重庆专升本高等数学模拟试题一(各种题精心整理)22405

合集下载

《专升本-高数一》模拟试题及参考答案

《专升本-高数一》模拟试题及参考答案

2018年成人高考《专升本-高等数学一》模拟试题第Ⅰ卷(选择题,共 40 分)一、选择题:1~10 小题,每小题 4 分,共 40 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.A.0B.1C.2D.不存在2 .().A.单调增加且为凹B.单调增加且为凸c.单调减少且为凹D.单调减少且为凸3.A.较高阶的无穷小量B.等价无穷小量C.同阶但不等价无穷小量D.较低阶的无穷小量4.A.B.0C.D.15.A.3B.5C.1D.A.-sinxB.cos xC.D.A.B.x2C.2xD.28.A.B.C.D.9.设有直线当直线 l1与 l2平行时,λ等于().A.1B.0C.D.一 110.下列命题中正确的有().A.B.C.D.第Ⅱ卷(非选择题,共 110 分)二、填空题:11~20 小题,每小题 4 分,共 40 分.11.12.13.14.15.16.17.18.19.20.三、解答题.21~28 小题,共 70 分.解答应写出推理、演算步骤.21.(本题满分 8 分)22.(本题满分 8 分)设 y=x+arctanx,求 y'.23.(本题满分 8 分)24.(本题满分 8 分)计算25.(本题满分 8 分)26.(本题满分 10 分)27.(本题满分 10 分)28.(本题满分 10 分)求由曲线 y=x,y=lnx 及 y=0,y=1 围成的平面图形的面积 S 及此平面图形绕 y 轴旋转一周所得旋转体体积.模拟试题参考答案一、选择题1.【答案】C.【解析】本题考查的知识点为左极限、右极限与极限的关系.2.【答案】B.【解析】本题考查的知识点为利用一阶导数符号判定函数的单调性和利用二阶导数符号判定曲线的凹凸性.3.【答案】C.【解析】本题考查的知识点为无穷小量阶的比较.4.【答案】D.【解析】本题考查的知识点为拉格朗日中值定理的条件与结论.可知应选 D.5.【答案】A.【解析】本题考查的知识点为判定极值的必要条件.故应选 A.6.【答案】C.【解析】本题考查的知识点为基本导数公式.可知应选 C.7.【答案】D.【解析】本题考查的知识点为原函数的概念.可知应选 D.8.【答案】D.【解析】本题考查的知识点为牛顿一莱布尼茨公式和定积分的换元法.因此选 D.9.【答案】C.【解析】本题考查的知识点为直线间的关系.10.【答案】B.【解析】本题考查的知识点为级数的性质.可知应选 B.通常可以将其作为判定级数发散的充分条件使用.二、填空题11.【参考答案】e.【解析】本题考查的知识点为极限的运算.12.【参考答案】1.【解析】本题考查的知识点为导数的计算.13.【参考答案】x—arctan x+C.【解析】本题考查的知识点为不定积分的运算.14.【参考答案】【解析】本题考查的知识点为定积分运算.15.【参考答案】【解析】本题考查的知识点为隐函数的微分.解法 1 将所给表达式两端关于 x 求导,可得从而解法 2 将所给表达式两端微分,16.【参考答案】【解析】本题考查的知识点为二阶常系数线性齐次微分方程的求解.17.【参考答案】1.【解析】本题考查的知识点为二元函数的极值.可知点(0,0)为 z 的极小值点,极小值为 1.18.【参考答案】【解析】本题考查的知识点为二元函数的偏导数.19.【参考答案】【解析】本题考查的知识点为二重积分的计算.20.【参考答案】【解析】本题考查的知识点为幂级数的收敛半径.所给级数为缺项情形,三、解答题21.【解析】本题考查的知识点为极限运算.解法 1解法 2【解题指导】在极限运算中,先进行等价无穷小代换,这是首要问题.应引起注意.22.【解析】23.【解析】本题考查的知识点为定积分的换元积分法.【解题指导】比较典型的错误是利用换元计算时,一些考生忘记将积分限也随之变化. 24.【解析】本题考查的知识点为计算反常积分.计算反常积分应依反常积分收敛性定义,将其转化为定积分与极限两种运算.25.【解析】26.【解析】27.【解析】本题考查的知识点为二重积分运算和选择二次积分次序.28.【解析】所给曲线围成的图形如图 8—1 所示.第二部分(选择题,共 40 分)一、选择题:1~10 小题,每小题 4 分,共 40 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.A.B.eC.e2D.12.A.B.C.D.3.A.凹B.凸C.凹凸性不可确定D.单调减少4.A.2B.C.1D.一 25.设 f(x)为区间[a,b]上的连续函数,则曲线 y=f(x)与直线 x=a,x=b,y=0 所围成的封闭图形的面积为().A.B.C.D.不能确定6.A.f(2)-f(0)C.D.f(1)-f(0)7.A.B.C.D.8.A.B.C.D.9.A.条件收敛B.绝对收敛C.收敛性与 k 有关D.发散10.A.AxB.C.第Ⅱ卷(非选择题,共 110 分)二、填空题:11~20 小题,每小题 4 分,共 40 分.11.12.13.设 sinx 为 f(x)的原函数,则 f(x)=.14.15.已知平面π:2x+y 一 3z+2=0,则过原点且与π垂直的直线方程为.16.17.1 8.19.20.三、解答题:21~28 小题,共 70 分.解答应写出推理、演算步骤.21.(本题满分 8 分)22.(本题满分 8 分)23.(本题满分 8 分)24.(本题满分 8 分)25.(本题满分 8 分)26.(本题满分 10 分)(1)切点 A 的坐标(a,a2).(2)过切点 A 的切线方程。

专升本高等数学一(常微分方程)模拟试卷1(题后含答案及解析)

专升本高等数学一(常微分方程)模拟试卷1(题后含答案及解析)

