四年级奥数长方形的面积
四年级奥数详解答案 第6讲 面积的计算
四年级奥数详解答案 第6讲第六讲 面积的计算一、知识概要1. 面积:面积是围成的平面图形的大小。
2. 各种图形的计算公式1. 三角形 面积=底×高÷2 用字母表示为:S=ah ÷2(注:高,就是从三角形的顶点向它的对边所做的那条垂线段)}是特殊的平行四边形为:用字母表示边长边长面积正方形为:用字母表示宽长面积长方形2a S . 3.ab S .2=⨯==⨯= 4. 平行四边形 面积=底×高 用字母表示为:S=ah5. 梯形 面积=(上底+下底)×高÷2 用字母表示为:S=2h b)a ⨯+( {注: 解梯形应用题常用到梯形的中位线。
中位线就两腰的中立的连线。
中位线等于两底边之和的一半,即,中位线=(a+b)÷2}}二、典型题目精讲1. 用同样大小的长方形纸片摆成下图,已知每张小纸片的宽是4厘米,阴影部分的面积是多少平方厘米?分析:(如图)5个长方形的长等于3个长十3个宽即5a=3a+3b,则2a=3b,a=3×4÷2=6(cm) 图中阴影部分是三个相等的小正方形,其一个正方形的边长为长-宽,即6-4=2(cm),这样,全部阴影部分面积就是(2×2×3)cm 2了。
解:①3×4÷2=6(cm)②6-4=2(cm)③2×2×3=12(cm 2)答:阴影部分的面积是12 cm 2。
2. 下图是一个边长为20厘米的正方形和一个长方形的组合图形,求阴影部分的面积。
分析:作二条辅助线,交于正点使EF=20cm ,EG=10 cm(如图)则阴影面积=上、下两个长方形面积之和-∆ABC 的面积-∆ADE 的面积解:①S ∆ABC=(20+10+4)×14÷2=238(cm 2) ②S ∆ADE=(20+10)×(20+14)÷2=510(cm 2) ③34×14+30×20=1076(cm 2) ④1076-(238+510)=328(cm 2)答:阴影部分的面积等于328cm2。
四年级奥数几何知识(面积的计算)
四年级奥数几何知识(面积的计算)小升初奥数:四年级奥数几何知识(面积的计算)1、人民路小学操场长90米,宽45米,改造后,长增加10米,宽增加5米。
现在操场面积比原来增加多少平方米?(思路导航)用操场现在的面积减去操场原来的面积,就得到增加的面积,操场现在的面积是:〔90+10〕&215;〔45+5〕=5000〔平方米〕,操场原来的面积是:90&215;45=4050〔平方米〕。
所以现在比原来增加5000-4050=950平方米。
〔90+10〕&215;〔45+5〕-〔90&215;45〕=950〔平方米〕练习〔1〕有一块长方形的木板,长22分米,宽8分米,如果长和宽分别减少10分米,3分米,面积比原来减少多少平方分米?练习〔2〕一块长方形地,长是80米,宽是45米,如果把宽增加5米,要使面积不变,长应减少多少米?2、一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米,如果长不变,宽减少3米,那么它的面积减少36平方米,这个长方形原来的面积是多少平方米?(思路导航)由:“宽不变,长增加6米,那么它的面积增加54平方米〞可知它的宽是54&247;6=9〔米〕;又由“长不变,宽减少3米,那么它的面积减少了36平方米〞,可知它的长为:36&247;3=12〔米〕,所以,这个长方形的面积是12&215;9=108〔平方米〕。
〔36&247;3〕&215;〔54&247;9〕=108〔平方米〕练习〔1〕一个长方形,如果宽不变,长减少3米,那么它的面积减少24平方米,如果长不变,宽增加4米,那么它的面积增加60平方米,这个长方形原来的面积是多少平方米?练习〔2〕一个长方形,如果宽不变,长增加5米,那么它的面积增加30平方米,如果长不变,宽增加3米,那么它的面积增加48平方米,这个长方形的面积原来是多少平方米?练习〔3〕一个长方形,如果它的长减少3米,或它的宽减少2米,那么它的面积都减少36平方米,求这个长方形原来的面积。
奥数四年级—长方形和正方形面积
2×2=4
52-4=48 48÷2=24 24÷2=12
12×4
练 5、如图,是由9个小长方形组成的,按图中 习 编号,第1,2,3,4,5号的面积分别是1平
方米,2平方米,3平方米,4平方米,5平方 米,那么,第6号长方形和面积是多少呢?
图形不规则,已知条件也很少!
3
2021/8/14
拆分
例2、如图,是由6个相同的等腰三角形拼成的图形, 求这个图形的面积是多少?(单位:米)
拆 开
4×4 =16(平方米) 16÷2=8 (平方米) 16+8=24 (平方米)
4
2021/8/14
分块
例3、如图,已知大正方形的边长比小正方形的边长 多4,大正方形的面积比小正方形的面积多96。求大 小正方形面积各是多少? (单位:厘米)
长方形和正方形(面积)
上节我们学了长方形、正方形的周长的计算,
本节我们学习,如何将复杂的图形变成我们熟
悉的长方形和正方形, 计算面积。
长方形面积=长×宽 正方形面积=边长×边长
方法有:减法、拆分、分块、分段、等技巧, 使大家在解题中能顺利地找到突破口,化难为易, 化繁为简。
1
2021/8/14
减法
场平均分成四块(如图6),每一块的面积 是多少?
100-4=96
80-4=76
76×96=7296 7296÷4=1824
12
2021/8/14
练 3、如图,是由12个相等的等腰直角三角形 习 拼成的,这个图形的面积是多少?
