高考物理动能定理的综合应用专项训练及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理动能定理的综合应用专项训练及答案

一、高中物理精讲专题测试动能定理的综合应用

1.如图所示,倾角为37°的粗糙斜面AB 底端与半径R=0.4 m 的光滑半圆轨道BC 平滑相连,O 点为轨道圆心,BC 为圆轨道直径且处于竖直方向,A 、C 两点等高.质量m=1 kg 的滑块从A 点由静止开始下滑,恰能滑到与O 点等高的D 点,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:

(1)求滑块与斜面间的动摩擦因数μ;

(2)要使滑块能到达C 点,求滑块从A 点沿斜面滑下时初速度v 0的最小值;

(3)若滑块离开C 点的速度为4 m/s ,求滑块从C 点飞出至落到斜面上所经历的时间. 【答案】(1)0.375(2)3/m s (3)0.2s 【解析】

试题分析:⑴滑块在整个运动过程中,受重力mg 、接触面的弹力N 和斜面的摩擦力f 作用,弹力始终不做功,因此在滑块由A 运动至D 的过程中,根据动能定理有:mgR -

μmgcos37°

2sin 37R

=0-0 解得:μ=0.375

⑵滑块要能通过最高点C ,则在C 点所受圆轨道的弹力N 需满足:N≥0 ①

在C 点时,根据牛顿第二定律有:mg +N =2C

v m R

② 在滑块由A 运动至C 的过程中,根据动能定理有:-μmgcos37°

2sin 37R ︒=2

12

C mv -

2

012

mv ③ 由①②③式联立解得滑块从A 点沿斜面滑下时的初速度v 0需满足:v 03gR =23 即v 0的最小值为:v 0min =3

⑶滑块从C 点离开后将做平抛运动,根据平抛运动规律可知,在水平方向上的位移为:x =vt ④

在竖直方向的位移为:y =

2

12

gt ⑤ 根据图中几何关系有:tan37°=

2R y

x

-⑥ 由④⑤⑥式联立解得:t =0.2s

考点:本题主要考查了牛顿第二定律、平抛运动规律、动能定理的应用问题,属于中档题.

2.质量 1.5m kg =的物块(可视为质点)在水平恒力F 作用下,从水平面上A 点由静止开始运动,运动一段距离撤去该力,物块继续滑行 2.0t s =停在B 点,已知A 、B 两点间的距

离 5.0s m =,物块与水平面间的动摩擦因数0.20μ=,求恒力F 多大.(2

10/g m s =)

【答案】15N 【解析】 设撤去力

前物块的位移为

,撤去力

时物块的速度为,物块受到的滑动摩擦力

对撤去力后物块滑动过程应用动量定理得

由运动学公式得

对物块运动的全过程应用动能定理

由以上各式得 代入数据解得

思路分析:撤去F 后物体只受摩擦力作用,做减速运动,根据动量定理分析,然后结合动能定律解题

试题点评:本题结合力的作用综合考查了运动学规律,是一道综合性题目.

3.某物理小组为了研究过山车的原理提出了下列的设想:取一个与水平方向夹角为θ=53°,长为L 1=7.5m 的倾斜轨道AB ,通过微小圆弧与足够长的光滑水平轨道BC 相连,然后在C 处连接一个竖直的光滑圆轨道.如图所示.高为h =0.8m 光滑的平台上有一根轻质弹簧,一端被固定在左面的墙上,另一端通过一个可视为质点的质量m =1kg 的小球压紧弹簧,现由静止释放小球,小球离开台面时已离开弹簧,到达A 点时速度方向恰沿AB 方向,并沿倾斜轨道滑下.已知小物块与AB 间的动摩擦因数为μ=0.5,g 取10m/s 2,sin53°=0.8.求:

(1)弹簧被压缩时的弹性势能; (2)小球到达C 点时速度v C 的大小;

(3)小球进入圆轨道后,要使其不脱离轨道,则竖直圆弧轨道的半径R 应该满足什么条件. 【答案】(1)4.5J ;(2)10m/s ;(3)R ≥5m 或0<R ≤2m 。 【解析】 【分析】 【详解】

(1)小球离开台面到达A 点的过程做平抛运动,故有

0 3m/s tan y v v θ

=

=

= 小球在平台上运动,只有弹簧弹力做功,故由动能定理可得:弹簧被压缩时的弹性势能为

2

01 4.5J 2

p E mv =

=; (2)小球在A 处的速度为

5m/s cos A v v θ

=

= 小球从A 到C 的运动过程只有重力、摩擦力做功,故由动能定理可得

221111sin cos 22

C A mgL mgL mv mv θμθ-=

- 解得

10m/s C v ==;

(3)小球进入圆轨道后,要使小球不脱离轨道,即小球能通过圆轨道最高点,或小球能在圆轨道上到达的最大高度小于半径;

那么对小球能通过最高点时,在最高点应用牛顿第二定律可得

2

1v mg m R

≤;

对小球从C 到最高点应用机械能守恒可得

221115

2222

C mv mgR mv mgR =+≥ 解得

2

02m 5C

v R g

<≤=;

对小球能在圆轨道上到达的最大高度小于半径的情况应用机械能守恒可得

2

12

C mv mgh mgR =≤ 解得

2=5m 2C v R g

≥;

故小球进入圆轨道后,要使小球不脱离轨道,则竖直圆弧轨道的半径R ≥5m 或0<R ≤2m ;

4.某电视娱乐节目装置可简化为如图所示模型.倾角θ=37°的斜面底端与水平传送带平滑接触,传送带BC 长L =6m ,始终以v 0=6m/s 的速度顺时针运动.将一个质量m =1kg 的物块由距斜面底端高度h 1=5.4m 的A 点静止滑下,物块通过B 点时速度的大小不变.物块与斜面、物块与传送带间动摩擦因数分别为μ1=0.5、μ2=0.2,传送带上表面距地面的高度H =5m ,g 取10m/s 2,sin37°=0.6,cos37°=0.8.

相关文档
最新文档