专升本高等数学一(常微分方程)模拟试卷1(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题1.微分方程(y’)2=x的阶数为( )A.1B.2C.3D.4正确答案:A解析:微分方程中出现的未知函数的最高阶导数的阶数,称为该微分方程的阶,故此微分方程的阶数为1.知识模块:常微分方程2.微分方程y2dx一(1一x)dy=0是( )A.一阶线性齐次方程B.一阶线性非齐次方程C.可分离变量方程D.二阶线性齐次方程正确答案:C解析:将该微分方程整理可得dx,所以该微分方程是可分离变量方程.知识模块:常微分方程3.已知函数y=+x+C是微分方程y’’=x一1的解,则下列正确的是( )A.y是该微分方程的通解B.y是微分方程满足条件y|x=0=1的特解C.y是微分方程的特解D.以上都不是正确答案:D解析:方程为二阶微分方程,则通解中应含有两个任意常数,因此y=x3一x2+x+C显然不是方程的通解,又y’=一x+1,y’’=x-1,故可知y=x2+x+C为y’’=x-1的解,因含有未知数,故不是特解,因此选D.知识模块:常微分方程4.方程xy’=2y的特解为( )A.y=2xB.y=x2C.y=2x3D.y=2x4正确答案:B解析:分离变量可得,两边积分得ln|y|=lnx2+C1,即y=Cx2,所以方程的特解中x的最高次数也应该为2,故选B.知识模块:常微分方程5.微分方程y’+的通解是( )A.arctanx+CB.(arctanx+C)C.arctanx+CD.+arctanx+C正确答案:B解析:所求方程为一阶线性微分方程,由通解公式可得其中C为任意常数,故选B.知识模块:常微分方程6.方程y’’一y’=ex+1的一个特解具有形式( )A.Aex+BB.Axex+BC.Aex+BxD.Axex+Bx正确答案:D解析:方程对应二阶齐次线性微分方程的特征方程为r2一r=r(r一1)=0,所以r1=0,r2=1,又有f(x)=ex+1,λ1=0,λ2=1是该二阶非齐次微分方程的一重特征根,所以特解形式为y*=Axex+Bx.故选D.知识模块:常微分方程7.某二阶常微分方程的下列解中为特解的是( )A.y=CsinxB.y=C1sin3x+C2cos3xC.y=sin3x+cos3xD.y=(C1+C2)cosx正确答案:C解析:由特解定义可知,特解中不含有任意常数,故排除A、B、D项,选C.知识模块:常微分方程8.下列方程中,可用代换p=y’,p’=y’’降为关于p的一阶微分方程的是( )A.+xy’一x=0B.+yy’一y2=0C.+x2y’一y2x=0D.+x=0正确答案:A解析:可降阶方程中的y’’=f(x,y’)型可用代换p=y’,p’=y’’,观察四个选项,只有A项是y’’=f(x,y’)型,故选A.知识模块:常微分方程填空题9.方程(xy2+x)dx+(y-x2y)dy=0满足y|x=0=1的特解为_______.正确答案:=2解析:分离变量得,两边积分得ln|x2一1|=.所以x2一1=C(y2+1),又y|x=0=1,故=2.知识模块:常微分方程10.已知微分方程y’+ay=ex的一个特解为y=xex,则a=_______.正确答案:一1解析:把y=xex,y’=ex+xex代入微分方程y’+ay=ex=(1+a)xex+ex,利用对应系数相等解得a=一1.知识模块:常微分方程11.微分方程y’’一4y’+3y=excosx+xe3x对应齐次微分方程的通解为=_______,它的特解形式为y*=________.正确答案:C1ex+C2e3x,ex(Acosx+Bsinx)+x(ax+b)e3x解析:事实上,原方程对应的齐次微分方程的特征方程为r2一4r+3=0,r1=1,r2=3,故齐次微分方程的通解为=C1ex+C2e3x.非齐次方程特解形式的假设,可分为两个方程进行:y’’一4y’+3y=excosx,①y’’一4y’+3y=xe3x.②λ=1±i不是特征方程的特征根,故①的特解形式是y1*=ex(Acosx+Bsinx);λ=3是特征方程的一重特征根,故②的特解形式应是y2*=x(ax+b)e3x,则y1*+y2*=y*即是原方程的特解形式.知识模块:常微分方程12.非齐次微分方程y’’+9y=cosx,它的一个特解应设为________.正确答案:y=Acosx+Bsinx解析:方程对应二阶齐次线性微分方程的特征方程为r2+9=0,所以r1,2=±3i,f(x)=cosx,则±i不是该二阶齐次微分方程的特征根,所以特解形式为y=Acosx+Bsinx.知识模块:常微分方程13.设二阶常系数线性齐次微分方程y’’+ay’+by=0的通解为y=C1ex+C2e2x,那么非齐次微分方程y’’+ay’+by=1满足的条件y(0)=2,y’(0)=一1的解为________.正确答案:y=4ex一解析:二阶线性常系数齐次方程对应的特征方程为r2+ar+b=0,又由通解可得特征根r1=1,r2=2,即(r一1)(r一2)=0,r2一3r+2=0,故a=一3,b=2.所以非齐次微分方程为y’’一3y’+2y=1,由于λ=0不是特征方程的根,因此,设特解y*=A,则(y*)’=0,(y*)’’=0,代入可得,所以y’’一3y’+2y=1的通解为y=C1ex+C2e2x+,再由y(0)=2,y’(0)=一1,可得C1=4,C2=,故满足初始条件的特解为y=4ex一.知识模块:常微分方程解答题14.求微分方程dy=sin(x+y+100)dx的通解.正确答案:方程可写成y’=sin(x+y+100),令μ=x+y+100,则,于是原方程化为=1+sinμ,就得到了可分离变量方程.分离变量,得=dx,恒等变形,有=dx,即(sec2μ—tanμsecμ)dμ=dx.两边积分,得tanμ—secμ=x+C,将μ=x+y+100回代,得方程通解为tan(x+y+100)一sec(x+y+100)=x+C,其中C为任意常数.涉及知识点:常微分方程15.求微分方程xy’一=0的通解.正确答案:方程分离变量得,两边积分有+C1,则方程的通解为2ln|y|+y2一ln2x=C,其中C为任意常数.涉及知识点:常微分方程16.求方程xsecydx+(1+x2)dy=0,满足初始条件y|x=0=的特解.正确答案:方程分离变量得dy,即dx=一cosydy,两边积分有dx=-∫cosydy,即n(1+x2)=一siny+C,由初始条件y|x=0=得C=1,则方程的特解为siny+=1.涉及知识点:常微分方程17.求微分方程secx.y’+tanx.y=ecosx的通解.正确答案:将原方程改写成y’+ysinx=cosxecosx,则y=e-∫sinxdx(∫cosxecosxe∫sinxdxdx+C)=ecosx(∫cosxdx+C)=ecosx(sinx+C).其中C为任意常数.涉及知识点:常微分方程18.(1)求微分方程xy’+ay=1+x2满足y|x=1=1的解y(x,a),其中a为常数.(2)证明(x,a)是方程xy’=1+x2的解.正确答案:(1)原方程可改写成y’+,微分方程的通解为(2)设y0=+lnx,则xy0’=x(x+)=1+x2,故结论成立.涉及知识点:常微分方程19.求微分方程y’+3x2y=xe-x3的通解.正确答案:由通解公式得y=e-∫3x2dx(∫xe-x3e3x2dxdx+C)=e-x3(∫xdx+C)=x2e-x3+Ce-x3.C为任意常数.涉及知识点:常微分方程20.求微分方程xy’+2y=xlnx满足y(1)=的解.正确答案:方程xy’+2y=xlnx两边同时除以x,得y’+y=lnx,是一阶线性微分方程,其中P(x)=,Q(x)=lnx,利用通解公式得涉及知识点:常微分方程21.求解方程∫0x(x—s)y(s)ds=sinx+∫0xy(s)ds.正确答案:∫0x(x—s)y(s)ds=x∫0xy(s)ds-∫0xsy(s)ds=sinx+∫0xy(s)ds,两边对x求导,得∫0xy(s)ds=cosx+y(x),且y(0)=一1,再次对x求导,得y’一y=sinx 为一阶线性非齐次微分方程.其中P(x)=一1,Q(x)=sinx,故解为y=e-∫P(x)dx[∫Q(x)eP(x)dxdx+C]=ex[∫sinxe-xdx+C]=Cex一(sinx+cosx),又由y(0)=一1,得C=,故原方程解为y(x)=(ex+sinx+cosx).涉及知识点:常微分方程22.已知某曲线经过点(1,1),它的切线在纵轴上的截距等于切点的横坐标,求它的方程.正确答案:根据题意可知,f(1)=1.由导数几何意义可知,曲线y=f(x)上任意一点(x0,y0)处的切线方程为:y—y0=f’(x0)(x—x0).令x=0,y=一f’(x0)x0+y0,其中,y0=f(x0),∴x0=一x0f’(x0)+f(x0),即x0f’(x0)一f(x0)=一x0,求曲线方程相当于求=一1满足y(1)=1的特解.由通解公式得又∵y(1)=1,∴C=1,故所求曲线方程为y=一xln|x|+x.涉及知识点:常微分方程23.求y’’一2y’+y=x3的特解.正确答案:对应的齐次方程的特征方程为r2一2r+1=0,解得r=1,为二重根,故λ=0不是特征方程的根.由f(x)=x3,设特解为y=Ax3+Bx2+Cx+D,则y’=3Ax2+2Bx+C,y’’=6Ax+2B,代入原方程得6Ax+2B一2(3Ax2+2Bx+C)+Ax3+Bx2+Cx+D=Ax3+(B一6A)x2+(6A+C一4B)x+2B+D-2C=x3,则A=1,B=6,C=18,D=24,故特解为y=x3+6x2+18x+24.涉及知识点:常微分方程24.求y’’一5y’一14y=9e7x的特解.正确答案:原方程对应的齐次方程的特征方程为r2一5r一14=0,解得r=一2,7,λ=7是特征方程的一重根,故设原方程的特解为y=Axe7x,则y’=A(7x+1)e7x,y’’=A(49x+14)e7x,代入原方程得A(49x+14)e7x一5A(7x+1)e7x 一14Axe7x=9e7x,则A=1,故特解为y=xe7x.涉及知识点:常微分方程25.求y’’一4y’+4y=xe2x的通解.正确答案:原方程对应的齐次方程的特征方程为r2一4r+4=0,解得r=2(二重根),所以对应的齐次方程的解为=(C1x+C2)e2x,λ=2是特征方程的二重根,故设原方程的特解为y*=x2e2x(Ax+B),则(y*)’=2xe2x(Ax+B)+x2e2x(2Ax+2B+A),(y*)’’=e2x(2Ax+2B)+xe2x(8Ax+8B+4A)+x2e2x(4Ax+4B+4A),代入原方程得e2x(2Ax+2B)+xe2x(8Ax+8B+4A)+x2e2x(4Ax+4B+4A)一8xe2x(Ax+B)一4x2e2x(2Ax+2B+A)+4x2e2x(Ax+B)=xe2x,解得A=,B=0,故原方程的通解为y=(C1x+C2)e2x+x3e2x.其中C1,C2为任意常数.涉及知识点:常微分方程26.已知函数y=(x+1)ex是一阶线性微分方程y’+2y=f(x)的解,求二阶常系数线性微分方程y’’+3y’+2y=f(x)的通解.正确答案:据题意的,y’=ex+(x+1)ex=(x+2)ex,f(x)=y’+2y=(x+2)ex+2(x+1)ex=(3x+4)ex,则下面求微分方程y’’+3y’+2y=(3x+4)ex 的通解,特征方程为r2+3r+2=0,求得r1=一1,r2=一2,所以y’’+3y’+2y=0的通解为y=C1e-x+C2e-2x,因λ=1不是特征方程的根,所以设y*=(Ax+B)ex 为原方程y’’+3y’+2y=(3x+4)ex的一个特解,则把(y*)’=(Ax+A+B)ex,(y*)’’=(Ax+2A+B)ex代入原方程,并比较系数得A=,B=,所以微分方程y’’+3y’+2y=(3x+4)ex的通解为y=C1e-x+C2e-2x+ex.其中C1,C2为任意常数.涉及知识点:常微分方程27.求y’’=y’+x的通解.正确答案:令y’=p,y’’=p’,原方程化为p’=p+x,解此一阶线性非齐次方程得p=e∫dx[∫xe-∫dxdx+C1]=ex(∫xe-xdx+C1)=C1ex-x-1即y’=C1ex一x一1,两边积分得通解为y=C1ex一一x+C2,其中C1,C2为任意常数.涉及知识点:常微分方程设函数f(x)在[1,+∞)上连续,若由曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形绕x轴旋转一周所成的旋转体体积为V(t)=[t2f(t)一f(1)],求:28.y=f(x)所满足的微分方程;正确答案:据题意,V(t)=π∫1t[f(x)]2dx=[t2f(t)一f(1)],即3∫1t[f(x)]2dx=t2f(t)一f(1),上式两边同时对t求导得,3f2(t)=2tf(t)+t2f’(t),即y=f(x)所满足的微分方程为x2y’+2xy一3y2=0;涉及知识点:常微分方程29.该微分方程满足条件y|x=2=的解.正确答案:将微分方程x2y’+2xy一3y2=0,化为,即为齐次方程.令μ=+μ,代入方程并化简得=3μ2一3μ.变量分离得,两端积分并代入μ=得通解为y—x=Cx3y,再把y|x=2=代入可得C=-1,故该微分方程满足条件y|x=2=的解为y—x=一x3y.涉及知识点:常微分方程。

