《基本放大电路》PPT课件
合集下载
基本放大电路-课件

EXIT
模拟电子技术
一、特点及主要技术指标
特点
功率放大电路是一种能够向负载提供足够大的功
率的放大电路。因此,要求同时输出较大的电压和电
无
流。 管子工作在接近极限状态。一般直接驱动负载,
锡 职
带载能力要强。
业
技
术 学
主要技术指标
院
(1)最大输出功率Pom :在电路参数确定的情况下负载
可能获得的最大交流功率。
T2 +
uo
–
优点:具有良好的低 频特性,可以放大缓慢 变化的信号;无大电容 和电感,容易集成。
缺点:静态工作点相 互影响,分析、计算、 设计较复杂;存在零 点漂移。
EXIT
模拟电子技术
2.阻容耦合
优点:直流通路是相互独
+Vcc 立的,电路的分析、计算
无 锡 职 业 技 术 学 院
Rb11 C1
Rs
EXIT
模拟电子技术
由于放大电路的工作点达到了三极管 的截止区而引起的非线性失真。对于NPN管, 输出电压表现为顶部失真。
截止失真
无 锡 职 业 技 术 学 院
注意:对于PNP管,由于是负电源供电,失真的 表现形式,与NPN管正好相反。
EXIT
模拟电子技术
四、放大电路的动态参数
1.交流通路
交流电流流经的通路,用于动态分析。对于交流通路:
(2)转换效率 :最大输出功率与电源提供的功率之比,
即
= Pom / PV
EXIT
模拟电子技术
思考题1:功率放大电路与前面介绍的电
压放大电路有本质上的区别吗?
无本质的区别,都是能量的控制与转换。不同
之处在于,各自追求的指标不同:电压放大电路
基本放大电路ppt课件

首先,画出直流通路;在输入特性曲线上,作出直线VBE =VCC-IBRb,
两线的交点即是Q点,得到IBQ 。在输出特性曲线上,作出直流负载线
VCE=VCC-ICRC,与IBQ曲线的交点即为Q点,从而得到VCEQ 和ICQ 。
图12-8 静态工作情况图解
②动态工作情况分析 Ⅰ 交流通路及交流负载线 过输出特性曲线上的Q点做一条斜率为-1/(RL∥Rc)直线,该直线即为交流 负载线。交流负载线是有交流输入信号时Q点的运动轨迹。R'L= RL∥Rc,是交流负载电阻。 Ⅱ 输入交流信号时的图解分析 通过图解分析,可得如下结论:
(1)vi vBE iB iC vCE | vo | (2)vo与vi相位相反; (3)可以测量出放大电路的电压放大倍数; (4)可以确定最大不失真输出幅度。
图12-9 动态工作情况图解
3.放大电路三种 基本组态的比较
共发射极放大电路
共集电极放大电路
共基极放大电路
电 路 组 态
电
压 增
(RC // RL )
图12-3 放大电路的幅频特性曲线
▪ 2.共射极放大电路
根据放大器输入输出回路公共端的不同,放大器有共发射极、共集电极和共基 极三种基本组态,下面介绍共发射极放大电路。 (1)电路组成 共射极基本放大电路如图12-4所示。
图12-4 共发射极基本放大电路
▪ 具体分析如下: ▪ ①Vcc:集电极回路的直流电源 ▪ ②VBB:基极回路的直流电源 ▪ ③三极管T:放大电路的核心器件,具有电流放大
便于计算和调试。
(2)因为耦合电容的容量较
(2)电路比较简单,体积 大,故不易集成化。
较小。
(1)元件少,体积小,易 集成化。
(2)既可放大交流信号, 也可放大直流和缓变信号。
两线的交点即是Q点,得到IBQ 。在输出特性曲线上,作出直流负载线
VCE=VCC-ICRC,与IBQ曲线的交点即为Q点,从而得到VCEQ 和ICQ 。
图12-8 静态工作情况图解
②动态工作情况分析 Ⅰ 交流通路及交流负载线 过输出特性曲线上的Q点做一条斜率为-1/(RL∥Rc)直线,该直线即为交流 负载线。交流负载线是有交流输入信号时Q点的运动轨迹。R'L= RL∥Rc,是交流负载电阻。 Ⅱ 输入交流信号时的图解分析 通过图解分析,可得如下结论:
(1)vi vBE iB iC vCE | vo | (2)vo与vi相位相反; (3)可以测量出放大电路的电压放大倍数; (4)可以确定最大不失真输出幅度。