2×2=4 4×6=24
13
2021/8/14
练 4、如图,已知大正方形的面积比小正方形 习 多52平方分米,大正方形比小正方形的边长
小学四年级奥数思维问题之图形面积
图形面积问题教学目标:①知识与技能目标:借助所学知识计算组合图形的面积②过程与方法目标:通过对数量关系地分析,让学生在解决问题过程中掌握一些解决问题的基本策略③情感态度与价值观目标:感受所学知识与现实生活的紧密联系教学重点:图形面积公式的运用教学难点:组合图形的面积计算[知识引领与方法]1.细心观察,把握图形特点,合理的进行切拼,从而使问题得以顺利解答2.从整体上观察图形的特征,掌握图形本质,结合必要的分析,推理和计算,使隐蔽的数量关系明朗化[例题精选及训练]【例1】一块长方形铁板,长18分米,宽15分米。
若长和宽分别减少3分米,面积比原来的减少多少平方分米?练习:1.人民路小学操场长90米,宽45米,改造后,长和宽分别增加10米。
现在操场面积比原来增加了多少平方米?2.有一块长方形的木板,长22分米,宽8分米。
如果长和宽分别减少10分米和3分米,木板的面积比原来减少多少平方分米?3.一块长方形地,长是80米,宽是45米,如果把宽增加5米,要使面积不变,长应减少多少米?【例2】一个长方形,如果宽不变,长增加5米,那么它的面积增加30平方米;如果长不变,宽增加3米,那么它的面积增加48平方米。
问这个长方形原来的面积是多少平方米?练习:1.一个长方形,如果宽不变,长减少3米,那么它的面积减少24平方米;如果长不变,宽增加4米,那么它的面积增加60平方米。
这个长方形原来的面积是多少平方米?2.一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米;如果长不变,宽减少3米,那么它的面积减少36平方米。
问这个长方形原来的面积是多少平方米?3.一个长方形花圃,如果它的长减少5米,或它的宽减少6米,那么它的面积都减少60平方米。
求这个长方形花圃原来的面积。
【例3】下图是一个养鸡专业户用一段长17米的篱笆围成的一个长方形养鸡场,那么这个养鸡场的占地面积是多少平方米?练习:1.右图是某个养鸡专业户用一段长13米的篱笆围成一个长形的养鸡场,则养鸡场的占地面积有多大?2.用56米长的木栏围成长或宽是20米的长方形,其中一边利用围墙,怎样才能使围成的面积最大?【例4】街心花园中一个正方形的花坛四周有一条1米宽的水泥路,如果水泥路的总面积是12平方米,那么中间花坛的面积是多少平方米?练习:1.有一个正方形的水池,如右图阴影部分所示,在它的周围修了一个宽8米的花池,花池的面积是480平方米,求水池的边长。
四年级奥数思维训练第28讲 长方形面积(二)
所以,这个图形的面积为:8+3=11平方厘米。
想一想:这道题还可以怎样辅助线,分割后求面积呢?
练习十四
1.运动场有一个正方形的游泳池,在游泳池四周粘上瓷砖,瓷砖总长400米,求游泳池的面积是多少平方米。
2.在公园里有两个花圃,它们的周长相等。其中长方形花圃长40米,宽20米,求另一个正方形花圃的面积。
第十四讲长方形面积(二)
例3.求下面图形的面积。(单位:厘米)
思路导航:这个图形无法直接求出它的面积,我们可以画一条辅助线,将这个图形分割成两个长方形。如下图:
从图上可以看出,左边长方形的长为4厘米,宽为2厘米,面积为4×2=8平方厘米;右边长方形的长为3厘米,宽为1厘米,面积为3×1=3平方厘米。
四年级奥数题及答案-养鸡场最大面积多大?
四年级奥数题及答案-养鸡场最大面积多大?1.用60米长的篱笆围成一个长方形养鸡场,其中一面利用墙,求这个养鸡场的面积最大是()米。
考点:长方形、正方形的面积.分析:设养鸡场宽为x米,则长为(60-2x)米,再通过枚举法由长方形的面积公式S=ab,即可求出面积.解答:解:设养鸡场宽为x米,则长为(60-2x)米,根据题意宽为1米时,长是58米,面积是58×1=58(平方米),宽是2米时,长是56米,面积是56×2=112(平方米),宽是3米时,长是54米,面积是54×3=162(平方米),宽是4米时,长是52米,面积是52×4=208(平方米),宽是5米时,长是50米,面积是50×5=250(平方米),宽是6米时,长是48米,面积是48×6=288(平方米),宽是7米时,长是46米,面积是46×7=322(平方米),宽是8米时,长是44米,面积是44×8=352(平方米),宽是9米时,长是42米,面积是42×9=378(平方米),宽是10米时,长是40米,面积是40×10=400(平方米),宽是11米时,长是38米,面积是38×11=418(平方米),宽是12米时,长是36米,面积是36×12=432(平方米),宽是13米时,长是34米,面积是34×13=442(平方米),宽是14米时,长是32米,面积是32×14=448(平方米),宽是15米时,长是30米,面积是30×15=450(平方米),宽是16米时,长是28米,面积是28×16=448(平方米),由此看出当宽是15米时,长是30米,面积最大,为30×15=450(平方米),答:这个养鸡场的面积最大是450平方米。
故答案为:450平方米。
点评:根据长方形的面积公式,利用枚举法,得出如何围才能够使面积最大。
四年级奥数周长与面积易错题
四年级奥数周长与面积易错题【最新版】目录一、四年级奥数周长与面积的易错题二、常见的周长与面积计算公式三、如何避免在计算中出现错误四、提高奥数解题能力的方法正文一、四年级奥数周长与面积的易错题在四年级的奥数题中,周长与面积的计算问题是一个重要的考点,同时也是一个易错点。
很多学生在做这类题目时,容易因为对公式的理解不透彻,或者在计算过程中出现粗心大意而导致错误。
