C′点B′顺时针旋转90°,得到△ A″B″C,″则点A″的坐标为(6,0);故答案为:(6,0).14.如图,创新小组要测量公园内一棵树的高度A B ,其中一名小组成员站在距离树10M的点E处,测得树顶 A 的仰角为54°.已知测角仪的架高CE=1.5M,则这棵树的高度为15.3 M .(结果保留一位小数.参考数据:sin54 =°0.8090,cos54 °=0.5878,tan54 °=1.3764)考点】TA :解直角三角形的应用﹣仰角俯角问题.【分析】在Rt△ACD 中,求出AD ,再利用矩形的性质得到BD=CE=1.5,由此即可解决问题.【解答】解:解:如图,过点 C 作CD⊥AB ,垂足为D.则四边形CEBD 是矩形,BD=CE=1.5m,在Rt△ACD 中,CD=EB=10m,∠ ACD=5°4 ,∵tan∠ACE= ,∴AD=CD?tan∠ACD≈10×1.38=13.8m.∴AB=AD +BD=13.8+1.5=15.3m.答:树的高度AB 约为15.3m.故答案为15.315.一副三角板按如图方式摆放,得到△ ABD 和△ BCD ,其中∠ ADB=∠BCD=90°,∠A=60°,∠CBD=4°5 ,E为AB 的中点,过点 E 作EF⊥CD 于点F.若AD=4cm ,则EF的长为(+ )cm.【考点】LL :梯形中位线定理.【分析】过 A 作AG⊥Dc 于G,得到∠ ADC=4°5 ,进而得到AG 的值,在30°的直角三角形ABD 和45°直角三角形BCD 中,计算出BD,CB 的值.再由AG ∥EF∥BC,E 是AB 的中点,得到 F 为CG 的中点,最后由梯形中位线定理得到EF 的长.【解答】解:过点 A 作AG⊥DC 与G.∵∠ DCB=∠CBD=4°5 ,∠ADB=9°0 , ∴解 ADG=4°5 .∴AG= =2 .∵∠ ABD=3°0 , ∴ BD= AD=4 .∵∠ CBD=4°5 ,∵AG ⊥CG ,EF ⊥CG ,CB ⊥CG , ∴AG ∥EF ∥BC . 又∵E 是AB 的中点,∴F 为 CG 的中点,∴EF= (AG+BC ) = (2 +2 )= + . 故答案为:( + ).三、解答题(本大题共 8 个小题,共 75分)16.( 1)计算:(﹣ 2)3+( )﹣2﹣ ?sin45 ° (2)分解因式:( y+2x )2﹣( x+2y )2.【考点】 54:因式分解﹣运用公式法; 2C :实数的运算; 6F :负整数指数幂; T5:特殊角 的三角函数值. 【分析】 (1)根据实数的运算,可得答案; (2)根据平方差公式,可得答案.【解答】 解:(1)原式=﹣8+9﹣2=﹣1;(2)原式 =[(y+2x )+(x+2y )][ (y+2x )﹣(x+2y )]=3(x+y )(x ﹣y ) 17.已知:如图,在 ?ABCD 中,延长 AB 至点 E ,延长 CD 至点 F ,使得 BE=DF .连接 EF ,与对角线 AC 交于点 O .求证: OE=OF .CB= =2 .【考点】L5:平行四边形的性质;KD :全等三角形的判定与性质.【分析】由平行四边形的性质得出AB∥CD,AB=CD,证出AE=CF,∠ E=∠F,∠ OAE= ∠OCF,由ASA 证明△ AOE≌△ COF,即可得出结论.【解答】证明:∵四边形ABCD 是平行四边形,∴AB∥CD,AB=CD,∵BE=DF,∴AB +BE=CD+DF,即AE=CF,∵AB∥CD,∴AE∥CF,∴∠ E=∠F,∠ OAE=∠ OCF,在△AOE 和△COF中,,∴△ AOE≌△ COF(ASA ),∴OE=OF.18.如图,在平面直角坐标系中,正方形OABC 的顶点O 与坐标原点重合,其边长为2,点A,点 C 分别在x 轴,y 轴的正半轴上,函数y=2x 的图象与CB 交于点 D ,函数y= (k 为常数,k≠0)的图象经过点D,与AB交于点E,与函数y=2x的图象在第三象限内交于点F,连接AF、EF.(1)求函数y= 的表达式,并直接写出E、F 两点的坐标;分析】 (1)根据正方形的性质,以及函数上点的坐标特征可求点 D的坐标为( 根据待定系数法可求反比例函数表达式,进一步得到 E 、F 两点的坐标;(2)过点 F 作 FG ⊥AB ,与 AB 的延长线交于点 G ,根据两点间的距离公式可求FG=3,再根据三角形面积公式可求△ AEF 的面积. 【解答】解:( 1)∵正方形 OABC 的边长为 2, ∴点 D 的纵坐标为 2,即 y=2, 将 y=2 代入 y=2x ,得x=1,∴点 D 的坐标为( 1,2),∵函数 y= 的图象经过点 D ,∴ 2= ,∴,解得 k=2,∴函数 y= 的表达式为 y= , ∴E (2,1), F (﹣ 1,﹣ 2);(2)过点 F 作FG ⊥AB ,与AB 的延长线交于点 G ,∵E (2,1), F (﹣ 1,﹣ 2),∴AE=1,FG=2﹣(﹣ 1)=3,∴△AEF 的面积为: AE?FG= ×1×3= .LE :正方形的性质.1,2), 2)求△ AEF 的面次函数的交点19.“春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟”即谷子(去皮后则称为“小M”),被誉为中华民族的哺育作物.我省有着“小杂粮王国”的美誉,谷子作为我省杂粮谷物中的大类,其种植面积已连续三年全国第一.2016 年全国谷子种植面积为2000 万亩,年总产量为150 万吨,我省谷子平均亩产量为160kg,国内其他地区谷子的平均亩产量为60kg,请解答下列问题:(1)求我省2016 年谷子的种植面积是多少万亩.(2)2017年,若我省谷子的平均亩产量仍保持160kg 不变,要使我省谷子的年总产量不低于52 万吨,那么,今年我省至少应再多种植多少万亩的谷子?【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用.【分析】(1)可设我省2016年谷子的种植面积是x 万亩,其他地区谷子的种植面积是y 万亩,根据2016年全国谷子年总产量为150 万吨列出方程组求解即可;(2)可设我省应种植z 万亩的谷子,根据我省谷子的年总产量不低于52 万吨列出不等式求解即可.【解答】解:(1)设我省2016年谷子的种植面积是x 万亩,其他地区谷子的种植面积是y 万亩,依题意有,解得.答:我省2016年谷子的种植面积是300 万亩.(2)设我省应种植z 万亩的谷子,依题意有,,解得z≥325,325﹣300=25(万亩).答:今年我省至少应再多种植25 万亩的谷子.20.从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016 年我国共享经济市场交易额约为34520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约 1 亿人.如图是源于该报告中的中国共享经济重点领域市场规模统计图:1)请根据统计图解答下列问题:①图中涉及的七个重点领域中,2016 年交易额的中位数是2038 亿元.②请分别计算图中的“知识技能”和“资金”两个重点领域从2015年到2016年交易额的增长率精确到1%),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识.(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为 A ,B ,C ,D 的四张卡片(除编号和内容外,其余完全相同)他们将这四张卡片背面朝上,洗匀放好,从中随 机抽取一张(不放回),再从中随机抽取一张,请用列表或画树状图的方法求抽到的两张 卡片恰好是 “共享出行 ”和“共享知识 ”的概率(这四张卡片分别用它们的编号 A ,B , C ,D 表示)【考点】 X6:列表法与树状图法; VC :条形统计图; VD :折线统计图; W4:中位数. 【分析】 (1)根据图表将 2016 年七个重点领域的交易额从小到大罗列出来,根据中位数 的定义即可得;(2)将÷ 2015年的资金可分别求得两领域的增长率,结合增长率提出合理的认识即可;(3)画树状图列出所有等可能结果,根据概率公式求解可得.【解答】解:( 1)由图可知, 2016年七个重点领域的交易额分别为 70、245、610、2038、 3300、7233、20863,2016 年交易额的中位数是 2038 亿元, 故答案为: 2038;由此可知, “知识技能”领域交易额较小,当增长率最高,达到 200%以上,其发展速度惊人. 3)画树状图为:共有 12种等可能的结果数,其中抽到 “共享出行 ”和“共享知识 ”的结果数为 2, 所以抽到 “共享出行 ”和“共享知识 ”的概率= = .21.如图,△ ABC 内接于⊙ O ,且 AB 为⊙ O 的直径, OD ⊥AB ,与 AC 交于点 E ,与过点2)知识技能 ”的增长率为: ×100%=205%, 资金”的增长率为: 109%,C 的⊙O 的切线交于点D.1)若AC=4 ,BC=2 ,求OE 的长.2)试判断∠ A 与∠ CDE 的数量关系,并说明理由.【考点】MC:切线的性质;KQ:勾股定理;S9:相似三角形的判定与性质.【分析】(1)由圆周角定理得出∠ ACB=9°0 ,由勾股定理求出AB= =2 ,得出OA= AB= ,证明△ AOE∽△ACB ,得出对应边成比例即可得出答案;(2)连接OC,由等腰三角形的性质得出∠ 1=∠A,由切线的性质得出OC⊥CD,得出∠ 2+∠CDE=9°0 ,证出∠3=∠CDE,再由三角形的外角性质即可得出结论.【解答】解:(1)∵AB 为⊙O的直径,∴∠ ACB=9°0 ,在Rt△ ABC 中,由勾股定理得:AB= = =2 ,∴ OA= AB= ,∵OD⊥AB,∴∠ AOE=∠ACB=9°0 ,又∵∠ A=∠A,∴△AOE∽△ACB,∴,即,∴,即,(2)∠ CDE=2∠A ,理由如下:连接OC,如图所示:∵OA=OC ,∴∠ 1=∠A ,∵CD 是⊙O 的切线,∴OC⊥CD,∴∠ OCD=9°0 ,∴∠ 2+∠CDE=9°0 ,∵OD⊥AB,∴∠ 2+∠3=90°,∴∠3=∠CDE,∵∠3=∠A+∠1=2∠A,∴∠ CDE=2∠A .22.综合与实践背景阅读早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被记载于我国古代著名数学著作《周髀算经》中,为了方便,在本题中,我们把三边的比为3:4:5 的三角形称为(3,4,5)型三角形,例如:三边长分别为9,12,15 或 3 ,4 ,5 的三角形就是(3,4,5)型三角形,用矩形纸片按下面的操作方法可以折出这种类型的三角形.实践操作如图1,在矩形纸片ABCD 中,AD=8cm ,AB=12cm.第一步:如图2,将图 1 中的矩形纸片ABCD 沿过点 A 的直线折叠,使点 D 落在AB 上的点 E 处,折痕为AF,再沿EF 折叠,然后把纸片展平.第二步:如图3,将图2中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.第三步:如图4,将图3中的矩形纸片沿AH折叠,得到△ AD′H,再沿AD′折叠,折痕为AM ,AM 与折痕EF 交于点N,然后展平.问题解决(1)请在图2中证明四边形AEFD 是正方形.(2)请在图4中判断NF 与ND′的数量关系,并加以证明;(3)请在图4中证明△ AEN(3,4,5)型三角形;探索发现(4)在不添加字母的情况下,图 4 中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.【考点】RB:几何变换综合题.【分析】(1)根据矩形的性质得到∠ D=∠DAE=9°0 ,由折叠的性质得得到AE=AD ,∠AEF= ∠D=90°,求得∠D=∠DAE=∠AEF=90°,得到四边形AEFD 是矩形,由于AE=AD ,于是得到结论;(2)连接HN ,由折叠的性质得到∠ AD′H=∠D=90°,HF=HD=H′D ,根据正方形的想知道的∠ HD′N=90°,根据全等三角形的性质即可得到结论;(3)根据正方形的性质得到AE=EF=AD=8cm ,由折叠得,AD′=AD=8cm,设NF=xcm,则ND′ =xcm,根据勾股定理列方程得到x=2,于是得到结论;(4)根据(3,4,5)型三角形的定义即可得到结论.【解答】(1)证明:∵四边形ABCD 是矩形,∴∠ D=∠DAE=9°0 ,由折叠的性质得,AE=AD ,∠AEF= ∠D=90°,∴∠ D=∠ DAE= ∠AEF=90°,∴四边形AEFD 是矩形,∵AE=AD ,∴矩形AEFD 是正方形;2)解:NF=ND′,理由:连接HN,由折叠得,∠ AD′H=∠D=90°,HF=HD=H′D ,∵四边形AEFD 是正方形,∴∠ EFD=90°,∵∠ AD′H=90°,∴∠ HD′N=90°,在Rt△ HNF 与Rt △ HND′中,,∴Rt△HNF≌Rt△HND′,∴NF=ND′;(3)解:∵四边形AEFD 是正方形,∴ AE=EF=AD=8cm ,由折叠得,AD′=AD=8cm,设NF=xcm,则ND′ =xcm,在Rt△ AEN 中,222∵AN2=AE2+EN2,∴(8+x )2=82+(8﹣x )2,解得:x=2,∴ AN=8+x=10cm,EN=6cm,∴EN:AE:AN=3 :4:5,∴△ AEN 是(3,4,5)型三角形;(4)解:图 4 中还有△ MFN ,△ MD′H,△ MDA 是(3,4,5)型三角形,∵CF∥AE,∴△ CFN∽△ AEN ,∵EN:AE:AN=3 :4:5,∴FN:CF:CN=3:4:5,∴△ MFN 是(3,4,5)型三角形;同理,△ MD′H,△MDA 是(3,4,5)型三角形.23.如图,抛物线y=﹣x2+ x+3 与x 轴交于A、 B 两点(点 A 在点 B 的左侧),与y轴交于点C,连接AC、BC.点P沿AC以每秒1个单位长度的速度由点A 向点C运动,同时,点Q沿BO以每秒2个单位长度的速度由点B向点O运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ.过点Q作QD⊥x轴,与抛物线交于点D,与BC 交于点E,连接PD,与BC 交于点F.设点P的运动时间为t 秒(t> 0).(1)求直线BC 的函数表达式;(2)①直接写出P,D 两点的坐标(用含t 的代数式表示,结果需化简)②在点P、Q 运动的过程中,当PQ=PD时,求t 的值;(3)试探究在点P,Q 运动的过程中,是否存在某一时刻,使得点 F 为PD 的中点?若存在,请直接写出此时t 的值与点 F 的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)更好函数的解读式得到B(9,0),C(0,3 ),解方程组即可得到结论;(2)①过p作PG⊥x轴于G,解直角三角形得到∠ CAO=6°0 ,得到PG= t,AG= t,于是得到P(t﹣3,t),把OQ=9﹣2t 代入二次函数的解读式即可得到D(9﹣2t,﹣t2+ t),②过P作PH⊥QD 于H,得到四边形PGQH 是矩形,列方程即可得到即可;(3)根据折叠坐标公式得到F(﹣t+3,﹣t2+ t),由点 F 在直线BC 上,列方程即可得到结论.【解答】解:(1)由y=0得﹣x2+ x+3 =0,解得: x 1=﹣3, x 2=9,∴B (9,0), 由 x=0 得 y=3 ,∴C (0,3 ), 设直线 BC 的解读式为 y=kx +b ,∴直线 BC 的解读式为 y=﹣ x+3 ;(2)①过 p 作PG ⊥x 轴于 G ,∵A (﹣ 3,0), C (0,3 ),∴OA=3 .OC=3 ,∴ tan ∠CAO= ,∴∠ CAO=6°0 ,∵AP=t ,∴PG= t ,AG= t ,∴OG=3﹣ t ,∴P ( t ﹣3, t ),∵DQ ⊥ x 轴,BQ=2t , ∴OQ=9﹣2t ,②过 P 作 PH ⊥QD 于 H ,则四边形 PGQH 是矩形,∴HQ=PG ,∵ PQ=PD ,PH ⊥ QD ,∴ DQ=2HQ=2PG ,∵ P ( t ﹣3, t),D (9﹣2t ,﹣﹣ t 2+ t=2 × t ,解得: t 1=0(舍去), t 2= ,∴当 PQ=PD 时,t 的值是;∴D (9﹣3)∵点 F 为 PD 的中点, ∴t=3,∴F ( , )2017年 7月16日∴F 的横坐标为: ( t ﹣ 3+9﹣2t )=﹣ t+3, t 2+ t , ∴F (﹣ t+3,﹣ t 2+ t ), ∵点 F 在直线 BC 上,∴﹣ t 2+ t=﹣ (﹣t+3)+3 , F 的纵坐标为 ( t ﹣t 2+ t ) =﹣。