图12-9 动态工作情况图解
3.放大电路三种 基本组态的比较
共发射极放大电路
共集电极放大电路
共基极放大电路
电 路 组 态
电
压 增
(RC // RL )
图12-3 放大电路的幅频特性曲线
▪ 2.共射极放大电路
根据放大器输入输出回路公共端的不同,放大器有共发射极、共集电极和共基 极三种基本组态,下面介绍共发射极放大电路。 (1)电路组成 共射极基本放大电路如图12-4所示。
图12-4 共发射极基本放大电路
▪ 具体分析如下: ▪ ①Vcc:集电极回路的直流电源 ▪ ②VBB:基极回路的直流电源 ▪ ③三极管T:放大电路的核心器件,具有电流放大
便于计算和调试。
(2)因为耦合电容的容量较
(2)电路比较简单,体积 大,故不易集成化。
较小。
(1)元件少,体积小,易 集成化。
(2)既可放大交流信号, 也可放大直流和缓变信号。
基本放大电路课件-PPT(精)精选全文完整版

15.3.1 微变等效电路法
1.晶体管的微变等效电路
晶体管的微变等效电路可从晶体管特性曲线求出。
(1)输入回路
当信号很小时,在静态工作点
附近的输入特性在小范围内可近
似线性化。
晶体管的 输入电阻
输入特性
对于小功率三极管:
晶体管的输入回路(B、E 之间) 可用rbe等效代替,即由rbe来确 定ube和i 之间的关系。
放大的实质:
用小能量的信号通过三极管的电流控制作用,将放 大电路中直流电源的能量转化成交流能量输出。
对放大电路的基本要求: 1.要有足够的放大倍数(电压、电流、功率)。 2.尽可能小的波形失真。 另外还有输入电阻、输出电阻、通频带等其它技术 指标。
15.1共发射极放大电路的组成
15.1.1 共发射极放大电路组成
15.1.3 共发射极放大电路的电压放大作用
RB C₁
十
Ucc
RC
C
lB lc 十₂
T
十 UCE
UBE
u₀
iE
u₀=0
UBE=UBE
ucE=UCE
无输入信号(u;=0) 时:
CE
ic
WBE
iB
BE
IB
Ic
UCE
0
to
0
tO
结论:
(1)无输入信号电压时,三极管各电极上都是恒定
的
电压和电流:Ip、UBE和
ri≈be
当Rg>>r 时 ,
5.放大电路输出电阻的计算
放大电路对负载(或对后级放大电路)来说,是
一个信号源,可以将它进行戴维宁等效,等效电
源的内阻即为放大电路的输出电阻。
输出电阻是
三极管基本放大电路ppt课件

(a)原理电路
(b)实物图
精品课件
发射极单管放大电路各组成元件的作用
精品课件
电路中各电流、电压的符号规定
电路中既包含输入信号所产生的交流量,又包含直流电源所产生 的直流量。为了区分不同分量,通常做了以下规定
精品课件
放大电路原理图的画法
1.直流通路和交流通路 【直流通路】指静态时放大电路直流电流通过的路径。 画直流通路原则 :将电容视为开路。
确定出静态工作点Q。
以单管共射放大电路为例,其直流通路如右下图所示。设电路参数VCC、 Rb、RC和三极管放大倍数β已知,忽略三极管的UBEQ(硅管UBEQ≈0.7V,锗 管UBEQ≈0.3V),可以推导得:
IBQVCC UBEQ VCC
Rb
Rb
ICQ=βIBQ
UCEQ = VCC-ICQ RC
由上述公式求得的IB、 IC和UCE值即是静态工作点Q。
Ro=Ron
精品课件
多级放大电路的耦合方式
多级放大电路中每个单管放大电路称为“级”,级与级之间的连接 方式叫耦合。下表为三种常用耦合方式的比较。
精品课件
本章小结
1.三极管由两个PN结构成,按结构分为NPN和PNP两类。三极管的集电极 电流受基极电流的控制,所以三极管是一种电流控制器件。在满足发 射结正偏、集电结反偏的条件下,具有电流放大的作用。三极管的输 出特性曲线可分成截止区、饱和区、放大区。
