河北省廊坊市2020版中考数学试卷(I)卷
河北省2020年中考数学试题(解析版)
6.如图 1,已知 ABC ,用尺规作它的角平分线.
如图 2,步骤如下,
第一步:以 B 为圆心,以 a 为半径画弧,分别交射线 BA , BC 于点 D , E ; 第二步:分别以 D , E 为圆心,以 b 为半径画弧,两弧在 ABC 内部交于点 P ;
第三步:画射线 BP .射线 BP 即为所求.
81012 变形得:
k
92 1112 1
k 8 10 12
9 19 1111111
8 10 12 8101012
8 10 12 10 .
故选:B.
【点睛】本题考查了平方差公式的应用,灵活运用平方差公式是解题的关键.
10.如图,将 ABC 绕边 AC 的中点 O 顺时针旋转 180°.嘉淇发现,旋转后的 CDA 与 ABC 构成平行四
7.若 a ¹ b ,则下列分式化简正确的是( )
A.
a2 a b2 b
B.
a2 a b2 b
【答案】D
C. a2 a b2 b
D.
1 2
a
a
1b b
2
【解析】
【分析】
根据 a≠b,可以判断各个选项中的式子是否正确,从而可以解答本题.
【详解】∵a≠b,
∴
a b
2 2
a b
,选项
A
错误;
a b
∴a 0;
第二步:分别以
D
,
E
为圆心,大于
1 2
DE
的长为半径画弧,两弧在
ABC
内部交于点
P
;
∴ b 1 DE 的长; 2
第三步:画射线 BP .射线 BP 即为所求.
综上,答案为: a 0 ; b 1 DE 的长, 2
2020年河北省中考数学试题(图片版含答案)
2020年河北省初中毕业生升学文化课考试数学试卷注意事项:1・本试卷共X页,总分120分,考试时间120分钟.2・答题前,考生务必将姓名、准考证号填写在试卷和答题卡相应位≡±.3・答选择题时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;答非选择题时,将答案写在答Sg卡上.写在本试卷上无效.4・考试结束后,将本试卷和答SS卡一井交回.一、选择题(本大題有16个小题,共42分.1〜10小題各3分・11〜16小題各2分.在每小題给出的四个选项中,只有一项是符合題目要求的)1・如图1.在平面内作己知亘线加的垂线,可作垂线的条数有A∙ 0 条B∙ 1 条~ fn图1 C・2条 D.无数条2.墨迹椅盖了尊式“ Z3∙x = χ2 (XH0)”中的运算符号,则覆盖的是A- +- B- "uC- ×D・÷3.对于①x —3Xy = X(I・3刃,②(X + 3)(x — 1) = X a÷2x-3 »从左到右的变形・表述正确的是A・都是因式分解,B・都是乘法运算C・Φ½B式分解,②圧乘法运算D・①是乘法运算,②是因式分解4.图2的两个几何体分别由7个和6个相同的小正方体搭成.比较两个几何体的三视图,正确的是A・仅主视图不同B・仅俯视图不同'OQ C・仅左视图不同D・主视图、左视图和俯视图都相同5.图3是小颖曲三次购买苹果单价的统计图,第四次又买的苹果单价是。
元/千克・发现这四个单价的中位数恰好也足众数,则α =A. 9 B- 8C *7 D∙ 66∙如图4' C知∕MC,用尺规作它的和平分线如图4∙2∙步骤如下,姑步・・灯为圆心,以诅半径嘶■分别交射线呗眈于点D & 第二炽分别以D, E为圆心.以必半径吹两弧业初C内部交于点P;第三步:画射线&P.射线EP即为所求A. a.方均无限制C. α有最小限制,b无限制7.若a≠b・则下列分式化简正确的是B・α AO, b>∣DE 的长D∙ α No, b <-DE的长2B・应,b-2 b8∙在图5所示的网格中・以点O为位似中心,四边形ABCD 的位似图形是A・四边形NPMQ B.四边形NPMRC.四边形N〃M0D.四边形MMR9.若(!iz>x∏2-1)=8xl0xl2,则“k下列正确的是1 -α2A图5作补充•下列正确的足H.若斤为正幣教•则(&+«+•••+&「S------- V ------- Zit*IO •如图b 將“"C 堆边,4「的屮z ∙ OWRliIteH IKO a •筋汎发现・旋转厉的厶Cw U^ABC 构 MMpI 叫讪仪 HHlJnII 卜,点儿C 分別Hi>J 7 Λ G X 处, 而,m 了点D 处.:CB AD 9J 口边彫ABCD 是半行四边形•小明为保IlL 站m 的Jff PP 更严悴• ffl ⅛ΛH*<l 1 U^Cn-AD. f∏ w Λ四边形 ... WZ 何Λ. KiHffl 理严ib 不必补允 B ∙应补允:∖IAB≈CD.C.应补充:fl AR//CD.D ∙应补充:H0Λ≈()C.12. taffl7∙从笔ri 的公路I 旁一点P 岀发•向西走6km 到达人从P 出发向北走6km 也到达/・卜列说法错误的是• •A ・从点P 向北偏西45°走3km 到达/ B. 公Wn 的走向堆南偏两45∙ C. 公埒/的走向是北偏东45°13.己知光連为300 000千米/杪,光经过f 秒(IWfWlO )传播的览肉用科学记故注&示为4? XIO A千米.IM n nl(½为A. 5 C. 5 PlCB ・6 D ・ 5 Λ 6N. ff -ItSth -已如:点O 力△・(〃('的'卜心・C8(XUU ∙・*Z.4.- SJSJ 的解呑为: 以及它的外忆翹 α iitt OB.OC.切图 8.由ZMXu-IMF .65* .而miKi%∣的不卅全•"还⅛fιM -个不屈的備.・F 列刿妙止的的足A. IMiMift 的対,且Z4的列个VLlt ∏5' B ・MuK 说的不对∙rt<y 65C. SZti 求的rΛMid ∙对・厶4应紂Mr D ・两人林不対・Z.4应"3个不同(ft数学试卷D ∙ k 2A.北尽IS.如图9 •现婴在抛物线yκ(4-n上找点PS b).针対6的不同収值,所找点P的个数,三人的说法如下,甲:若b = 5,则点P的个数为0;乙:若b=4.则点P的个数为1;丙:若b=3,则点P的个数为∣∙下列判断正确的是A.乙错,丙对B.甲和乙都错C.乙对,丙错D・I卩情,內对∣6.图IO是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是 1.2, 3. 4. 5.选取其中三块(可重复选取)按图10 的方式组成图案,使所围成的三用形是面积最大的直角• •三角形,则选取的三块纸片的面积分别是图IO A- 1, 4, 5 B. 2, 3, 5C. 3∙49 5D. 2. 2, 4二.填空题(本大题有3个小题•共12分• 17〜18小題各3分;19小题有3个空•每空2分)17._______________________________________ 己知:√ΓS->∕2≡α√2-√2=5√2 r IlM ab^ _______________________________________18.________________________________________________ 正六边形的一个内角是正丹边形一个外角的4倍,则F l= ___________________________________19.图11是8个台阶的示意图•每个台阶的高和宽分别足1和2.每个台阶凸出的角的顶点记作几S为1~8的整数)•曲数八'(x<0)的图象为曲线厶(1)若2过点环则" ____________ ;(2)若Z过点门,则它必定还过另一点&・则m≡_____________ I(3)若曲线丄使得TLT*这些点分布在它的两侧・毎.侧各4个点,则&的整数值冇________ 个・三、解答题(本大题冇7个小越•共66分•解拧应坷出文孑说明、证明过稈或演題步骤)20.(本小题満分R分)己知两个有理数:-9和5・(1)计算;匕聖艺;2(2)若再添一个负整数刃.且-9・5与刊这三个数的平均数仍小T求"的值•21.(本小题满分8分)有一电脑稈序:每按一次按键,屏幕的A区就会自动加上/・同时B区就会口动诚去3α,且均显示化简后的结果・己知A, B 两区初始显示的分别是25和-16・如图12・如,第一次按⅛t⅛, A I B两区分别显示:2;胃訂E器鸟^<1)从初始状态按2次后,分别求A, B两区显示的结果;(2)从初始状态按4次后,计算A, B两区代数式的和,请判断这个和能为负数吗?说明理由22・(本小题满分9分)如图13•点O为X〃中点,分别延长0/1到点C, OB到点D・使OC = OD.以点0 为圆心,分别以6, OQ为半径在CD上方作两个半圆•点P为小半圆上任一点(不与点A,〃車合),连接OP 并延长交大半圆于点E,连接*£・CP.(1)① 求证:∆A0E^∆P0C;②写出Zl, Z2和ZC1三者间的数蛍关系,井说明理由.(2)若OC≈2OA=2l当ZC最大时,皐悸指出CP与小半圆的位置关系,并求此时S吨OD(答集保窗兀>・Ill23・(本小题满分9分)用承垂捋数〃衡凰水平放置的长方休木板的最大承3i.fi.实验室冇些同材质冋长同 宽而厚度不-的木板,实验发规:木板承航拾数“与木板耳度X (厘米〉的平方成正比. 当x=3时,"=3・(1>求卩与X 的函数关系式・(2〉如图】4・选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为X (厘米〉, ① 求0与X 的函数关系式: ② Jr 为何值时,。
2020年河北省中考数学试卷-答案
2020年河北省初中学业水平考试
数学答案解析
一、 1.【答案】D
【解析】在同一平面内,画已知直线的垂线,可以画无数条;故选:D . 【考点】在同一平面内,垂直于平行的特征 2.【答案】D 【解析】∵3
x 2x x =(0x ≠)
,32x x x ÷=,∴覆盖的是:÷.故选:D . 【考点】同底数幂的除法运算 3.【答案】C
【解析】①左边多项式,右边整式乘积形式,属于因式分解;②左边整式乘积,右边多项式,属于整式乘法;故答案选C .