例如,在计算长方形的面积时,学生可能会忘记将长和宽相乘,或者在计算周长时忘记将长和宽都考虑到。
二、常见的周长与面积计算公式在解决周长与面积问题时,我们需要掌握一些基本的公式。
1.长方形的周长:C = (a + b) × 2,其中 a 和 b 分别表示长方形的长和宽。
2.长方形的面积:S = a × b,其中 a 和 b 分别表示长方形的长和宽。
3.正方形的周长:C = 4a,其中 a 表示正方形的边长。
4.正方形的面积:S = a × a,其中 a 表示正方形的边长。
三、如何避免在计算中出现错误为了避免在计算周长与面积问题时出现错误,我们可以采取以下方法:1.仔细阅读题目,理解题意,确定需要求解的是周长还是面积。
2.在计算过程中,注意使用正确的公式,并按照公式的步骤逐步计算。
3.在计算完成后,进行验算,确保计算结果正确。
4.做题时,要保持细心和耐心,避免因为粗心大意而犯错。
四、提高奥数解题能力的方法要想提高奥数解题能力,我们需要从以下几个方面入手:1.加强基础知识的学习,掌握基本的数学概念和公式。
2.多做练习题,通过做题来提高自己的解题能力。
3.在做题时,注意分析题目,找到题目中的关键信息,并灵活运用公式。
4.在解题过程中,遇到困难时,不要轻易放弃,要勇于挑战自己,多尝试不同的解题方法。
总之,四年级的奥数周长与面积问题虽然难度不大,但是容易出错。
四年级奥数面积求解
关于图形面积求解主讲:姬老师我们要学会观察、分析,通过添加辅助线或者割补的方法,运用一些平移、分解、合并等方法,将不规则的图形转化为我们已学过的基本图形来求解。
在直接运用面积公式求解受阻时,我们往往会采用移位、合并、分解、转化等解题技巧。
所以,同学们拥有敏锐的观察力和灵活的思维在解题过程中就显得相当的重要。
例1.一张长方形纸片,在长边上剪下10cm,宽边上剪下5cm,余下的部分正好是一个正方形。
已知正方形的面积比原长方形纸片面积少140C㎡,求原长方形纸片的面积。
例2,在一个正方形的小花园的周围,环绕着宽为5m的水池,水池的面积是300㎡,问小花园的面积是多少㎡?例3,一块菜地长16m,宽8m,菜地中间留了宽2m的路,把菜地平均分成4块,问每一块地的面积是多少?例4,正方形的内部套着一个长方形,正方形的边长是15cm,长方形的4个角的顶点,恰好分别把正方形的4条边分成2段,其中长的一段是短的2倍。
那么,这个长方形的面积是多少?课堂练习1.四边形面积:下图中AB=3厘米,CD=12厘米,ED=8厘米,AF=7厘米.四边形ABDE的面积是?四边形AFDC的面积=三角形AFD+三角形ADC=(1/2×FD×AF)+(1/2×AC×CD)=1/2(FE+ED)×AF+1/2(AB+BC)×CD= (1/2×FE×AF+1/2×ED×AF)+(1/2×AB×CD+1/2×BC×CD)。
所以阴影面积=四边形AFDC-三角形AFE-三角形BCD=(1/2×FE×AF+1/2×ED×AF)+(1/2×AB×CD+1/2×BC×CD)-1/2×FE×AF-1/2×BC×CD=1/2×ED×AF+1/2×AB×CD=1/2×8×7+1/2×3×12=28+18=46。
小学数学四年级50道奥数题-小学四年级奥数题100道及答案
小学数学四年级50道奥数题——小学四年级奥数题100道及答案(第一部分)1. 题目:小明有20颗糖果,他每天吃3颗,那么几天后他还能剩下10颗糖果?答案:小明共需吃掉10颗糖果,每天吃3颗,所以需要4天。
因此,4天后他还能剩下10颗糖果。
2. 题目:一个长方形的长是10厘米,宽是5厘米,求这个长方形的周长和面积。
答案:周长:(10+5)×2=30厘米;面积:10×5=50平方厘米。
3. 题目:小华有8个苹果,他每天吃2个,那么几天后他吃完这些苹果?答案:小华共需吃掉8个苹果,每天吃2个,所以需要4天吃完。
4. 题目:一个数加上20后是50,这个数是多少?答案:这个数是30。
5. 题目:一辆汽车每小时行驶60公里,3小时行驶多少公里?答案:60×3=180公里。
6. 题目:一个班级有40名学生,其中有20名男生,那么女生有多少名?答案:4020=20名女生。
7. 题目:一个三位数的百位数是2,十位数是5,个位数是8,这个数是多少?答案:这个数是258。
8. 题目:一个正方形的边长是6厘米,求这个正方形的周长和面积。
答案:周长:6×4=24厘米;面积:6×6=36平方厘米。
9. 题目:小刚有15元,他买了一本书花了8元,他还剩下多少钱?答案:158=7元。
10. 题目:一个数乘以3后是12,这个数是多少?答案:这个数是4。
小学数学四年级50道奥数题——小学四年级奥数题100道及答案(第二部分)11. 题目:小丽有25个气球,她每天送给同学5个,那么几天后她送完所有气球?答案:小丽共需送出25个气球,每天送5个,所以需要5天送完。
12. 题目:一个三角形的三条边分别是5厘米、8厘米和10厘米,判断这个三角形是什么类型的?答案:这是一个直角三角形,因为5²+8²=10²。
13. 题目:一个四位数,千位数是3,百位数是6,十位数和个位数相同,这个数是多少?答案:这个数是3666。
四年级奥数题及答案-长方形面积
四年级奥数题及答案-长方形面积
导语:小学生的数学思维需要靠做题来锻炼,所以多做题是对我们有益处的哦!这是今天小编为小朋友们准备的题,希望有助于同学们奥数能力的提升
一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米,如果长不变,宽减少3米,那么它的面积减少36平方米,这个长方形原来的面积是多少平方米?