所以,分压式偏置放大电路具有自动调整功能,当ICQ要增加时,电路 不让其增加;当ICQ要减小时,电路不让其减小;从而迫使ICQ稳定。所以 该电路具有稳定静态工作点的作用。B>>UBEQ
精品课件
C C V Q Q C E I I T V ec RR QEB Q B U I 2 1 b b R R Q B U 21 II
基本放大电路PPT课件以NPN管共射为例

(2)静态参数:静态工作点Q点。
NO.2 放大电路的2种工作状态
1、静态 ——放大电路没有输入信号,即Ui=0。
(3)静态工作点:放大电路输入电压Ui为零时,晶体管各极 的电流和管压降称为静态工作点Q,记做 IBQ、 ICQ( IEQ )、 UBEQ 和 UCEQ 。
NO.2 放大电路的2种工作状态
NO.1 共射放大电路的组成及原则
2、共射放大器各组成元件的作用:
RC +C2
C1
+
V
+
RS +
Rb
RL uo
+ ui
Us
–
–
VBB
–
Us和Rs:输入信号源的等效电路
Us:信号源电压,通常是正弦交流信号
VCC
Rs:信号源内阻
Ui:放大器的输入电压
NO.1 共射放大电路的组成及原则
2、共射放大器各组成元件的作用:
• ①直接耦合(静态工作点易受影响,输入信号在 Rb上有压降损失) • ②阻容耦合(隔离输入输出与电路的直流联系,同时能使交流信号
顺利输入输出。)
NO.1 共射放大电路的组成及原则
1、(双电源)共射放大器的组成:
RC +C2
C1 +
V
VCC +
RS +
Rb
RL uo
+ ui
Us
–
–
VBB
–
不看输入端与输出端,先分析三极管共射放大电路(直流电源+偏置电阻)。
NO.1 共射放大电路的组成及原则
1、(双电源)共射放大器的组成 (3)常用的偏置电路
• 固定偏置电路(不能稳定Q点) • 分压式偏置电路(能稳定Q点)
NO.2 放大电路的2种工作状态
1、静态 ——放大电路没有输入信号,即Ui=0。
(3)静态工作点:放大电路输入电压Ui为零时,晶体管各极 的电流和管压降称为静态工作点Q,记做 IBQ、 ICQ( IEQ )、 UBEQ 和 UCEQ 。
NO.2 放大电路的2种工作状态
NO.1 共射放大电路的组成及原则
2、共射放大器各组成元件的作用:
RC +C2
C1
+
V
+
RS +
Rb
RL uo
+ ui
Us
–
–
VBB
–
Us和Rs:输入信号源的等效电路
Us:信号源电压,通常是正弦交流信号
VCC
Rs:信号源内阻
Ui:放大器的输入电压
NO.1 共射放大电路的组成及原则
2、共射放大器各组成元件的作用:
• ①直接耦合(静态工作点易受影响,输入信号在 Rb上有压降损失) • ②阻容耦合(隔离输入输出与电路的直流联系,同时能使交流信号
顺利输入输出。)
NO.1 共射放大电路的组成及原则
1、(双电源)共射放大器的组成:
RC +C2
C1 +
V
VCC +
RS +
Rb
RL uo
+ ui
Us
–
–
VBB
–
不看输入端与输出端,先分析三极管共射放大电路(直流电源+偏置电阻)。
NO.1 共射放大电路的组成及原则
1、(双电源)共射放大器的组成 (3)常用的偏置电路
• 固定偏置电路(不能稳定Q点) • 分压式偏置电路(能稳定Q点)
放大电路基本知识PPT课件

RL uo
继续
(2)Au
ib
rbe
ui Rb
βib
ie R’L uo
u i ib r b e ( 1 ) ib (R e//R L ) u o(1 β)ib(R e/R /L )
Au= u uo i rb(e 1 (β 1 )βR ()eR (/e/R /L /R )L) 1
继续
(3)Ri
ib
反馈的一些概念:
将输出量通过一定的方式引回输入回路影响输入量的措
施称为反馈。
直流通路中的反馈称为直流反馈。
反馈的结果使输出量的变化减小的称为负反馈,反之称
为正反馈。
IC通过Re转换为ΔUE影响UBE
温度升高IC增大,反馈的结果使之减小
Re起直流负反馈作用,其值越大,反馈越强,Q点越稳定 Re有上限值吗?