【考点】因式分解的定义理解 4.【答案】D
【解析】第一个几何体的三视图如图所示:
第二个几何体的三视图如图所示:
观察可知这两个几何体的主视图、左视图和俯视图都相同,故选D . 【考点】几何体的三视图
()k k k
k k k ++⋅⋅⋅+=个(【考点】幂的运算 【答案】A
【解析】解:如图所示,过P 点作AB 的垂线PH ,
故18065115A ∠'︒-︒︒==.
120
360R
π
⨯⨯
=
【考点】全等三角形的性质和判定,三角形的外角,切线的性质,扇形面积的计算)设W=
作函数图像如下:
3
24
BC C =⨯(2)过A 点向BC 边作垂线,交BC 于点E ,。
〖汇总3套试卷〗廊坊市2020年中考一模数学试题
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为( ) A .8×1012 B .8×1013C .8×1014D .0.8×1013【答案】B【解析】80万亿用科学记数法表示为8×1. 故选B .点睛:本题考查了科学计数法,科学记数法的表示形式为10n a ⨯ 的形式,其中110a ≤< ,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.2.小亮家与姥姥家相距24 km ,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程s(km)与时间t(h)的函数图象如图所示.根据图象得出下列结论,其中错误的是( )A .小亮骑自行车的平均速度是12 km/hB .妈妈比小亮提前0.5 h 到达姥姥家C .妈妈在距家12 km 处追上小亮D .9:30妈妈追上小亮 【答案】D【解析】根据函数图象可知根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,进而得到小亮骑自行车的平均速度,对应函数图象,得到妈妈到姥姥家所用的时间,根据交点坐标确定妈妈追上小亮所用时间,即可解答.【详解】解:A 、根据函数图象小亮去姥姥家所用时间为10﹣8=2小时, ∴小亮骑自行车的平均速度为:24÷2=12(km/h ),故正确;B 、由图象可得,妈妈到姥姥家对应的时间t=9.5,小亮到姥姥家对应的时间t=10,10﹣9.5=0.5(小时), ∴妈妈比小亮提前0.5小时到达姥姥家,故正确;C 、由图象可知,当t=9时,妈妈追上小亮,此时小亮离家的时间为9﹣8=1小时, ∴小亮走的路程为:1×12=12km ,∴妈妈在距家12km出追上小亮,故正确;D、由图象可知,当t=9时,妈妈追上小亮,故错误;故选D.【点睛】本题考查函数图像的应用,从图像中读取关键信息是解题的关键.3.不等式组302xx+>⎧⎨-≥-⎩的整数解有()A.0个B.5个C.6个D.无数个【答案】B【解析】先解每一个不等式,求出不等式组的解集,再求整数解即可.【详解】解不等式x+3>0,得x>﹣3,解不等式﹣x≥﹣2,得x≤2,∴不等式组的解集为﹣3<x≤2,∴整数解有:﹣2,﹣1,0,1,2共5个,故选B.【点睛】本题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.4.若△ABC∽△A′B′C′,∠A=40°,∠C=110°,则∠B′等于()A.30°B.50°C.40°D.70°【答案】A【解析】利用三角形内角和求∠B,然后根据相似三角形的性质求解.【详解】解:根据三角形内角和定理可得:∠B=30°,根据相似三角形的性质可得:∠B′=∠B=30°.故选:A.【点睛】本题考查相似三角形的性质,掌握相似三角形对应角相等是本题的解题关键.5.点M(a,2a)在反比例函数y=8x的图象上,那么a的值是( )A.4 B.﹣4 C.2 D.±2 【答案】D【解析】根据点M(a,2a)在反比例函数y=8x的图象上,可得:228a=,然后解方程即可求解.【详解】因为点M(a,2a)在反比例函数y=8x的图象上,可得:24a=,解得:2a=±,故选D.【点睛】本题主要考查反比例函数图象的上点的特征,解决本题的关键是要熟练掌握反比例函数图象上点的特征. 6.如图,AB∥CD,点E在线段BC上,CD=CE,若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°【答案】B【解析】分析:先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.详解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故选B.点睛:此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.7.若二元一次方程组3,354x yx y+=⎧⎨-=⎩的解为,,x ay b=⎧⎨=⎩则-a b的值为()A.1 B.3 C.14-D.74【答案】D【解析】先解方程组求出74x y-=,再将,,x ay b=⎧⎨=⎩代入式中,可得解.【详解】解:3, 354,x yx y+=⎧⎨-=⎩①②得447x y -=, 所以74x y -=, 因为,,x a y b =⎧⎨=⎩所以74x y a b -=-=. 故选D. 【点睛】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a-b 的值,本题属于基础题型. 8.如图,AD 是半圆O 的直径,AD =12,B ,C 是半圆O 上两点.若AB BC CD ==,则图中阴影部分的面积是( )A .6πB .12πC .18πD .24π【答案】A【解析】根据圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°,根据扇形面积公式计算即可. 【详解】∵AB BC CD ==, ∴∠AOB=∠BOC=∠COD=60°. ∴阴影部分面积=2606=6360⨯ππ.故答案为:A. 【点睛】本题考查的知识点是扇形面积的计算,解题关键是利用圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°. 9.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是( )A .甲超市的利润逐月减少B.乙超市的利润在1月至4月间逐月增加C.8月份两家超市利润相同D.乙超市在9月份的利润必超过甲超市【答案】D【解析】根据折线图中各月的具体数据对四个选项逐一分析可得.【详解】A、甲超市的利润逐月减少,此选项正确,不符合题意;B、乙超市的利润在1月至4月间逐月增加,此选项正确,不符合题意;C、8月份两家超市利润相同,此选项正确,不符合题意;D、乙超市在9月份的利润不一定超过甲超市,此选项错误,符合题意,故选D.【点睛】本题主要考查折线统计图,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.10.如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=2,则图中阴影部分的面积等于( )A.22B.1 C2D2﹣l【答案】D【解析】∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,2,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,2,∴AD⊥BC,B′C′⊥AB,∴AD=12BC=1,AF=FC′=22AC′=1,∴DC′=AC′2-1,∴图中阴影部分的面积等于:S△AFC′-S△DEC′=12×1×1-12×2-1)22-1,故选D.【点睛】此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.二、填空题(本题包括8个小题)11.随意的抛一粒豆子,恰好落在图中的方格中(每个方格除颜色外完全相同),那么这粒豆子落在黑色方格中的可能性是_____.【答案】1 3【解析】根据面积法:求出豆子落在黑色方格的面积与总面积的比即可解答.【详解】∵共有15个方格,其中黑色方格占5个,∴这粒豆子落在黑色方格中的概率是515=13,故答案为13.【点睛】此题考查了几何概率的求法,利用概率=相应的面积与总面积之比求出是解题关键.12.写出一个一次函数,使它的图象经过第一、三、四象限:______.【答案】y=x﹣1(答案不唯一)【解析】一次函数图象经过第一、三、四象限,则可知y=kx+b中k>0,b<0,由此可得如:y=x﹣1(答案不唯一).13.如图,四边形ABCD与四边形EFGH位似,位似中心点是点O,OE3=OA5,则EFGHABCDSS四边形四边形=_____.【答案】925【解析】试题分析:∵四边形ABCD与四边形EFGH位似,位似中心点是点O,∴EFAB =OEOA=35,则EFGHABCDSS四边形四边形=2()OEOA=23()5=925.故答案为925.点睛:本题考查的是位似变换的性质,掌握位似图形与相似图形的关系、相似多边形的性质是解题的关键.14.已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是.【答案】1.【解析】试题分析:因为2+2<4,所以等腰三角形的腰的长度是4,底边长2,周长:4+4+2=1,答:它的周长是1,故答案为1.考点:等腰三角形的性质;三角形三边关系.15.如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为_____.【答案】2【解析】连接AD交EF与点M′,连结AM,由线段垂直平分线的性质可知AM=MB,则BM+DM=AM+DM,故此当A、M、D在一条直线上时,MB+DM有最小值,然后依据要三角形三线合一的性质可证明AD为△ABC 底边上的高线,依据三角形的面积为12可求得AD的长.【详解】解:连接AD交EF与点M′,连结AM.∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=12BC•AD=12×4×AD=12,解得AD=1,∵EF是线段AB的垂直平分线,∴AM=BM.