重庆专升本历年高等数学真题及模拟试题

重庆专升本历年高等数学真题及模拟试题

第一篇 真题2005年重庆专升本高等数学真题一、 单项选择题(本大题共6小题,每小题4分,满分24分)、 1、 下列极限中正确的是( )A 、0limx →12x=∞ B 、0lim x →12x=0 C 、0lim x →=sin 1x 0 D 、0lim x →sin xx=0 2、函数f (x )={x-1 2-x (0≦x ≦1) (1﹤x ≦3) 在x=1处间断是因为( )A 、f (x )在x=1处无定义B 、1lim x -→f (x )不存在C 、1lim x →f (x )不存在 D 、1lim x +→f (x )不存在3、y=ln (1+x )在点(0,0)处的切线方程是( )A 、y=x+1B 、y=xC 、y=x-1D 、y=-x 4、在函数f (x )在(a ,b )内恒有f ′(x)﹥0 , f ″(x)﹤0,则曲线在(a ,b )内( )A 、单增且上凸B 、单减且上凸C 、单增且下凸D 、单减且下凸5、微分方程y ′-y cotx=0的通解( ) A 、y=sin cxB 、y= c sinxC 、y=cos c xD 、y=c cosx6、n 元线性方程组Ax=0有非零解的充要条件是( )A 、方程个数m ﹤nB 、方程个数m ﹥nC 、方程个数m=nD 、秩(A) ﹤n二、 判断题(本大题共4小题,每小题4分,满分16分)1、 若极限0lim x x →f (x )和0lim x x →f (x )g (x )都存在,则0lim x x→g (x )必存在( ) 2、若0x 是函数f (x )的极值点,则必有'()0f x = ( )3、4sin x xdx ππ-⎰=0 ( )4、设A 、B 为n 阶矩阵,则必有222()2A B A AB B +=++ ( ) 三、 计算题(1-12题每题6分,13题8分,共80分) 1、 计算312lim3x x x →+-- 2、 计算57lim 53xx x x →∞+⎛⎫⎪-⎝⎭3、 设y=(1+2x )arctanx ,求'y4、 设y=sin (10+32x ),求dy5、 求函数f (x )=3212313x x x -++的增减区间与极值6、 计算3ln x xdx ⎰7、 5231x dx x ++⎰8、设44224z x y x y=+-,求dz9、计算sinD x dx σ⎰⎰,其中D是由直线y=x及抛物线y=2x所围成的区域10、求曲线xy e=与过其原点的切线和y轴所围成的平面图形的面积及该平面图形绕x轴旋转所形成的旋转体的体积11、 求矩阵133143134A ⎛⎫⎪= ⎪ ⎪⎝⎭的逆矩阵 12、 求线性方程组1231235224{x x x x x x -+=-++=的通解13、 证明:当x ﹥0时,arctan x ﹥313x x -2006年重庆专升本高等数学真题一、 单项选择题(本大题共6小题,每小题4分,满分24分) 1、 当0x →时,下列各无穷小量与x 相比是高阶无穷小的是( ) A 、22x x + B 、2sin x C 、sin x x + D 、2sin x x + 2、下列极限中正确的是( )A 、sin lim1x x x →∞= B 、01lim sin 1x x x →= C 、0sin 2lim 2x xx→= D 、10lim 2x x →=∞ 3、已知函数f (x )在点0x 处可导,且0'()3f x =,则000(5)()limh f x h f x h→+-等于( )A 、6B 、0C 、15D 、104、如果00(,),'()0,x a b f x ∈则0x 一定是f (x )的( )A 、极小值点B 、极大值点C 、最小值点D 、最大值点5、微分方程0dy xdx y+=的通解为( ) A 、22x y c += ()c R ∈ B 、22x y c -= ()c R ∈C 、222x y c += ()c R ∈D 、222x y c -= ()c R ∈6、三阶行列式231502201298523-等于( )A 、82B 、-70C 、70D 、-63二、 判断题(本大题共4小题,每小题4分,满分16分) 1、 设A 、B 为n 阶矩阵,且AB=0,则必有A=0或B=0 ( ) 2、若函数y=f (x )在区间(a ,b )内单调递增,则对于(a ,b )内的任意一点x 有'()0f x ( ) 3、 21101x xedx x -=+⎰ ( )4、若极限0lim ()x x f x →和0lim ()x x g x →都不存在,则[]0lim ()()x xf xg x →+也不存在 ( )三、计算题(1-12题每题6分,13题8分,共80分)1、计算2cos xdx x⎰ 2、 计算311ln lim x x x xe e →-+- 3、设2arcsin 1,'y x x x y =+-求4、 计算23lim 25xx x x →∞+⎛⎫⎪-⎝⎭5、 求函数3()3f x x x =-的增减区间与极值6、 设函数2xy z e yx =+,求dz7、 设2cos(523)y x x =++,求dy8、 计算4321x dx x ++⎰ 9、求曲线ln y x =的一条切线,其中[2,6]x ∈,使切线与直线x=2,x=6和曲线y=lnx 所围成面积最少。

2024年成考专升本高等数学(一)-模拟押题卷

2024年成考专升本高等数学(一)-模拟押题卷

2024年成考专升本高等数学(一)-模拟卷一、选择题:1~12小题,每小题7分,共84分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 221lim x x x x →∞+=+ ( )A. -1B. 0C. 12 D. 12. 设函数 3()5sin f x x x =+, 则 (0)f '= ( )A. 5B. 3C. 1D. 03. 设函数 ()ln f x x x =-, 则 ()f x '= ( )A. xB. 1x -C. 1x D. 11x -4. 函数 32()293f x x x =-+ 的单调递减区间是 ( )A. (3,)+∞B. (,)-∞+∞C. (,0)-∞D. (0,3) 5. 23 d x x =⎰ ( ) A. 23x C + B. 5335x C + C. 53x C + D. 13x C +6. 设函数 ()||f x x =, 则 11()d f x x -=⎰ ( )A. -2B. 0C. 1D. 27. 设 ()f x 为连续函数, 且满足 0()d e 1xx f t t =-⎰, 则 ()f x =() A. x e B. x e 1- C. e 1x + D. 1x +8. 设 ()2214z x y =+, 则 2zx y ∂=∂∂ ( ) A. 2xB. 0C. 2yD. x y +9. (2,1,2),(1,21)=--=-a b , 则 ⋅=a b ( )A. -1B. -3C. 3D. 210. 余弦曲线 cos y x = 在 0,2π⎡⎤⎢⎥⎣⎦ 上与 x 轴所围成平面图形的面积为 ( ) A. 0 B. 1 C. -1 D. 211. 若 lim 0n n a →∞=, 则数项级数 1n n a ∞=∑ ( )A. 收敛B. 发散C. 收玫且和为零D. 可能收玫也可能发散12. 如果区域 D 被分成两个子区域 12,D D , 且12(,)5,(,)1D D f x y dxdy f x y dxdy ==⎰⎰⎰⎰,则 (,)D f x y dxdy =⎰⎰ ( )A. 5B. 4C. 6D. 1二、填空题:13~15小题,每小题7分,共21分13. 32234x t y t ⎧=+⎨=-⎩ 在 1t = 相应的点处切线斜率为 . 14. 求 2x x y = 的全微分 .15. {(,)01,03}D x y x y x =≤≤≤≤-∣, 求D d σ=⎰⎰ .三、解答题:16~18小题,每小题15分,共45分.解答应写出文字说明、证明过程或演算步骤16. 求微分方程 220x y y e'--= 的通解. 17. 求由方程 2y y xe -= 所确定的隐函数 ()y y x = 的导数 0x dydx =.18. 证明: 当 0x 时, 2ln(1)2x x x +-.参考答案1.【答案】D【考情点拨】本题考查了函数极限的知识点.【解析】 222111lim lim 111x x x x x x x →∞→∞++==++. 2. 【答案】 A【解析】可求得 2()35cos f x x x '=+, 则 (0)5f '=.3. 【答案】D【解析】 1()(ln )1f x x x x''=-=-. 4.【答案】D【解析】由题可得 2()6186(3)f x x x x x '=-=-, 令 ()0f x '<, 得 03x <<, 故单调墄区间为 (0,3).5.【答案】B 【解析】 25333 d 5x x x C =+⎰. 6.【答案】C【解析】 01101221101011()d ()d ?d 122f x x x x x x x x ---=-+=-+=⎰⎰⎰. 7.【答案】A【解析】 0()d e 1xx f t t =-⎰ 两边同时求导, 得 ()()e 1e x x f x '=-=. 8. 【答案】B【解析】 12z x x ∂=∂, 所以 20z x y ∂=∂∂. 9.【答案】D【解析】 a 21(1)2(2)(1)2⋅=⨯+-⨯+-⨯-=b10.【答案】B【解析】由题意得 2200cos sin 1S xdx x ππ===⎰, 故选 B. 11.【答案】D 【解析】 lim 0n n a →∞= 是级数 1n n a ∞=∑ 收敛的必要条件, 但不是充分条件, 从例子 211n n ∞=∑收敛可知 B 错误, 由11n n ∞=∑ 发散可知 A, C 错误, 故选 D. 12.【答案】C 【解析】根据二重积分的可加性, (,)6D f x y dxdy =⎰⎰, 应选 C.13.【答案】 13【解析】 212,6,3dy dx dy dy dt t t dt dt dx dt dx t ===⋅=, 当1t =时, 13dy dx =, 故切线的斜率为 1314.【答案】 22xydx x dy +【解析】 22z z dz dx dy xydx x dy x y∂∂=+=+∂∂. 15.【答案】 52【解析】积分区域为梯形区域,此二重积分的一样即为求梯形面积,故 (23)1522D d σ+⨯==⎰⎰. 16.【答案】 22x x y xe Ce =+ (C 为任意常数)【解析】由通解公式可得,()(2)(2)222222dx dx x x x x x x y e e e dx C e e e dx C xe Ce ----⎡⎤⎰⎰=⋅+=⋅+=+⎢⎥⎣⎦⎰⎰ ( C 为任意常数). 17.【答案】 2e【解析】方程两边同时关于 x 求导得 0y y y e xe y ''--⋅=, 当 0x = 时, 2y =,代人得 200x x dyy e dx '==== 。