答案与解析:由:“宽不变,长增加6米,那么它的面积增加54平方米”可知它的宽是54÷6=9(米);又由“长不变,宽减少3米,那么它的面积减少了36平方米”,可知它的长为:36÷3=12(米),所以,这个长方形的面积是12×9=108(平方米)。
(36÷3)×(54÷9)=108(平方米)。
四年级下册数学奥数拓展试题 第三讲 基本直线面积公式 人教版 无答案
第三讲基本直线面积公式在几何中,所谓直线形就是指由线段构成的图形.在日常生活中,我们最常见的直线形有以下几种:正方形、长方形、平行四边形、三角形、梯形正方形长方形平行四边形三角形梯形在有关直线形的计算中,计算周长和计算面积是最常见的两类,我们已经学过了如何计算直线形的周长,接下来我们将学习如何计算直线形的面积正方形的面积和长方形的面积公式是我们所熟悉的,如图1:宽边长长正方形的面积=边长×边长长方形的面积=长×宽试一试正方形的边长是6厘米,面积是平方厘米长方形的长为8厘米,宽为4厘米,面积是平方厘米正方形的面积是121平方厘米,它的边长是厘米长方形的面积是48平方厘米,宽为4厘米,长为厘米例题1、如图,有一块长方形田地被分成了五小块,分别栽种了茄子、黄瓜、豆角、莴笋和苦瓜,其中茄子地的面积是16平方米,黄瓜地的面积是28平方米,豆角地的面积是32平方米,莴笋地的面积是72平方米,而且左上角茄子地恰好是一个正方形.请问:剩下的苦瓜地的面积是多少?练习1、如图有一块长方形田地被分成了四小块,分别栽种了冬瓜24平方米,西瓜地的面积是36平方米,南瓜地的面积是18平方米,而且左下角西瓜地恰好是一个正方形.请问:剩下的黄瓜地的面积是多少?如图2,平行四边形的两组对边平行且相等,我们把两组对边用不同颜色标出来图2为了计算平行四边形的面积,我们可以把平行四边形切成两块,然后拼成一个长方形,如图3这个平行四边形的面积和拼成的长方形的面积相同,都等于长方形的长乘以宽.长方形的长和宽在平行四边形中都可以找到对应线段,在平行四边形中,这两条线段分别叫做底和高。
于是我们有: 平行四边形面积=底×高如图4所示,同学们可以画出这条底对应的若干条高,并且这些高是相等的,都等于上下两条平行线间的距离图4当然我们可以用另一种方式把上面的平行四边形剪拼成一个长方形,如图5所示。
同样得到相对于这条底的若干条高,如图6所示,这些高也是相等的,都等于左右两条平行线间的距离(两条平行线间的距离处处相等)要计算平行四边形的面积,需要知道一条底,以及它所对应的高.大家看看下面的几个图形,试着画出与底边相对应的高画一画下面有四个平行四边形,每个平行四边形都指定了一条边作为底,请画出与每条底相对应的高例题2如图是由两个边长分别为4和7的正方形拼成的,请求出图中阴影部分的面积如图,大正方形里有一个小正方形还有一个阴影平行四边形。
四年级奥数第三讲:图形面积问题
第三讲:图形面积问题
姓名:
例1、一块长方形铁板,长18分米,宽15分米。
若长和宽分别减少3分米,面积比原来减少多少平方分米?
练习1、人民路小学操场长90米,宽45米,改造后,场合宽分别增加10米。
现在操场面积比原来增加了多少平方米?
练习2、一块长方形地,长80米,宽45米,如果把宽增加5米,要使面积不变,长应该减少多少米?
例2、一个长方形,如果宽不变,长增加5米,那么它的面积增加30平方米;如果长不变,宽增加3米,那么它的面积增加48平方米。
问这个长方形原来的面积时多少平方米?
练习1、一个长方形花圃,如果它的长减少5米,或它的宽减少6米,那么它的面积都减少60平方米。
求这个长方形花圃原来的面积时多少平方米?
例3、右图是一个养鸡专业户用一段长17米的篱笆围成的一个长方形养鸡场,那么这个养鸡场的占地面积是多少平方米?
练习1、用56米长的木栏围成长或宽是20米的长方形,其中一边利用围墙,怎样才能使围成的面积最大?
例4、街心花园中一个正方形的花坛四周有一条1米宽的水泥路,如果水泥路的总面积是12平方米,那么中间花坛的面积是多少平方米?
练习1、有一个正方形的水池,如右图阴影部分所示,在它的周围修了一个宽8米的花池,花池的面积是480平方米,求水池的边长是多少米?
例5、一块正方形的钢板,先截去宽5分米的长方形,又截去宽8分米的长方形(如下图所示),这样面积就比原来的正方形减少了181平方分米。
原来正方形的边长是多少分米?
练习1、一个正方形一条边减少6分米,另一条边减少10分米后变成一个长方形,这个长方形的面积比正方形的面积少260平方分米,求原来正方形的边长是多少分米?。
奥数之计算长方形的面积
奥数之计算长方形的面积计算长方形的面积是数学中最基础的应用问题之一。
在奥数中学习这个问题的意义在于,帮助孩子们建立数学思维和逻辑思维,为日后学习更深入和高级的数学课程打下良好的基础。
对于计算长方形面积的问题,我们需要掌握几个基本知识和方法。
第一,长方形的定义和性质。
长方形是指既有长又有宽的四边形,对边相等且内角都是直角。
根据这个定义,我们可以知道,一个长方形可以由长和宽两个尺寸来唯一确定。
同时,根据长方形内角都是直角的性质,我们可以知道长方形的对角线长度和边长之间的关系。
第二,长方形的面积计算公式。
根据长方形的定义,我们知道长方形可以划分成若干个正方形。
因此,长方形的面积就是长和宽的乘积,即S=l*w。
这个公式是计算长方形面积的基本方法,因此也是奥数中最基础和最重要的知识点之一。
第三,长方形面积计算的应用。
长方形面积计算是一个非常常见的实际问题。
例如,当我们需要购买一块地皮或制作一张桌子时,就需要计算长方形的面积。
此外,在日常生活和工作中,我们也会经常遇到计算长方形面积的问题,例如测量墙壁面积或地板面积、计算服装或布料用量等等。
除了掌握以上基本知识和方法,我们还可以通过一些特殊的情况来帮助孩子们更深入理解长方形面积计算方法。
第一,正方形的面积计算。
正方形是长方形的特殊情况,也是最简单的情况之一。
由于正方形的四条边都相等,因此正方形面积计算公式可以简化为S=s^2,其中s为正方形的边长。
因此,当我们计算正方形的面积时,只需要将边长的平方作为结果即可。
第二,长方形的对角线长计算。
长方形的对角线是长方形内角都是直角的结果,因此可以利用勾股定理来计算对角线的长度。
具体而言,我们可以利用勾股定理将长方形的对角线和两条边长联系起来:对角线的平方等于两条边长的平方之和,即d^2=l^2+w^2,其中d为对角线长度,l和w分别为长方形的长和宽。
总之,计算长方形面积是奥数中最基础也是最重要的知识点之一。