山西省中考数学真题试题(含解析)

山西省中考数学真题试题(含解析)

山西省2017年中考数学真题试题第Ⅰ卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)-+的结果是()1.计算12A.-3 B.-1 C.1 D.3【答案】C.【解析】试题分析:﹣1+2=1.故选C.考点:有理数的加法.2.如图,直线a,b被直线c所截,下列条件不能..判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠4=180°C.∠1=∠4 D.∠3=∠4【答案】D.考点:平行线的判定.3.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的()A.众数B.平均数C.中位数D.方差【答案】D.【解析】试题分析:由于方差能反映数据的稳定性,需要比较这两名学生立定跳远成绩的方差.故选D .考点:在数轴上表示不等式的解集;解一元一次不等式组. 5.下列运算错误..的是( )A .01)1=B .291(3)44-÷= C .22256x x x -=- D .3224(2)(2)m m m ÷= 【答案】B .考点:有理数的除法;合并同类项;整式的除法;零指数幂.6.如图,将矩形纸片ABCD 沿BD 折叠,得到△BC ′D ,C ′D 与AB 交于点E .若∠1=35°,则∠2的度数为( )A .20B .30C .35D .55【答案】A . 【解析】试题分析:由翻折的性质得,∠DBC =∠DBC ′,∵∠C =90°,∴∠DBC =∠DBC ′=90°-35°=55°,∵矩形的对边AB ∥DC ,∴∠1=∠DBA =35°,∴∠2=∠DBC ′-∠DBA =55°-35°=20°.故选A .考点:平行线的性质;翻折变换(折叠问题). 7.化简2442x xx x ---的结果是( )A .22x x -+B .26x x -+ C .2x x -+ D .2x x - 【答案】C .考点:分式的加减法.8.2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为( )A .818610⨯吨 B .918.610⨯吨 C .101.8610⨯吨 D .110.18610⨯吨【答案】C . 【解析】试题分析:将186亿用科学记数法表示为:101.8610⨯.故选C . 考点:科学记数法—表示较大的数.9.公元前5假设是有理数,那么它可以表示成qp(p 与q 是互质的两个正整数).于是22()2qp==,所以,222q p =.于是2q 是偶数,进而q 是偶数.从而可设2q m =,所以2222(2)2,2m p p m ==,于是可得p 也是偶数.这与“p 与q 是互质的两个正整数”)A .综合法B .反证法C .举反例法D .数学归纳法 【答案】B . 【解析】试题分析:显然选项A 中13不是“正方形数”;选项B 、D 中等式右侧并不是两个相邻“三角形数”之和. 故选B . 考点:反证法.10.右图是某商品的标志图案,AC 与BD 是⊙O 的两条直径,首尾顺次连接点A 、B 、C 、D ,得到四边形ABCD .若AC =10cm ,∠BAC =36°,则图中阴影部分的面积为( )A .25cm π B .210cm π C .215cm π D .220cm π 【答案】B .考点:矩形的性质;扇形面积的计算;圆周角定理第Ⅱ卷 非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11.计算:= .【答案】. 【解析】试题分析:原式= 考点:二次根式的加减法.12.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为 元.【答案】1.08a . 【解析】试题分析:根据题意得:a •(1+20%)×90%=1.08a ;故答案为:1.08a . 考点:列代数式.13.如图,已知△ABC 三个顶点的坐标分别为A (0,4),B (-1,1),C (-2,2).将△ABC 向右平移4个单位,得到A B C '''∆,点A 、B 、C 的对应点分别为,,A B C ''',再将A B C '''∆绕点B '顺时针旋转90,得到A B C ''''''∆,点,,A B C '''的对应点分别为,,A B C '''''',则点A ''的坐标为 .【答案】(6,0).考点:平移的性质;旋转的性质;综合题.14.如图,创新小组要测量公园内一棵树的高度AB ,其中一名小组成员站在距离树10米的点E 处,测得树顶A 的仰角为54°.已知测角仪的架高CE =1.5米,则这颗树的高度为米(结果保留一位小数.参考数据:sin540.8090=,cos540.5878=,tan54 1.3764=).【答案】15.3.【解析】试题分析:如图,在Rt△ACD中,AD=CD•tan54°≈10×1.3764=13.764米,AC≈1.5+13.764≈15.3米.故答案为:15.3米.考点:解直角三角形的应用﹣仰角俯角问题.15.一副三角板按如图方式摆放,得到△ABD和△BCD,其中∠ADB=∠BCD=90°,∠A=60°,∠CBD=45°.E为AB的中点,过点E作EF⊥CD于点F.若AD=4cm,则EF的长为cm..考点:直角三角形的性质;梯形中位线定理;综合题.三、解答题 (本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(1)计算:321(2)()sin 453--+.(2)分解因式:22(2)(2)y x x y +-+. 【答案】(1)-1;(2)3()()x y x y +- .考点:实数的运算;完全平方公式;平方差公式;负整数指数幂;特殊角的三角函数值. 17.已知:如图,在ABCD 中,延长线AB 至点E ,延长CD 至点F ,使得BE =DF .连接EF ,与对角线AC 交于点O .求证:OE =OF .【答案】证明见解析. 【解析】试题分析:先由平行四边形的性质得出AB =CD ,AB ∥DC ,再得出∠F =∠E ,CF =AE ,∠DCA =∠CAB ,即可推出△COF ≌△AOE ,从而得到结论.试题解析:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥DC ,∴∠F =∠E ,∠DCA =∠CAB ,∵AB =CD ,FD =BE ,∴CF =AE ,在△COF 和△AOE 中,∵∠F =∠E ,CF =AE ,∠DCA =∠CAB ,∴△COF≌△AOE ,∴∴OE =OF .考点:平行四边形的性质;全等三角形的判定与性质.18.如图,在平面直角坐标系中,正方形OABC 的顶点O 与坐标原点重合,其边长为2,点A ,点C 分别在x 轴,y 轴的正半轴上.函数2y x =的图象与CB 交于点D ,函数ky x=(k 为常数,0k ≠)的图象经过点D ,与AB 交于点E ,与函数2y x =的图象在第三象限内交于点F ,连接AF 、EF .(1)求函数ky x=的表达式,并直接写出E 、F 两点的坐标. (2)求△AEF 的面积. 【答案】(1)2y x =,E (2,1),f (-1,-2);(2)32.考点:反比例函数综合题.19.“春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟”即谷子(去皮后则称为“小米”),被誉为中华民族的哺育作物.我省有着“小杂粮王国”的美誉,谷子作为我省杂粮面积为2000万亩,年总产量为150万吨,我省谷子平均亩产量为160kg,国内其他地区谷子的平均亩产量为60kg.请解答下列问题:(1)求我省2016年谷子的种植面积是多少万亩.(2)2017年,若我省谷子的平均亩产量仍保持160kg不变,要使我省谷子的年总产量不低于52万吨,那么,今年我省至少应再多种植多少万亩的谷子?【答案】(1)300;(2)25.考点:一元一次不等式的应用;二元一次方程组的应用.20.从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016年我国共享经济市场交易额约为34520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约1亿人.下图是源于该报告中的中国共享经济重点领域市场规模统计图:(1)请根据统计图解答下列问题:①图中涉及的七个重点领域中,2016年交易额的中位数是_________亿元.②请分别计算图中的“知识技能”和“资金”两个重点领域从2015年到2016年交易额的增长率(精确到1%),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识.(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同).他们将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张.请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A,B,C,D表示).【答案】(1)①2038;②答案见解析;(2)16.②“知识技能”的增长率=610200200-=2.05=205%“资金”的增长率=208631000010000-=1.0863≈109%对两个领域的认识,答案不唯一.例如:“知识技能”领域交易额较小,但增长率最高,达到了200%以上,其发展速度惊人,或“资金”交易额最大,2016年达到2万亿以上,成倍增长,带动共享经济市场规模不断扩大.(2)列表如下:由列表可知一共有12种可能出现的结果,且每种结果出现的可能性相同,其中抽到“共享出行”和“共享知识”的结果有2种,∴,P(抽到“共享出行”和“共享知识”)=212=16.考点:列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.21.如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.(1)若AC=4,BC=2,求OE的长.(2)试判断∠A与∠CDE的数量关系,并说明理由.【答案】(1(2)∠CDE=2∠A.(2)∠CDE=2∠A.理由如下:连结OC,∵OA=OC,∴∠1=∠A,∵CD是⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∴∠2+∠CDE=90°,∵OD⊥AB,∴∠2+∠3=90°,∴∠3=∠CDE.∵∠3=∠A+∠1=2∠A,∴∠CDE=2∠A.考点:切线的性质;探究型;和差倍分.22.综合与实践背景阅读早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三,股四,弦五”.它被记载于我国古代著名数学著作《周髀算经》中.为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形.例如:三边长分别为9,12,15或的三角形就是(3,4,5)型三角形.用矩形纸片按下面的操作方法可以折出这种类型的三角形.实践操作如图1,在矩形纸片ABCD中,AD=8cm,AB=12cm.第一步:如图2,将图1中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E 处,折痕为AF,再沿EF折叠,然后把纸片展平.第二步:如图3,将图2中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.第三步:如图4,将图3中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF交于点N,然后展平.问题解决(1)请在图2中证明四边形AEFD是正方形.(2)请在图4中判断NF与ND′的数量关系,并加以证明.(3)请在图4中证明△AEN是(3,4,5)型三角形.探索发现(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.【答案】(1)证明见解析;(2)NF =ND ′,证明见解析;(3)证明见解析;(4)△MFN ,△MD ′H ,△MDA .考点:勾股定理的应用;新定义;阅读型;探究型;压轴题.23.综合与探究如图,抛物线293y x x =-++与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC 、BC .点P 沿AC 以每秒1个单位长度的速度由点A 向点C 运动,同时,点Q 沿BO 以每秒2个单位长度的速度由点B 向点O 运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ ,过点Q 作QD ⊥x 轴,与抛物线交于点D ,与BC 交于点E .连接PD ,与BC 交于点F .设点P 的运动时间为t 秒(0t >).(1)求直线BC 的函数表达式.(2)①直接写出P 、D 两点的坐标(用含t 的代数式表示,结果需化简).②在点P 、Q 运动的过程中,当PQ =PD 时,求t 的值.(3)试探究在点P 、Q 运动的过程中,是否存在某一时刻,使得点F 为PD 的中点.若存在,请直接写出此时t 的值与点F 的坐标;若不存在,请说明理由.【答案】(1)3y x =-+(2)①P (132t -,2),D (92t -,293-+ );②154;(3)t =3,F (34,4).(3)由中点坐标公式和F 在直线BC 上得到2690t t -+=,解得t =3.把t =3代入得到F 的坐标.试题解析:(1)由y=0,得,解得:,,∴点A 的坐标为(-3,0),点B的坐标为(9,0).由x=0,得,∴点C的坐标为(0,).(2)①过点P作PG⊥x轴于点G.∵A(-3,0),B(9,0),C(0,)∴AO=3,BO=9,OC=,∴tan∠CAO=,∴∠CAO=60°,∴∠APG=30°,∵AP=t,∴AG=,PG=,∴OG=3-,∴P(,).∵OQ=,∴D的横坐标为,∵D在抛物线上,∴D的纵坐标为=,∴D D(,).综上所述:P(,),D(,);②过点P作PG⊥x轴于点G,PH⊥QD于点H.∵QD⊥x轴,∴四边形PGQH是矩形,∴HQ=PG.∵PQ=PD,PH⊥QD,∴QD=2HQ=2PG.∵P、D两点的坐标分别为P(,),D(,),∴=,解得:(舍去),,∴当PQ=PD时,t的值为.考点:二次函数综合题;动点型;存在型;压轴题.。