∴BM+MD=MD+AM.∴当点M位于点M′处时,MB+MD有最小值,最小值1.∴△BDM的周长的最小值为DB+AD=2+1=2.【点睛】本题考查三角形的周长最值问题,结合等腰三角形的性质、垂直平分线的性质以及中点的相关属性进行分析.16.如图,正方形ABCD中,E是BC边上一点,以E为圆心,EC为半径的半圆与以A为圆心,AB为半径的圆弧外切,则sin∠EAB的值为.【答案】35.【解析】试题分析:设正方形的边长为y,EC=x,由题意知,AE2=AB2+BE2,即(x+y)2=y2+(y-x)2,由于y≠0,化简得y=4x,∴sin∠EAB=3355 BE y x xAE y x x-===+.考点:1.相切两圆的性质;2.勾股定理;3.锐角三角函数的定义17.如图,点A,B在反比例函数y=1x(x>0)的图象上,点C,D在反比例函数y=kx(k>0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为32,则k的值为_____.【答案】1【解析】过A作x轴垂线,过B作x轴垂线,求出A(1,1),B(2,12),C(1,k),D(2,2k),将面积进行转换S△OAC=S△COM﹣S△AOM,S△ABD=S梯形AMND﹣S梯形AAMNB进而求解.【详解】解:过A作x轴垂线,过B作x轴垂线,点A ,B 在反比例函数y =1x(x >0)的图象上,点A ,B 的横坐标分别为1,2, ∴A (1,1),B (2,12), ∵AC ∥BD ∥y 轴, ∴C (1,k ),D (2,2k ), ∵△OAC 与△ABD 的面积之和为32, 111112222OACCOMAOMk SSSk ∴=-=⨯-⨯⨯=-, S △ABD =S 梯形AMND ﹣S 梯形AAMNB 1k 11k 1111122224-⎛⎫⎛⎫=+⨯-⨯+⨯= ⎪ ⎪⎝⎭⎝⎭, 1132242k k -∴-+=, ∴k =1, 故答案为1. 【点睛】本题考查反比例函数的性质,k 的几何意义.能够将三角形面积进行合理的转换是解题的关键.18.如图,在矩形ABCD 中,E 、F 分别是AD 、CD 的中点,沿着BE 将△ABE 折叠,点A 刚好落在BF 上,若AB=2,则AD=________.【答案】22【解析】如图,连接EF ,∵点E 、点F 是AD 、DC 的中点, ∴AE=ED ,CF=DF=12CD=12AB=1,由折叠的性质可得AE=A′E , ∴A′E=DE ,在Rt △EA′F 和Rt △EDF 中,EA EDEF EF ='⎧⎨=⎩, ∴Rt △EA′F ≌Rt △EDF (HL ), ∴A′F=DF=1,∴BF=BA′+A′F=AB+DF=2+1=3, 在Rt △BCF 中,BC=22223122BF CF -=-=. ∴AD=BC=22 .点睛:本题考查了翻折变换的知识,解答本题的关键是连接EF ,证明Rt △EA′F ≌Rt △EDF ,得出BF 的长,再利用勾股定理解答即可. 三、解答题(本题包括8个小题)19.小明对A ,B ,C ,D 四个中小型超市的女工人数进行了统计,并绘制了下面的统计图表,已知A 超市有女工20人.所有超市女工占比统计表 超市 ABCD女工人数占比62.5%62.5%50%75%A 超市共有员工多少人?B 超市有女工多少人?若从这些女工中随机选出一个,求正好是C 超市的概率;现在D 超市又招进男、女员工各1人,D 超市女工占比还是75%吗?甲同学认为是,乙同学认为不是.你认为谁说的对,并说明理由. 【答案】(1)32(人),25(人);(2)13;(3)乙同学,见解析. 【解析】(1)用A 超市有女工人数除以女工人数占比,可求A 超市共有员工多少人;先求出D 超市女工所占圆心角度数,进一步得到四个中小型超市的女工人数比,从而求得B 超市有女工多少人;(2)先求出C 超市有女工人数,进一步得到四个中小型超市共有女工人数,再根据概率的定义即可求解; (3)先求出D 超市有女工人数、共有员工多少人,再得到D 超市又招进男、女员工各1人,D 超市有女工人数、共有员工多少人,再根据概率的定义即可求解. 【详解】解:(1)A 超市共有员工:20÷62.5%=32(人), ∵360°-80°-100°-120°=60°,∴四个超市女工人数的比为:80:100:120:60=4:5:6:3,∴B 超市有女工:20×54=25(人); (2)C 超市有女工:20×64=30(人). 四个超市共有女工:20×45634+++=90(人). 从这些女工中随机选出一个,正好是C 超市的概率为3090=13. (3)乙同学.理由:D 超市有女工20×34=15(人),共有员工15÷75%=20(人), 再招进男、女员工各1人,共有员工22人,其中女工是16人,女工占比为1622=811≠75%. 【点睛】本题考查了统计表与扇形统计图的综合,以及概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.20.如图,菱形ABCD 中,,E F 分别是,BC CD 边的中点.求证:AE AF =.【答案】证明见解析.【解析】根据菱形的性质,先证明△ABE ≌△ADF ,即可得解.【详解】在菱形ABCD 中,AB =BC =CD =AD ,∠B =∠D.∵点E ,F 分别是BC ,CD 边的中点,∴BE =12BC ,DF =12CD , ∴BE =DF.∴△ABE ≌△ADF ,∴AE =AF.21.观察猜想:在Rt △ABC 中,∠BAC=90°,AB=AC ,点D 在边BC 上,连接AD ,把△ABD 绕点A 逆时针旋转90°,点D落在点E 处,如图①所示,则线段CE 和线段BD 的数量关系是 ,位置关系是 .探究证明:在(1)的条件下,若点D 在线段BC 的延长线上,请判断(1)中结论是还成立吗?请在图②中画出图形,并证明你的判断.拓展延伸:如图③,∠BAC≠90°,若AB≠AC ,∠ACB=45°,AC=2,其他条件不变,过点D 作DF ⊥AD 交CE 于点F ,请直接写出线段CF 长度的最大值.【答案】(1)CE=BD,CE⊥BD.(2)(1)中的结论仍然成立.理由见解析;(3)1 4 .【解析】分析:(1)线段AD绕点A逆时针旋转90°得到AE,根据旋转的性质得到AD=AE,∠BAD=∠CAE,得到△BAD≌△CAE,CE=BD,∠ACE=∠B,得到∠BCE=∠BCA+∠ACE=90°,于是有CE=BD,CE⊥BD.(2)证明的方法与(1)类似.(3)过A作AM⊥BC于M,EN⊥AM于N,根据旋转的性质得到∠DAE=90°,AD=AE,利用等角的余角相等得到∠NAE=∠ADM,易证得Rt△AMD≌Rt△ENA,则NE=MA,由于∠ACB=45°,则AM=MC,所以MC=NE,易得四边形MCEN为矩形,得到∠DCF=90°,由此得到Rt△AMD∽Rt△DCF,得MD AMCF DC,设DC=x,MD=1-x,利用相似比可得到CF=-x2+1,再利用二次函数即可求得CF的最大值.详解:(1)①∵AB=AC,∠BAC=90°,∴线段AD绕点A逆时针旋转90°得到AE,∴AD=AE,∠BAD=∠CAE,∴△BAD≌△CAE,∴CE=BD,∠ACE=∠B,∴∠BCE=∠BCA+∠ACE=90°,∴BD⊥CE;故答案为CE=BD,CE⊥BD.(2)(1)中的结论仍然成立.理由如下:如图,∵线段AD绕点A逆时针旋转90°得到AE,∴AE=AD,∠DAE=90°,∵AB=AC,∠BAC=90°∴∠CAE=∠BAD,∴△ACE≌△ABD,∴CE=BD ,∠ACE=∠B ,∴∠BCE=90°,即CE ⊥BD ,∴线段CE ,BD 之间的位置关系和数量关系分别为:CE=BD ,CE ⊥BD .(3)如图3,过A 作AM ⊥BC 于M ,EN ⊥AM 于N ,∵线段AD 绕点A 逆时针旋转90°得到AE∴∠DAE=90°,AD=AE ,∴∠NAE=∠ADM ,易证得Rt △AMD ≌Rt △ENA ,∴NE=AM ,∵∠ACB=45°,∴△AMC 为等腰直角三角形,∴AM=MC ,∴MC=NE ,∵AM ⊥BC ,EN ⊥AM ,∴NE ∥MC ,∴四边形MCEN 为平行四边形,∵∠AMC=90°,∴四边形MCEN 为矩形,∴∠DCF=90°,∴Rt △AMD ∽Rt △DCF , ∴MD AM CF DC=, 设DC=x ,∵∠ACB=45°,2,∴AM=CM=1,MD=1-x , ∴11x CF x-=, ∴CF=-x 2+x=-(x-12)2+14,∴当x=12时有最大值,CF 最大值为14. 点睛:本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了等腰直角三角形的性质和三角形全等及相似的判定与性质. 22.如图,一次函数5y kx =+(k 为常数,且0k ≠)的图像与反比例函数8y x=-的图像交于()2,A b -,B 两点.求一次函数的表达式;若将直线AB 向下平移(0)m m >个单位长度后与反比例函数的图像有且只有一个公共点,求m 的值.【答案】(1)152y x =+;(2)1或9. 【解析】试题分析:(1)把A(-2,b)的坐标分别代入一次函数和反比例函数表达式,求得k 、b 的值,即可得一次函数的解析式;(2)直线AB 向下平移m(m >0)个单位长度后,直线AB 对应的函数表达式为y =12x +5-m ,根据平移后的图象与反比例函数的图象有且只有一个公共点,把两个解析式联立得方程组,解方程组得一个一元二次方程,令△=0,即可求得m 的值.试题解析:(1)根据题意,把A(-2,b)的坐标分别代入一次函数和反比例函数表达式,得2582b k b =-+⎧⎪⎨-=⎪-⎩, 解得412b k =⎧⎪⎨=⎪⎩, 所以一次函数的表达式为y =12x +5. (2)将直线AB 向下平移m(m >0)个单位长度后,直线AB 对应的函数表达式为y =12x +5-m.由8152y x y x m ⎧=-⎪⎪⎨⎪=+-⎪⎩得, 12x 2+(5-m)x +8=0.Δ=(5-m)2-4×12×8=0, 解得m =1或9.点睛:本题考查了反比例函数与一次函数的交点问题,求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解.23.鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千 克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y (千克)是销售单价x (元)的一次函数,且当x=60时 ,y=80;x=50时,y=1.在销售过程中,每天还要支付其他费用450元.求出y 与x 的函数关系式,并写出自变量x 的取值范围.求该公司销售该原料日获利w (元)与销售单价x (元)之间的函数关系式.当销售单价为多少元时,该公司日获利最大?最大获利是多少元?【答案】(1)y=-2x+200(30≤x≤60)(2)w=-2(x -65)2 +2000);(3)当销售单价为60元时,该公司日获利最大,为1950元【解析】(1)设出一次函数解析式,把相应数值代入即可.(2)根据利润计算公式列式即可;(3)进行配方求值即可.【详解】(1)设y=kx+b ,根据题意得806010050k b k b =+⎧⎨=+⎩解得:k 2b 200=-⎧⎨=⎩∴y=-2x+200(30≤x≤60)(2)W=(x -30)(-2x+200)-450=-2x 2+260x -6450=-2(x -65)2 +2000)(3)W =-2(x -65)2 +2000∵30≤x≤60∴x=60时,w 有最大值为1950元∴当销售单价为60元时,该公司日获利最大,为1950元考点:二次函数的应用.24.如图,已知反比例函数1k y x=和一次函数21y ax =+的图象相交于第一象限内的点A ,且点A 的横坐标为1.过点A 作AB ⊥x 轴于点B ,△AOB 的面积为1.求反比例函数和一次函数的解析式.若一次函数21y ax =+的图象与x 轴相交于点C ,求∠ACO 的度数.结合图象直接写出:当1y >2y >0时,x 的取值范围.【答案】(1)y 1=2x;y 2=x+1;(2)∠ACO=45°;(3)0<x<1.【解析】(1)根据△AOB的面积可求AB,得A点坐标.从而易求两个函数的解析式;(2)求出C点坐标,在△ABC中运用三角函数可求∠ACO的度数;(3)观察第一象限内的图形,反比例函数的图象在一次函数的图象的上面部分对应的x的值即为取值范围.【详解】(1)∵△AOB的面积为1,并且点A在第一象限,∴k=2,∴y1=2x;∵点A的横坐标为1,∴A(1,2).把A(1,2)代入y2=ax+1得,a=1.∴y2=x+1.(2)令y2=0,0=x+1,∴x=−1,∴C(−1,0).∴OC=1,BC=OB+OC=2.∴AB=CB,∴∠ACO=45°.(3)由图象可知,在第一象限,当y1>y2>0时,0<x<1.在第三象限,当y1>y2>0时,−1<x<0(舍去).【点睛】此题考查反比例函数与一次函数的交点问题,解题关键在于结合函数图象进行解答.25.如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线.交BC于点E.求证:BE=EC填空:①若∠B=30°,AC=23,则DE=______;②当∠B=______度时,以O,D,E,C为顶点的四边形是正方形.【答案】(1)见解析;(2)①3;②1.【解析】(1)证出EC为⊙O的切线;由切线长定理得出EC=ED,再求得EB=ED,即可得出结论;(2)①由含30°角的直角三角形的性质得出AB,由勾股定理求出BC,再由直角三角形斜边上的中线性质即可得出DE;②由等腰三角形的性质,得到∠ODA=∠A=1°,于是∠DOC=90°然后根据有一组邻边相等的矩形是正方形,即可得到结论.【详解】(1)证明:连接DO.∵∠ACB=90°,AC为直径,∴EC为⊙O的切线;又∵ED也为⊙O的切线,∴EC=ED,又∵∠EDO=90°,∴∠BDE+∠ADO=90°,∴∠BDE+∠A=90°又∵∠B+∠A=90°,∴∠BDE=∠B,∴BE=ED,∴BE=EC;(2)解:①∵∠ACB=90°,∠B=30°,3∴3∴22,AB AC∵AC为直径,∴∠BDC=∠ADC=90°,由(1)得:BE=EC,∴DE=1BC=3,2故答案为3;②当∠B=1°时,四边形ODEC是正方形,理由如下:∵∠ACB=90°,∴∠A=1°,∵OA=OD,∴∠ADO=1°,∴∠AOD=90°,∴∠DOC=90°,∵∠ODE=90°,∴四边形DECO 是矩形,∵OD=OC ,∴矩形DECO 是正方形.故答案为1.【点睛】本题考查了圆的切线性质、解直角三角形的知识、切线长定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.26.先化简:2222421121x x x x x x x ---÷+--+,然后在不等式2x ≤的非负整数解中选择一个适当的数代入求值. 【答案】21x +;2. 【解析】先将后面的两个式子进行因式分解并约分,然后计算减法,根据题意选择x=0代入化简后的式子即可得出答案.【详解】解:原式=()()()()222121112x x x x x x x ---⋅++-- =()21211x x x x --++ =21x + 2x ≤的非负整数解有:2,1,0,其中当x 取2或1时分母等于0,不符合条件,故x 只能取0∴将x=0代入得:原式=2【点睛】本题考查的是分式的化简求值,注意选择数时一定要考虑化简前的式子是否有意义.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知△ABC 中,∠BAC=90°,用尺规过点A 作一条直线,使其将△ABC 分成两个相似的三角形,其作法不正确的是( )A .B .C .D .【答案】D【解析】分析:根据过直线外一点作这条直线的垂线,及线段中垂线的做法,圆周角定理,分别作出直角三角形斜边上的垂线,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;即可作出判断.详解:A 、在角∠BAC 内作作∠CAD=∠B,交BC 于点D,根据余角的定义及等量代换得出∠B +∠BAD=90°,进而得出AD ⊥BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;A 不符合题意;B 、以点A 为圆心,略小于AB 的长为半径,画弧,交线段BC 两点,再分别以这两点为圆心,大于12两交点间的距离为半径画弧,两弧相交于一点,过这一点与A 点作直线,该直线是BC 的垂线;根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形是彼此相似的;B 不符合题意;C 、以AB 为直径作圆,该圆交BC 于点D ,根据圆周角定理,过AD 两点作直线该直线垂直于BC ,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;C 不符合题意;D 、以点B 为圆心BA 的长为半径画弧,交BC 于点E ,再以E 点为圆心,AB 的长为半径画弧,在BC 的另一侧交前弧于一点,过这一点及A 点作直线,该直线不一定是BE 的垂线;从而就不能保证两个小三角形相似;D 符合题意;故选D.点睛:此题主要考查了相似变换以及相似三角形的判定,正确掌握相似三角形的判定方法是解题关键.2.如图,已知抛物线21y x 4x =-+和直线2y 2x =.我们约定:当x 任取一值时,x 对应的函数值分别为y 1、y 2,若y 1≠y 2,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M= y 1=y 2.下列判断: ①当x >2时,M=y 2;②当x <0时,x 值越大,M 值越大;③使得M 大于4的x 值不存在;④若M=2,则x=" 1" .其中正确的有A .1个B .2个C .3个D .4个【答案】B 【解析】试题分析:∵当y 1=y 2时,即2x 4x 2x -+=时,解得:x=0或x=2,∴由函数图象可以得出当x >2时, y 2>y 1;当0<x <2时,y 1>y 2;当x <0时, y 2>y 1.∴①错误.∵当x <0时, -21y x 4x =-+直线2y 2x =的值都随x 的增大而增大,∴当x <0时,x 值越大,M 值越大.∴②正确.∵抛物线()221y x 4x x 24=-+=--+的最大值为4,∴M 大于4的x 值不存在.∴③正确; ∵当0<x <2时,y 1>y 2,∴当M=2时,2x=2,x=1;∵当x >2时,y 2>y 1,∴当M=2时,2x 4x 2-+=,解得12x 22x 22=+=-,(舍去). ∴使得M=2的x 值是1或22+.∴④错误.综上所述,正确的有②③2个.故选B .3.如图所示,数轴上两点A ,B 分别表示实数a ,b ,则下列四个数中最大的一个数是( )A .aB .bC .1aD .1b【答案】D 【解析】∵负数小于正数,在(0,1)上的实数的倒数比实数本身大.∴1a <a <b <1b, 故选D .4.如图,AB 为⊙O 的直径,C ,D 为⊙O 上的两点,若AB =14,BC =1.则∠BDC 的度数是( )A.15°B.30°C.45°D.60°【答案】B【解析】只要证明△OCB是等边三角形,可得∠CDB=12∠COB即可解决问题.【详解】如图,连接OC,∵AB=14,BC=1,∴OB=OC=BC=1,∴△OCB是等边三角形,∴∠COB=60°,∴∠CDB=12∠COB=30°,故选B.【点睛】本题考查圆周角定理,等边三角形的判定等知识,解题的关键是学会利用数形结合的首先解决问题,属于中考常考题型.5.如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为()A.1 B.32C3D.3【答案】C【解析】连接AE,OD,OE.∵AB 是直径, ∴∠AEB=90°.又∵∠BED=120°,∴∠AED=30°.∴∠AOD=2∠AED=60°.∵OA=OD .∴△AOD 是等边三角形.∴∠A=60°.又∵点E 为BC 的中点,∠AED=90°,∴AB=AC .