专题十四 几何证明之三角形相似与圆综合 2020年中考数学冲刺难点突破 几何证明问题(解析版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年中考数学冲刺难点突破几何证明问题
专题十四几何证明之三角形相似与圆综合
1、如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC平分∠BAD,过C点作CE⊥AD延长线于E点.
(1)求证:CE是⊙O的切线;
(2)若AB=10,AC=8,求AD的长.
解:(1)连接OC,
∵OC=OA,
∴∠OAC=∠OCA,
又∵AC平分∠BAD,
∴∠CAD=∠CAO=∠OCA,
∴OC∥AE,
∵CE⊥AD,
即可得OC⊥CE,
∴CE是⊙O的切线;
(2)∵AB是⊙O的直径,
∴∠ACB=90°,
∴BC===6,
∵∠BAC=∠DAC,
∴=,
∴BC=CD=6,
延长BC交AE的延长线于F,
∵∠BAC=∠FAC,AC=AC,∠ACB=∠ACF=90°,∴△ACB≌△ACF(ASA),
∴FC=BC=6,AF=AB=10,
∵∠CDF=180°﹣∠ADC,∠ABF=180°﹣∠ADC,∴∠CDF=∠ABF,
∵∠CFD=∠AFB,
∴△CFD∽△AFB,
∴=,
∴=,
∴AD=.
2、如图,在Rt△ABC中,AB⊥BC,以AB为直径的圆交AC于点D,E是BC的中点,连接DE.
(1)求证:DE是⊙O的切线;
(2)设⊙O的半径为r,证明r2=AD•OE;
(3)若DE=4,sin C=,求AD之长.
(1)证明:连接OD、BD,
∵AB为圆O的直径,
∴∠BDA=90°,
∴∠BDC=180°﹣90°=90°,
∵E为BC的中点,
∴DE=BC=BE,
∴∠EBD=∠EDB,
∵OD=OB,
∴∠OBD=∠ODB,
∵∠EBD+∠DBO=90°,
∴∠EDB+∠ODB=90°,
∴∠ODE=90°,
∴DE是圆O的切线.
(2)证明:如图,连接BD.
由(1)知,∠ODE=∠ADB=90°,BD⊥AC.
∵E是BC的中点,O是AB的中点,
∴OE是△ABC的中位线,
∴OE∥AC,
∴OE⊥BD.
∴OE∥AC,
∴∠1=∠2.
又∵∠1=∠A,
∴∠A=∠2.
即在△ADB与△ODE中,∠ADB=∠ODE,∠A=∠2,∴△ADB∽△ODE.
∴=,即=.
∴r2=AD•OE;
(3)∵AB为⊙O的直径,
∴∠ADB=∠BDC=90°,
∵点E为BC的中点,
∴BC=2DE=8,
∵sin C=,
∴设AB=3x,AC=5x,
根据勾股定理得:(3x)2+82=(5x)2,
解得x=2.
则AC=10.
由切割线定理可知:82=(10﹣AD)×10,
解得,AD=3.6.
4、如图,在△ABC中,AB=AC,以AB为直径作⊙O,分别交BC于点D,交CA的延长线于点E,过点D
作DH⊥AC于点H,连接DE交线段OA于点F.
(1)求证:DH是⊙O的切线;
(2)若EA=EF=2,求⊙O的半径;
解:(1)连接OD,
∵OB=OD,
∴∠OBD=∠ODB,
∵AB=AC,
∴∠ABC=∠ACB,
∴∠ODB=∠ACB,
∴OD∥AC,
∵DH⊥AC,
∴DH⊥OD,
∴DH是⊙O的切线;
(2)设⊙O的半径为r,即OD=OB=r,
∵EF=EA,
∴∠EFA=∠EAF,
∵OD∥EC,
∴∠FOD=∠EAF,
则∠FOD=∠EAF=∠EFA=∠OFD,
∴DF=OD=r,
∴DE=DF+EF=r+2,
∴BD=CD=DE=r+2,
在⊙O中,∵∠BDE=∠EAB,
∴∠BFD=∠EFA=∠EAB=∠BDE,
∴BF=BD,△BDF是等腰三角形,
∴BF=BD=r+2,
∴AF=AB﹣BF=2OB﹣BF=2r﹣(2+r)=r﹣2,
∵∠BFD=∠EFA,∠B=∠E,
∴△BFD∽△EFA,
∴,
即=
解得:r1=1+,r2=1﹣(舍),
综上所述,⊙O的半径为1+.
5、如图,△AOB中,A(﹣8,0),B(0,),AC平分∠OAB,交y轴于点C,点P是x轴上一点,
⊙P经过点A、C,与x轴交于点D,过点C作CE⊥AB,垂足为E,EC的延长线交x轴于点F.(1)求证:EF为⊙P的切线;
(2)求⊙P的半径.
(1)证明:连接CP,
∵AP=CP,
∴∠PAC=∠PCA,
∵AC平分∠OAB,
∴∠PAC=∠EAC,
∴∠PCA=∠EAC,
∴PC∥AE,
∵CE⊥AB,
∴CP⊥EF,
即EF是⊙P的切线;
(2)∵AC平分∠OAB,
∴∠BAC=∠OAC,
∵PA=PC,
∴∠PCA=∠PAC,
∴∠BAC=∠ACP,
∴PC∥AB,
∴△OPC∽△OAB,
∴=,
∵A(﹣8,0),B(0,),∴OA=8,OB=,
∴AB=,
∴=,
∴PC=5,
∴⊙P的半径为5.