通过掌握长方形的定义、面积计算公式和对角线长度计算方法,我们可以帮助孩子们建立数学思维和逻辑思维,为日后学习更深入和高级的数学课程打下良好的基础。
苏教版四年级奥数 第15周 图形面积问题
第15周图形面积问题专题简析:解答有关图形面积问题时,应注意以下几点:1、细心观察,把握图形特点,合理地进行切拼,从而使问题得以顺利解答。
2、从整体上来观察图形特征,掌握图形本质,结合必要的分析、推理和计算,使隐蔽的数量关系明朗化。
例1:一块长方形铁板,长18分米,宽15分米。
若长和宽分别减少3分米,面积比原来的减少多少平方分米?练习一:1、人民小学操场长90米,宽45米,改造后,长和宽分别增加10米。
现在操场面积比原来增加了多少平方米?2、有一块长方形的木板,长22分米,宽8分米。
如果长和宽分别减少10分米和3分米,木板的面积比原来减少多少平方分米?3、一块长方形地,长是80米,宽是45米,如果把宽增加5米,要使面积不变,长应减少多少米?例2:一个长方形,如果宽不变,长增加5米,那么它的面积增加30平方米;如果长不变,宽增加3米,那么它的面积增加48平方米。
问这个长方形原来的面积是多少平方米?练习二:1、一个长方形,如果宽不变,长减少3米,那么它的面积减少24平方米;如果长不变,宽增加4米,那么它的面积增加60平方米。
这个长方形原来的面积是多少平方米?2、一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米;如果长不变,宽减少3米,那么它的面积减少36平方米。
问这个长方形原来的面积是多少平方米?3、一个长方形,如果它的长减少3米,或它的宽减少2米,那么它的面积都减少36平方米。
求这个长方形原来的面积?例3:右图是一个养鸡专业户用一段长17米的篱笆围成的一个长方形养鸡场,那么这个养鸡场的占地面积是多少平方米?练习三:1、右图是某个养鸡专业户用一段长13米的篱笆围成一个长方形的养鸡场,则养鸡场的占地面积有多大?2、用56米长的木栏围成长或宽是20米的长方形,其中一边利用围墙,怎样才能使围成的面积最大?3、用15米长的栅栏沿着围墙围一个种植花草的长方形苗圃,其中一面利用围墙。
如果每边的长度都是整数,怎样才能使围成的面积最大?例4:街心花园中一个正方形的花坛四周有一条1米宽的水泥路,如果水泥路的总面积是12平方米,那么中间花坛的面积是多少平方米?练习四:1、有一个正方形的水池,如右图阴影部分所示,在它的周围修了一个宽8米的花池,花池的面积是480平方米,求水池的边长。
四年级奥数:面积问题
四年级奥数:面积问题
面积是数学中的一个重要概念,它用来描述平面上的形状或图形所占据的空间大小。
四年级的奥数也涉及到了面积问题,下面我们来介绍一些常见的面积问题及解决方法。
正方形的面积
正方形是一个四边都相等且角均为90度的特殊矩形。
要计算正方形的面积,只需要将正方形的边长乘以它自己即可。
例如,一个边长为5厘米的正方形的面积是25平方厘米。
长方形的面积
长方形是另一种常见的图形,它有两对相等的边和四个角均为90度。
计算长方形的面积需要知道它的长和宽,然后将长乘以宽即可得到面积。
例如,一个长为7厘米,宽为4厘米的长方形的面积是28平方厘米。
三角形的面积
三角形是一个具有三条边和三个角的多边形。
计算三角形的面积需要知道底边的长度和高的长度。
将底边乘以高的一半即可得到三角形的面积。
例如,一个底边长度为6厘米,高为3厘米的三角形的面积是9平方厘米。
平行四边形的面积
平行四边形是一个具有两对平行边和四个角的四边形。
计算平行四边形的面积需要知道底边的长度和高的长度。
将底边乘以高即可得到平行四边形的面积。
例如,一个底边长度为8厘米,高为5厘米的平行四边形的面积是40平方厘米。
总结
面积是描述平面图形所占据空间大小的概念。
在四年级的奥数中,我们经常会遇到正方形、长方形、三角形和平行四边形的面积问题。
要计算这些图形的面积,只需要记住相应的公式,并将已知的值代入求解即可。
通过练习这些面积问题,我们能够更好地理解图形的特点和面积的计算方法,提高自己的数学水平。
四年级奥数专题第13讲 长方形与正方形的面积(二)
第13讲 长方形与正方形的面积(二)例1右图的长方形被分割成5个正方形,已知长方形的面积为120平方厘米,长方形的长是多少厘米?宽是多少厘米?例2在一块长60米,宽40米的长方形庭院正中央,设计了“丁字形”甬路.已知甬路宽2米,横甬路到两边的距离相等,竖甬路到两边距离也相等.如图.(1)求“丁字形”甬路的周长是多少米?(2)求“丁字形”甬路的面积是多少平方米?例3右图的长方形被分割成大小不等的6个正方形,已知中央的小正方形的面积为1平方厘米,长方形的面积是多少平方厘米?例4用同样大小的长方形纸片摆成下图,已知每张小纸片的宽是12厘米,求阴影部分的面积.习 题1.用四个相同的长方形拼成一个面积为100平方厘米的大正方形(见右图),每个长方形的周长是多少厘米?2.将一个正方形划分为9个小长方形,如图,这些小长方形周长的总和是96厘米,这个大正方形的面积是多少平方厘米?3.右图中有9个小长方形.按其编号1,2,3,4,5号的面积分别是1平方米、2平方米、3平方米、4平方米、5平方米,那么6号长方形的面积是多少平方米?4.要砌一个面积是72平方米的长方形猪圈,当以米为长度单位时,长方形的边长都是自然数,这个猪圈的围墙总长最少是多少米?5.右图中5个阴影所示的图形都是正方形,所标的数字是邻近线段的长度.那么阴影所示的5个正方形面积之和是多少?6.下图大正方形的面积是128平方厘米,阴影部分的总面积是多少平方厘米?7.四个一样的长方形和一个小正方形拼成一个大正方形,大小正方形的面积分别为64平方厘米和9平方厘米.长方形的面积是多少平方厘米?8.一个长方形,如果宽不变,长增加8米,面积增加72平方米,如长不变,宽减少4米,面积减少48平方米.原长方形面积是多少?9.有两个完全相同的长方形,如果把它们的长连在一起拼成一个新长方形,周长比原一个长方形增加10厘米;如果宽连一起拼成一个新长方形,周长比原一个长方形增加16厘米.求原每个长方形的面积.10.某工厂的一座新厂房建筑在一块边长是25米的正方形场地上,厂房的横竖都宽5米,如图.(1)求工字形新厂房的周长是多少米?(用最简单的方法解答)(2)工字形新厂房的面积是多少平方米?8 cm米。
小学四年级上册的奥数图形题
小学四年级上册的奥数图形题
一个正方形的边长是8厘米,它的面积是多少平方厘米?