专升本(高等数学一)综合模拟试卷1(题后含答案及解析)

专升本(高等数学一)综合模拟试卷1(题后含答案及解析)

专升本(高等数学一)综合模拟试卷1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.极限等于( )A.eB.ebC.eabD.eab+b正确答案:C解析:由于,故选C。

知识模块:极限和连续2.在空间直角坐标系中,方程x2-4(y-1)2=0表示( )A.两个平面B.双曲柱面C.椭圆柱面D.圆柱面正确答案:A解析:由于所给曲面方程x2-4(y-1)2=0中不含z,可知所给曲面为柱面,但是由于所给方程可化为x2=4(y-1)2,进而可以化为x=2(y-1)与-z=2(y-1),即x-2y+2=0,x+2y-2=0,为两个平面,故选A。

知识模块:空间解析几何3.级数是( )A.绝对收敛B.条件收敛C.发散D.收敛性不能判定正确答案:A解析:依前述判定级数绝对收敛与条件收敛的一般原则,常常先判定的收敛性,由于的p级数,知其为收敛级数,因此所给级数绝对收敛,故选A。

知识模块:无穷级数填空题4.若函数在x=0处连续,则a=________。

正确答案:-2解析:由于(无穷小量乘有界变量),而f(0)=a+2,由于f(x)在x=0处连续,应有a+2=0,即a=-2。

知识模块:极限和连续5.若f’(x0)=1,f(x0)=0,则=________。

正确答案:-1解析:由于f’(x0)存在,且f(x0)=0,由导数的定义有知识模块:一元函数微分学6.设y=xe+ex+lnx+ee,则y’=________。

正确答案:y’=ee-1+ex+解析:由导数的基本公式及四则运算规则,有y’=ee-1+ex+。

知识模块:一元函数微分学7.曲线y=ex+x上点(0,1)处的切线方程为________。

正确答案:由曲线y=f(x)在其上点(x0,f(x0))的切线公式y-f(x0)=f’(x0)(x-x0),可知y-1=2(x-0),即所求切线方程为y=2x+1。

解析:注意点(0,1)在曲线y=ex+x上,又y’=ex+1,因此y’|x=0=2。

(完整)专升本高等数学模拟试卷(一)

(完整)专升本高等数学模拟试卷(一)

专升本高等数学模拟试卷(一)一、选择题1、函数)3lg(1)(x xx f +=的定义域为 A ,0≠x 且3-≠x B ,0>x C,3->x D,3->x 且0≠x2、下列各对函数中相同的是:A,4,4162+=--=x y x x y B ,x y x y ==,2C ,x y x y lg 4,lg 4== D ,31334)1(,-=-=x x y x x y3、当∞→x 时,xx x f 1sin 1)(=A ,是无穷小量B ,是无穷大量C ,有界,但不是无穷小量D ,无界,但不是无穷大量4、111111)(---+=x x x x x f 的第二类间断点个数为:A ,0B ,1C ,2D ,35、设⎩⎨⎧>+≤=11)(2x bax x x x f 在1=x 处连续且可导,则b a ,的值分别为A ,1,2-=-=b aB ,1,2=-=b aC ,1,2-==b a D,1,2==b a 6、下列函数在0=x 处可导的是A ,x y sin 3=B ,x y ln 3=C ,x y 5= D,x y cos 6= 7、下列函数在[]e ,1满足拉格朗日定理的是 A ,x -22 B,)5ln(-x C,xe ln 32- D,32-x 8、)2(3-=x x y 共有几个拐点A ,1B ,2C ,3D ,无拐点 9、xe y 12+=的渐近线:A ,只有水平渐近线B ,只有垂直渐近线C ,既有水平又有垂直渐近线D ,无渐近线10、下列函数中是同一函数的原函数的是:A ,x x 3lg ,lg 3B ,x x arcsin ,arccosC ,x x 2sin ,sin 2D ,2cos 2,2cos x 11、设31)(31)(0-=⎰x f dt t f x,且1)0(=f ,则=)(x fA ,x e 3 B,x e 3+1 C ,3xe 3 D ,31xe 3 12、下列广义积分收敛的是 A ,dx e x⎰+∞B ,dx x x e⎰+∞ln 1C,dx x⎰+∞11 D , dx x ⎰∞+-13513、设)(x f 在[]b a ,上连续,则)(x f 与直线0,,===y b y a x 所围成的平面图形的面积等于 A ,⎰badx x f )( B ,⎰badx x f )( C ,),())((b a a b f ∈-ξξ D ,⎰badx x f )(14、直线37423-=+=+zy x 与平面03224=---z y x 的位置关系是 A ,直线垂直平面 B ,直线平行平面 C,直线与平面斜交 D ,直线在平面内 15、方程2223z y x =+在空间直角坐标系下表示的是 A ,柱面 B ,椭球面 C 圆锥面 D 球面 16、=++-+→yx y x y x 11lim)0,0(),(A ,2B ,0C ,∞D ,—2 17、设yx z =,则=)1,2(dzA ,dy dx +B ,dy dx 2ln 2+C ,2ln 31+D ,0 18、),(y x f z =在点),(00y x 处的两个偏导数都存在,则A ,),(y x f z =在),(00y x 可微B ,),(y x f z =在),(00y x 连续C ,),(y x f z =在),(00y x 不连续 D,和在),(00y x 处是否连续无关 19、)1ln(2x y +=的凸区间为A ,)1,(--∞B ,)1,1(-C ,),1(+∞D ,)1,(--∞⋃),1(+∞ 20、0),(,0),(0000='='y x f y x f y x 是函数),(y x f 在),(00y x 点取得极值的 A ,无关条件 B ,充分条件 C,充要条件 D ,必要条件 21、函数1663223++--=y x y x z 的极值点为A ,(1,1)B ,(—1,1)C ,(1,1)和(—1,1)D ,(0,0) 22、设D :922≤+y x ,则=+⎰⎰Ddxdy y x f )(222A ,⎰3)(4rdr r f πB ,⎰30)(2rdr r f π C ,⎰32)(4rdr r f π D,⎰32)(4dr r r f π23、交换积分次序,=+⎰⎰⎰⎰--xx xxdy y x f dx dy y x f dx 24110),(),(A ,⎰⎰+2022),(y ydx y x f dy B ,⎰⎰-+2122),(y ydx y x f dyC,⎰⎰+4022),(y y dx y x f dy D ,⎰⎰+222),(y y dx y x f dy24、设L 为沿圆周x y x 222=+的上半部分和x 轴闭区域边界正方向围成,则=++⎰Lxx dy x y e ydx e )cos 2(sin 2A ,π B,21 C ,21π D ,不存在 25、若∑∞=1n nv收敛,则( )也必收敛A ,11+∞=∑n n n vvB ,∑∞=12n nvC ,∑∞=-1)1(n n nv D,∑∞=++11)(n n n v v26、若a 为常数,则级数∑∞=-133)1sin (n nn a A ,绝对收敛 B ,条件收敛 C ,发散 D 收敛性与a 有关 27、设)11ln()1(nu nn +-=,则级数A ,∑∞=1n nu与∑∞=12n nu都收敛 B ,∑∞=1n nu与∑∞=12n nu都发散C,∑∞=1n nu收敛,∑∞=12n nu发散 D ,∑∞=1n nu发散,∑∞=12n nu收敛28、x x y y x +='-''32的通解为A ,c x x x y ++-=324312141 B , 324312141x x x y +-= C ,23124312141c x c x x y ++-= D ,3124312141x c x x y +-=29、x y y cos =+''的特解应设为:A ,)sin cos (x b x a x +B ,)sin cos (2x b x a x +C ,x b x a sin cos +D ,x a cos 30、x x y y 2sin +=+''的特解应设为A ,x b ax x 2sin )(++B ,x d x c b ax x 2cos 2sin )(+++C ,x d x c b ax 2cos 2sin +++ C ,)2cos 2sin (x d x c x b ax +++ 二、填空题1、设=>=)(),0()(x f x x e f x 则2、=+→x x x sin 2)31(lim3、=-+⎰→xx dt t t xx sin )1ln(lim304、函数12+=x x y 的垂直渐进线为5、若⎪⎪⎩⎪⎪⎨⎧=≠-=⎰,0,)1()(32x a x xdt e x f xt ,在0=x 连续,则=a 6、设==-dxdy y e y x x 则,sin 22 7、设)sin (ln x f y =,且)(x f 可微,则=dxdy 8、曲线xy 1=在点(1,1)的法线方程为 9、函数)1ln()(2x x x f +-=在[—1,2]上的最大值为 10、=⋅⎰-dx e x x 334sin11、两平面0722=-++z y x 与08354=+++z y x 的夹角为 12、广义积分dx xq⎰+111,当 时候收敛13、=⎰⎰≤+ydxdy x y x 122214、微分方程0,≠=+'m n my y ,则满足条件0)0(=y 的特解为 15、已知a u n n =∞→lim ,则∑∞=1n )(1+-n n u u =三、计算题1、xx x x x cos sin 13lim2-+→2、设2cos x xy x+=,求y '3、求⎰xdx e x sin4、求⎰3arctan xdx5、设),(y x xy f z =,求yz x z ∂∂∂∂, 6、设D 是由03,032,1=-+=+-=y x y x y 所围成的区域,求⎰⎰-Ddxdy y x )2(7、将x y 2sin 3=展开成麦克劳林级数 8、求x y y x ln ='+''的通解 四、应用题1、 某服装企业计划生产甲、乙两种服装,甲服装的需求函数为126p x -=,乙服装的需求函数 为24110p y -=,生产这两种服装所需总成本为1002),(22+++=y xy x y x C ,求取得最大利润时的甲乙两种服装的产量。