∴△ABC 是等边三角形,∴△EDC 是等边三角形,且边长是△ABC 边长的一半2,高是3. ∴∠BOE=∠EOD=60°,∴BE 和弦BE 围成的部分的面积=DE 和弦DE 围成的部分的面积.∴阴影部分的面积=EDC 1S =23=32∆⋅⋅.故选C . 6.如图,经过测量,C 地在A 地北偏东46°方向上,同时C 地在B 地北偏西63°方向上,则∠C 的度数为( )A .99°B .109°C .119°D .129°【答案】B 【解析】方向角是从正北或正南方向到目标方向所形成的小于90°的角,根据平行线的性质求得∠ACF 与∠BCF 的度数,∠ACF 与∠BCF 的和即为∠C 的度数.【详解】解:由题意作图如下∠DAC=46°,∠CBE=63°,由平行线的性质可得∠ACF=∠DAC=46°,∠BCF=∠CBE=63°,∴∠ACB=∠ACF+∠BCF=46°+63°=109°,故选B.【点睛】本题考查了方位角和平行线的性质,熟练掌握方位角的概念和平行线的性质是解题的关键.7.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得()A.11910813x yy x x y=⎧⎨+-+=⎩()()B.108 91311y x x y x y+=+⎧⎨+=⎩C.91181013x yx y y x ()()=⎧⎨+-+=⎩D.91110813 x yy x x y=⎧⎨+-+=⎩()()【答案】D【解析】根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.【详解】设每枚黄金重x两,每枚白银重y两,由题意得:91110813x yy x x y=⎧⎨+-+=⎩()(),故选:D.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.8.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为A.32B.3 C.1 D.43【答案】A【解析】首先利用勾股定理计算出AC的长,再根据折叠可得△DEC≌△D′EC,设ED=x,则D′E=x,AD′=AC ﹣CD′=2,AE=4﹣x,再根据勾股定理可得方程22+x2=(4﹣x)2,再解方程即可【详解】∵AB=3,AD=4,∴DC=3∴根据勾股定理得AC=5根据折叠可得:△DEC≌△D′EC,∴D′C=DC=3,DE=D′E设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,在Rt△AED′中:(AD′)2+(ED′)2=AE2,即22+x2=(4﹣x)2,解得:x=3 2故选A.9.如图,直线m∥n,直角三角板ABC的顶点A在直线m上,则∠α的余角等于()A.19°B.38°C.42°D.52°【答案】D【解析】试题分析:过C作CD∥直线m,∵m∥n,∴CD∥m∥n,∴∠DCA=∠FAC=52°,∠α=∠DCB,∵∠ACB=90°,∴∠α=90°﹣52°=38°,则∠a的余角是52°.故选D.考点:平行线的性质;余角和补角.10.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则CDM周长的最小值为()A.6 B.8 C.10 D.12【答案】C【解析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论.【详解】连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=12BC•AD=12×4×AD=16,解得AD=8,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+12BC=8+12×4=8+2=1.故选C.【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.二、填空题(本题包括8个小题)11.如图,在平行四边形ABCD中,AB<AD,∠D=30°,CD=4,以AB为直径的⊙O交BC于点E,则阴影。
冀教版2020年中考数学试卷(I)卷
冀教版2020年中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)若|a|=3,|b|=2,且a+b>0,那么a﹣b的值是()A . 5或1B . 1或﹣1C . 5或﹣5D . ﹣5或﹣12. (2分)生物学家发现一种病毒的长度约为0.00000403mm,数0.00000403用科学记数法表示为()A . 4.03×10﹣7B . 4.03×10﹣6C . 40.3×10﹣8D . 430×10﹣93. (2分)如如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上一个动点,若PA=3,则PQ的最小值为()A . 1B . 2C . 3D . 44. (2分)下列说法正确的是()A . 过一点有且只有一条直线与已知直线平行B . 相等的两个角一定是对顶角C . 将一根细木条固定在墙上,只需要一根钉子D . 同角的余角相等5. (2分)下列计算结果为负数的是()A . ﹣1+2B . |﹣1|C .D . ﹣2﹣16. (2分)在平面直角坐标系中,已知线段的两个端点分别是A(-4,-1),B(1,1),将线段平移后得到线段,若点的坐标为,则点的坐标为().A .B .C .D .7. (2分)如图,直线MN和EF相交于点O,∠EON=45°,AO=2,∠AOE=15°,设点A关于EF的对称点是B,点B关于MN的对称点是C,则AC的距离为()A . 2B .C .D .8. (2分)下列说法正确的是().A . 一个游戏的中奖概率是,则做10次这样的游戏一定会中奖B . 为了解全国中学生的心理健康情况,应该采用普查的方式C . 一组数据6,8,7,8,8,9,10的众数和中位数都是8D . 若甲组数据的方差,乙组数据的方差,则乙组数据比甲组数据稳定9. (2分)不透明的口袋中装有除颜色外其余均相同的2个白球、2个黄球、4个绿球,从中任取一球出来,它不是黄球的概率是()A .B .C .D .10. (2分)如图是某足球队全年比赛情况统计图,根据图中信息,该队全年共胜了()A . 20场B . 21场C . 22场D . 23场11. (2分)如图,AD∥BC,AD⊥AB,点A,B在y轴上,CD与x轴交于点E(2,0),且AD=DE,BC=2CE,则BD与x轴交点F的横坐标为()A .B .C .D .12. (2分)若正整数按如图所示的规律排列,则第8行第5列的数是()A . 64B . 56C . 58D . 60二、填空题 (共6题;共6分)13. (1分)(2017·衢州)二次根式中字母的取值范围是________14. (1分)如图,在△ABC中,AB=6,BC=8,AC=4,D、E、F分别为BC、AC、AB 中点,连接DE、FE,则四边形BDEF的周长是________.15. (1分)已知点A(9,a)和点B(b,﹣2)关于原点对称,则ba=________.16. (1分)如图,⊙O是△ABC的外接圆,∠AOB=70°,AB=AC,则∠ABC=________.17. (1分)用一块半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则此圆锥的高为________.18. (1分)如图,在△ABC中,4AB=5AC,AD为△ABC的角平分线,点E在BC的延长线上,EF⊥AD于点F,点G在AF上,FG=FD,连接EG交AC于点H.若点H是AC的中点,则的值为________.三、解答题 (共8题;共80分)19. (5分)计算:(tan60°)﹣1× ﹣|﹣|+23×0.125.20. (20分)用适当的方法解下列一元二次方程(1)(2x-1)2=25(2)3x2-6x-1=0(3)x2-4x-396=0(4)(2-3x)+(3x-2)2=021. (5分)(2017•淄博)已知:如图,E,F为▱ABCD对角线AC上的两点,且AE=CF,连接BE,DF,求证:BE=DF.22. (5分)化简:﹣÷ ,然后在不等式组的非负整数解中选择一个适当的数代入求值.23. (5分)如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:, AB=10米,AE=15米.(i=1:是指坡面的铅直高度BH与水平宽度AH的比)(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据: 1.414, 1.732)24. (15分)(2013•南宁)在一条笔直的公路上有A、B两地,甲骑自行车从A地到B 地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人离B地的距离y(km)与行驶时x(h)之间的函数图象,根据图象解答以下问题:(1)写出A、B两地之间的距离;(2)求出点M的坐标,并解释该点坐标所表示的实际意义;(3)若两人之间保持的距离不超过3km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x的取值范围.25. (10分)如图,△ABC内接于⊙O,直径BD交AC于E,过O作FG⊥AB,交AC于F,交AB于H,交⊙O于G.(1)求证:OF•DE=2OE•OH;(2)若⊙O的半径为12,且OE:OF:OD=2:3:6,求阴影部分的面积.(结果保留根号)26. (15分)如图,在平面直角坐标系中,抛物线与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(1,0),点B的坐标为(0,4),已知点E (m,0)是线段DO上的动点,过点E作PE⊥x轴交抛物线于点P,交BC于点G,交BD于点H.(1)求该抛物线的解析式;(2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;(3)在(2)的条件下,是否存在这样的点P,使得以P、B、G为顶点的三角形与△DEH 相似?若存在,求出此时m的值;若不存在,请说明理由.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共80分) 19-1、20-1、20-2、20-3、20-4、21-1、22-1、23-1、24-1、24-2、24-3、25-1、25-2、26-1、26-2、26-3、。