基本思想:用线性 去代替 非线性
ic ib
uce ube
ib
ic
ube 含源网络 uce
等效:保持外部的i和u关系不变 ☆对交流、小信号而言
继续
ub= e rbeibruce ic=ibuce/rce
h参数等效电路:
ib T
+
+
u be -
+
ic
+
+
u ce
-
+
b ib
+
+ rbe
u be +
-
μr uce -
1. 结构:
Rb C1
RS +
+
u i
uS
-
-
+
V C
C
T C2
+
基本放大电路的组成及工作原理.ppt

它是在放大器中的独立电压源短路或独立电流源开路、 保留受控源的情况下, 从RL两端向放大器看进去所呈现的电 阻。因此假如在放大器输出端外加信号电压U, 计算出由U产 生的电流I,则ro=U/I, 如图2.1.4(c)。 ro,ri只是等效意义上 的电阻。如在放大器内部有电抗元件, ro,ri应为复数值。
第2章 基本放大电路
2.1
2.2 放大电路分析方法
2.3
2.4 多级放大电路与组合放大电路
2.5 放大电路的频率特性
2.6 放大电路设计举例
返回主目录
第2章
2. 1
2.1.1放大电路的组成
在生产实践和科学研究中需要利用放大电路放大微弱的 信号,以便观察、测量和利用。一个基本放大电路必须有如 图2.1.1(a)所示各组成部分:输入信号源、晶体三极管、输出 负载以及直流电源和相应的偏置电路。其中,直流电源和相 应的偏置电路用来为晶体三极管提供静态工作点,以保证晶 体三极管工作在放大区。就双极型晶体三极管而言,就是保 证发射结正偏,集电结反偏。
2. 增益
增益,又称为放大倍数,用来衡量放大器放大信号的能 力。有电压增益、电流增益、功率增益等。
2.
当在放大器的输入端加入正弦交流信号电压ui时,信号电 压ui将和静态正偏压UBE相串连作用于晶体管发射结上,加在
uBE=UBE+ui
如果选择适当的静态电压值和静态电流值,输入信号电压 的幅值又限制在一定范围之内,则在信号的整个周期内,发 射结上的电压均能处于输入特性曲线的直线部分, 2.1.2(a),此时基极电流的瞬时值将随uBE变化,如图2.1.2(b)。
uo=uce (2.1.3)
把输出电压uo和输入信号电压ui进行对比,我们可以得到 如下结论:
基本放大电路ppt课件

上限频率
4. 最大不失真输出电压Uom:交流有效值。 5. 最大输出功率Pom和效率η:功率放大电路的参数
6
§2.3 基本共射放大电路的工作原理
一、电路的组成及各元件的作用 二、设置静态工作点的必要性 三、波形分析 四、放大电路的组成原则
7
一、电路的组成及各元件的作用
VBB、Rb:使UBE> Uon,且有 合适的IB。
Rc=3kΩ ,
β
=100。
Q
=?
18
二、图解法 应实测特性曲线
1. 静态分析:图解二元方程
uBE VBB iBRb
uCE VCC iC Rc
Q IBQ
输入回路 负载线
ICQ
负载线
Q
IBQ
UBEQ
UCEQ
19
2. 电压放大倍数的分析
uBE VBB uI iBRb 斜率不变
iC
IB IBQ iB
VCC
UCEQ O
底部失真
uCE
VCC
UCEQ
截止失真
tO
t
顶部失真
要想不失真,就要 在信号输的出整和个输入周反期相内! 保证晶体管始终工作 在放大区!
10
四、放大电路的组成原则
• 静态工作点合适:合适的直流电源、合适的电 路参数。
• 动态信号能够作用于晶体管的输入回路,在负 载上能够获得放大了的动态信号。
Uo
1)RL
RL
将输出等效
成有内阻的电 压源,内阻就 是输出电阻。
空载时输出 电压有效值
带RL时的输出电 压有效值
5
3. 通频带
衡量放大电路对不同频率信号的适应能力。 由于电容、电感及放大管PN结的电容效应,使放大电路在信 号频率较低和较高时电压放大倍数数值下降,并产生相移。
基本放大电路图教学课件PPT

• (b) Use Multi-sim to verify your results in part (a).