《专升本高数一》模拟试题及参考答案

《专升本高数一》模拟试题及参考答案

2018年成人高考《专升本-高等数学一》模拟试题第Ⅰ卷(选择题,共 40 分)一、选择题:1~10 小题,每小题 4 分,共 40 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.A.0B.1C.2D.不存在2 .().A.单调增加且为凹B.单调增加且为凸c.单调减少且为凹D.单调减少且为凸3.A.较高阶的无穷小量B.等价无穷小量C.同阶但不等价无穷小量D.较低阶的无穷小量4.A.B.0C.D.15.A.3B.5C.1D.A.-sinxB.cos xC.D.A.B.x2C.2xD.28.A.B.C.D.9.设有直线当直线 l1与 l2平行时,λ等于().A.1B.0C.D.一 110.下列命题中正确的有().A.B.C.D.第Ⅱ卷(非选择题,共 110 分)二、填空题:11~20 小题,每小题 4 分,共 40 分.11.12.13.14.15.16.17.18.19.20.三、解答题.21~28 小题,共 70 分.解答应写出推理、演算步骤.21.(本题满分 8 分)22.(本题满分 8 分)设 y=x+arctanx,求 y'.23.(本题满分 8 分)24.(本题满分 8 分)计算25.(本题满分 8 分)26.(本题满分 10 分)27.(本题满分 10 分)28.(本题满分 10 分)求由曲线 y=x,y=lnx 及 y=0,y=1 围成的平面图形的面积 S 及此平面图形绕 y 轴旋转一周所得旋转体体积.模拟试题参考答案一、选择题1.【答案】C.【解析】本题考查的知识点为左极限、右极限与极限的关系.2.【答案】B.【解析】本题考查的知识点为利用一阶导数符号判定函数的单调性和利用二阶导数符号判定曲线的凹凸性.3.【答案】C.【解析】本题考查的知识点为无穷小量阶的比较.4.【答案】D.【解析】本题考查的知识点为拉格朗日中值定理的条件与结论.可知应选 D.5.【答案】A.【解析】本题考查的知识点为判定极值的必要条件.故应选 A.6.【答案】C.【解析】本题考查的知识点为基本导数公式.可知应选 C.7.【答案】D.【解析】本题考查的知识点为原函数的概念.可知应选 D.8.【答案】D.【解析】本题考查的知识点为牛顿一莱布尼茨公式和定积分的换元法.因此选 D.9.【答案】C.【解析】本题考查的知识点为直线间的关系.10.【答案】B.【解析】本题考查的知识点为级数的性质.可知应选 B.通常可以将其作为判定级数发散的充分条件使用.二、填空题11.【参考答案】e.【解析】本题考查的知识点为极限的运算.12.【参考答案】1.【解析】本题考查的知识点为导数的计算.13.【参考答案】x—arctan x+C.【解析】本题考查的知识点为不定积分的运算.14.【参考答案】【解析】本题考查的知识点为定积分运算.15.【参考答案】【解析】本题考查的知识点为隐函数的微分.解法 1 将所给表达式两端关于 x 求导,可得从而解法 2 将所给表达式两端微分,16.【参考答案】【解析】本题考查的知识点为二阶常系数线性齐次微分方程的求解.17.【参考答案】1.【解析】本题考查的知识点为二元函数的极值.可知点(0,0)为 z 的极小值点,极小值为 1.18.【参考答案】【解析】本题考查的知识点为二元函数的偏导数.19.【参考答案】【解析】本题考查的知识点为二重积分的计算.20.【参考答案】【解析】本题考查的知识点为幂级数的收敛半径.所给级数为缺项情形,三、解答题21.【解析】本题考查的知识点为极限运算.解法 1解法 2【解题指导】在极限运算中,先进行等价无穷小代换,这是首要问题.应引起注意.22.【解析】23.【解析】本题考查的知识点为定积分的换元积分法.【解题指导】比较典型的错误是利用换元计算时,一些考生忘记将积分限也随之变化. 24.【解析】本题考查的知识点为计算反常积分.计算反常积分应依反常积分收敛性定义,将其转化为定积分与极限两种运算.25.【解析】26.【解析】27.【解析】本题考查的知识点为二重积分运算和选择二次积分次序.28.【解析】所给曲线围成的图形如图 8—1 所示.第二部分(选择题,共 40 分)一、选择题:1~10 小题,每小题 4 分,共 40 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.A.B.eC.e2D.12.A.B.C.D.3.A.凹B.凸C.凹凸性不可确定D.单调减少4.A.2B.C.1D.一 25.设 f(x)为区间[a,b]上的连续函数,则曲线 y=f(x)与直线 x=a,x=b,y=0 所围成的封闭图形的面积为().A.B.C.D.不能确定6.A.f(2)-f(0)C.D.f(1)-f(0)7.A.B.C.D.8.A.B.C.D.9.A.条件收敛B.绝对收敛C.收敛性与 k 有关D.发散10.A.AxB.C.第Ⅱ卷(非选择题,共 110 分)二、填空题:11~20 小题,每小题 4 分,共 40 分.11.12.13.设 sinx 为 f(x)的原函数,则 f(x)=.14.15.已知平面π:2x+y 一 3z+2=0,则过原点且与π垂直的直线方程为.16.17.1 8.19.20.三、解答题:21~28 小题,共 70 分.解答应写出推理、演算步骤.21.(本题满分 8 分)22.(本题满分 8 分)23.(本题满分 8 分)24.(本题满分 8 分)25.(本题满分 8 分)26.(本题满分 10 分)(1)切点 A 的坐标(a,a2).(2)过切点 A 的切线方程。

(完整word版)重庆专升本历年高等数学真题及模拟试题

(完整word版)重庆专升本历年高等数学真题及模拟试题

第一篇 真题2005年重庆专升本高等数学真题一、 单项选择题(本大题共6小题,每小题4分,满分24分)、 1、 下列极限中正确的是( )A 、0lim x →12x=∞ B 、0lim x →12x=0 C 、0lim x →=sin 1x 0 D 、0limx →sin xx=0 2、函数f (x )={x-12-x (0≦x ≦1)(1﹤x ≦3) 在x=1处间断是因为( )A 、f (x )在x=1处无定义B 、1lim x -→f (x )不存在C 、1lim x →f (x )不存在 D 、1lim x +→f (x )不存在3、y=ln (1+x )在点(0,0)处的切线方程是( )A 、y=x+1B 、y=xC 、y=x-1D 、y=-x 4、在函数f (x )在(a ,b )内恒有f ′(x)﹥0 , f ″(x)﹤0,则曲线在(a ,b )内( )A 、单增且上凸B 、单减且上凸C 、单增且下凸D 、单减且下凸5、微分方程y ′-y cotx=0的通解( ) A 、y=sin c xB 、y= c sinxC 、y=cos cx D 、y=c cosx6、n 元线性方程组Ax=0有非零解的充要条件是( )A 、方程个数m ﹤nB 、方程个数m ﹥nC 、方程个数m=nD 、秩(A) ﹤n二、 判断题(本大题共4小题,每小题4分,满分16分)1、 若极限0lim x x →f (x )和0lim x x →f (x )g (x )都存在,则0lim x x →g (x )必存在( ) 2、若0x 是函数f (x )的极值点,则必有'()0f x = ( )3、4sin x xdx ππ-⎰=0 ( )4、设A 、B 为n 阶矩阵,则必有222()2A B A AB B +=++ ( ) 三、 计算题(1-12题每题6分,13题8分,共80分)1、 计算3x → 2、 计算57lim 53xx x x →∞+⎛⎫⎪-⎝⎭3、 设y=(1+2x )arctanx ,求'y4、 设y=sin (10+32x ),求dy5、 求函数f (x )=3212313x x x -++的增减区间与极值6、 计算3ln x xdx ⎰7、 5⎰8、设44224z x y x y=+-,求dz9、计算sinD x dx σ⎰⎰,其中D是由直线y=x及抛物线y=2x所围成的区域10、求曲线xy e=与过其原点的切线和y轴所围成的平面图形的面积及该平面图形绕x轴旋转所形成的旋转体的体积11、 求矩阵133143134A ⎛⎫⎪= ⎪ ⎪⎝⎭的逆矩阵 12、 求线性方程组1231235224{x x x x x x -+=-++=的通解13、 证明:当x ﹥0时,arctan x ﹥313x x -2006年重庆专升本高等数学真题一、 单项选择题(本大题共6小题,每小题4分,满分24分) 1、 当0x →时,下列各无穷小量与x 相比是高阶无穷小的是( ) A 、22x x + B 、2sin x C 、sin x x + D 、2sin x x + 2、下列极限中正确的是( )A 、sin lim 1x x x →∞=B 、01lim sin 1x x x →=C 、0sin 2lim 2x xx→= D 、10lim 2x x →=∞ 3、已知函数f (x )在点0x 处可导,且0'()3f x =,则000(5)()limh f x h f x h→+-等于( )A 、6B 、0C 、15D 、104、如果00(,),'()0,x a b f x ∈p 则0x 一定是f (x )的( )A 、极小值点B 、极大值点C 、最小值点D 、最大值点5、微分方程0dy xdx y+=的通解为( ) A 、22x y c += ()c R ∈ B 、22x y c -= ()c R ∈C 、222x y c += ()c R ∈D 、222x y c -= ()c R ∈6、三阶行列式231502201298523-等于( )A 、82B 、-70C 、70D 、-63二、 判断题(本大题共4小题,每小题4分,满分16分) 1、 设A 、B 为n 阶矩阵,且AB=0,则必有A=0或B=0 ( ) 2、若函数y=f (x )在区间(a ,b )内单调递增,则对于(a ,b )内的任意一点x 有'()0f x f ( ) 3、 21101x xedx x -=+⎰ ( )4、若极限0lim ()x x f x →和0lim ()x xg x →都不存在,则[]0lim ()()x x f x g x →+也不存在 ( )三、计算题(1-12题每题6分,13题8分,共80分)1、计算2cos xdx x⎰ 2、 计算311ln lim x x x x e e→-+-3、设arcsin 'y x y =+求4、 计算23lim 25xx x x →∞+⎛⎫⎪-⎝⎭5、 求函数3()3f x x x =-的增减区间与极值6、 设函数2xy z e yx =+,求dz7、 设2cos(523)y x x =++,求dy8、 计算4⎰ 9、求曲线ln y x =的一条切线,其中[2,6]x ∈,使切线与直线x=2,x=6和曲线y=lnx 所围成面积最少。