2020年河北省中考数学试题(含答案)
2020年河北省初中毕业生升学文化课考试数 学 试 卷说明:1本卷共四大题,27小题,全卷满分120分,考试时间为150分钟。
2,本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分。
本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共30分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上.考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题(本大题共12个小题,1~6小题,每小题2分;7~12小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各数中,为负数的是( )A .0 B.2- C.1 D.122.计算3()ab 的结果是( )A .3ab B.3a b C.33a b D.3ab 3.图1中几何体的主视图是( )4.下列各数中,为不等式组23040x x ->⎧⎨-<⎩解的是( )A .1- B.0 C.2 D.45.如图2,CD 是O ⊙的直径,AB 是弦(不是直径),AB CD ⊥于点E ,则下列结论正确的是( )A .AE BE > B.AD BC = C.12D AEC =∠∠ D.ADE CBE △∽△ 6.掷一枚质地均匀的硬币10次,下列说法正确的是( ) A.每2次必有1次正面向上 B .可能有5次正面向上 C .必有5次正面向上 D .不可能有10次正面向上7.如图3,点C 在AOB ∠的OB 边上,用尺规作出了CN OA ∥,作图痕迹中,FG 是( )A .以点C 为圆心,OD 为半径的弧 B.以点C 为圆心,DM 为半径弧C.以点E 为圆心,OD 为半径的弧 D.以点E 为圆心,DM 为半径的 8.用配方法解方程2410x x ++=,配方后的方程是( )A .2(2)3x += B.2(2)3x -= C.2(2)5x -= D.2(2)5x += 9.如图4,在ABCD 中,70A ∠=︒,将ABCD 折叠,使点D C 、分别落在点F 、E处(点,F E 都在AB 所在的直线上),折痕为MN ,则AMF ∠等于( )A .70 B.40 C.30 D.20 10.化简22111x x ÷--的结果是( ) A .21x - B.321x - C.21x + D.2(1)x +11.如图5,两个正方形的面积分别为16,9,两阴影部分的面积分别为a ,b ()a b >,则()a b -等于( )A .7 B.6 C.5 D.412.如图6,抛物线21(2)3y a x =+-与221(3)12y x =-+交于点(13)A ,,过点A 作x 轴的平行线,分别交两条抛物线于点B C ,.则以下结论: ①无论x 取何值,2y 的值总是正数. ②1a =.③当0x =时,214y y -=.④23AB AC =.其中正确结论是( )A .①② B.②③ C.③④ D.①④2020年河北省初中毕业生升学文化课考试数 学 试 卷 卷Ⅱ(非选择题,共9 0分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.二、填空题(本大题共6个小题,每小题3分,共18分.把答案写在题中横线上) 13.5-的相反数是 .14.如图7,AB CD ,相交于点O ,AC CD ⊥于点C ,若BOD ∠=38,则A ∠等于 . 15.已知1y x =-,则2()()1x y y x -+-+的值为 .16.在12⨯的正方形网格格点上放三枚棋子,按图8所示的位置已放置了两枚棋子,若第三枚棋子随机放在其他格点上,则以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为 .17.某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次报自己顺序数的倒数加1,第1位同学报111⎛⎫+ ⎪⎝⎭,第2位同学报112⎛⎫+⎪⎝⎭,第3位同学报113⎛⎫+⎪⎝⎭……这样得到的20个数的积为 .18.用4个全等的正八边形进行拼接,使相邻的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图91-,用n 个全等的正六边形按这种方式拼接,如图92-,若围成一圈后中间也形成一个正多边形,则n 的值为 .三、解答题(本大题共8个小题,共72分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分8分)计算:021153)6(1)32⎛⎫--+⨯-+-⎪⎝⎭. 20.(本小题满分8分)如图10,某市A B ,两地之间有两条公路,一条是市区公路AB ,另一条是外环公路AD DC CB --.这两条公路转成等腰梯形ABCD ,其中DC AB AB AD DC ∥,::=10:5:2.(1) 求外环公路总长和市区公路长的比;(2) 某人驾车从A 地出发,沿市区公路去B 地,平均速度是40km/h ,返回时沿外环公路行驶,平均速度是80km/h ,结果比去时少用了110h ,求市区公路的长.21.(本小题满分8分)某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小宇根据他们的成绩绘制了如下尚不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).=__________;(1)a ___________,x乙(2)请完成图11中表示乙成绩变化情况的折线;(3)①观察图11,可看出______的成绩比较稳定(填“甲”或“乙”).参照小宇的计算方法,计算乙成绩的方差,并验证你的判断.②请你从平均数和方差的角度分析,谁将被选中.22.(本小题满分8分)如图12,四边形ABCD 是平行四边形,点(10)(31)(33)A B C ,,,,,.反比例函数(0)my x x=>的图象经过点D ,点P 是一次函数33(0)y kx k k =+-≠的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算,说明一次函数33(0)y kx k k =+-≠的图象一定过点C ;(3)对于一次函数33(0)y kx k k =+-≠,当y x 随的增大而增大时,确定点P 横坐标的取值范围(不必写出过程). 23.(本小题满分9分)如图131-,点E 是线段BC 的中点,分别以B C ,为直角顶点的EAB EDC △和△均是等腰直角三角形,且在BC 的同侧.(1)AE ED 和的数量关系为___________,AE ED 和的位置关系为___________;(2)在图131-中,以点E 为位似中心,作EGF △与EAB △位似,点H 是BC 所在直线上的一点,连接GH HD ,,分别得到了图132-和图133-;①在图132-中,点F 在BE 上,EGF EAB △与△的相似比是1:2,H 是EC 的中点.求证:.GH HD GH HD =⊥,②在图133-中,点F 在BE 的延长线上,EGF EAB △与△的相似比是k :1,若2BC =,请直接写出CH 的长为多少时,恰好使得GH HD GH HD =⊥且(用含k 的代数式表示). 24.(本小题满分9分)某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,边长(单位:cm )在5~50之间,每张薄板的成本价(单位:元)与它的面积(单位:2cm )成正比例,每张薄板的出厂价(单位:元)由基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的,浮动价与薄板的边长成正比例,在营销过程中得到了表格中的数据.(1) 求一张薄板的出厂价与边长之间满足的函数关系式; (2) 已知出厂一张边长为40cm 的薄板,获得的利润是26元(利润=出厂价-成本价).① 求一张薄板的利润与边长之间满足的函数关系式;② 当边长为多少时,出厂一张薄板获得的利润最大?最大利润是多少?参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标是2424b ac b a a ⎛⎫-- ⎪⎝⎭,.25.(本小题满分10分)如图14,(50)(30).A B --,,,点C 在y 轴的正半轴上,CBO ∠=45,CD AB ∥,90CDA =∠.点P 从点(40)Q ,出发,沿x 轴向左以每秒1个单位长的速度运动,运动时间为t 秒.(1) 求点C 的坐标;(2) 当15BCP =∠时,求t 的值;(3) 以点P 为圆心,PC 为半径的P ⊙随点P 的运动而变化,当P ⊙与四边形ABCD 的边(或边所在的直线)相切时,求t 的值.26.(本小题满分12分)如图151-和图152-,在ABC △中,51314cos .13AB BC ABC ===,,∠ 探究在如图151-,AH BC ⊥于点H ,则AH =_______,AC =_______, ABC △的面积ABC S △=___________.拓展如图152-,点D 在AC 上(可与点A C ,重合),分别过点A C ,作直线BD 的垂线,垂足为E F ,.设.BD x AE m CF n ===,,(当点D 与点A 重合时,我们认为ABC S △=0. (1)用含x m ,或n 的代数式表示ABD S △及CBD S △;(2)求()m n +与x 的函数关系式,并求()m n +的最大值和最小值.(3)对给定的一个x 值,有时只能确定唯一的点D ,指出这样的x 的取值范围. 