2.6 基本放大电路的派生电路
• 1 复合管 • 2 阻容耦合复合管共射放大电路 • 3 阻容耦合复合管共集放大电路
4 共射-共基放大电路的交流通路 5 共集-共基放大电路的交流通路
1. 复合管
1.FET的几种应用方式:
• ⑴.FET开关电路 • ⑵.FET放大元件 • ⑶.FET压控电阻: • ⑷.FET恒流源电路:
2.自生柵偏压JFET Amp.
Ci
ui
Rg
Vdd
Rd
CO
+
Rs
-
uo
CS
JFET Amp.静态分析
• DC通路计算Q:
UGS
JFET Amp.动态分析
AC通路计算Q:
Cc
Rs
Cb
us ∽
Re
uo RL
⑴.共集放大电路的直流通路和交流通路
Rb Re
直流通路
Rb
Rs
Re
RL
交流通路
共集放大电路的交流通路
Rs
Rb
Rc
RL
⑵.共集放大电路的RO等效电路
Rs Rb
Us=0 -
Re uo
⑶. 基本共集放大电路的交流等效电路
直接耦合
Rb
⑷.共集放大电路的输出电阻
Rs Rb
Ro
共集Amp.的性能特点:
• ⑴.无电压放大作用; • ⑵.有电流放大能力;
• ⑶.Ri 较大; • ⑷.Ro较小;
• ⑸.输出跟隨输入改变;
p.205
2.共基放大电路
C1
RS Re
Rb1
2.6 基本放大电路的派生电路
• 1 复合管 • 2 阻容耦合复合管共射放大电路 • 3 阻容耦合复合管共集放大电路
4 共射-共基放大电路的交流通路 5 共集-共基放大电路的交流通路
1. 复合管
1.FET的几种应用方式:
• ⑴.FET开关电路 • ⑵.FET放大元件 • ⑶.FET压控电阻: • ⑷.FET恒流源电路:
2.自生柵偏压JFET Amp.
Ci
ui
Rg
Vdd
Rd
CO
+
Rs
-
uo
CS
JFET Amp.静态分析
• DC通路计算Q:
UGS
JFET Amp.动态分析
AC通路计算Q:
Cc
Rs
Cb
us ∽
Re
uo RL
⑴.共集放大电路的直流通路和交流通路
Rb Re
直流通路
Rb
Rs
Re
RL
交流通路
共集放大电路的交流通路
Rs
Rb
Rc
RL
⑵.共集放大电路的RO等效电路
Rs Rb
Us=0 -
Re uo
⑶. 基本共集放大电路的交流等效电路
直接耦合
Rb
⑷.共集放大电路的输出电阻
Rs Rb
Ro
共集Amp.的性能特点:
• ⑴.无电压放大作用; • ⑵.有电流放大能力;
• ⑶.Ri 较大; • ⑷.Ro较小;
• ⑸.输出跟隨输入改变;
p.205
2.共基放大电路
C1
RS Re
Rb1
共射极基本放大电路-ppt课件全

稳定电路的静态工作点。
上一页 下一页 返回
共射极基本放大电路
(2) 静态工作点的估算
直流通路如图(b)所示。
当三极管工作在放大区时,IBQ很小。当满
足I1>>IBQ时,I1≈I2,则有:
UBQ Rb1Rb2Rb2VCC
IEQ
UB
UBEQ Re
IC Q IEQ
I BQ
I CQ
U CE V Q C C IC(R Q c R e)
IBS
ICS
VCC
Rc
上一页
下一页
返回
共射极基本放大电路 4. 动态分析
所谓动态,是指放大电路输入信号ui不为零
时的工作状态。当放大电路中加入正弦交流信号
ui时,电路中各极的电压、电流都是在直流量的
基础上发生变化,即瞬时电压和瞬时电流都是由 直流量和交流量叠加而成的。
上一页 下一页 返回
共射极基本放大电路
共射极基本放大电路
1) 保证三极管工作在放大区 2) 保证信号有效的传输 2. 放大电路中电压、电流的方向及符号规定 1) 电压、电流正方向的规定 为了便于分析,规定:电压的正方向都以输入、 输出回路的公共端为负,其他各点均为正;电流方 向以三极管各电极电流的实际方向为正方向。