重庆数学专升本练习题

重庆数学专升本练习题

重庆数学专升本练习题### 重庆数学专升本练习题#### 一、选择题(每题2分,共10分)1. 下列哪个数不是实数?A. πB. -3C. √2D. i2. 函数f(x) = 2x^3 - 5x^2 + 3x + 1的导数是:A. 6x^2 - 10x + 3B. 6x^2 - 10x + 4C. 6x^2 - 9x + 3D. 6x^2 - 8x + 13. 圆的方程为(x-3)^2 + (y-4)^2 = 16,圆心坐标是:A. (3, 4)B. (-3, 4)C. (3, -4)D. (-3, -4)4. 以下哪个不等式是正确的?A. |-5| < 5B. |-5| > 5C. |-5| = 5D. |-5| ≠ 55. 一个等差数列的首项为3,公差为2,第5项是多少?A. 11B. 13C. 15D. 17#### 二、填空题(每题2分,共10分)6. 已知等比数列的首项为2,公比为3,第5项是______。

7. 一个直角三角形的两条直角边分别为3和4,斜边的长度是______。

8. 函数y = sin(x)的周期是______。

9. 一个圆的半径为5,其面积是______。

10. 已知集合A = {1, 2, 3},B = {2, 3, 4},A∩B = ______。

#### 三、解答题(共30分)11. 求函数f(x) = x^2 - 4x + 4的极值点和极值。

12. 解不等式:2x^2 - 5x + 3 > 0。

13. 证明:对于任意实数x,都有e^x ≥ x + 1。

14. 已知数列{an}是等差数列,且a1 = 1,a3 = 5,求a5。

15. 已知直线l1:x - y + 2 = 0与l2:2x + y - 6 = 0,求两直线的交点。

#### 四、证明题(共20分)16. 证明:对于任意实数a和b,都有√(a^2 + b^2) ≥ |a + b|。

17. 证明:如果一个数列是单调递增且有界,则该数列必定收敛。

(完整word版)重庆专升本历年高等数学真题及模拟试题

(完整word版)重庆专升本历年高等数学真题及模拟试题

第一篇 真题2005年重庆专升本高等数学真题一、 单项选择题(本大题共6小题,每小题4分,满分24分)、 1、 下列极限中正确的是( )A 、0lim x →12x=∞ B 、0lim x →12x=0 C 、0lim x →=sin 1x 0 D 、0limx →sin xx=0 2、函数f (x )={x-12-x (0≦x ≦1)(1﹤x ≦3) 在x=1处间断是因为( )A 、f (x )在x=1处无定义B 、1lim x -→f (x )不存在C 、1lim x →f (x )不存在 D 、1lim x +→f (x )不存在3、y=ln (1+x )在点(0,0)处的切线方程是( )A 、y=x+1B 、y=xC 、y=x-1D 、y=-x 4、在函数f (x )在(a ,b )内恒有f ′(x)﹥0 , f ″(x)﹤0,则曲线在(a ,b )内( )A 、单增且上凸B 、单减且上凸C 、单增且下凸D 、单减且下凸5、微分方程y ′-y cotx=0的通解( ) A 、y=sin c xB 、y= c sinxC 、y=cos cx D 、y=c cosx6、n 元线性方程组Ax=0有非零解的充要条件是( )A 、方程个数m ﹤nB 、方程个数m ﹥nC 、方程个数m=nD 、秩(A) ﹤n二、 判断题(本大题共4小题,每小题4分,满分16分)1、 若极限0lim x x →f (x )和0lim x x →f (x )g (x )都存在,则0lim x x →g (x )必存在( ) 2、若0x 是函数f (x )的极值点,则必有'()0f x = ( )3、4sin x xdx ππ-⎰=0 ( )4、设A 、B 为n 阶矩阵,则必有222()2A B A AB B +=++ ( ) 三、 计算题(1-12题每题6分,13题8分,共80分)1、 计算3x → 2、 计算57lim 53xx x x →∞+⎛⎫⎪-⎝⎭3、 设y=(1+2x )arctanx ,求'y4、 设y=sin (10+32x ),求dy5、 求函数f (x )=3212313x x x -++的增减区间与极值6、 计算3ln x xdx ⎰7、 5⎰8、设44224z x y x y=+-,求dz9、计算sinD x dx σ⎰⎰,其中D是由直线y=x及抛物线y=2x所围成的区域10、求曲线xy e=与过其原点的切线和y轴所围成的平面图形的面积及该平面图形绕x轴旋转所形成的旋转体的体积11、 求矩阵133143134A ⎛⎫⎪= ⎪ ⎪⎝⎭的逆矩阵 12、 求线性方程组1231235224{x x x x x x -+=-++=的通解13、 证明:当x ﹥0时,arctan x ﹥313x x -2006年重庆专升本高等数学真题一、 单项选择题(本大题共6小题,每小题4分,满分24分) 1、 当0x →时,下列各无穷小量与x 相比是高阶无穷小的是( ) A 、22x x + B 、2sin x C 、sin x x + D 、2sin x x + 2、下列极限中正确的是( )A 、sin lim 1x x x →∞=B 、01lim sin 1x x x →=C 、0sin 2lim 2x xx→= D 、10lim 2x x →=∞ 3、已知函数f (x )在点0x 处可导,且0'()3f x =,则000(5)()limh f x h f x h→+-等于( )A 、6B 、0C 、15D 、104、如果00(,),'()0,x a b f x ∈p 则0x 一定是f (x )的( )A 、极小值点B 、极大值点C 、最小值点D 、最大值点5、微分方程0dy xdx y+=的通解为( ) A 、22x y c += ()c R ∈ B 、22x y c -= ()c R ∈C 、222x y c += ()c R ∈D 、222x y c -= ()c R ∈6、三阶行列式231502201298523-等于( )A 、82B 、-70C 、70D 、-63二、 判断题(本大题共4小题,每小题4分,满分16分) 1、 设A 、B 为n 阶矩阵,且AB=0,则必有A=0或B=0 ( ) 2、若函数y=f (x )在区间(a ,b )内单调递增,则对于(a ,b )内的任意一点x 有'()0f x f ( ) 3、 21101x xedx x -=+⎰ ( )4、若极限0lim ()x x f x →和0lim ()x xg x →都不存在,则[]0lim ()()x x f x g x →+也不存在 ( )三、计算题(1-12题每题6分,13题8分,共80分)1、计算2cos xdx x⎰ 2、 计算311ln lim x x x x e e→-+-3、设arcsin 'y x y =+求4、 计算23lim 25xx x x →∞+⎛⎫⎪-⎝⎭5、 求函数3()3f x x x =-的增减区间与极值6、 设函数2xy z e yx =+,求dz7、 设2cos(523)y x x =++,求dy8、 计算4⎰ 9、求曲线ln y x =的一条切线,其中[2,6]x ∈,使切线与直线x=2,x=6和曲线y=lnx 所围成面积最少。

重庆专升本高数练习题

重庆专升本高数练习题

重庆专升本高数练习题一、选择题1. 函数f(x) = 2x^3 - 5x^2 + 3x - 1的导数为:A. 6x^2 - 10x + 3B. 6x^2 - 10x + 2C. 6x^2 - 10x + 1D. 6x^2 - 10x + 42. 极限lim(x→0) (sin(x)/x)的值为:A. 0B. 1C. 2D. 不存在3. 设函数f(x) = x^2 + 3x - 2,当x < -4时,f(x)的值:A. 总是大于0B. 总是小于0C. 总是等于0D. 无法确定二、填空题4. 根据微分中值定理,若函数f(x)在区间[a, b]上连续,且在(a, b)内可导,且f'(x)≠0,则存在ξ∈(a, b),使得f'(ξ) = \frac{f(b) - f(a)}{b - a}。

若f(x) = x^2 - 2x,a = 0,b = 3,则f'(ξ) =_______。

5. 已知函数g(x) = sin(x) + cos(x),求g'(x) = _______。

三、计算题6. 计算定积分∫(0,1) (x^2 + 1)dx。

7. 求解微分方程dy/dx + 2y = x^2,且当x = 0时,y = 1。

四、证明题8. 证明:若函数f(x)在区间(a, b)上连续,且∫(a, b) f(x)dx = 0,则f(x)在区间(a, b)上必有零点。

五、应用题9. 某工厂生产一种产品,其成本函数为C(x) = 3x^2 + 2x + 1,其中x为产品数量。

求该工厂生产多少件产品时,平均成本最低。

10. 假设某投资项目的未来收益函数为R(t) = 100e^(-t),其中t为时间(以年为单位),求第一年的投资回报率。

答案:一、选择题1. A2. B3. B二、填空题4. 25. cos(x) - sin(x)三、计算题6. ∫(0,1) (x^2 + 1)dx = [x^3/3 + x](0,1) = 1/3 + 1 = 4/37. 解微分方程dy/dx + 2y = x^2,得到y = (1/3)x^3 - x^2 + C,当x = 0时,y = 1,解得C = 1,所以y = (1/3)x^3 - x^2 + 1。