一个长方形的长是12厘米,宽是8厘米,它的周长和面积分别是多少?
一个平行四边形的底是10厘米,高是6厘米,它的面积是多少平方厘米?
一个三角形的底是15厘米,高是8厘米,它的面积是多少平方厘米?一个梯形的上底是6厘米,下底是10厘米,高是8厘米,它的面积是多少平方厘米?
一个圆的半径是5厘米,它的周长和面积分别是多少?
一个圆环的内圆半径是4厘米,外圆半径是6厘米,它的面积是多少平方厘米?
一个长方形的周长是36厘米,长是宽的2倍,它的长和宽分别是多少厘米?
一个正方形的周长是40厘米,它的面积是多少平方厘米?
一个平行四边形的周长是52厘米,一条底边长是10厘米,它的高是多少厘米?
一个等腰三角形的周长是30厘米,一条腰长是10厘米,它的底边长是多少厘米?
一个等边三角形的边长是8厘米,它的周长和面积分别是多少?
一个直角三角形的两条直角边分别是6厘米和8厘米,它的斜边长是多少厘米?
一个长方体的长、宽、高分别是10厘米、8厘米、6厘米,它的表面积和体积分别是多少?
一个正方体的棱长是6厘米,它的表面积和体积分别是多少?
一个圆柱的底面半径是4厘米,高是10厘米,它的表面积和体积分别是多少?
一个圆锥的底面半径是3厘米,高是6厘米,它的体积是多少立方厘米?
一个长方体鱼缸的长是8分米,宽是4分米,高是6分米,它的容积是多少升?
一个正方体水池的棱长是2米,它最多能装多少立方米的水?
一块长方形菜地的长是20米,宽是15米,如果每平方米收菜5千克,这块菜地一共可以收菜多少千克?。
高斯小学奥数四年级上册含答案第03讲_基本直线形面积公式
第三讲基本直线形面积公式在几何中,所谓直线形就是指由线段构成的图形.在日常生活中,我们最常见的直线形有以下几种:正方形、长方形、平行四边形、三角形、梯形.在有关直线形的计算中,计算周长和计算面积是最常见的两类.我们已经学过了如何计算直线形的周长,接下来我们将学习如何计算直线形的面积.№1. 正方形和长方形的面积正方形的面积和长方形的面积公式是我们所熟悉的,如下图:例题1如下图,有一块长方形田地被分成了五小块,分别栽种了茄子、黄瓜、豆角、莴笋和苦瓜.其中栽种茄子的面积是16平方米,栽种黄瓜的面积是28平方米,栽种豆角的面积是32平方米,栽种莴笋的面积是72平方米,而且左上角栽种茄子的田地恰好是一个正方形.请问:剩下的栽种苦瓜的田地面积是多少?「分析」左上角是面积为16的正方形,那么它的边长是多少?你还能求出哪些线段的长度呢? 练习1如图,有一块长方形田地被分成了四小块,分别栽种了冬瓜、西瓜、南瓜、黄瓜,其中冬瓜地的面积是24平方米,西瓜地的面积是36平方米,南瓜地的面积是18平方米,而且左下角西瓜地恰好是一个正方形.请问:剩下的黄瓜地的宽面积是多少?№2. 平行四边形的面积如下图,平行四边形的两组对边平行且相等,我们把两组对边用不同颜色标出来.为了计算平行四边形的面积,我们可以把平行四边形切成两块,然后拼成一个长方形,如下图.这个平行四边形的面积和拼成的长方形的面积相同,都等于长方形的长乘以宽.长方形的长和宽在平行四边形中都可以找到对应线段.在平行四边形中,这两条线段分别叫做底和高.于是我们有:如图所示,同学们可以画出这条底对应的若干条高,并且这些高是相等的,都等于上下两条平行线间的距离.36 1824底当然我们可以用另一种方式把上面的平行四边形剪拼成一个长方形,如下面左图所示.同样得到相对于这条底的若干条高,如下面右图所示,这些高也是相等的,都等于左右两条平行线间的距离.要计算平行四边形的面积,需要知道一条底,以及它所对应的高.大家看看下面的几个图形,试着画出与底边相对应的高.例题2下图是由两个边长分别为4和7的正方形拼成的,请求出阴影平行四边形的面积.「分析」阴影部分是平行四边形,应该选哪条边作为底呢?相应的高是多少呢?练习2如图,大正方形里有一个小正方形还有一个阴影平行四边形.如果大正方形的边长是20厘米,小正方形的边长是8厘米.那么阴影平行四边形的面积是多少?BCF底高高高№3. 三角形的面积三角形中也有相对应的底和高.过三角形的一个顶点向所对的边做一条垂线,所得的垂线段叫做三角形的高,所对的边叫做三角形的底.每个三角形有三组对应的底和高.要计算三角形的面积,同样要利用底和高的长度.观察下图,我们把一个三角形倒过来和原图形拼在一起,可以得到一个平行四边形.平行四边形的底与三角形的底相等,高也与三角形的高相等.而平行四边形的面积等于“⨯底高”,正好是三角形面积的2倍,所以我们有三角形面积公式:从形状上讲,三角形有三类:锐角三角形、直角三角形、钝角三角形.由于三角形的形状多变,在初学阶段要找准三角形相对应的底和高很不容易.因此要想算出三角形的面积,最关键的还在于准确地找到底与相应的高............下面是一个简单的作图练习,大家不妨画一画.例题3如下图所示,两个正方形并排放在一起,大正方形的边长是8厘米,小正方形的边长是6厘米.请问:阴影三角形的面积是多少?「分析」阴影部分是三角形,应该选哪条边作为底呢?相应的高是多少呢? 练习3右图是由两个边长分别为4和6的正方形拼成的,请求出阴影三角形的面积.№4. 梯形的面积三角形和平行四边形都有“底”和“高”的概念,梯形中也有.在梯形中,平行的一组对边分别叫做上底和下底,不平行的一组对边叫做腰,上底和下底之间的距离叫做梯形的高.如下图所示,把两个相同的梯形拼在一起,可以得到一个平行四边形.从图中可以看出,这个平行四边形的面积是梯形面积的2倍.