上一页 下一页 返回
1. 静态图解法
以图7(a)所示共射放大电路为例,分析静态时,电容C1和
C2视为开路,这时电路可画成图7(b)所示的直流通路。三极管
的静态工作点的四个量,在基极回路中有IBQ和UBEQ,在集电极
回路中有ICQ和UCEQ,下面分别进行讨论。
上一页 下一页 返回
共射极基本放大电路
返回
共射极基本放大电路
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
80 A 4
M 60 A
3
Q
40 A
2
1
IB= 20A
O
4 8 12 16
N
Uce / V (d)
2六020年11图月2181日.星2.期2 放大电路输出回路图解
22
因左、右侧两部分共同组成了一个整体电路,流过同一
电流,即IC=I′C;AB端又是同一电压Uce=U′ce,将图 11.2. 2(b)和图 11.2.2(c)合在一起,构成图 11.2.2(d)。
2020年11月28日星期
21
六
IC A
IC′
+
4
IC / mA
c
b
Uce
e
Rc
3
Uc′e
2
UCC
1
80 A 60 A 40 A
IB= 20A
-
0
4 8 12 16
B Uce / V
I′C / mA
(a)
4 UCC
M 3
Rc
2
1
O
4 8 12
Uc′e / V
(c)
UCC N 20
IC / mA
(b)
点。 根据直流通路可以估算出放大器的静态工作点。以图 11.2.1 为例,先估算
基极电流IB,再估算其它值。计算公式有
2020年11月28日星期
17
六
+UCC IC
Rb
Rc
C2
C1
IB
+
+UBE - UCERL-2六020年11月28图日星1期1.2.1 单管放大电路
18
IB
U CC U BE RB
2020年11月28日星期
11
六
+
ui -
Rc
Rb
C1
iB
+ uBE -
+UCC +C2
+ iC
uo
-
图 11.1.5 有输入信号时的放大电路
2020年11月28日星期
12
六
四、电路中的直流通道和交流通道
图 11.1.5 放大电路中的电流是由直流分量和交流 分量叠加而成的。但是,由于电路中有电容元件C1、C2, 因而直流分量电流和交流分量电流通过的路径不同。我 们把直流分量电流通过的路径叫直流通道(或直流通 路),交流分量电流通过的路径叫交流通道(或交流通 路)。
2020年11月28日星期
=50。 六
19
IB
UCC UBE RB
UCC RB
12 300
0.04mA
IC IB 500.04 2mA
UCE UCC ICRC 12 23 6V
2020年11月28日星期
20
六
11.2.2图解法确定静态工作点
应用三极管的输入、输出特性,通过作图的方法来分析放 大电路的工作性能,称作图解法。
所谓等效,就是从线性化电路模型的三个引出端看进去,电
压、电流的变化关系和原来的三极管一样,这样的线性化电
路模型也2称020为年1三1月极28日管星期的微变等效电路。
24
六
用线性化电路模型来代替三极管之后,具有非线性元 件的放大电路就转化成我们熟悉的线性电路了。
1. 三极管的线性化电路模型
1)
当三极管输入回路仅有很小的输入信号时,ib只能 在静态工作点附近作微量变化。三极管的输入特性曲线 如图 11.3.1所示,在Q点附近基本上是一段直线。此时 三极管输入回路可用一等效电阻代替(如图 11.3.2 所 示)。
9
六
ui= 0
Rb C1
+
UBE
-
Rc IB
IC C2
+
IE
UCE
-
+UCC RL
2020年图11月1218.日1.星4 期没有输入信号时的放大电路
10
六
2.