专升本高等数学一(多元函数微分学)模拟试卷1(题后含答案及解析)

专升本高等数学一(多元函数微分学)模拟试卷1(题后含答案及解析)

专升本高等数学一(多元函数微分学)模拟试卷1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.= ( )A.0B.C.一D.+∞正确答案:B解析:.知识模块:多元函数积分学2.关于函数f(x,y)=下列表述错误的是( ) A.f(x,y)在点(0,0)处连续B.fx(0,0)=0C.fy(0,0)=0D.f(x,y)在点(0,0)处不可微正确答案:A解析:,随k取不同数值而有不同的结果,所以不存在,从而f(x,y)在(0,0)点不连续,因此选项A是错误的,故选A.知识模块:多元函数积分学3.设函数z=3x2y,则= ( )A.6yB.6xyC.3xD.3x2正确答案:D解析:因为z=3x2y,则=3x2.知识模块:多元函数积分学4.设二元函数z== ( )A.1B.2C.x2+y2D.正确答案:A解析:因为z==1.知识模块:多元函数积分学5.已知f(xy,x-y)=x2+y2,则= ( )A.2B.2xC.2yD.2x+2y正确答案:A解析:因f(xy,x—y)=x2+y2=(x—y)2+2xy,故f(x,y)=y2+2x,从而=2.知识模块:多元函数积分学6.设z=f(x,y)=则下列四个结论中,①f(x,y)在(0,0)处连续;②fx’(0,0),fy’(0,0)存在;③fx’(x,y),fy’(x,y)在(0,0)处连续;④f(x,y)在(0,0)处可微.正确结论的个数为( ) A.1B.2C.3D.4正确答案:C解析:对于结论①,=0=f(0,0)f(x,y)在(0,0)处连续,所以①成立;对于结论②,用定义法求fx’(0,0)==0.同理可得fy’(0,0)=00②成立;对于结论③,当(x,y)≠(0,0)时,用公式法求因为当(x,y)→(0,0)时,不存在,所以fx’(x,y)在(0,0)处不连续.同理,fy’(x,y)在(0,0)处也不连续,所以③不成立;对于结论④,fx’(0,0)=0,fy’(0,0)=0,△z=f(0+△x,0+△y)-f(0,0)=((△x)2+(△y)2).sin=ρ2故f(x,y)在(0,0)处可微,所以④成立,故选C.知识模块:多元函数积分学7.设函数z=μ2lnν,而μ=,ν=3x一2y,则= ( )A.B.C.D.正确答案:A解析:知识模块:多元函数积分学8.曲面z=F(x,y,z)的一个法向量为( )A.(Fx,Fy,Fz一1)B.(Fx一1,Fy一1,Fz一1)C.(Fx,Fy,Fz)D.(一Fx,一Fy,1)正确答案:A解析:令G(x,y,z)=F(x,y,z)一z,则Gx=Fx,Gy=Fy,Gz=Fz一1,故法向量为(Fx,Fy,Fz一1).知识模块:多元函数积分学9.曲面z=x2+y2 在点(1,2,5)处的切平面方程为( )A.2x+4y—z=5B.4x+2y—z=5C.z+2y一4z=5D.2x一4y+z=5正确答案:A解析:令F(x,y,z)=x2+y2一z,Fx(1,2,5)=2,Fy(1,2,5)=4,Fz(1,2,5)=一1切平面方程为2(x一1)+4(y一2)一(z一5)=02x+4y—z=5,也可以把点(1,2,5)代入方程验证,故选A.知识模块:多元函数积分学10.函数f(x,y)=x2+xy+y2+x—y+1的极小值点是( )A.(1,一1)B.(一1,1)C.(一1,一1)D.(1,1)正确答案:B解析:∵f(x,y)=x2+xy+y2+x—y+1,∴fx(x,y)=2x+y+1,fy(x,y)=x+2y一1,∴令得驻点(-1,1).又A=fxx(x,y)=2,B=fxy=1,C=fyy=2,∴B2一AC=1—4=一3<0,又A=2>0,∴驻点(一1,1)是函数的极小值点.知识模块:多元函数积分学11.函数z=x2一xy+y2+9x一6y+20有( )A.极大值f(4,1)=63B.极大值f(0,0)=20C.极大值f(一4,1)=一1D.极小值f(一4,1)=一1正确答案:D解析:因z=x2-xy+y2+9x-6y+20,于是=一x+2y-6,令=0,得驻点(-4,1),又因=2,故对于点(-4,1),A=2,B=一1,C=2,B2一AC=-3<0,且A>0,因此z=f(x,y)在点(一4,1)处取得极小值,且极小值为f(一4,1)=一1.知识模块:多元函数积分学填空题12.已知函数f(x+y,ex-y)=4xyex-y,则函数f(x,y)=________.正确答案:(x2一ln2y)y解析:由于f(x+y,ex-y)=[(x+y)2一ln2ex-y].ex-y,所以f(x,y)=(x2一ln2y)y.知识模块:多元函数积分学13.设z=xy,则dz=________.正确答案:yxy-1dx+xylnxdy解析:z=xy,则=yxy-1,=xylnx,所以dz=yxy-1dx+xylnxdy.知识模块:多元函数积分学14.设f(x,y)=sin(xy2),则df(x,y)=________.正确答案:y2cos(xy2)dx+2xycos(xy2)dy解析:df(x,y)=cos(xy2)d(xy2)=cos(xy2)(y2dx+2xydy)=y2cos(xy2)dx+2xycos(xy2)dy.知识模块:多元函数积分学15.已知z=(1+xy)y,则=________.正确答案:1+2ln2解析:由z=(1+xy)y,两边取对数得lnz=yln(1+xy),则,所以=1+2ln2.知识模块:多元函数积分学16.设f’’(x)连续,z=f(xy)+yf(x+y),则=________.正确答案:yf’’(xy)+f’(x+y)+yf’’(x+y)解析:f’(xy).y+yf’(x+y),f’f’’(xy).x+f’(x+y)+yf’’(x+y)=yf’’(xy)+f ’(x+y)+yf’’(x+y).知识模块:多元函数积分学17.设z==________.正确答案:解析:知识模块:多元函数积分学18.曲面x2+3z2=y在点(1,一2,2)的法线方程为________.正确答案:解析:记F(x,y,z)=x2+3z2一y,M0(1,一2,2),则取n=(2,一1,12),所求法线方程为.知识模块:多元函数积分学19.二元函数f(x,y)=x2(2+y2)+ylny的驻点为_______.正确答案:(0,)解析:fx’(x,y)=2x(2+y2),fy’(x,y)=2x2y+lny+1.令解得唯一驻点(0,).知识模块:多元函数积分学20.设f(x,y)在点(x0,y0)处可微,则f(x,y)在点(x0,y0)处取得极值的必要条件是_______.正确答案:fx’(x0,y0)=fy’(x0,y0)=0解析:f(x,y)在点(x0,y0)处可微,则偏导数fx’(x0,y0),fy’(x0,y0)存在,f(x,y)在点(x0,y0)处取得极值,则有fx’(x0,y0)=fy’(x0,y0)=0;反之不成立.知识模块:多元函数积分学解答题21.求函数z=arcsin的定义域.正确答案:对于≤1,即x2+y2≤4;在中,应有x2+y2≥1,函数的定义域是以上两者的公共部分,即{(x,y)|1≤x2+y2≤4}.涉及知识点:多元函数积分学22.设函数z=x2siny+yex,求.正确答案:=2xsiny+yex,=2siny+yex,=2xcosy+ex.涉及知识点:多元函数积分学23.已知z=ylnxy,求.正确答案:涉及知识点:多元函数积分学24.设2sin(x+2y一3z)=x+2y一3z,确定了函数z=f(x,y),求.正确答案:在2sin(x+2y一3z)=x+2y一3z两边对x求导,则有2cos(x+2y —3z).,整理得.同理,由2cos(x+2y一3z),得=1.也可使用公式法求解:记F(x,y,z)=2sin(x+2y一3z)一x一2y+3z,则Fx=2cos(x+2y一3z).(一3)+3,Fy=2cos(x+2y一3z).2—2,Fx=2cos(x+2y一3z)一1,故=1.涉及知识点:多元函数积分学25.设μ=f(x,y,z)有连续偏导数,y=y(x)和z=z(x)分别由方程exy一y=0和ez一xz=0所确定,求.正确答案:.方程exy一y=0两边关于x求导,有exy,方程ez一xz=0两边关于x求导,有ez,由上式可得.涉及知识点:多元函数积分学26.设z=μ2ν一μν2,而μ=xcosy,ν=xsiny,求.正确答案:由于所以=(2μν一ν2)cosy+(μ2一2μν)siny=(2x2cosysiny—x2sin2y)cosy+(x2cos2y一2x2cosysiny)siny=2x2sinycos2y—x2sin2ycosy+x2sinycos2y一2x2sin2ycosy=3x2sinycosy(cosy—siny).=(2μν一ν2)(一xsiny)+(μ2一2μν)xcosy=(2x2cosysiny—x2sin2y)(一xsiny)+(x2cos2y一2x2cosysiny)xcosy=一2x3sinycosy(siny+cosy)+x3(siny+cosy)(sin2y—sinycosy+cos2y)=x3(siny+cosy)(1—3sinycosy).涉及知识点:多元函数积分学27.设f(x—y,x+y)=x2一y2,证明=x+y.正确答案:f(x—y,x+y)=x2一y2=(x+y)(x—y),故f(x,y)=xy.=x+y.涉及知识点:多元函数积分学28.设函数z(x,y)由方程=0所确定,证明:=z —xy.正确答案:涉及知识点:多元函数积分学29.求曲面ez一z+xy=3过点(2,1,0)的切平面及法线.正确答案:设F(x,y,z)=ez一z+xy一3则Fx=y,Fy=x,Fz=ez一1,所以切平面的法向量为n=(1,2,0).所求切平面为x一2+2(y一1)=0,即x+2y一4=0,法线为.涉及知识点:多元函数积分学30.求椭球面x2+2y2+3z2=21上某点M处的切平面π的方程,且π过已知直线L:.正确答案:令F(x,y,z)=x2+2y2+3z2一21,则Fx’=2x,Fy’=4y,Fz’=6z.椭球面的点M(x0,y0,z0)处的切平面π的方程为2x0(x—x0)+4y0(y—y0)+6z0(z—z0)=0,即x0x+2y0y+3z0z=21.因为平面π过直线L上任意两点,比如点应满足π的方程,代入有6x0+6y0+z0=21,z0=2.又因为x02+2y02+3z02=21,解上面方程有:x0=3,y0=0,z0=2及x0=1,y0=2,z0=2.故所求切平面的方程为x+2z=7和x+4y+6z=21.涉及知识点:多元函数积分学31.求旋转抛物面z=x2+y2一1在点(2,1,4)处的切平面及法线方程.正确答案:F(x,y,z)=x2+y2一z一1,n|(2,1,4)=(2x,2y,一1)|(2,1,4)=(4,2,一1).切平面方程为4(x一2)+2(y一1)一(z一4)=0,即4x+2y一z—6=0.法线方程为.涉及知识点:多元函数积分学32.确定函数f(x,y)=3axy—x3一y3(a>0)的极值点.正确答案:=0,联立有解得x=y=a或x=y=0,在(0,0)点,△>0,所以(0,0)不是极值点.在(a,a)点,△<0,且=-6a <0(a>0),故(a,a)是极大值点.涉及知识点:多元函数积分学33.某工厂建一排污无盖的长方体,其体积为V,底面每平方米造价为a 元,侧面每平方米造价为b元,为使其造价最低,其长、宽、高各应为多少?正确答案:设长方体的长、宽分别为x,y,则高为,又设造价为z,由题意可得z=axy+2b(x+y)(x>0,y>0),由于实际问题可知造价一定存在最小值,故x=y=就是使造价最小的取值,此时高为.所以,排污无盖的长方体的长、宽、高分别为时,工程造价最低.涉及知识点:多元函数积分学。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重庆市专升本高等数学模拟试卷(一)
•选择题(本大题共5小题,每小题4分,共20分,每项只有一个正确答案,请把 所选项前的字母填在括号内)
(A) In cosx c (B) In cosx c (C) In sinx c
(D) In sin x c
2 y gtan 2(x 3y)的通解为
k ( k 0 ),则正项级数
U n 的敛散性为
n 1
围成的曲边梯形面积为(
)
b
b
(A)
f (x)dx
a (B)
f (x)dx
a
b
b
(C) a f (x) dx
(D)
a f(x)dx
5.下列级数发散的是( )
3 4n 2
n
1
A •
( 1)
B •
( 1)
n 1
(n 1)(n 2)
n 1
n 1
n 1
1 1
C
( 1) 了
D •
3
n 1
3
n 1 一
(2n 1)2
4•设y f (x)为a,b 上的连续函数,则曲线
•填空题(本大题共
5小题,每小题4分,共20分,请把正确结果填在划线上)
1. lim xsin
x
(A) 0
()
(B)
1
2•设 F (x)是 f (x)在 (C)
(D)
2
上的一个原函数,且
F(x)为奇函数,则
f(x)是
(
)
(A) 奇函数 (B)偶函数
(C)非奇非偶函数
3. tan xdx ( )
(D) 不能确定
y f (x), x a , x b 及 x 轴所 3
3
1.方程 x y 3axy
0所确定的隐函数y y(x)的导数为 ____________
3..若 lim
nu n
1
4•积分
dx =
1
2x 1
-----
1 X 2
5.二次积分
dx 4xdy =
0 j ---------------------------
三.计算题(本大题共 10题,1-8题每题8分,9题9分,10题7 分) 1、
1 xarctanxdx
闭合区域.
(2)无解;(3)有无穷多个解?并在有无穷多解时求其通解。