同时平行四边形的底由梯形的上底和下底拼接而成,高与梯形的高相等.所以:86下底例题4一个正方形和一个长方形按下图的方式排放,已知正方形的面积是49平方厘米,长方形的长为11厘米,宽为8厘米,那么阴影部分的面积是多少?「分析」阴影部分是梯形,要求面积,关键是找清楚它的上底、下底、高分别是多少.练习4如下图,大正方形的边长是8厘米,小正方形的边长是6厘米.请问:图中的阴影图形的面积是多少平方厘米?例题5如下图所示,两个边长10厘米的正方形相互错开3厘米,那么图中阴影平行四边形的面积是多少?「分析」阴影部分是平行四边形,应该选哪条边作为底呢?相应的高是多少呢?例题6如图,把两个正方形拼在一起,小正方形的边长是5厘米,大正方形的边长是7厘米.请问:阴影部分的面积是多少? 「分析」阴影部分由两个三角形组成,你能分别求出这两个三角形的面积吗?以哪条边作为底最容易计算呢?11课堂内外小欧拉与大羊圈欧拉是著名的数学家,他在数论、几何学、天文数学、微积分等好几个数学的分支领域中都取得了出色的成就.不过,这个大数学家在孩提时代却一点也不讨老师的喜欢,他是一个被学校除了名的小学生.小欧拉因为问老师天上星星有多少颗,老师也答不上来,只知道天上的星星是上帝镶上去的.小欧拉感觉上帝真是太粗心了,竟然忘记了星星的数目!在欧拉的年代,对上帝是绝对不能怀疑的,人们只能做思想的奴隶,绝对不允许自由思考.小欧拉没有与上帝“保持一致”,老师就让他离开学校回家.回家后无事,他就帮助爸爸放羊,成了一个牧童.他一面放羊,一面读书.他读的书中,有不少数学书.爸爸的羊渐渐增多了,达到了100只.原来的羊圈有点小了,爸爸决定建造一个新的羊圈.他用尺量出了一块长方形的土地,长40米,宽15米,他一算,面积正好是600平方米,平均每一头羊占地6平方米.正打算动工的时候,他发现他的材料只够围100米的篱笆,不够用.若要围成长40米,宽15米的羊圈,其周长将是110米.父亲感到很为难,若要按原计划建造,就要再添10米长的材料;要是缩小面积,每头羊的面积就会小于6平方米.小欧拉却向父亲说,不用缩小羊圈,也不用担心每头羊的领地会小于原来的计划.他有办法.父亲不相信小欧拉会有办法,听了没有理他.小欧拉急了,大声说,只要稍稍移动一下羊圈的桩子就行了.父亲听了直摇头,心想:“世界上哪有这样简单的事情?”但是,小欧拉却坚持说,他一定能两全齐美.父亲终于同意让儿子试试看.小欧拉见父亲同意了,站起身来,跑到准备动工的羊圈旁.他以一个木桩为中心,将原来的40米边长截短,缩短到25米.父亲着急了,说:“那怎么成呢?那怎么成呢?这个羊圈太小了,太小了.”小欧拉也不回答,跑到另一条边上,将原来15米的边长延长,又增加了10米,变成了25米.经这样一改,原来计划中的羊圈变成了一个25米边长的正方形.然后,小欧拉很自信地对爸爸说:“现在,篱笆也够了,面积也够了.”父亲照着小欧拉设计的羊圈扎上了篱笆,100米长的篱笆真的够了,不多不少,全部用光.面积也足够了,而且还稍稍大了一些.父亲心里感到非常高兴.孩子比自己聪明,真会动脑筋,将来一定大有出息.父亲感到让这么聪明的孩子放羊实在是太可惜了.后来,他想办法让小欧拉认识了一个大数学家伯努利.通过这位数学家的推荐,1720年,小欧拉成了巴塞尔大学的大学生.这一年,小欧拉13岁,是这所大学最年轻的大学生.作业1. 在下面的每个平行四边形与三角形中,作出以AB 为底的高.2. 如图,大正方形被分成三块区域.左上角的正方形面积为4,右上角的长方形面积为6,请问:大正方形的面积是多少?3.下图中,大正方形的面积是64,小正方形的面积是36.求平行四边形的面积.4. 下面两幅图都是边长为8和6的两个正方形拼成的,根据图中所示的线段长度,求两个阴影三角形的面积.5. 如图,两个正方形并排放在一起,小正方形的边长是9厘米,大正方形的边长是13厘米.请问阴影梯形的面积是多少平方厘米?66 846BD C第三讲基本直线形面积公式1.例题1答案:8平方米详解:方法一:正方形的面积是16平方米,所以正方形的边长是4米,黄瓜的面积是28平方米,黄瓜的宽是4米,长就是2847÷=米.豆角的面积是32平方米,豆角的宽是4米,所以长是3248÷=米.所以苦瓜的宽是÷=米,莴笋的宽是8米,面积是72平方米,所以长是7289⨯=平方米;方法二:豆角是茄子面积的2倍,972-=米,长是4米,所以苦瓜的面积是248所以莴笋是黄瓜和苦瓜面积和的2倍,黄瓜和苦瓜的面积是72236÷=平方米,所以苦瓜的面积是36288-=平方米.2.例题2答案:28详解:阴影平行四边形的底BC是4,高FG是7,所以平行四边形的面积是4728⨯=.3.例题3答案:42平方厘米详解:阴影三角形的底是6厘米,高是6814+=厘米,所以阴影三角形的面积是614242⨯÷=平方厘米.4.例题4答案:30平方厘米详解:阴影部分是一个梯形,这个梯形的上底是正方形上面的边,正方形的面积是49平方厘米,所以正方形的边长是7厘米,梯形的下底是长方形的宽即8厘米,梯形的高即长方形长与正方形边长之差,为1174-=厘米,所以梯形的面积是()+⨯÷=平方厘米.7842305.例题5答案:91平方厘米详解:由于两个大小一样的正方形错开了3厘米,可以知道图中两个小的直角三角形的直角边都是3厘米,所以阴影平行四边形的底就是1037+=厘米,所以其面积-=厘米,高就是10313是71391⨯=平方厘米.6.例题6答案:12平方厘米详解:小正方形的边长是5厘米,大正方形的边长是7厘米.