当放大电路输入端有交流信号输入时, 如图 11.1. 5 所示。 此时电路各处有交流电流分量ib、ic、ie通过。 若输入信号电压为 ui =Umsinωt时,电路中各处的交流 波形和图11.1.3(b)中所示的相同。这些交流分量分别 和没有信号输入时的直流分量电流叠加,即图 11.1.5中 的uBE、iB、iC、uCE等。这些合成后的实际电流波形和图 11.1.3(c)中所示的相同,是单向脉动电流。
六
Rb C1
ui
Rc
C2
V
+UCC RL
图 11.1.2 放大电路
2020年11月28日星期
7
六
IB
(a)
O
ib
(b)
O
iB
(c)
O
2020年11月28日星期
六
图 11.1.3信号波形
t
t
t
8
(3) 总变化量: 如图 11.1.3(c)所示的波形,是交 流电流和直流电流叠加后形成的, 用iB表示基极总电流: i B=IB+ib。
对于图 11.1.1(a)所示电路,在实际应用中为了
简化电路, 在画图时往往省略电源符号,只画出电源电
压的端点并标以UCC,这样就得到了图 11.1.1(b)所示的
习惯画法。2020年11月28日星期
5
六
二、放大电路中的电流波形
从以上元件介绍中,我们初步了解到在放大电路中既有 直流又有交流。交流就是需要放大的变化信号,直流就是为 放大建立条件。
IC=βIB
(11.2)
(11.1)
UCE=UCC-ICRC
(11.3)
式中, UBE的估算,对于硅管取0.7V;对锗管取0.3V。 在 式(11.1)中,当UCC》 UBE时, UBE可略去不计。
例 11.1 试估算图 11.2.1所示的放大电路的静态工作点。 设 UCC =12V, RC=3kΩ,RB=300kΩ,
13
IC
Rb
Rc
IB
+UCC
图 11.1.6 放大电路的直流通路
2020年11月28日星期
14
六
Rb
C1
+ ui ~
-
Rc +C2
V
RL
+UCC
ic
ib V
uo
+
ui ~
Rb
-
Rc
RL uo
(a)
(b)
图11.1.7 放大电路的交流通路
2020年11月28日星期
15
六
根据三极管的结构,按图 11.1.7(b)交流通路中所 示的电流、电压正方向,ui、ib、ic是同相位的。图中输 出电压uo的标定正方向和ic标定正方向相反,所以,uo=-i cR′L,负号表示uo和ic标定正方向相反,亦表明了输出电 压uo和输入电压ui是反相位的。
三、放大电路的工作状态
通过对电路工作状态的分析, 可以了解放大电路的工 作原理。
1.
放大电路无信号输入时,电路中各处只有直流电流和
电压存在。 这些直流电流和电压是IB、IC、IE、UBE、UCE,
如图11.1.4 所示。其直流电流、电压的波形和图 11.1.3
(a)中所2示020波年1形1月2相8日同星期。
2020年11月28日星期
28
六
IC
IB3
IB
Q
IB2
IB
IB1
O
UCE
图 11.3.3 理想的输出特性
2020年11月28日星期
29
六
在这种情况下, 三极管的β值是一常数, 集电极电流变 化量ΔIC与发射极电压uce无关,仅由ΔIB大小决定。所以三 极管输出回路相当于一个受控制的恒流源。
3) 三极管的线性化电
Rb: 基极偏流电阻。电源可通过Rb给三极管发射结加以正向 偏置电压。
另外,当UCC一定时,通过改变Rb可给基极提供一个合适的基 极电流Ib,这个电流通常称为偏置电流,简称偏流。 只有具备 合适的偏流,输出电压才不会失真。
Rc: 集电极电阻。它将集电极电流ic的变化转换成集电极-
发射极之间电压uCE的变化,实现电压放大。
综上所述, 三极管的线性化电路模型如图 11.3.4 所示。
2. 共发射极放大器的小信号等效电路
将放大器的交流通路(图 11.1.7(b))中的三极管用三极 管的线性化电路模型代替后, 该电路便是共射放大电路的小信 号等效电路,如图 11.3.5所示。
2020年11月28日星期
30
六
b ib ube e
直流通路如图 11.1.6 所示,电容C1、C2对直流相
当于开路。放大电路的交流通路如图 11.1.7(b)所示,
电容C1、 C2对交流信号可以看成短路。直流电源的内阻 很小,对交流信号也可以看成短路。所以图 11.1.7(a)
放大电路中的交流通路可画成图 11.1.8(b)所示的通
路。
2020年11月28日星期 六
ic c
uce
e
b ib rbe
ube
e
c ib
Uce
图 11.3.4 三极管的线性化电路模型
2020年11月28日星期
31
六
b
ib rbe
ui
Rb
ic c
ib
Rc
uo RL
e
图 11.3.5 放大器的小信号等效电路
2020年11月28日星期
32
六
3.
2020年11月28日星期
25
六
IB
IB
Q
O
UBE
UBE
图 11.3.1 三极管的输入特性
2020年11月28日星期
26
六
B IB UBE
IB B
rbe UBE
E
E
图 11.3.2 三极管输入回路模型