发现请你确定一条直线,使得A B C ,,三点到这条直线的距离之和最小(不必写出过程),并写出这个最小值.2020年河北省初中毕业生升学文化课考试数学试题参考答案二、填空题(每小题3分,满分18分) 13.5 14.52 15.1 16.3417.21 18.6 三、解答题(本大题共8小题,共72分)19.解:021153)6(1)32⎛⎫--+⨯-+-⎪⎝⎭=51(23)1-+-+ ··········································································· 5分 =4. ····························································································· 8分 20.解:(1)设10AB x =km ,则5AD x =km ,2CD x =km . 四边形ABCD 是等腰梯形,DC AB ∥,5.BC AD x ∴==12.AD DC CB x ∴++=∴外环公路总长和市区公路长的比为12x x :10=6:5. ··········································· 3分(2)由(1)可知,市区公路物长为10x km ,外环公路的总长为12x km .由题意,得10121408010x x =+. ············································································· 6分 解这个方程,得1x =.1010x ∴=.答:市区公路的长为10km. ··············································································· 8分 21.解:(1)4,6 ··························································································· 2分 (2)如图1 ··································································································· 3分(3)①乙 ····································································································· 4分2222221[(76)(56)(76)(46)(76)]5S =-+-+-+-+-乙=1.6. ································ 5分 由于22S S <乙甲,所以上述判断正确. ····································································· 6分②因为两人成绩的平均水平(平均数)相同,乙的成绩比甲稳定,所以乙将被选中. ···· 8分 22.解:(1)由题意,2AD BC ==,故点D 的坐标为(1,2). ··························· 2分 反比例函数mx的图象经过点(12)D ,, 2. 2.1mm ∴=∴= ∴反比例函数的解析式为2.y x= ······································································· 4分(2)当3x =时,333 3.y k k =+-=∴一次函数33(0)y kx k k =+-≠的图象一定过点C . ········································· 6分(3)设点P 的横坐标为23.3a a <<, ································································ 8分 (注:对(3)中的取值范围,其他正确写法,均相应给分)23.解:(1)AE ED AE ED =⊥,. ······························································ 2分 (2)①证明:由题意,90.B C AB BE EC DC =====∠∠,EGF EAB △与△位似且相似比是1:2,1190.22GFE B GF AB EF EB ∴====∠∠,, GFE C ∴=∠∠.12EH HC EC ==,111.222GF HC FH FE EH EB EC BC EC CD ∴==+=+===, HGF DHC ∴△≌△. ···················································································· 5分 .GH HD GHF HDC ∴==,∠∠又9090HDC DHC GHF DHC +=∴+=∠∠,∠∠..GHD ∴∠=90GH HD ∴⊥. ······························································································· 7分 ②CH 的长为k . ···························································································· 9分24.解:(1)设一张薄板的边长为x cm ,它的出厂价为y 元,基础价为n 元,浮动价为kx 元,则y kx n =+. ·························································································· 2分由表格中的数据,得50207030.k n k n =+⎧⎨=+⎩, 解得210.k n =⎧⎨=⎩,所以210.y x =+ ··························································································· 4分 (2)①设一张薄板的利润为P 元,它的成本价为2mx 元,由题意,得22210.P y mx x mx =-=+- ·········································································· 5分将4026x P ==,代入2210P x mx =+-中,得2262401040m =⨯+-⨯.解得1.25m = 所以21210.25P x x =-++ ············································································· 7分 ②因为1025a =-<,所以,当22512225b x a =-=-=⎛⎫⨯- ⎪⎝⎭(在5~50之间)时,221410242535.14425ac b P a ⎛⎫⨯-⨯- ⎪-⎝⎭===⎛⎫⨯- ⎪⎝⎭最大值即出厂一张边长为25cm 的薄板,获得的利润最大,最大利润是35元. ······················ 9分 (注:边长的取值范围不作为扣分点) 25.解:(1)45BCO CBO ==∠∠,3.OC OB ∴==又点C 在y 轴的正半轴上,∴点C 的坐标为(0,3) ················································································ 2分(2)当点P 在点B 右侧时,如图2. 若15BCP =∠,得30PCO =∠.故tan 303OP OC ==4t =······················································ 4分 当点P 在点B 左侧时,如图3,由15BCP =∠, 得60PCO =∠,故tan 6033PO OC ==此时4t =+t ∴的值为4+4+·········································································· 6分(3)由题意知,若P ⊙与四边形ABCD 的边相切,有以下三种情况:①当P ⊙与BC 相切于点C 时,有90BCP =∠,从而45OCP =∠得到3OP =. 此时1t =. ···································································································· 7分 ②当P ⊙与CD 相切于点C 时,有PC CD ⊥,即点P 与点O 重合,此时4t =. ···································································································· 8分 ③当P ⊙与AD 相切时,由题意,90DAO =∠,∴点A 为切点,如图4.22222(9)(4)PC PA t PO t ==-=-,.于是222(9)(4)3t t -=-+.解处 5.6t =.t ∴的值为1或4或5.6. ················································································ 10分26.解:探究:12,15,84 ············································································· 3分 拓展:(1)由三角形面积公式,得ABD CBD S mx S nx △△11=,=22. ···························· 4分 (2)由(1)得22ABD CBD S Sm n x x==△△,, 22168ABD CBD S S m n x x x∴+=+=△△. ································································· 5分 由于AC 边上的高为22845615155ABC S ⨯==△, x ∴的取值范围是56145x ≤≤.