2017年山西省中考数学试卷-答案

2017年山西省中考数学试卷-答案

山西省2017年高中阶段教育学校招生统一考试数学答案解析第Ⅰ卷一、选择题1.【答案】C【解析】121-+=.【提示】直接利用有理数加减运算法则得出答案.【考点】有理数的加法2.【答案】D【解析】由13∠=∠,可得直线a 与b 平行,故A 能判定;由24180∠+∠=,25∠=∠,43∠=∠,可得35180∠+∠=,故直线a 与b 平行,故B 能判定;由14∠=∠,43∠=∠,可得13∠=∠,故直线a 与b 平行,故C 能判定;由34∠=∠,不能判定直线a 与b 平行,故选D .【提示】根据同位角相等,两直线平行;同旁内角互补,两直线平行进行判断即可.【考点】平行线的判定3.【答案】D【解析】因为方差是反映一组数据的波动大小的一个量,方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好;所以要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的方差.【提示】方差是反映一组数据的波动大小的一个量,方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好.【考点】数据的集中趋势和离散程度4.【答案】A【解析】26040x x -≤⎧⎨+>⎩①②,解不等式①得,3x ≤;解不等式②得,4x >-.在数轴上表示为:【解析】135∠=,CD 35,55DBC ∠,由折叠可得55, 553520DBA ∠=-=.【提示】根据矩形的性质,可得35ABD ∠=,55DBC ∠,根据折叠可得55,最后根DBC '∠-∠【解析】AC 90,∴四边形图中阴,OA OB =36,72∴∠,∴图中阴影部分的272π510360⨯=根据已知条件得到四边形ABCD 是矩形,36,由圆周角定理得到72,于是得到结论【解析】如图所示:(0,4)A ,90,得到则点A ''的坐标为(6,0).54,tan ACE ∠tan CD ACD ∠13.8 1.515.3m AB AD BD ∴=+=+=.,45CDB ∠=,90ADB ∠,45∴∠,;30ABD ∠=,BD ∴,45CBD ∠=,6CB ∴.AG CG ⊥CG ,AG EF BC ∴∥.又E 的中点,∴F 为CG )(22BC =45,进而得到30的直角三角形45AG EF ∥的中点,得到证明:四边形,BE DF=,AB CD∥OCF ,AOE ∴△)正方形,函数,(2,1)E,11222AE FG=⨯(2)画树状图为:)AB90,⊥90,OD AB∠=∠,又A AOE OA∴=BC AC解得OE=2CD90,90∴∠,⊥OD ABCDE A∴∠=∠.∠=∠+∠=∠,2A A31290,由勾股定理求出,得出对应边成比例即可得出答案;90,)证明:四边形90,90,90,∴四边形是矩形,=是正方形;AE AD(2)NF ND '=,理由:连接HN ,由折叠得,90AD H D '∠=∠=,HF HD HD '==,四边形AEFD 是正方形,90EFD ∴∠=,90AD H ∠'=,90HD N '∴∠=,在Rt HNF △与Rt HND '△中,HN HN HF HD =⎧⎨'=⎩, Rt Rt HNF HND ∴'△≌△,NF ND ∴=';(3)四边形AEFD 是正方形,8cm AE EF AD ∴===,由折叠得,8AD AD cm '==,设cm NF x =,则cm ND x '=,在Rt AEN △中,222AN AE EN =+,222(8)8(8)x x ∴+=+-,解得2x =,810cm AN x ∴=+=,6cm EN =,:3:4:5EN AE AN ∴=:,AEN ∴△是(345),,型三角形; (4)图4中还有MFN △,MD H '△,MDA △是(345),,型三角形, CF AE ∥,MFN AEN ∴△∽△,:3:4:5EN AE AN =:,:34:5FN MF CN ∴=::,MFN ∴△是(345),,型三角形; 同理,MD H '△,MDA △是(345),,型三角形.【解析】(1)根据矩形的性质得到90D DAE ∠=∠=,由折叠的性质得到AE AD =,90AEF D ∠=∠=,求得90D DAE AEF ∠=∠=∠=,得到四边形AEFD 是矩形,由于AE AD =,于是得到结论; (2)连接HN ,由折叠的性质得到90AD H D '∠=∠=,HF HD HD '==,根据正方形的想知道的90HD N '∠=,根据全等三角形的性质即可得到结论;(3)根据正方形的性质得到8cm AE EF AD ===,由折叠得,8AD AD cm '==,设cm NF x =,则 cm ND x '=,根据勾股定理列方程得到2x =,于是得到结论;(4)根据(345),,型三角形的定义即可得到结论. 【考点】矩形的判定和性质,正方形的判定和性质,全等三角形的判定和性质,折叠的性质,勾股定理,解(3,0)A -3OA ∴=,tan CAO ∴∠60,AP t =,t , 3OG ∴=-DQ x ⊥轴,9OQ ∴=P PQ PD =13,2P t ⎛- ⎝2439t ∴-)点点60,得到⎛。

山西省2017年中考数学真题及答案

山西省2017年中考数学真题及答案

山西省2017年中考数学真题试题第Ⅰ卷 选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.计算12-+的结果是( )A.-3 B.-1 C.1 D.32.如图,直线a ,b 被直线c 所截,下列条件不能..判定直线a 与b 平行的是( ) A.∠1=∠3 B.∠2+∠4=180° C.∠1=∠4 D.∠3=∠43.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( )A.众数 B.平均数 C.中位数 D.方差5.下列运算错误..的是( )A.01)1-= B.291(3)44-÷= C.22256x x x -=- D.3224(2)(2)m m m ÷=6.如图,将矩形纸片ABCD 沿BD 折叠,得到△BC ′D ,C ′D 与AB 交于点E .若∠1=35°,则∠2的度数为()A.20 B.30 C.35 D.55 7.化简2442x x x x ---的结果是( ) A.22x x -+ B.26x x -+ C.2x x -+ D.2x x - 8.2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的高途课堂整理国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为()A.818610⨯吨 B.918.610⨯吨 C.101.8610⨯吨 D.110.18610⨯吨9.公元前5世纪,,是无理数的证明如下: 是有理数,那么它可以表示成q p (p 与q 是互质的两个正整数).于是22()2q p ==,所以,222q p =.于是2q 是偶数,进而q 是偶数.从而可设2q m =,所以2222(2)2,2m p p m ==,于是可得p 也是偶数.这与“p 与q 是互质的两个正整数”矛盾,从而可知是有理数”的假设不成立,是无理数.是无理数”的方法是( ) A.综合法 B.反证法 C.举反例法 D.数学归纳法 10.右图是某商品的标志图案,AC 与BD 是⊙O 的两条直径,首尾顺次连接点A 、B 、C 、D ,得到四边形ABCD .若AC =10cm ,∠BAC =36°,则图中阴影部分的面积为()A.25cm π B.210cm π C.215cm π D.220cm π第Ⅱ卷 非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11.计算:= . 12.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为 元. 高途课堂整理13.如图,已知△ABC 三个顶点的坐标分别为A (0,4),B (-1,1),C (-2,2).将△ABC 向右平移4个单位,得到A B C '''∆,点A 、B 、C 的对应点分别为,,A B C ''',再将A B C '''∆绕点B '顺时针旋转90 ,得到A B C ''''''∆,点,,A B C '''的对应点分别为,,A B C '''''',则点A ''的坐标为 .14.如图,创新小组要测量公园内一棵树的高度AB ,其中一名小组成员站在距离树10米的点E 处,测得树顶A 的仰角为54°.已知测角仪的架高CE =1.5米,则这颗树的高度为 米(结果保留一位小数.参考数据:sin 540.8090= ,cos540.5878= ,tan 54 1.3764= ).15.一副三角板按如图方式摆放,得到△ABD 和△BCD ,其中∠ADB =∠BCD =90°,∠A =60°,∠CBD =45°.E 为AB 的中点,过点E 作EF ⊥CD 于点F .若AD =4cm ,则EF 的长为 cm.三、解答题 (本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(1)计算:321(2)()sin 453--+ . (2)分解因式:22(2)(2)y x x y +-+.17.已知:如图,在 ABCD 中,延长线AB 至点E ,延长CD 至点F ,使得BE =DF .连接EF ,与对角线AC 交于点O .求证:OE =OF .高途课堂整理18.如图,在平面直角坐标系中,正方形OABC 的顶点O 与坐标原点重合,其边长为2,点A ,点C 分别在x 轴,y 轴的正半轴上.函数2y x =的图象与CB 交于点D ,函数k y x=(k 为常数,0k ≠)的图象经过点D ,与AB 交于点E ,与函数2y x =的图象在第三象限内交于点F ,连接AF 、EF .(1)求函数k y x=的表达式,并直接写出E 、F 两点的坐标. (2)求△AEF 的面积.19.“春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟”即谷子(去皮后则称为“小米”),被誉为中华民族的哺育作物.我省有着“小杂粮王国”的美誉,谷子作为我省杂粮面积为2000万亩,年总产量为150万吨,我省谷子平均亩产量为160kg ,国内其他地区谷子的平均亩产量为60kg.请解答下列问题:(1)求我省2016年谷子的种植面积是多少万亩.(2)2017年,若我省谷子的平均亩产量仍保持160kg 不变,要使我省谷子的年总产量不低于52万吨,那么,今年我省至少应再多种植多少万亩的谷子?20.从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016年我国共享经济市场交易额约为34520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约1亿人.下图是源于该报告中的中国共享经济重点领域市场规模统计图:高途课堂整理(1)请根据统计图解答下列问题:①图中涉及的七个重点领域中,2016年交易额的中位数是_________亿元.高途课堂整理②请分别计算图中的“知识技能”和“资金”两个重点领域从2015年到2016年交易额的增长率(精确到1%),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识.(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同).他们将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张.请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A,B,C,D表示).21.如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.(1)若AC=4,BC=2,求OE的长.(2)试判断∠A与∠CDE的数量关系,并说明理由.22.综合与实践背景阅读 早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三,股四,弦五”.它被记载于我国古代著名数学著作《周髀算经》中.为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形.例如:三边长分别为9,12,15或的三角形就是(3,4,5)型三角形.用矩形纸片按下面的操作方法可以折出这种类型的三角形.实践操作 如图1,在矩形纸片ABCD 中,AD =8cm ,AB =12cm .第一步:如图2,将图1中的矩形纸片ABCD 沿过点A 的直线折叠,使点D 落在AB 上的点E 处,折痕为AF ,再沿EF 折叠,然后把纸片展平.第二步:如图3,将图2中的矩形纸片再次折叠,使点D 与点F 重合,折痕为GH ,然后展平,隐去AF . 第三步:如图4,将图3中的矩形纸片沿AH 折叠,得到△AD ′H ,再沿AD ′折叠,折痕为AM ,AM 与折痕EF 交于点N ,然后展平.问题解决 (1)请在图2中证明四边形AEFD 是正方形.(2)请在图4中判断NF 与ND ′的数量关系,并加以证明.(3)请在图4中证明△AEN 是(3,4,5)型三角形.探索发现(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.23.综合与探究如图,抛物线293y x x =-++x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC 、BC .点P 沿AC 以每秒1个单位长度的速度由点A 向点C 运动,同时,点Q 沿BO 以每秒2个单位长度的速度由点B 向点O 运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ ,过点Q 作QD ⊥x 轴,与抛物线交于点D ,与BC 交于点E .连接PD ,与BC 交于点F .设点P 的运动时间为t 秒(0t >).高途课堂整理(1)求直线BC的函数表达式.(2)①直接写出P、D两点的坐标(用含t的代数式表示,结果需化简).②在点P、Q运动的过程中,当PQ=PD时,求t的值.(3)试探究在点P、Q运动的过程中,是否存在某一时刻,使得点F为PD的中点.若存在,请直接写出此时t的值与点F的坐标;若不存在,请说明理由.高途课堂整理参考答案:1.【答案】C.【解析】试题分析:﹣1+2=1.故选C.考点:有理数的加法.2.【答案】D.考点:平行线的判定.3.【答案】D.【解析】 试题分析:由于方差能反映数据的稳定性,需要比较这两名学生立定跳远成绩的方差.故选D. 考点:在数轴上表示不等式的解集;解一元一次不等式组.5.【答案】B.考点:有理数的除法;合并同类项;整式的除法;零指数幂.6.【答案】A.【解析】试题分析:由翻折的性质得,∠DBC =∠DBC ′,∵∠C =90°,∴∠DBC =∠DBC′=90°-35°=55°,∵矩形的高途课堂整理对边AB ∥DC ,∴∠1=∠DBA =35°,∴∠2=∠DBC ′-∠DBA =55°-35°=20°.故选A. 考点:平行线的性质;翻折变换(折叠问题).7.【答案】C.考点:分式的加减法.8.【答案】C.【解析】试题分析:将186亿用科学记数法表示为:.故选C.考点:科学记数法—表示较大的数.9.【答案】B.【解析】试题分析:显然选项A 中13不是“正方形数”;选项B、D 中等式右侧并不是两个相邻“三角形数”之和. 故选B.考点:反证法.10.【答案】B. 考点:矩形的性质;扇形面积的计算;圆周角定理11.【答案】【解析】试题分析:原式==,故答案为:考点:二次根式的加减法.12.【答案】1.08a .101.8610⨯-高途课堂整理【解析】试题分析:根据题意得:a•(1+20%)×90%=1.08a;故答案为:1.08a.考点:列代数式.13.【答案】(6,0).高途课堂整理考点:平移的性质;旋转的性质;综合题.14.【答案】15.3.【解析】试题分析:如图,在Rt△ACD中,AD=CD•tan54°≈10×1.3764=13.764米,AC≈1.5+13.764≈15.3米.故答案为:15.3米.考点:解直角三角形的应用﹣仰角俯角问题.考点:直角三角形的性质;梯形中位线定理;综合题.16.【答案】(1)-1;(2) .考点:实数的运算;完全平方公式;平方差公式;负整数指数幂;特殊角的三角函数值.17.【答案】证明见解析.【解析】试题分析:先由平行四边形的性质得出AB =CD ,AB ∥DC ,再得出∠F =∠E ,CF =AE ,∠DCA =∠CAB ,即可推出△COF ≌△AOE,从而得到结论.3()()x y x y +-高途课堂整理试题解析:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥DC ,∴∠F =∠E ,∠DCA =∠CAB ,∵AB =CD ,FD =BE ,∴CF =AE ,在△COF 和△AOE 中,∵∠F =∠E ,CF =AE ,∠DCA =∠CAB ,∴△COF ≌△AOE ,∴∴OE =OF . 考点:平行四边形的性质;全等三角形的判定与性质.18.【答案】(1),E (2,1),f (-1,-2);(2). 考点:反比例函数综合题.19.【答案】(1)300;(2)25.2y x 32高途课堂整理考点:一元一次不等式的应用;二元一次方程组的应用.20.【答案】(1)①2038;②答案见解析;(2).②“知识技能”的增长率==2.05=205% “资金”的增长率= =1.0863≈109% 对两个领域的认识,答案不唯一.例如:“知识技能”领域交易额较小,但增长率最高,达到了200%以上,其发展速度惊人,或“资金”交易额最大,2016年达到2万亿以上,成倍增长,带动共享经济市场规模不断扩大.(2)列表如下:16610200200-208631000010000-高途课堂整理由列表可知一共有12种可能出现的结果,且每种结果出现的可能性相同,其中抽到“共享出行”和“共享知识”的结果有2种,∴,P (抽到“共享出行”和“共享知识”)==.考点:列表法与树状图法;用样本估计总体;扇形统计图;条形统计图. 21.【答案】(1);(2)∠CDE =2∠A . (2)∠CDE =2∠A .理由如下:连结OC ,∵OA =OC ,∴∠1=∠A ,∵CD 是⊙O 的切线,∴OC ⊥CD ,∴∠OCD =90°,∴∠2+∠CDE =90°,∵OD ⊥AB ,∴∠2+∠3=90°,∴∠3=∠CDE .∵∠3=∠A +∠1=2∠A ,∴∠CDE =2∠A .考点:切线的性质;探究型;和差倍分.22.【答案】(1)证明见解析;(2)NF =ND ′,证明见解析;(3)证明见解析;(4)△MFN ,△MD ′H ,△MDA. 212162高途课堂整理考点:勾股定理的应用;新定义;阅读型;探究型;压轴题.23.【答案】(1);(2)①P (),D (, );②;(3)t=3,F (,). 3y x =-+132t -2t 92t -293t t -+154344高途课堂整理(3)由中点坐标公式和F 在直线BC 上得到,解得t =3.把t =3代入得到F 的坐标. 试题解析:(1)由y =0,得,解得:,,∴点A 的坐标为(-3,0),点B 的坐标为(9,0).由x =0,得C 的坐标为(0, ). (2)①过点P 作PG ⊥x 轴于点G .∵A(-3,0),B (9,0),C (0, )∴AO =3,BO =9,OC =,∴tan∠CAO = ,∴∠CAO =60°,∴∠APG =30°,∵AP =t ,∴AG =,PG =,∴OG =3-,∴P (,).∵OQ =,∴D 的横坐标为,∵D 在抛物线∴D 的纵坐标为=,∴D D (, ). 综上所述:P(,),D (, ); 2690t t -+=2093x x -++=13x =-29x=y =3CO AO ==12t 2t 12t 132t -2t 92t -92t -293y x x =-++2(92)(92)93y t t =--+-+293t t -+92t -293t -+132t -2t 92t -293t t -+高途课堂整理②过点P 作PG ⊥x 轴于点G ,PH ⊥QD 于点H .∵QD ⊥x 轴,∴四边形PGQH 是矩形,∴HQ =PG .∵PQ =PD ,PH ⊥QD ,∴QD =2HQ =2PG .∵P 、D 两点的坐标分别为P (,),D (, ),∴=,解得:(舍去),,∴当PQ =PD 时,t 的值为.考点:二次函数综合题;动点型;存在型;压轴题.132t-2t 92t-293t t -+293t t -+22t ⨯10t =2154t =154高途课堂整理。