9、过点M(3, 0)作曲线y
In(x 3)的切线,该切线与此曲线及 x 轴围成一平面
图形D .试求平面图形 D 绕x 轴旋转一周所得旋转体的体积. 10•设f(x)在a,b 上连续,在 a,b 内二阶可导,且f(a) f (b)
0,且存在点 c a,b 使得f (c) 0 ,试证明至少存在一点
2、 2
已知ln(x y)
2
xy
xsinx ,求巴
dx x 0
3.
4、 求方程y
2y
x 2的通解
5、 求幕级数
(x 2)n 的收敛域.
6、 •求二重积分
2
X_
.
d
y
,其中D 是由直线x 2 , y x 及直线xy 1所围成的
7、求函数Z
arcta n — y
In x 2 y 2
的全微分.
8、对于非齐次线性方程组
X i
4x 2 X 3 1
X 2 X i
3x 3 3x 2
1)X 3 0
为何值时,(1)有唯一值;
a,b ,使 f ( )
参考答案
•选择题
二.填空题
5. 1 三.计算题
1.解:用洛必塔法则
2
x 3
lim 3x 1=lim
x 1
■. x 1 x
得 2x , y y 2 2xyy sin x x y 当x 0时由原方程式可得 y 于是解得y 0
1
1x 2
1 1 , 1 +1 arcta nx
2 2
2
dx =
1 x 2
8
1. D
2.
3.
4. C
5. A
2
2.解:In (x
y) xy 2 xsin x
两边同对 x 求导 3•解:
1
1 xarcta
nxdx=- 2 1
arcta n
xdx
2 =
1 =2
x 2arcta nx
4.解:对应的齐次方程的特征方程为 2, 2
于是对应的齐次方程的通解为
y C 1e
2x
x
C 2e (其中
C 1 ,C 2是任意常
数)
1. y 型
y ax
2y x 6 n[2(x 3
3y)] c
1
3.发散
4. ln 3
2
XCOSX
所以原级数的收敛半径为
1
当x 3时,原级数为 —_,这是
n 0
J n 1
发散的;
所以,原级数的收敛域为[1, 3).
6•解: X 2
2 x x
2
2d
= 1dx ! 2
dy
D y
1
■ y
=:x 2 于:dx
x
2
3 .
9
=
x x dx =-
1
4
7、解:由于
z y
x x y
-2
2 ~2
2 ~2
2
x x y x y x y
因为 0不是特征根,所以设特解为 Ax 2 Bx C
代入原方程,得A 0,B 1
,C
2 故原方程的通解为 y y y c 1e 2x x c 2e 4
1 x 2
5.解:因为
lim
n
a n 1 a n
_1_
..,n —2 lim n 1 lim
n
..n 1
(其中 C 「C 2是任意常数)
也就是,当 1 1, 1 x 3 时,
原级数收敛.
是交错
级数且满足
lim n
U
n
0,所以它是收敛的;
1
1的p 级数,所以它是
2
z x y y x
-2 2 ~ 2 ~ 2
y x y x y x y
所以
dz — dx — dy __ dx _ dy •
x y x y x y
8、解:增广矩阵
1 4 1 1 1 4 1 1 1 4 1 1
B 0 3
13 r3 r1 0 3
1
3 「3「2 0 1 2
1
1
1 3 1 0 0 1
2 1 0 0 ( 3)( 1) 3
(1 )要使方程组有唯[一解必有R(A) R(B) 3则(3)( 1) 0 即
3且 1
(2)要使方程组无解必有R(A) R(B)则(3)( 1) 0
即 1 3 0
(3)要使方程组有无穷多解必有R(A) R(B) 3 则( 3)( 1) 0

3 0
3
此时增广矩阵
1 4 1 1 1 4 1 1
「1 4「2 1 0 5 3
B 0 3 3 0 1 1 1 「2 ( 1) 0 1 1 1
1 3 1 0 0 0 0 0 0 0 0 0
為3 5x3
X1 3 5
同解方程组
1 X3 令X3 k则通解为X
2 1 k 1
X2
0 1
X3
9、解:设切线与曲线相切于点M 0 x0,ln(x0 3)(如第9题图所示),
因为切线经过点 M (3, 0), 所以将x 3, y O 代入上式得切点坐标为 M o e 3, 1
从而切线方程为
1
y (x 3) e
因此,所求旋转体的体积为
由于
则切线方程为 y'x x o
i X o 3
y In (x o 3)
1 X
o
3(x
X o )
7
C
12
3 e 2
冗 4 In(x 3) dx
2
e e
n x In x 2 In xdx
1 1 e Tie
2 n xln x
1
e
1d x
1
2n 1
10•证明: f(x)在a,b 上连续,在 a,b 内二阶可导,且 f(a)
f(b) O ,
f(c) O
由拉格朗日定理知:
f(c)
f(a)
f ( 1
) 0, a 1 c
c a
f(b) f
(c) f ( 2
) 0, c 2 b
b c
再在
1
, 2上应用拉格朗日定理:则至少存在一点
1 ,
2
使f
(2)
f ( 1)
f ( ) 0,即至少存在一点
a,b ,使 f ( ) 0
2 1。

相关文档
最新文档