阴影部分是由两个三角形组成的,这两个三角形的底都是752-=厘米,左面三角形的高是5厘米,右面三角形的高是7厘米,所以面积分别是2525⨯÷=平方厘米,2727+=平⨯÷=平方厘米,所以阴影部分的面积是5712方厘米.7.练习1答案:12平方米详解:西瓜地是正方形,面积为36平方米,所以边长为6米;冬瓜地面积为24平方米,长为6米,所以宽为2464÷=米;南瓜地面积为18平方米,长为6米,所以宽为1863÷=米;黄瓜地长为4米,宽为3米,所以面积为4312⨯=平方米.8. 练习2答案:96平方厘米详解:阴影平行四边形的底是小正方形边长即8厘米,高是两正方形边长之差,即20812-=厘米,所以平行四边形的面积是81296⨯=平方厘米.9. 练习3答案:30简答:阴影三角形的底是6,高是6410+=,所以阴影三角形的面积是610230⨯÷=.10. 练习4答案:14平方厘米简答:阴影部分是一个梯形,这个梯形的上底是小正方形的边长,即6厘米;梯形的下底是大正方形的边长即8厘米,梯形的高即两正方形边长之差,为862-=厘米,所以梯形的面积是()682214+⨯÷=平方厘米.11. 作业1答案:如图所示简答:12. 作业2答案:25简答:小正方形的边长为2,小长方形的长为3,那么大正方形的边长为5,面积为5525⨯=.13. 作业3答案:48简答:小正方形的边长为6,大正方形的边长为8,平行四边形的面积是6848⨯=.14. 作业4答案:24;18简答:左图阴影三角形的底选为6,高为8,面积是68224⨯÷=.右图阴影三角形的底选为6,高为6,面积是66218⨯÷=.15.作业5答案:242平方厘米简答:梯形的上底为小正方形的边长,即9厘米.梯形的下底为大正方形的边长,即13厘米.梯形的高为大、小正方形边长和为22厘米.梯形的面积为(913)222242+⨯÷=平方厘米.6.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10、如果正方形A的周长是正的多少倍?
11、将一个长方形的长增加1厘米,宽增加3厘米,就变成了一个正方形,面积增加33平方厘米,原来的长方形面积是多少平方厘米?
12、如图,正方形与阴影长方形的边分别平行,正方形边长为10,阴影长方形的面积为6,那么图中四边形ABCD的面积是多少?
2、如图,大小两个正方形对应边的距离均为2厘米,如果两个正方形之间部分的面积是40平方厘米,那么小正方形的面积是多少平方厘米?
第2题
3、把一个长26厘米,宽14厘米的长方形分成5块,两个长方形能完全重合,两个正方形也能完全重合,求小正方形的面积是多少?
第3题
4、每边长是10厘米的正方形纸片,正中间挖去了一个正方形的洞,成为宽度为1厘米的方框,把五个这样的方框放在桌面上(如图),问桌面上这些方框盖住的面积是多少平方厘米?
4、如图,大小两个正方形部分重合,重合部分的面积是2平方厘米,阴影部分的面积是多少平方厘米?
第3题
第4题
5、一个正方形,如果边长增加1厘米,那么面积增加17平方厘米,这个正方形原来面积是多少平方厘米?
6、现代养鸡场是一个长方形,其中一条边利用原来的旧墙,其余三面打砖墙,砖墙总长60米,若长是宽的2倍,求其面积;若长与宽相等,其面积是多少?
7、如图,阴影部分的面积是多少?
第7题
8、有一个长方形长为8厘米,宽为3厘米,把它的长和宽分别增加2厘米,那么这个长方形面积增加了多少平方厘米?
9、如图,是一个边长为4的正方形,我们称它为第一个正方形,依次连结四条边的中点,得到第二个正方形,继续这样下去,得到第三个、第四个、第五个正方形,那么第一个正方形至第五个正方形的面积是多少?
7、一个长方形的宽增加4厘米,就成了一个正方形,这样面积增加了48平方厘米,求原来长方形的面积。
8、计划修一个正方形的花坛,并在花坛的周围铺宽2米的草坪,草坪的面积是40平方米,那么修建花坛、草坪共需占地多少平方米?
[能力拓展平台]
1、有一大一小两个正方形,它们的周长相差20厘米,面积相差55平方厘米,小正方形的面积是多少平方厘米?
第4题
[全讲综合练习]
1、一个长方形的周长为72厘米,长比宽的2倍少3厘米,那么这个长方形的长是多少厘米?宽是多少厘米?面积是多少平方厘米?
2、长方形是由5个一样的正方形拼成的,总面积是245平方厘米,那么这个长方形的周长是多少厘米?
3、一个长方的面积为44平方厘米,靠一边裁出一个面积为16平方厘米的正方形,如图,那么原长方形的长是多少厘米?剩下的小长方形的面积是多少平方厘米?周长是多少厘米?
(单位:米)第3题第4题
4、如图,已知正方形ABCD的边长为6分米,长方形BCEF和长方形AGHD的面积分别为24平方分米和20平方分米,求阴影部分的面积?
5、一个正方形,如果边长增加2厘米,它的面积增加16平方厘米,求原正方形的面积。
6、一个长方形,如果宽增加2厘米,或长增加3厘米,它们的面积都增加120平方厘米,原来长方形的面积是多少?
长方形的面积
[同步巩固演练]
1、两个相同的长方形,长7厘米,宽3厘米,按下图的样子重叠在一起,这个图形的周长是多少厘米?面积是多少平方厘米?
第1题
2、用长36厘米的一根铁丝围成一个正方形,它的面积是多少?用这根铁丝围成一个长12厘米的长方形,它的面积是多少?
3、如图,有一块长方形土地,长是宽的2倍,中间有一座雕塑,雕塑的底面是一个正方形,周围是草坪,草坪的面积是多少平方米?