2017年山西省中考数学试卷含答案

2017年山西省中考数学试卷含答案

B. ( 3)2 9 1 44
()
二 、填空题 (本大题共 5 小题 ,每小题 3 分 ,共 15 分 .请把答案填在题中的横线上 )
11.计算 : 4 18 9 2
.
12. 某商店经销一种品牌的洗衣机 ,其中某一型号的洗衣机每台
进价为 a 元 ,商店将进价提高 20% 后作为零售价进行销售 ,一
世界上首个在海域连续稳定产气的国家
.据粗略估计 ,仅南海北部
陆坡的可燃冰资源就达到 186 亿吨油当量 ,达到我国陆上石油资源
总量的 50%. 数据 186 亿吨用科学记数法可表示为
8
A.186 10 吨
9
10
B. 18.6 10 吨 C.1.86 10 吨
()
11
D. 0.186 10 吨
9.公元前 5 世纪 ,毕达哥拉斯学派中的一名成员希伯索斯发现了无理数
B.平均数
C.中位数
D.方差
2x 6≤0,
的解集表示在数轴上 ,下面表示正确的是
x4 0
()



A
B

C. 35 o
D. 55o
7.化简
4x x2 4
x
的结果是
x2
A.
2
x
2x
2
B. x 6x
x
C.
x2
x
D.
x2
8.2017 年 5 月 18 日 ,我国宣布在南海神狐海域成功试采可燃冰 ,成为
()
..
..
..
绝密 ★ 启用前
C.5x2 6x2
x2
D. (2m3 )2 (2m) 2 m4
------------在

山西省2017年中考数学真题试卷和答案

山西省2017年中考数学真题试卷和答案

山西省2017年中考数学真题试卷和答案山西省2017年中考数学真题试卷和答案一、选择题(每小题3分,共30分)。

1.计算﹣1+2的结果是( )A .﹣3B .﹣1C .1D .32.如图,直线a ,b 被直线c 所截,下列条件不能判定直线a 与b 平行的是( )A .∠1=∠3B .∠2+∠4=180°C .∠1=∠4D .∠3=∠43.在体育课上,甲、乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( )A .众数B .平均数C .中位数D .方差4.将不等式组{2x −6≤0x +4>0的解集表示在数轴上,下面表示正确的是( )A .B .C .D .5.下列运算错误的是( )A .(√3﹣1)0=1 B .(﹣3)2÷94=14C .5x 2﹣6x 2=﹣x 2D .(2m 3)2÷(2m )2=m 46.如图,将矩形纸片ABCD 沿BD 折叠,得到△BC′D,C′D 与AB 交于点E .若∠1=35°,则∠2的度数为( )A .20°B .30°C .35°D .55°7.化简4xx 2−4﹣xx−2的结果是( )A .﹣x 2+2x B .﹣x 2+6x C .﹣xx+2 D .xx−28.2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为( )A .186×108吨B .18.6×109吨C .1.86×1010吨D .0.186×1011吨9.公元前5世纪,毕达哥拉斯学派中的一名成员希伯索斯发现了无理数√2,导致了第一次数学危机,√2是无理数的证明如下:假设√2是有理数,那么它可以表示成qp (p 与q 是互质的两个正整数).于是(qp)2=(√2)2=2,所以,q 2=2p 2.于是q 2是偶数,进而q 是偶数,从而可设q=2m ,所以(2m )2=2p 2,p 2=2m 2,于是可得p 也是偶数.这与“p 与q 是互质的两个正整数”矛盾.从而可知“√2是有理数”的假设不成立,所以,√2是无理数.这种证明“√2是无理数”的方法是()A .综合法B .反证法C .举反例法D .数学归纳法10.如图是某商品的标志图案,AC 与BD 是⊙O 的两条直径,首尾顺次连接点A ,B ,C ,D ,得到四边形ABCD .若AC=10cm ,∠BAC=36°,则图中阴影部分的面积为( )A .5πcm 2B .10πcm 2C .15πcm 2D .20πcm 2二、填空题(每题3分,共15分)。

2017年山西省数学中考试卷及参考答案PDF

2017年山西省数学中考试卷及参考答案PDF

2017年山西省中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)计算﹣1+2的结果是()A.﹣3 B.﹣1 C.1 D.32.(3分)如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠4=180°C.∠1=∠4 D.∠3=∠43.(3分)在体育课上,甲、乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的()A.众数B.平均数C.中位数D.方差4.(3分)将不等式组的解集表示在数轴上,下面表示正确的是()A.B.C.D.5.(3分)下列运算错误的是()A.(﹣1)0=1 B.(﹣3)2÷=C.5x2﹣6x2=﹣x2D.(2m3)2÷(2m)2=m46.(3分)如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E.若∠1=35°,则∠2的度数为()A.20°B.30°C.35°D.55°7.(3分)化简﹣的结果是()A.﹣x2+2x B.﹣x2+6x C.﹣D.8.(3分)2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为()A.186×108吨B.18.6×109吨 C.1.86×1010吨D.0.186×1011吨9.(3分)公元前5世纪,毕达哥拉斯学派中的一名成员希伯索斯发现了无理数,导致了第一次数学危机,是无理数的证明如下:假设是有理数,那么它可以表示成(p与q是互质的两个正整数).于是()2=()2=2,所以,q2=2p2.于是q2是偶数,进而q是偶数,从而可设q=2m,所以(2m)2=2p2,p2=2m2,于是可得p也是偶数.这与“p与q是互质的两个正整数”矛盾.从而可知“是有理数”的假设不成立,所以,是无理数.这种证明“是无理数”的方法是()A.综合法B.反证法C.举反例法D.数学归纳法10.(3分)如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD.若AC=10cm,∠BAC=36°,则图中阴影部分的面积为()A.5πcm2B.10πcm2C.15πcm2D.20πcm2二、填空题(本大题共5个小题,每小题3分)11.(3分)计算:4﹣9=.12.(3分)某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为元.13.(3分)如图,已知△ABC三个顶点的坐标分别为A(0,4),B(﹣1,1),C(﹣2,2),将△ABC向右平移4个单位,得到△A′B′C′,点A,B,C的对应点分别为A′、B′、C′,再将△A′B′C′绕点B′顺时针旋转90°,得到△A″B″C″,点A′、B′、C′的对应点分别为A″、B″、C″,则点A″的坐标为.14.(3分)如图,创新小组要测量公园内一棵树的高度AB,其中一名小组成员站在距离树10米的点E处,测得树顶A的仰角为54°.已知测角仪的架高CE=1.5米,则这棵树的高度为米.(结果保留一位小数.参考数据:sin54°=0.8090,cos54°=0.5878,tan54°=1.3764)15.(3分)一副三角板按如图方式摆放,得到△ABD和△BCD,其中∠ADB=∠BCD=90°,∠A=60°,∠CBD=45°,E为AB的中点,过点E作EF⊥CD于点F.若AD=4cm,则EF的长为cm.三、解答题(本大题共8个小题,共75分)16.(10分)(1)计算:(﹣2)3+()﹣2﹣•sin45°(2)分解因式:(y+2x)2﹣(x+2y)2.17.(6分)已知:如图,在▱ABCD中,延长AB至点E,延长CD至点F,使得BE=DF.连接EF,与对角线AC交于点O.求证:OE=OF.18.(7分)如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,其边长为2,点A,点C分别在x轴,y轴的正半轴上,函数y=2x的图象与CB交于点D,函数y=(k为常数,k≠0)的图象经过点D,与AB交于点E,与函数y=2x的图象在第三象限内交于点F,连接AF、EF.(1)求函数y=的表达式,并直接写出E、F两点的坐标;(2)求△AEF的面积.19.(7分)“春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟”即谷子(去皮后则称为“小米”),被誉为中华民族的哺育作物.我省有着“小杂粮王国”的美誉,谷子作为我省杂粮谷物中的大类,其种植面积已连续三年全国第一.2016年全国谷子种植面积为2000万亩,年总产量为150万吨,我省谷子平均亩产量为160kg,国内其他地区谷子的平均亩产量为60kg,请解答下列问题:(1)求我省2016年谷子的种植面积是多少万亩.(2)2017年,若我省谷子的平均亩产量仍保持160kg不变,要使我省谷子的年总产量不低于52万吨,那么,今年我省至少应再多种植多少万亩的谷子?20.(12分)从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016年我国共享经济市场交易额约为34520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约1亿人.如图是源于该报告中的中国共享经济重点领域市场规模统计图:(1)请根据统计图解答下列问题:①图中涉及的七个重点领域中,2016年交易额的中位数是亿元.②请分别计算图中的“知识技能”和“资金”两个重点领域从2015年到2016年交易额的增长率(精确到1%),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识.(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同)他们将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A,B,C,D表示)21.(7分)如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.(1)若AC=4,BC=2,求OE的长.(2)试判断∠A与∠CDE的数量关系,并说明理由.22.(12分)综合与实践背景阅读早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被记载于我国古代著名数学著作《周髀算经》中,为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形,例如:三边长分别为9,12,15或3,4,5的三角形就是(3,4,5)型三角形,用矩形纸片按下面的操作方法可以折出这种类型的三角形.实践操作如图1,在矩形纸片ABCD中,AD=8cm,AB=12cm.第一步:如图2,将图1中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.第二步:如图3,将图2中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.第三步:如图4,将图3中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF交于点N,然后展平.问题解决(1)请在图2中证明四边形AEFD是正方形.(2)请在图4中判断NF与ND′的数量关系,并加以证明;(3)请在图4中证明△AEN(3,4,5)型三角形;探索发现(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.23.(14分)如图,抛物线y=﹣x2+x+3与x轴交于A、B两点(点A 在点B的左侧),与y轴交于点C,连接AC、BC.点P沿AC以每秒1个单位长度的速度由点A向点C运动,同时,点Q沿BO以每秒2个单位长度的速度由点B向点O运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ.过点Q作QD⊥x轴,与抛物线交于点D,与BC交于点E,连接PD,与BC交于点F.设点P的运动时间为t秒(t>0).(1)求直线BC的函数表达式;(2)①直接写出P,D两点的坐标(用含t的代数式表示,结果需化简)②在点P、Q运动的过程中,当PQ=PD时,求t的值;(3)试探究在点P,Q运动的过程中,是否存在某一时刻,使得点F为PD的中点?若存在,请直接写出此时t的值与点F的坐标;若不存在,请说明理由.2017年山西省中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)计算﹣1+2的结果是()A.﹣3 B.﹣1 C.1 D.3【解答】解:﹣1+2=1.故选:C.2.(3分)如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠4=180°C.∠1=∠4 D.∠3=∠4【解答】解:由∠1=∠3,可得直线a与b平行,故A能判定;由∠2+∠4=180°,∠2=∠5,∠4=∠3,可得∠3+∠5=180°,故直线a与b平行,故B能判定;由∠1=∠4,∠4=∠3,可得∠1=∠3,故直线a与b平行,故C能判定;由∠3=∠4,不能判定直线a与b平行,故选:D.3.(3分)在体育课上,甲、乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的()A.众数B.平均数C.中位数D.方差【解答】解:因为方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好;所以要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的方差.故选D.4.(3分)将不等式组的解集表示在数轴上,下面表示正确的是()A.B.C.D.【解答】解:解不等式①得,x≤3解不等式②得,x>﹣4在数轴上表示为:故选:A.5.(3分)下列运算错误的是()A.(﹣1)0=1 B.(﹣3)2÷=C.5x2﹣6x2=﹣x2D.(2m3)2÷(2m)2=m4【解答】解:A、(﹣1)0=1,正确,不符合题意;B、(﹣3)2÷=4,错误,符合题意;C、5x2﹣6x2=﹣x2,正确,不符合题意;D、(2m3)2÷(2m)2=m4,正确,不符合题意;故选B.6.(3分)如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E.若∠1=35°,则∠2的度数为()A.20°B.30°C.35°D.55°【解答】解:∵∠1=35°,CD∥AB,∴∠ABD=35°,∠DBC=55°,由折叠可得∠DBC'=∠DBC=55°,∴∠2=∠DBC'﹣∠DBA=55°﹣35°=20°,故选:A.7.(3分)化简﹣的结果是()A.﹣x2+2x B.﹣x2+6x C.﹣D.【解答】解:原式=﹣==﹣故选(C)8.(3分)2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为()A.186×108吨B.18.6×109吨 C.1.86×1010吨D.0.186×1011吨【解答】解:186亿吨=1.86×1010吨.故选:C .9.(3分)公元前5世纪,毕达哥拉斯学派中的一名成员希伯索斯发现了无理数,导致了第一次数学危机,是无理数的证明如下: 假设是有理数,那么它可以表示成(p 与q 是互质的两个正整数).于是()2=()2=2,所以,q 2=2p 2.于是q 2是偶数,进而q 是偶数,从而可设q=2m ,所以(2m )2=2p 2,p 2=2m 2,于是可得p 也是偶数.这与“p 与q 是互质的两个正整数”矛盾.从而可知“是有理数”的假设不成立,所以,是无理数.这种证明“是无理数”的方法是( )A .综合法B .反证法C .举反例法D .数学归纳法【解答】解:由题意可得:这种证明“是无理数”的方法是反证法. 故选:B .10.(3分)如图是某商品的标志图案,AC 与BD 是⊙O 的两条直径,首尾顺次连接点A ,B ,C ,D ,得到四边形ABCD .若AC=10cm ,∠BAC=36°,则图中阴影部分的面积为( )A .5πcm 2B .10πcm 2C .15πcm 2D .20πcm 2【解答】解:∵AC 与BD 是⊙O 的两条直径,∴∠ABC=∠ADC=∠DAB=∠BCD=90°,∴四边形ABCD 是矩形,∴△ABO 与△CDO 的面积的和=△AOD 与△BOC 的面积的和,∴图中阴影部分的面积=S 扇形AOD +S 扇形BOC =2S 扇形AOD ,∵OA=OB ,∴∠BAC=∠ABO=36°,∴∠AOD=72°,∴图中阴影部分的面积=2×=10π,故选B.二、填空题(本大题共5个小题,每小题3分)11.(3分)计算:4﹣9=3.【解答】解:原式=12=3,故答案为:3.12.(3分)某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为 1.08a元.【解答】解:由题意可得,该型号洗衣机的零售价为:a(1+20%)×0.9=1.08a(元),故答案为:1.08a.13.(3分)如图,已知△ABC三个顶点的坐标分别为A(0,4),B(﹣1,1),C(﹣2,2),将△ABC向右平移4个单位,得到△A′B′C′,点A,B,C的对应点分别为A′、B′、C′,再将△A′B′C′绕点B′顺时针旋转90°,得到△A″B″C″,点A′、B′、C′的对应点分别为A″、B″、C″,则点A″的坐标为(6,0).【解答】解:如图所示:∵A(0,4),B(﹣1,1),C(﹣2,2),将△ABC向右平移4个单位,得到△A′B′C′,∴A′、B′、C′的坐标分别为(4,4),B(3,1),C(2,2),再将△A′B′C′绕点B′顺时针旋转90°,得到△A″B″C″,则点A″的坐标为(6,0);故答案为:(6,0).14.(3分)如图,创新小组要测量公园内一棵树的高度AB,其中一名小组成员站在距离树10米的点E处,测得树顶A的仰角为54°.已知测角仪的架高CE=1.5米,则这棵树的高度为15.3米.(结果保留一位小数.参考数据:sin54°=0.8090,cos54°=0.5878,tan54°=1.3764)【解答】解:如图,过点C作CD⊥AB,垂足为D.则四边形CEBD是矩形,BD=CE=1.5m,在Rt△ACD中,CD=EB=10m,∠ACD=54°,∵tan∠ACE=,∴AD=CD•tan∠ACD≈10×1.38=13.8m.∴AB=AD+BD=13.8+1.5=15.3m.答:树的高度AB约为15.3m.故答案为15.315.(3分)一副三角板按如图方式摆放,得到△ABD和△BCD,其中∠ADB=∠BCD=90°,∠A=60°,∠CBD=45°,E为AB的中点,过点E作EF⊥CD于点F.若AD=4cm,则EF的长为(+)cm.【解答】解:过点A作AG⊥DC于G.∵∠CDB=∠CBD=45°,∠ADB=90°,∴∠ADG=45°.∴AG==2.∵∠ABD=30°,∴BD=AD=4.∵∠CBD=45°,∴CB==2.∵AG⊥CG,EF⊥CG,CB⊥CG,∴AG∥EF∥BC.又∵E是AB的中点,∴F为CG的中点,∴EF=(AG+BC)=(2+2)=+.故答案为:(+).三、解答题(本大题共8个小题,共75分)16.(10分)(1)计算:(﹣2)3+()﹣2﹣•sin45°(2)分解因式:(y+2x)2﹣(x+2y)2.【解答】解:(1)原式=﹣8+9﹣2=﹣1;(2)原式=[(y+2x)+(x+2y)][(y+2x)﹣(x+2y)]=3(x+y)(x﹣y).17.(6分)已知:如图,在▱ABCD中,延长AB至点E,延长CD至点F,使得BE=DF.连接EF,与对角线AC交于点O.求证:OE=OF.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵BE=DF,∴AB+BE=CD+DF,即AE=CF,∵AB∥CD,∴AE∥CF,∴∠E=∠F,∠OAE=∠OCF,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF.18.(7分)如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,其边长为2,点A,点C分别在x轴,y轴的正半轴上,函数y=2x的图象与CB交于点D,函数y=(k为常数,k≠0)的图象经过点D,与AB交于点E,与函数y=2x的图象在第三象限内交于点F,连接AF、EF.(1)求函数y=的表达式,并直接写出E、F两点的坐标;(2)求△AEF的面积.【解答】解:(1)∵正方形OABC的边长为2,∴点D的纵坐标为2,即y=2,将y=2代入y=2x,得x=1,∴点D的坐标为(1,2),∵函数y=的图象经过点D,∴2=,解得k=2,∴函数y=的表达式为y=,∴E(2,1),F(﹣1,﹣2);(2)过点F作FG⊥AB,与BA的延长线交于点G,∵E(2,1),F(﹣1,﹣2),∴AE=1,FG=2﹣(﹣1)=3,∴△AEF的面积为:AE•FG=×1×3=.19.(7分)“春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟”即谷子(去皮后则称为“小米”),被誉为中华民族的哺育作物.我省有着“小杂粮王国”的美誉,谷子作为我省杂粮谷物中的大类,其种植面积已连续三年全国第一.2016年全国谷子种植面积为2000万亩,年总产量为150万吨,我省谷子平均亩产量为160kg,国内其他地区谷子的平均亩产量为60kg,请解答下列问题:(1)求我省2016年谷子的种植面积是多少万亩.(2)2017年,若我省谷子的平均亩产量仍保持160kg不变,要使我省谷子的年总产量不低于52万吨,那么,今年我省至少应再多种植多少万亩的谷子?【解答】解:(1)设我省2016年谷子的种植面积是x万亩,其他地区谷子的种植面积是y万亩,依题意有,解得.答:我省2016年谷子的种植面积是300万亩.(2)设我省应种植z万亩的谷子,依题意有,解得z≥325,325﹣300=25(万亩).答:今年我省至少应再多种植25万亩的谷子.20.(12分)从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016年我国共享经济市场交易额约为34520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约1亿人.如图是源于该报告中的中国共享经济重点领域市场规模统计图:(1)请根据统计图解答下列问题:①图中涉及的七个重点领域中,2016年交易额的中位数是2038亿元.②请分别计算图中的“知识技能”和“资金”两个重点领域从2015年到2016年交易额的增长率(精确到1%),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识.(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同)他们将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A,B,C,D表示)【解答】解:(1)由图可知,2016年七个重点领域的交易额分别为70、245、610、2038、3300、7233、20863,2016年交易额的中位数是2038亿元,故答案为:2038;(2)“知识技能”的增长率为:×100%=205%,“资金”的增长率为:≈109%,由此可知,“知识技能”领域交易额较小,其增长率最高,达到200%以上,其发展速度惊人.(3)画树状图为:共有12种等可能的结果数,其中抽到“共享出行”和“共享知识”的结果数为2,所以抽到“共享出行”和“共享知识”的概率==.21.(7分)如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.(1)若AC=4,BC=2,求OE的长.(2)试判断∠A与∠CDE的数量关系,并说明理由.【解答】解:(1)∵AB为⊙O的直径,∴∠ACB=90°,在Rt△ABC中,由勾股定理得:AB===2,∴OA=AB=,∵OD⊥AB,∴∠AOE=∠ACB=90°,又∵∠A=∠A,∴△AOE∽△ACB,∴,即,解得:OE=;(2)∠CDE=2∠A,理由如下:连接OC,如图所示:∵OA=OC,∴∠1=∠A,∵CD是⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∴∠2+∠CDE=90°,∵OD⊥AB,∴∠2+∠3=90°,∴∠3=∠CDE,∵∠3=∠A+∠1=2∠A,∴∠CDE=2∠A.22.(12分)综合与实践背景阅读早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被记载于我国古代著名数学著作《周髀算经》中,为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形,例如:三边长分别为9,12,15或3,4,5的三角形就是(3,4,5)型三角形,用矩形纸片按下面的操作方法可以折出这种类型的三角形.实践操作如图1,在矩形纸片ABCD中,AD=8cm,AB=12cm.第一步:如图2,将图1中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.第二步:如图3,将图2中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.第三步:如图4,将图3中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF交于点N,然后展平.问题解决(1)请在图2中证明四边形AEFD是正方形.(2)请在图4中判断NF与ND′的数量关系,并加以证明;(3)请在图4中证明△AEN(3,4,5)型三角形;探索发现(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.【解答】(1)证明:∵四边形ABCD是矩形,∴∠D=∠DAE=90°,由折叠的性质得,AE=AD,∠AEF=∠D=90°,∴∠D=∠DAE=∠AEF=90°,∴四边形AEFD是矩形,∵AE=AD,∴矩形AEFD是正方形;(2)解:NF=ND′,理由:连接HN,由折叠得,∠AD′H=∠D=90°,HF=HD=HD′,∵四边形AEFD是正方形,∴∠EFD=90°,∵∠AD′H=90°,∴∠HD′N=90°,在Rt△HNF与Rt△HND′中,,∴Rt△HNF≌Rt△HND′,∴NF=ND′;(3)解:∵四边形AEFD是正方形,∴AE=EF=AD=8cm,由折叠得,AD′=AD=8cm,设NF=xcm,则ND′=xcm,在Rt△AEN中,∵AN2=AE2+EN2,∴(8+x)2=82+(8﹣x)2,解得:x=2,∴AN=8+x=10cm,EN=6cm,∴EN:AE:AN=3:4:5,∴△AEN是(3,4,5)型三角形;(4)解:图4中还有△MFN,△MD′H,△MDA是(3,4,5)型三角形,∵CF∥AE,∴△MFN∽△AEN,∵EN:AE:AN=3:4:5,∴FN:MF:CN=3:4:5,∴△MFN是(3,4,5)型三角形;同理,△MD′H,△MDA是(3,4,5)型三角形.23.(14分)如图,抛物线y=﹣x2+x+3与x轴交于A、B两点(点A 在点B的左侧),与y轴交于点C,连接AC、BC.点P沿AC以每秒1个单位长度的速度由点A向点C运动,同时,点Q沿BO以每秒2个单位长度的速度由点B向点O运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ.过点Q作QD⊥x轴,与抛物线交于点D,与BC交于点E,连接PD,与BC交于点F.设点P的运动时间为t秒(t>0).(1)求直线BC的函数表达式;(2)①直接写出P,D两点的坐标(用含t的代数式表示,结果需化简)②在点P、Q运动的过程中,当PQ=PD时,求t的值;(3)试探究在点P,Q运动的过程中,是否存在某一时刻,使得点F为PD的中点?若存在,请直接写出此时t的值与点F的坐标;若不存在,请说明理由.【解答】解:(1)由y=0得﹣x2+x+3=0,解得:x1=﹣3,x2=9,∴B(9,0),由x=0得y=3,∴C(0,3),设直线BC的解析式为y=kx+b,∴,∴,∴直线BC的解析式为y=﹣x+3;(2)①过P作PG⊥x轴于G,∵A(﹣3,0),C(0,3),∴OA=3.OC=3,∴tan∠CAO=,∴∠CAO=60°,∵AP=t,∴PG=t,AG=t,∴OG=3﹣t,∴P(t﹣3,t),∵DQ⊥x轴,BQ=2t,∴OQ=9﹣2t,∴D(9﹣2t,﹣t2+t),②过P作PH⊥QD于H,则四边形PGQH是矩形,∴HQ=PG,∵PQ=PD,PH⊥QD,∴DQ=2HQ=2PG,∵P(t﹣3,t),D(9﹣2t,﹣t2+t),∴﹣t2+t=2×t,解得:t1=0(舍去),t2=,∴当PQ=PD时,t的值是;(3)∵点F为PD的中点,∴F的横坐标为:(t﹣3+9﹣2t)=﹣t+3,F的纵坐标为(t﹣t2+t)=﹣t2+t,∴F(﹣t+3,﹣t2+t),∵点F在直线BC上,∴﹣t2+t=﹣(﹣t+3)+3,∴t=3,∴F(,).。

【真卷】2017年山西省中考数学试卷及解析PDF

【真卷】2017年山西省中考数学试卷及解析PDF

2017年山西省中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)计算﹣1+2的结果是()A.﹣3 B.﹣1 C.1 D.32.(3分)如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠4=180°C.∠1=∠4 D.∠3=∠43.(3分)在体育课上,甲、乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的()A.众数B.平均数C.中位数D.方差4.(3分)将不等式组的解集表示在数轴上,下面表示正确的是()A.B.C.D.5.(3分)下列运算错误的是()A.(﹣1)0=1 B.(﹣3)2÷=C.5x2﹣6x2=﹣x2D.(2m3)2÷(2m)2=m46.(3分)如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E.若∠1=35°,则∠2的度数为()A.20°B.30°C.35°D.55°7.(3分)化简﹣的结果是()A.﹣x2+2x B.﹣x2+6x C.﹣D.8.(3分)2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为()A.186×108吨B.18.6×109吨 C.1.86×1010吨D.0.186×1011吨9.(3分)公元前5世纪,毕达哥拉斯学派中的一名成员希伯索斯发现了无理数,导致了第一次数学危机,是无理数的证明如下:假设是有理数,那么它可以表示成(p与q是互质的两个正整数).于是()2=()2=2,所以,q2=2p2.于是q2是偶数,进而q是偶数,从而可设q=2m,所以(2m)2=2p2,p2=2m2,于是可得p也是偶数.这与“p与q是互质的两个正整数”矛盾.从而可知“是有理数”的假设不成立,所以,是无理数.这种证明“是无理数”的方法是()A.综合法B.反证法C.举反例法D.数学归纳法10.(3分)如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD.若AC=10cm,∠BAC=36°,则图中阴影部分的面积为()A.5πcm2B.10πcm2C.15πcm2D.20πcm2二、填空题(本大题共5个小题,每小题3分)11.(3分)计算:4﹣9=.12.(3分)某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为元.13.(3分)如图,已知△ABC三个顶点的坐标分别为A(0,4),B(﹣1,1),C(﹣2,2),将△ABC向右平移4个单位,得到△A′B′C′,点A,B,C的对应点分别为A′、B′、C′,再将△A′B′C′绕点B′顺时针旋转90°,得到△A″B″C″,点A′、B′、C′的对应点分别为A″、B″、C″,则点A″的坐标为.14.(3分)如图,创新小组要测量公园内一棵树的高度AB,其中一名小组成员站在距离树10米的点E处,测得树顶A的仰角为54°.已知测角仪的架高CE=1.5米,则这棵树的高度为米.(结果保留一位小数.参考数据:sin54°=0.8090,cos54°=0.5878,tan54°=1.3764)15.(3分)一副三角板按如图方式摆放,得到△ABD和△BCD,其中∠ADB=∠BCD=90°,∠A=60°,∠CBD=45°,E为AB的中点,过点E作EF⊥CD于点F.若AD=4cm,则EF的长为cm.三、解答题(本大题共8个小题,共75分)16.(10分)(1)计算:(﹣2)3+()﹣2﹣•sin45°(2)分解因式:(y+2x)2﹣(x+2y)2.17.(6分)已知:如图,在▱ABCD中,延长AB至点E,延长CD至点F,使得BE=DF.连接EF,与对角线AC交于点O.求证:OE=OF.18.(7分)如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,其边长为2,点A,点C分别在x轴,y轴的正半轴上,函数y=2x的图象与CB交于点D,函数y=(k为常数,k≠0)的图象经过点D,与AB交于点E,与函数y=2x的图象在第三象限内交于点F,连接AF、EF.(1)求函数y=的表达式,并直接写出E、F两点的坐标;(2)求△AEF的面积.19.(7分)“春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟”即谷子(去皮后则称为“小米”),被誉为中华民族的哺育作物.我省有着“小杂粮王国”的美誉,谷子作为我省杂粮谷物中的大类,其种植面积已连续三年全国第一.2016年全国谷子种植面积为2000万亩,年总产量为150万吨,我省谷子平均亩产量为160kg,国内其他地区谷子的平均亩产量为60kg,请解答下列问题:(1)求我省2016年谷子的种植面积是多少万亩.(2)2017年,若我省谷子的平均亩产量仍保持160kg不变,要使我省谷子的年总产量不低于52万吨,那么,今年我省至少应再多种植多少万亩的谷子?20.(12分)从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016年我国共享经济市场交易额约为34520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约1亿人.如图是源于该报告中的中国共享经济重点领域市场规模统计图:(1)请根据统计图解答下列问题:①图中涉及的七个重点领域中,2016年交易额的中位数是亿元.②请分别计算图中的“知识技能”和“资金”两个重点领域从2015年到2016年交易额的增长率(精确到1%),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识.(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同)他们将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A,B,C,D表示)21.(7分)如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.(1)若AC=4,BC=2,求OE的长.(2)试判断∠A与∠CDE的数量关系,并说明理由.22.(12分)综合与实践背景阅读早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被记载于我国古代著名数学著作《周髀算经》中,为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形,例如:三边长分别为9,12,15或3,4,5的三角形就是(3,4,5)型三角形,用矩形纸片按下面的操作方法可以折出这种类型的三角形.实践操作如图1,在矩形纸片ABCD中,AD=8cm,AB=12cm.第一步:如图2,将图1中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.第二步:如图3,将图2中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.第三步:如图4,将图3中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF交于点N,然后展平.问题解决(1)请在图2中证明四边形AEFD是正方形.(2)请在图4中判断NF与ND′的数量关系,并加以证明;(3)请在图4中证明△AEN(3,4,5)型三角形;探索发现(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.23.(14分)如图,抛物线y=﹣x2+x+3与x轴交于A、B两点(点A 在点B的左侧),与y轴交于点C,连接AC、BC.点P沿AC以每秒1个单位长度的速度由点A向点C运动,同时,点Q沿BO以每秒2个单位长度的速度由点B向点O运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ.过点Q作QD⊥x轴,与抛物线交于点D,与BC交于点E,连接PD,与BC交于点F.设点P的运动时间为t秒(t>0).(1)求直线BC的函数表达式;(2)①直接写出P,D两点的坐标(用含t的代数式表示,结果需化简)②在点P、Q运动的过程中,当PQ=PD时,求t的值;(3)试探究在点P,Q运动的过程中,是否存在某一时刻,使得点F为PD的中点?若存在,请直接写出此时t的值与点F的坐标;若不存在,请说明理由.2017年山西省中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)计算﹣1+2的结果是()A.﹣3 B.﹣1 C.1 D.3【解答】解:﹣1+2=1.故选:C.2.(3分)如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠4=180°C.∠1=∠4 D.∠3=∠4【解答】解:由∠1=∠3,可得直线a与b平行,故A能判定;由∠2+∠4=180°,∠2=∠5,∠4=∠3,可得∠3+∠5=180°,故直线a与b平行,故B能判定;由∠1=∠4,∠4=∠3,可得∠1=∠3,故直线a与b平行,故C能判定;由∠3=∠4,不能判定直线a与b平行,故选:D.3.(3分)在体育课上,甲、乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的()A.众数B.平均数C.中位数D.方差【解答】解:因为方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好;所以要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的方差.故选D.4.(3分)将不等式组的解集表示在数轴上,下面表示正确的是()A.B.C.D.【解答】解:解不等式①得,x≤3解不等式②得,x>﹣4在数轴上表示为:故选:A.5.(3分)下列运算错误的是()A.(﹣1)0=1 B.(﹣3)2÷=C.5x2﹣6x2=﹣x2D.(2m3)2÷(2m)2=m4【解答】解:A、(﹣1)0=1,正确,不符合题意;B、(﹣3)2÷=4,错误,符合题意;C、5x2﹣6x2=﹣x2,正确,不符合题意;D、(2m3)2÷(2m)2=m4,正确,不符合题意;故选B.6.(3分)如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E.若∠1=35°,则∠2的度数为()A.20°B.30°C.35°D.55°【解答】解:∵∠1=35°,CD∥AB,∴∠ABD=35°,∠DBC=55°,由折叠可得∠DBC'=∠DBC=55°,∴∠2=∠DBC'﹣∠DBA=55°﹣35°=20°,故选:A.7.(3分)化简﹣的结果是()A.﹣x2+2x B.﹣x2+6x C.﹣D.【解答】解:原式=﹣==﹣故选(C)8.(3分)2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为()A.186×108吨B.18.6×109吨 C.1.86×1010吨D.0.186×1011吨【解答】解:186亿吨=1.86×1010吨.故选:C.9.(3分)公元前5世纪,毕达哥拉斯学派中的一名成员希伯索斯发现了无理数,导致了第一次数学危机,是无理数的证明如下:假设是有理数,那么它可以表示成(p与q是互质的两个正整数).于是()2=()2=2,所以,q2=2p2.于是q2是偶数,进而q是偶数,从而可设q=2m,所以(2m)2=2p2,p2=2m2,于是可得p也是偶数.这与“p与q是互质的两个正整数”矛盾.从而可知“是有理数”的假设不成立,所以,是无理数.这种证明“是无理数”的方法是()A.综合法B.反证法C.举反例法D.数学归纳法【解答】解:由题意可得:这种证明“是无理数”的方法是反证法.故选:B.10.(3分)如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD.若AC=10cm,∠BAC=36°,则图中阴影部分的面积为()A.5πcm2B.10πcm2C.15πcm2D.20πcm2【解答】解:∵AC 与BD 是⊙O 的两条直径, ∴∠ABC=∠ADC=∠DAB=∠BCD=90°, ∴四边形ABCD 是矩形,∴△ABO 与△CDO 的面积的和=△AOD 与△BOC 的面积的和, ∴图中阴影部分的面积=S 扇形AOD +S 扇形BOC =2S 扇形AOD , ∵OA=OB ,∴∠BAC=∠ABO=36°, ∴∠AOD=72°,∴图中阴影部分的面积=2×=10π,故选B .二、填空题(本大题共5个小题,每小题3分)11.(3分)计算:4﹣9= 3 .【解答】解:原式=12=3,故答案为:3.12.(3分)某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为 1.08a 元.【解答】解:由题意可得,该型号洗衣机的零售价为:a (1+20%)×0.9=1.08a (元), 故答案为:1.08a .13.(3分)如图,已知△ABC 三个顶点的坐标分别为A (0,4),B (﹣1,1),C (﹣2,2),将△ABC 向右平移4个单位,得到△A′B′C′,点A ,B ,C 的对应点分别为A′、B′、C′,再将△A′B′C′绕点B′顺时针旋转90°,得到△A″B″C″,点A′、B′、C′的对应点分别为A″、B″、C″,则点A″的坐标为(6,0).【解答】解:如图所示:∵A(0,4),B(﹣1,1),C(﹣2,2),将△ABC向右平移4个单位,得到△A′B′C′,∴A′、B′、C′的坐标分别为(4,4),B(3,1),C(2,2),再将△A′B′C′绕点B′顺时针旋转90°,得到△A″B″C″,则点A″的坐标为(6,0);故答案为:(6,0).14.(3分)如图,创新小组要测量公园内一棵树的高度AB,其中一名小组成员站在距离树10米的点E处,测得树顶A的仰角为54°.已知测角仪的架高CE=1.5米,则这棵树的高度为15.3米.(结果保留一位小数.参考数据:sin54°=0.8090,cos54°=0.5878,tan54°=1.3764)【解答】解:如图,过点C作CD⊥AB,垂足为D.则四边形CEBD是矩形,BD=CE=1.5m,在Rt△ACD中,CD=EB=10m,∠ACD=54°,∵tan∠ACE=,∴AD=CD•tan∠ACD≈10×1.38=13.8m.∴AB=AD+BD=13.8+1.5=15.3m.答:树的高度AB约为15.3m.故答案为15.315.(3分)一副三角板按如图方式摆放,得到△ABD和△BCD,其中∠ADB=∠BCD=90°,∠A=60°,∠CBD=45°,E为AB的中点,过点E作EF⊥CD于点F.若AD=4cm,则EF的长为(+)cm.【解答】解:过点A作AG⊥DC于G.∵∠CDB=∠CBD=45°,∠ADB=90°,∴∠ADG=45°.∴AG==2.∵∠ABD=30°,∴BD=AD=4.∵∠CBD=45°,∴CB==2.∵AG⊥CG,EF⊥CG,CB⊥CG,∴AG∥EF∥BC.又∵E是AB的中点,∴F为CG的中点,∴EF=(AG+BC)=(2+2)=+.故答案为:(+).三、解答题(本大题共8个小题,共75分)16.(10分)(1)计算:(﹣2)3+()﹣2﹣•sin45°(2)分解因式:(y+2x)2﹣(x+2y)2.【解答】解:(1)原式=﹣8+9﹣2=﹣1;(2)原式=[(y+2x)+(x+2y)][(y+2x)﹣(x+2y)]=3(x+y)(x﹣y).17.(6分)已知:如图,在▱ABCD中,延长AB至点E,延长CD至点F,使得BE=DF.连接EF,与对角线AC交于点O.求证:OE=OF.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵BE=DF,∴AB+BE=CD+DF,即AE=CF,∵AB∥CD,∴AE∥CF,∴∠E=∠F,∠OAE=∠OCF,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF.18.(7分)如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,其边长为2,点A,点C分别在x轴,y轴的正半轴上,函数y=2x的图象与CB交于点D,函数y=(k为常数,k≠0)的图象经过点D,与AB交于点E,与函数y=2x的图象在第三象限内交于点F,连接AF、EF.(1)求函数y=的表达式,并直接写出E、F两点的坐标;(2)求△AEF的面积.【解答】解:(1)∵正方形OABC的边长为2,∴点D的纵坐标为2,即y=2,将y=2代入y=2x,得x=1,∴点D的坐标为(1,2),∵函数y=的图象经过点D,∴2=,解得k=2,∴函数y=的表达式为y=,∴E(2,1),F(﹣1,﹣2);(2)过点F作FG⊥AB,与BA的延长线交于点G,∵E(2,1),F(﹣1,﹣2),∴AE=1,FG=2﹣(﹣1)=3,∴△AEF的面积为:AE•FG=×1×3=.19.(7分)“春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟”即谷子(去皮后则称为“小米”),被誉为中华民族的哺育作物.我省有着“小杂粮王国”的美誉,谷子作为我省杂粮谷物中的大类,其种植面积已连续三年全国第一.2016年全国谷子种植面积为2000万亩,年总产量为150万吨,我省谷子平均亩产量为160kg,国内其他地区谷子的平均亩产量为60kg,请解答下列问题:(1)求我省2016年谷子的种植面积是多少万亩.(2)2017年,若我省谷子的平均亩产量仍保持160kg不变,要使我省谷子的年总产量不低于52万吨,那么,今年我省至少应再多种植多少万亩的谷子?【解答】解:(1)设我省2016年谷子的种植面积是x万亩,其他地区谷子的种植面积是y万亩,依题意有,解得.答:我省2016年谷子的种植面积是300万亩.(2)设我省应种植z万亩的谷子,依题意有,解得z≥325,325﹣300=25(万亩).答:今年我省至少应再多种植25万亩的谷子.20.(12分)从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016年我国共享经济市场交易额约为34520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约1亿人.如图是源于该报告中的中国共享经济重点领域市场规模统计图:(1)请根据统计图解答下列问题:①图中涉及的七个重点领域中,2016年交易额的中位数是2038亿元.②请分别计算图中的“知识技能”和“资金”两个重点领域从2015年到2016年交易额的增长率(精确到1%),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识.(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同)他们将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A,B,C,D表示)【解答】解:(1)由图可知,2016年七个重点领域的交易额分别为70、245、610、2038、3300、7233、20863,2016年交易额的中位数是2038亿元,故答案为:2038;(2)“知识技能”的增长率为:×100%=205%,“资金”的增长率为:≈109%,由此可知,“知识技能”领域交易额较小,其增长率最高,达到200%以上,其发展速度惊人.(3)画树状图为:共有12种等可能的结果数,其中抽到“共享出行”和“共享知识”的结果数为2,所以抽到“共享出行”和“共享知识”的概率==.21.(7分)如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.(1)若AC=4,BC=2,求OE的长.(2)试判断∠A与∠CDE的数量关系,并说明理由.【解答】解:(1)∵AB为⊙O的直径,∴∠ACB=90°,在Rt△ABC中,由勾股定理得:AB===2,∴OA=AB=,∵OD⊥AB,∴∠AOE=∠ACB=90°,又∵∠A=∠A,∴△AOE∽△ACB,∴,即,解得:OE=;(2)∠CDE=2∠A,理由如下:连接OC,如图所示:∵OA=OC,∴∠1=∠A,∵CD是⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∴∠2+∠CDE=90°,∵OD⊥AB,∴∠2+∠3=90°,∴∠3=∠CDE,∵∠3=∠A+∠1=2∠A,∴∠CDE=2∠A.22.(12分)综合与实践背景阅读早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被记载于我国古代著名数学著作《周髀算经》中,为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形,例如:三边长分别为9,12,15或3,4,5的三角形就是(3,4,5)型三角形,用矩形纸片按下面的操作方法可以折出这种类型的三角形.实践操作如图1,在矩形纸片ABCD中,AD=8cm,AB=12cm.第一步:如图2,将图1中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.第二步:如图3,将图2中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.第三步:如图4,将图3中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF交于点N,然后展平.问题解决(1)请在图2中证明四边形AEFD是正方形.(2)请在图4中判断NF与ND′的数量关系,并加以证明;(3)请在图4中证明△AEN(3,4,5)型三角形;探索发现(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.【解答】(1)证明:∵四边形ABCD是矩形,∴∠D=∠DAE=90°,由折叠的性质得,AE=AD,∠AEF=∠D=90°,∴∠D=∠DAE=∠AEF=90°,∴四边形AEFD是矩形,∵AE=AD,∴矩形AEFD是正方形;(2)解:NF=ND′,理由:连接HN,由折叠得,∠AD′H=∠D=90°,HF=HD=HD′,∵四边形AEFD是正方形,∴∠EFD=90°,∵∠AD′H=90°,∴∠HD′N=90°,在Rt△HNF与Rt△HND′中,,∴Rt△HNF≌Rt△HND′,∴NF=ND′;(3)解:∵四边形AEFD是正方形,∴AE=EF=AD=8cm,由折叠得,AD′=AD=8cm,设NF=xcm,则ND′=xcm,在Rt△AEN中,∵AN2=AE2+EN2,∴(8+x)2=82+(8﹣x)2,解得:x=2,∴AN=8+x=10cm,EN=6cm,∴EN:AE:AN=3:4:5,∴△AEN是(3,4,5)型三角形;(4)解:图4中还有△MFN,△MD′H,△MDA是(3,4,5)型三角形,∵CF∥AE,∴△MFN∽△AEN,∵EN:AE:AN=3:4:5,∴FN:MF:CN=3:4:5,∴△MFN是(3,4,5)型三角形;同理,△MD′H,△MDA是(3,4,5)型三角形.23.(14分)如图,抛物线y=﹣x2+x+3与x轴交于A、B两点(点A 在点B的左侧),与y轴交于点C,连接AC、BC.点P沿AC以每秒1个单位长度的速度由点A向点C运动,同时,点Q沿BO以每秒2个单位长度的速度由点B向点O运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ.过点Q作QD⊥x轴,与抛物线交于点D,与BC交于点E,连接PD,与BC交于点F.设点P的运动时间为t秒(t>0).(1)求直线BC的函数表达式;(2)①直接写出P,D两点的坐标(用含t的代数式表示,结果需化简)②在点P、Q运动的过程中,当PQ=PD时,求t的值;(3)试探究在点P,Q运动的过程中,是否存在某一时刻,使得点F为PD的中点?若存在,请直接写出此时t的值与点F的坐标;若不存在,请说明理由.【解答】解:(1)由y=0得﹣x2+x+3=0,解得:x1=﹣3,x2=9,∴B(9,0),由x=0得y=3,∴C(0,3),设直线BC的解析式为y=kx+b,∴,∴,∴直线BC的解析式为y=﹣x+3;(2)①过P作PG⊥x轴于G,∵A(﹣3,0),C(0,3),∴OA=3.OC=3,∴tan∠CAO=,∴∠CAO=60°,∵AP=t,∴PG=t,AG=t,∴OG=3﹣t,∴P(t﹣3,t),∵DQ⊥x轴,BQ=2t,∴OQ=9﹣2t,∴D(9﹣2t,﹣t2+t),②过P作PH⊥QD于H,则四边形PGQH是矩形,∴HQ=PG,∵PQ=PD,PH⊥QD,∴DQ=2HQ=2PG,∵P(t﹣3,t),D(9﹣2t,﹣t2+t),∴﹣t2+t=2×t,解得:t1=0(舍去),t2=,∴当PQ=PD时,t的值是;(3)∵点F为PD的中点,∴F的横坐标为:(t﹣3+9﹣2t)=﹣t+3,F的纵坐标为(t﹣t2+t)=﹣t2+t,∴F(﹣t+3,﹣t2+t),∵点F在直线BC上,∴﹣t2+t=﹣(﹣t+3)+3,∴t=3,∴F(,).。

2017年山西省中考数学试卷和解析PDF版

2017年山西省中考数学试卷和解析PDF版

2017年山西省中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)计算﹣1+2的结果是()A.﹣3 B.﹣1 C.1 D.32.(3分)如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠4=180°C.∠1=∠4 D.∠3=∠43.(3分)在体育课上,甲、乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的()A.众数B.平均数C.中位数D.方差4.(3分)将不等式组的解集表示在数轴上,下面表示正确的是()A.B.C.D.5.(3分)下列运算错误的是()A.(﹣1)0=1 B.(﹣3)2÷=C.5x2﹣6x2=﹣x2D.(2m3)2÷(2m)2=m46.(3分)如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E.若∠1=35°,则∠2的度数为()A.20°B.30°C.35°D.55°7.(3分)化简﹣的结果是()A.﹣x2+2x B.﹣x2+6x C.﹣D.8.(3分)2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为()A.186×108吨B.18.6×109吨 C.1.86×1010吨D.0.186×1011吨9.(3分)公元前5世纪,毕达哥拉斯学派中的一名成员希伯索斯发现了无理数,导致了第一次数学危机,是无理数的证明如下:假设是有理数,那么它可以表示成(p与q是互质的两个正整数).于是()2=()2=2,所以,q2=2p2.于是q2是偶数,进而q是偶数,从而可设q=2m,所以(2m)2=2p2,p2=2m2,于是可得p也是偶数.这与“p与q是互质的两个正整数”矛盾.从而可知“是有理数”的假设不成立,所以,是无理数.这种证明“是无理数”的方法是()A.综合法B.反证法C.举反例法D.数学归纳法10.(3分)如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD.若AC=10cm,∠BAC=36°,则图中阴影部分的面积为()A.5πcm2B.10πcm2C.15πcm2D.20πcm2二、填空题(本大题共5个小题,每小题3分)11.(3分)计算:4﹣9=.12.(3分)某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为元.13.(3分)如图,已知△ABC三个顶点的坐标分别为A(0,4),B(﹣1,1),C(﹣2,2),将△ABC向右平移4个单位,得到△A′B′C′,点A,B,C的对应点分别为A′、B′、C′,再将△A′B′C′绕点B′顺时针旋转90°,得到△A″B″C″,点A′、B′、C′的对应点分别为A″、B″、C″,则点A″的坐标为.14.(3分)如图,创新小组要测量公园内一棵树的高度AB,其中一名小组成员站在距离树10米的点E处,测得树顶A的仰角为54°.已知测角仪的架高CE=1.5米,则这棵树的高度为米.(结果保留一位小数.参考数据:sin54°=0.8090,cos54°=0.5878,tan54°=1.3764)15.(3分)一副三角板按如图方式摆放,得到△ABD和△BCD,其中∠ADB=∠BCD=90°,∠A=60°,∠CBD=45°,E为AB的中点,过点E作EF⊥CD于点F.若AD=4cm,则EF的长为cm.三、解答题(本大题共8个小题,共75分)16.(10分)(1)计算:(﹣2)3+()﹣2﹣•sin45°(2)分解因式:(y+2x)2﹣(x+2y)2.17.(6分)已知:如图,在▱ABCD中,延长AB至点E,延长CD至点F,使得BE=DF.连接EF,与对角线AC交于点O.求证:OE=OF.18.(7分)如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,其边长为2,点A,点C分别在x轴,y轴的正半轴上,函数y=2x的图象与CB交于点D,函数y=(k为常数,k≠0)的图象经过点D,与AB交于点E,与函数y=2x的图象在第三象限内交于点F,连接AF、EF.(1)求函数y=的表达式,并直接写出E、F两点的坐标;(2)求△AEF的面积.19.(7分)“春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟”即谷子(去皮后则称为“小米”),被誉为中华民族的哺育作物.我省有着“小杂粮王国”的美誉,谷子作为我省杂粮谷物中的大类,其种植面积已连续三年全国第一.2016年全国谷子种植面积为2000万亩,年总产量为150万吨,我省谷子平均亩产量为160kg,国内其他地区谷子的平均亩产量为60kg,请解答下列问题:(1)求我省2016年谷子的种植面积是多少万亩.(2)2017年,若我省谷子的平均亩产量仍保持160kg不变,要使我省谷子的年总产量不低于52万吨,那么,今年我省至少应再多种植多少万亩的谷子?20.(12分)从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016年我国共享经济市场交易额约为34520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约1亿人.如图是源于该报告中的中国共享经济重点领域市场规模统计图:(1)请根据统计图解答下列问题:①图中涉及的七个重点领域中,2016年交易额的中位数是亿元.②请分别计算图中的“知识技能”和“资金”两个重点领域从2015年到2016年交易额的增长率(精确到1%),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识.(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同)他们将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A,B,C,D表示)21.(7分)如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.(1)若AC=4,BC=2,求OE的长.(2)试判断∠A与∠CDE的数量关系,并说明理由.22.(12分)综合与实践背景阅读早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被记载于我国古代著名数学著作《周髀算经》中,为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形,例如:三边长分别为9,12,15或3,4,5的三角形就是(3,4,5)型三角形,用矩形纸片按下面的操作方法可以折出这种类型的三角形.实践操作如图1,在矩形纸片ABCD中,AD=8cm,AB=12cm.第一步:如图2,将图1中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.第二步:如图3,将图2中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.第三步:如图4,将图3中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF交于点N,然后展平.问题解决(1)请在图2中证明四边形AEFD是正方形.(2)请在图4中判断NF与ND′的数量关系,并加以证明;(3)请在图4中证明△AEN(3,4,5)型三角形;探索发现(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.23.(14分)如图,抛物线y=﹣x2+x+3与x轴交于A、B两点(点A 在点B的左侧),与y轴交于点C,连接AC、BC.点P沿AC以每秒1个单位长度的速度由点A向点C运动,同时,点Q沿BO以每秒2个单位长度的速度由点B向点O运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ.过点Q作QD⊥x轴,与抛物线交于点D,与BC交于点E,连接PD,与BC交于点F.设点P的运动时间为t秒(t>0).(1)求直线BC的函数表达式;(2)①直接写出P,D两点的坐标(用含t的代数式表示,结果需化简)②在点P、Q运动的过程中,当PQ=PD时,求t的值;(3)试探究在点P,Q运动的过程中,是否存在某一时刻,使得点F为PD的中点?若存在,请直接写出此时t的值与点F的坐标;若不存在,请说明理由.2017年山西省中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)计算﹣1+2的结果是()A.﹣3 B.﹣1 C.1 D.3【解答】解:﹣1+2=1.故选:C.2.(3分)如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠4=180°C.∠1=∠4 D.∠3=∠4【解答】解:由∠1=∠3,可得直线a与b平行,故A能判定;由∠2+∠4=180°,∠2=∠5,∠4=∠3,可得∠3+∠5=180°,故直线a与b平行,故B能判定;由∠1=∠4,∠4=∠3,可得∠1=∠3,故直线a与b平行,故C能判定;由∠3=∠4,不能判定直线a与b平行,故选:D.3.(3分)在体育课上,甲、乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的()A.众数B.平均数C.中位数D.方差【解答】解:因为方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好;所以要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的方差.故选D.4.(3分)将不等式组的解集表示在数轴上,下面表示正确的是()A.B.C.D.【解答】解:解不等式①得,x≤3解不等式②得,x>﹣4在数轴上表示为:故选:A.5.(3分)下列运算错误的是()A.(﹣1)0=1 B.(﹣3)2÷=C.5x2﹣6x2=﹣x2D.(2m3)2÷(2m)2=m4【解答】解:A、(﹣1)0=1,正确,不符合题意;B、(﹣3)2÷=4,错误,符合题意;C、5x2﹣6x2=﹣x2,正确,不符合题意;D、(2m3)2÷(2m)2=m4,正确,不符合题意;故选B.6.(3分)如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E.若∠1=35°,则∠2的度数为()A.20°B.30°C.35°D.55°【解答】解:∵∠1=35°,CD∥AB,∴∠ABD=35°,∠DBC=55°,由折叠可得∠DBC'=∠DBC=55°,∴∠2=∠DBC'﹣∠DBA=55°﹣35°=20°,故选:A.7.(3分)化简﹣的结果是()A.﹣x2+2x B.﹣x2+6x C.﹣D.【解答】解:原式=﹣==﹣故选(C)8.(3分)2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为()A.186×108吨B.18.6×109吨 C.1.86×1010吨D.0.186×1011吨【解答】解:186亿吨=1.86×1010吨.故选:C .9.(3分)公元前5世纪,毕达哥拉斯学派中的一名成员希伯索斯发现了无理数,导致了第一次数学危机,是无理数的证明如下: 假设是有理数,那么它可以表示成(p 与q 是互质的两个正整数).于是()2=()2=2,所以,q 2=2p 2.于是q 2是偶数,进而q 是偶数,从而可设q=2m ,所以(2m )2=2p 2,p 2=2m 2,于是可得p 也是偶数.这与“p 与q 是互质的两个正整数”矛盾.从而可知“是有理数”的假设不成立,所以,是无理数.这种证明“是无理数”的方法是( )A .综合法B .反证法C .举反例法D .数学归纳法【解答】解:由题意可得:这种证明“是无理数”的方法是反证法. 故选:B .10.(3分)如图是某商品的标志图案,AC 与BD 是⊙O 的两条直径,首尾顺次连接点A ,B ,C ,D ,得到四边形ABCD .若AC=10cm ,∠BAC=36°,则图中阴影部分的面积为( )A .5πcm 2B .10πcm 2C .15πcm 2D .20πcm 2【解答】解:∵AC 与BD 是⊙O 的两条直径,∴∠ABC=∠ADC=∠DAB=∠BCD=90°,∴四边形ABCD 是矩形,∴△ABO 与△CDO 的面积的和=△AOD 与△BOC 的面积的和,∴图中阴影部分的面积=S 扇形AOD +S 扇形BOC =2S 扇形AOD ,∵OA=OB ,∴∠BAC=∠ABO=36°,∴∠AOD=72°,∴图中阴影部分的面积=2×=10π,故选B.二、填空题(本大题共5个小题,每小题3分)11.(3分)计算:4﹣9=3.【解答】解:原式=12=3,故答案为:3.12.(3分)某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为 1.08a元.【解答】解:由题意可得,该型号洗衣机的零售价为:a(1+20%)×0.9=1.08a(元),故答案为:1.08a.13.(3分)如图,已知△ABC三个顶点的坐标分别为A(0,4),B(﹣1,1),C(﹣2,2),将△ABC向右平移4个单位,得到△A′B′C′,点A,B,C的对应点分别为A′、B′、C′,再将△A′B′C′绕点B′顺时针旋转90°,得到△A″B″C″,点A′、B′、C′的对应点分别为A″、B″、C″,则点A″的坐标为(6,0).【解答】解:如图所示:∵A(0,4),B(﹣1,1),C(﹣2,2),将△ABC向右平移4个单位,得到△A′B′C′,∴A′、B′、C′的坐标分别为(4,4),B(3,1),C(2,2),再将△A′B′C′绕点B′顺时针旋转90°,得到△A″B″C″,则点A″的坐标为(6,0);故答案为:(6,0).14.(3分)如图,创新小组要测量公园内一棵树的高度AB,其中一名小组成员站在距离树10米的点E处,测得树顶A的仰角为54°.已知测角仪的架高CE=1.5米,则这棵树的高度为15.3米.(结果保留一位小数.参考数据:sin54°=0.8090,cos54°=0.5878,tan54°=1.3764)【解答】解:如图,过点C作CD⊥AB,垂足为D.则四边形CEBD是矩形,BD=CE=1.5m,在Rt△ACD中,CD=EB=10m,∠ACD=54°,∵tan∠ACE=,∴AD=CD•tan∠ACD≈10×1.38=13.8m.∴AB=AD+BD=13.8+1.5=15.3m.答:树的高度AB约为15.3m.故答案为15.315.(3分)一副三角板按如图方式摆放,得到△ABD和△BCD,其中∠ADB=∠BCD=90°,∠A=60°,∠CBD=45°,E为AB的中点,过点E作EF⊥CD于点F.若AD=4cm,则EF的长为(+)cm.【解答】解:过点A作AG⊥DC于G.∵∠CDB=∠CBD=45°,∠ADB=90°,∴∠ADG=45°.∴AG==2.∵∠ABD=30°,∴BD=AD=4.∵∠CBD=45°,∴CB==2.∵AG⊥CG,EF⊥CG,CB⊥CG,∴AG∥EF∥BC.又∵E是AB的中点,∴F为CG的中点,∴EF=(AG+BC)=(2+2)=+.故答案为:(+).三、解答题(本大题共8个小题,共75分)16.(10分)(1)计算:(﹣2)3+()﹣2﹣•sin45°(2)分解因式:(y+2x)2﹣(x+2y)2.【解答】解:(1)原式=﹣8+9﹣2=﹣1;(2)原式=[(y+2x)+(x+2y)][(y+2x)﹣(x+2y)]=3(x+y)(x﹣y).17.(6分)已知:如图,在▱ABCD中,延长AB至点E,延长CD至点F,使得BE=DF.连接EF,与对角线AC交于点O.求证:OE=OF.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵BE=DF,∴AB+BE=CD+DF,即AE=CF,∵AB∥CD,∴AE∥CF,∴∠E=∠F,∠OAE=∠OCF,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF.18.(7分)如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,其边长为2,点A,点C分别在x轴,y轴的正半轴上,函数y=2x的图象与CB交于点D,函数y=(k为常数,k≠0)的图象经过点D,与AB交于点E,与函数y=2x的图象在第三象限内交于点F,连接AF、EF.(1)求函数y=的表达式,并直接写出E、F两点的坐标;(2)求△AEF的面积.【解答】解:(1)∵正方形OABC的边长为2,∴点D的纵坐标为2,即y=2,将y=2代入y=2x,得x=1,∴点D的坐标为(1,2),∵函数y=的图象经过点D,∴2=,解得k=2,∴函数y=的表达式为y=,∴E(2,1),F(﹣1,﹣2);(2)过点F作FG⊥AB,与BA的延长线交于点G,∵E(2,1),F(﹣1,﹣2),∴AE=1,FG=2﹣(﹣1)=3,∴△AEF的面积为:AE•FG=×1×3=.19.(7分)“春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟”即谷子(去皮后则称为“小米”),被誉为中华民族的哺育作物.我省有着“小杂粮王国”的美誉,谷子作为我省杂粮谷物中的大类,其种植面积已连续三年全国第一.2016年全国谷子种植面积为2000万亩,年总产量为150万吨,我省谷子平均亩产量为160kg,国内其他地区谷子的平均亩产量为60kg,请解答下列问题:(1)求我省2016年谷子的种植面积是多少万亩.(2)2017年,若我省谷子的平均亩产量仍保持160kg不变,要使我省谷子的年总产量不低于52万吨,那么,今年我省至少应再多种植多少万亩的谷子?【解答】解:(1)设我省2016年谷子的种植面积是x万亩,其他地区谷子的种植面积是y万亩,依题意有,解得.答:我省2016年谷子的种植面积是300万亩.(2)设我省应种植z万亩的谷子,依题意有,解得z≥325,325﹣300=25(万亩).答:今年我省至少应再多种植25万亩的谷子.20.(12分)从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016年我国共享经济市场交易额约为34520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约1亿人.如图是源于该报告中的中国共享经济重点领域市场规模统计图:(1)请根据统计图解答下列问题:①图中涉及的七个重点领域中,2016年交易额的中位数是2038亿元.②请分别计算图中的“知识技能”和“资金”两个重点领域从2015年到2016年交易额的增长率(精确到1%),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识.(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同)他们将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A,B,C,D表示)【解答】解:(1)由图可知,2016年七个重点领域的交易额分别为70、245、610、2038、3300、7233、20863,2016年交易额的中位数是2038亿元,故答案为:2038;(2)“知识技能”的增长率为:×100%=205%,“资金”的增长率为:≈109%,由此可知,“知识技能”领域交易额较小,其增长率最高,达到200%以上,其发展速度惊人.(3)画树状图为:共有12种等可能的结果数,其中抽到“共享出行”和“共享知识”的结果数为2,所以抽到“共享出行”和“共享知识”的概率==.21.(7分)如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.(1)若AC=4,BC=2,求OE的长.(2)试判断∠A与∠CDE的数量关系,并说明理由.【解答】解:(1)∵AB为⊙O的直径,∴∠ACB=90°,在Rt△ABC中,由勾股定理得:AB===2,∴OA=AB=,∵OD⊥AB,∴∠AOE=∠ACB=90°,又∵∠A=∠A,∴△AOE∽△ACB,∴,即,解得:OE=;(2)∠CDE=2∠A,理由如下:连接OC,如图所示:∵OA=OC,∴∠1=∠A,∵CD是⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∴∠2+∠CDE=90°,∵OD⊥AB,∴∠2+∠3=90°,∴∠3=∠CDE,∵∠3=∠A+∠1=2∠A,∴∠CDE=2∠A.22.(12分)综合与实践背景阅读早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被记载于我国古代著名数学著作《周髀算经》中,为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形,例如:三边长分别为9,12,15或3,4,5的三角形就是(3,4,5)型三角形,用矩形纸片按下面的操作方法可以折出这种类型的三角形.实践操作如图1,在矩形纸片ABCD中,AD=8cm,AB=12cm.第一步:如图2,将图1中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.第二步:如图3,将图2中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.第三步:如图4,将图3中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF交于点N,然后展平.问题解决(1)请在图2中证明四边形AEFD是正方形.(2)请在图4中判断NF与ND′的数量关系,并加以证明;(3)请在图4中证明△AEN(3,4,5)型三角形;探索发现(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.【解答】(1)证明:∵四边形ABCD是矩形,∴∠D=∠DAE=90°,由折叠的性质得,AE=AD,∠AEF=∠D=90°,∴∠D=∠DAE=∠AEF=90°,∴四边形AEFD是矩形,∵AE=AD,∴矩形AEFD是正方形;(2)解:NF=ND′,理由:连接HN,由折叠得,∠AD′H=∠D=90°,HF=HD=HD′,∵四边形AEFD是正方形,∴∠EFD=90°,∵∠AD′H=90°,∴∠HD′N=90°,在Rt△HNF与Rt△HND′中,,∴Rt△HNF≌Rt△HND′,∴NF=ND′;(3)解:∵四边形AEFD是正方形,∴AE=EF=AD=8cm,由折叠得,AD′=AD=8cm,设NF=xcm,则ND′=xcm,在Rt△AEN中,∵AN2=AE2+EN2,∴(8+x)2=82+(8﹣x)2,解得:x=2,∴AN=8+x=10cm,EN=6cm,∴EN:AE:AN=3:4:5,∴△AEN是(3,4,5)型三角形;(4)解:图4中还有△MFN,△MD′H,△MDA是(3,4,5)型三角形,∵CF∥AE,∴△MFN∽△AEN,∵EN:AE:AN=3:4:5,∴FN:MF:CN=3:4:5,∴△MFN是(3,4,5)型三角形;同理,△MD′H,△MDA是(3,4,5)型三角形.23.(14分)如图,抛物线y=﹣x2+x+3与x轴交于A、B两点(点A 在点B的左侧),与y轴交于点C,连接AC、BC.点P沿AC以每秒1个单位长度的速度由点A向点C运动,同时,点Q沿BO以每秒2个单位长度的速度由点B向点O运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ.过点Q作QD⊥x轴,与抛物线交于点D,与BC交于点E,连接PD,与BC交于点F.设点P的运动时间为t秒(t>0).(1)求直线BC的函数表达式;(2)①直接写出P,D两点的坐标(用含t的代数式表示,结果需化简)②在点P、Q运动的过程中,当PQ=PD时,求t的值;(3)试探究在点P,Q运动的过程中,是否存在某一时刻,使得点F为PD的中点?若存在,请直接写出此时t的值与点F的坐标;若不存在,请说明理由.【解答】解:(1)由y=0得﹣x2+x+3=0,解得:x1=﹣3,x2=9,∴B(9,0),由x=0得y=3,∴C(0,3),设直线BC的解析式为y=kx+b,∴,∴,∴直线BC的解析式为y=﹣x+3;(2)①过P作PG⊥x轴于G,∵A(﹣3,0),C(0,3),∴OA=3.OC=3,∴tan∠CAO=,∴∠CAO=60°,∵AP=t,∴PG=t,AG=t,∴OG=3﹣t,∴P(t﹣3,t),∵DQ⊥x轴,BQ=2t,∴OQ=9﹣2t,∴D(9﹣2t,﹣t2+t),②过P作PH⊥QD于H,则四边形PGQH是矩形,∴HQ=PG,∵PQ=PD,PH⊥QD,∴DQ=2HQ=2PG,∵P(t﹣3,t),D(9﹣2t,﹣t2+t),∴﹣t2+t=2×t,解得:t1=0(舍去),t2=,∴当PQ=PD时,t的值是;(3)∵点F为PD的中点,∴F的横坐标为:(t﹣3+9﹣2t)=﹣t+3,F的纵坐标为(t﹣t2+t)=﹣t2+t,∴F(﹣t+3,﹣t2+t),∵点F在直线BC上,∴﹣t2+t=﹣(﹣t+3)+3,∴t=3,∴F(,).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山西省2017年中考数学真题试题第Ⅰ卷 选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.计算12-+的结果是( )A .-3B .-1C .1D .32.如图,直线,a b 被直线c 所截,下列条件不能..判定直线a 与b 平行的是( )A .13∠=∠B .24180∠+∠=C .14∠=∠D .34∠=∠3.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( )A .众数B .平均数C .中位数D .方差4.将不等式组26040x x -≤⎧⎨+>⎩的解集表示在数轴上,下面表示正确的是( )A .B .C .D .5.下列运算错误..的是( ) A .0(31)1-= B .291(3)44-÷= C . 22256x x x -=- D .3224(2)(2)m m m ÷=6.如图,将矩形纸片ABCD 沿BD 折叠,得到BC D '∆,C D '与AB 交于点E .若135∠=,则2∠的度数为( )A .20B .30C . 35D .557.化简2442x x x x ---的结果是( ) A .22x x -+ B .26x x -+ C . 2x x -+ D .2x x - 8.2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为( )A .818610⨯吨B .918.610⨯吨C .101.8610⨯吨D .110.18610⨯吨9.公元前5世纪,毕达哥拉斯学派中的一名成员希伯索斯发现了无理数2,导致了第一次数学危机.2是无理数的证明如下:2是有理数,那么它可以表示成q p(p 与q 是互质的两个正整数).于是22()(2)2q p==,所以,222q p =.于是2q 是偶数,进而q 是偶数.从而可设2q m =,所以2222(2)2,2m p p m ==,于是可得p 也是偶数.这与“p 与q 是互质的两个正整数”22是无理数.2是无理数”的方法是( )A .综合法B .反证法C .举反例法D .数学归纳法10.右图是某商品的标志图案,AC 与BD 是O 的两条直径,首尾顺次连接点,,,A B C D ,得到四边形ABCD .若10,36AC cm BAC =∠=,则图中阴影部分的面积为( )A .25cm πB .210cm πC .215cm πD .220cm π第Ⅱ卷 非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11.计算:41892-= .12.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为 元.13.如图,已知ABC ∆三个顶点的坐标分别为(0,4),(1,1),(2,2)A B C --.将ABC ∆向右平移4个单位,得到A B C '''∆,点,,A B C 的对应点分别为,,A B C ''',再将A B C '''∆绕点B '顺时针旋转90,得到A B C ''''''∆,点,,A B C '''的对应点分别为,,A B C '''''',则点A ''的坐标为 .14.如图,创新小组要测量公园内一棵树的高度AB ,其中一名小组成员站在距离树10米的点E 处,测得树顶A 的仰角为54.已知测角仪的架高 1.5CE =米,则这颗树的高度为米(结果保留一位小数.参考数据:sin540.8090=,cos540.5878=,tan54 1.3764=).15.一副三角板按如图方式摆放,得到ABD ∆和BCD ∆,其中90ADB BCD ∠=∠=,60A ∠=,45CBD ∠=.E 为AB 的中点,过点E 作EF CD ⊥于点F .若4AD cm =,则EF 的长为 cm .三、解答题 (本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(1)计算:321(2)()8sin 453--+-. (2)分解因式:22(2)(2)y x x y +-+.17.已知:如图,在ABCD 中,延长线AB 至点E ,延长CD 至点F ,使得BE DF =.连接EF ,与对角线AC 交于点O .求证:OE OF =.18.如图,在平面直角坐标系中,正方形OABC 的顶点O 与坐标原点重合,其边长为2,点A ,点C 分别在x 轴,y 轴的正半轴上.函数2y x =的图象与CB 交于点D ,函数ky x=(k 为常数,0k ≠)的图象经过点D ,与AB 交于点E ,与函数2y x =的图象在第三象限内交于点F ,连接,AF EF .(1)求函数k y x=的表达式,并直接写出,E F 两点的坐标. (2)求AEF ∆的面积.19.“春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟”即谷子(去皮后则称为“小米”),被誉为中华民族的哺育作物.我省有着“小杂粮王国”的美誉,谷子作为我省杂粮面积为2000万亩,年总产量为150万吨,我省谷子平均亩产量为160kg ,国内其他地区谷子的平均亩产量为60kg .请解答下列问题:(1)求我省2016年谷子的种植面积是多少万亩.(2)2017年,若我省谷子的平均亩产量仍保持160kg不变,要使我省谷子的年总产量不低于52万吨,那么,今年我省至少应再多种植多少万亩的谷子?20.从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016年我国共享经济市场交易额约为34520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约1亿人.下图是源于该报告中的中国共享经济重点领域市场规模统计图:(1)请根据统计图解答下列问题:①图中涉及的七个重点领域中,2016年交易额的中位数是_________亿元.②请分别计算图中的“知识技能”和“资金”两个重点领域从2015年到2016年交易额的增长率(精确到1%),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识.(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同).他们将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张.请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A,B,C,D表示).21.如图,ABC ∆内接于O ,且AB 为O 的直径,OD AB ⊥,与AC 交于点E ,与过点C 的O 的切线交于点D .(1)若4,2AC BC ==,求OE 的长.(2)试判断A ∠与CDE ∠的数量关系,并说明理由.22.综合与实践背景阅读 早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三,股四,弦五”.它被记载于我国古代著名数学著作《周髀算经》中.为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形.例如:三边长分别为9,12,15或32,42,52的三角形就是(3,4,5)型三角形.用矩形纸片按下面的操作方法可以折出这种类型的三角形. 实践操作 如图1,在矩形纸片ABCD 中,8,12AD cm AB cm ==.第一步:如图2,将图1中的矩形纸片ABCD 沿过点A 的直线折叠,使点D 落在AB 上的点E 处,折痕为AF ,再沿EF 折叠,然后把纸片展平.第二步:如图3,将图2中的矩形纸片再次折叠,使点D 与点F 重合,折痕为GH ,然后展平,隐去AF .第三步:如图4,将图3中的矩形纸片沿AH 折叠,得到AD H '∆,再沿AD '折叠,折痕为AM ,AM 与折痕EF 交于点N ,然后展平.问题解决(1)请在图2中证明四边形AEFD 是正方形.(2)请在图4中判断NF 与ND '的数量关系,并加以证明.(3)请在图4中证明AEN ∆是(3,4,5)型三角形.探索发现(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.23.综合与探究如图,抛物线23233393y x x =-++与x 轴交于,A B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接,AC BC .点P 沿AC 以每秒1个单位长度的速度由点A 向点C 运动,同时,点Q 沿BO 以每秒2个单位长度的速度由点B 向点O 运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ ,过点Q 作QD x ⊥轴,与抛物线交于点D ,与BC 交于点E .连接PD ,与BC 交于点F .设点P 的运动时间为t 秒(0t >).(1)求直线BC 的函数表达式.(2)①直接写出,P D 两点的坐标(用含t 的代数式表示,结果需化简).②在点,P Q 运动的过程中,当PQ PD =时,求t 的值.(3)试探究在点,P Q 运动的过程中,是否存在某一时刻,使得点F 为PD 的中点.若存在,请直接写出此时t 的值与点F 的坐标;若不存在,请说明理由.。

相关文档
最新文档