()m n +随x 的增大而减小, ∴当565x =时,()m n +的最大值为15. ····························································· 7分 当14x =时,()m n +的最小值为12. ································································· 8分 (3)x 的取值范围是565x =或13x <≤14. ····················································· 10分 发现:AC 所在的直线, ·············································································· 11分 最小值为565. ······························································································ 12分 友情提示:一、认真对待每一次考试。
河北省廊坊市2020年(春秋版)中考数学模拟试卷(I)卷
河北省廊坊市2020年(春秋版)中考数学模拟试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2017·平房模拟) ﹣4的倒数是()A .B . ﹣4C . 4D . ﹣2. (2分)不论x,y为何有理数,x2+y2-10x+8y+45的值均为()A . 正数B . 零C . 负数D . 非负数3. (2分)(2016·黄石) 地球的平均半径约为6 371 000米,该数字用科学记数法可表示为()A . 0.6371×107B . 6.371×106C . 6.371×107D . 6.371×1034. (2分)如图,在平面直角坐标系中,OABC是正方形,点A的坐标是(4,0),点P为边AB上一点,∠CPB=60°,沿CP折叠正方形,折叠后,点B落在平面内点B′处,则B′点的坐标为()A . (2,2B . (,2-)C . (2,4-2)D . (,4-2)5. (2分)如果一个多边形的每个外角都相等,且小于45°,那么这个多边形的边数最少是()A . 8B . 9C . 10D . 116. (2分) (2018九下·鄞州月考) 某区10名学生参加市级汉字听写大赛,他们得分情况如下表:人数3421分数80859095那么这10名学生所得分数的平均数和众数分别是()A . 85和82.5B . 85.5和85C . 85和85D . 85.5和807. (2分)若x=4是关于x的方程的解,则a的值为()A . -6B . 2C . 16D . -28. (2分) (2019八下·孝南月考) 图中字母所代表的正方形的面积为144的选项为()A .B .C .D .9. (2分) (2016·达州) 如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长交AC于点E.若AB=10,BC=16,则线段EF的长为()A . 2B . 3C . 4D . 510. (2分)(2016·呼和浩特) 已知a≥2,m2﹣2am+2=0,n2﹣2an+2=0,则(m﹣1)2+(n﹣1)2的最小值是()A . 6B . 3C . ﹣3D . 0二、填空题 (共6题;共6分)11. (1分) (2017八下·临泽期末) 分解因式: ________。
2020年河北省中考数学试题(word版,含答案)
考生须知1.考生应按规定的时间入场,开始考试后15分钟禁止迟到考生进入考场。
2.考生入场时须主动出示《准考证》以及有效身份证件(身份证、军人、武警人员证件、未成年人的户口本、公安户籍部门开具的《身份证》号码证明、护照或者港、澳、台同胞证件),接受考试工作人员的核验,并按要求在“考生花名册”上签自己的姓名。
3.考生只准携带必要的文具入场,如铅笔、签字笔、毛笔、水粉水彩颜料等,具体要求见招考简章。
禁止携带任何已完成作品以及各种无线通信工具(如寻呼机、移动电话)等物品。
如发现考生携带以上禁带物品,考生将作为违纪处理,取消该次考试成绩。
考场内不得擅自相互借用文具。
4.考生入场后按号入座,将本人《准考证》以及有效身份证件放在课桌上,以便核验。
5.考生答题前应认真填写试卷及答题纸上的姓名、准考证号等栏目并粘贴带有考生个人信息的条形码。
凡不按要求填写或字迹不清、无法辨认的,试卷及答题纸一律无效。
责任由考生自付。
6.开考后,考生不得中途退场。
如因身体不适要求中途退场,须征得监考人员及考点主考批准,并在退场前将试卷、答题纸如数上交。
7.考生遇试卷分发错误或试题字迹不清等情况应及时要求更换;涉及试题内容的疑问,不得向监考人员询问。
8.考生在考场内必须严格遵守考场纪律,对于违反考场规定、不服从监考人员管理和舞弊者,取消当次考试成绩。
9.考试结束铃声响时,考生要立即停止答题,并将试卷、答题纸按要求整理好,翻放在桌上,待监考人员收齐后方可离开考场。
任何考生不准携带试卷、答题纸离开考场。
离开考场后不准在考场附近逗留和交谈。
试卷第1页,总8页2020年河北省初中毕业生升学文化课考试数学试卷一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,在平面内作已知直线的垂线,可作垂线的条数有()A.0条B.1条C.2条D.无数条2.墨迹覆盖了等式“()”中的运算符号,则覆盖的是( )A.+B.-C.×D.÷3.对于①,②,从左到右的变形,表述正确的是( )A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解4.如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是( )A.仅主视图不同B.仅俯视图不同C.仅左视图不同D.主视图、左视图和俯视图都相同5.如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是元/千克,发现这四个单价的中位数恰好也是众数,则()A.9B.8C.7D.66.如图1,已知,用尺规作它的角平分线.m 0x ≠3(13)x xy x y -=-2(3)(1)23x x x x +-=+-a a =ABC ∠第一步:以为圆心,以为半径画弧,分别交射线,于点,; 第二步:分别以,为圆心,以为半径画弧,两弧在内部交于点; 第三步:画射线.射线即为所求. 下列正确的是()A.,均无限制B.,的长C.有最小限制,无限制D.,的长7.若,则下列分式化简正确的是()A.B.C. D. 8.在如图所示的网格中,以点为位似中心,四边形的位似图形是()A.四边形B.四边形C.四边形D.四边形9.若,则( )A.12B.10C.8D.610.如图,将绕边的中点顺时针旋转180°.嘉淇发现,旋转后的与构成平行四B a BA BCDE D E b ABC ∠P BP BP a b 0a >12b DE >a b 0a ≥12b DE <a b ≠22a ab b +=+22a ab b -=-22a a b b=1212aab b =O ABCD NPMQ NPMR NHMQ NHMR ()()229111181012k--=⨯⨯k =ABC ∆AC O CDA ∆ABC ∆点,分别转到了点,处, 而点转到了点处. ∵,∴四边形是平行四边形.小明为保证嘉淇的推理更严谨,想在方框中“∵,”和“∴四边形……”之间作补充.下列正确的是()A.嘉淇推理严谨,不必补充B.应补充:且,C.应补充:且D.应补充:且, 11.若为正整数,则( ) A.B. C.D.12.如图,从笔直的公路旁一点出发,向西走到达;从出发向北走也到达.下列说法错误的是()A.从点向北偏西45°走到达B.公路的走向是南偏西45°C.公路的走向是北偏东45°D.从点向北走后,再向西走到达13.已知光速为300 000千米秒,光经过秒()传播的距离用科学记数法表示为千米,则可能为()A C C AB D CB AD =ABCD CB AD =AB CD =//AB CD OA OC =k ()kk kk k k ++⋅⋅⋅+=个2kk21k k+2kk 2kk+l P 6km l P 6km l P 3km l l l P 3km 3km l t 110t ≤≤10na ⨯nA.5B.6C.5或6D.5或6或714.有一题目:“已知;点为的外心,,求.”嘉嘉的解答为:画以及它的外接圆,连接,,如图.由,得.而淇淇说:“嘉嘉考虑的不周全,还应有另一个不同的值.” 下列判断正确的是()A.淇淇说的对,且的另一个值是115°B.淇淇说的不对,就得65°C.嘉嘉求的结果不对,应得50°D.两人都不对,应有3个不同值15.如图,现要在抛物线上找点,针对的不同取值,所找点的个数,三人的说法如下,甲:若,则点的个数为0; 乙:若,则点的个数为1; 丙:若,则点的个数为1. 下列判断正确的是()A.乙错,丙对B.甲和乙都错C.乙对,丙错D.甲错,丙对16.如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()O ABC ∆130BOC ∠=︒A ∠ABC ∆O OB OC 2130BOC A ∠=∠=︒65A ∠=︒A ∠A ∠A ∠A ∠A ∠(4)y x x =-(,)P a b b P 5b =P 4b =P 3b =PA.1,4,5B.2,3,5C.3,4,5D.2,2,4二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有3个空,每空2分)17.,则_________. 18.正六边形的一个内角是正边形一个外角的4倍,则_________.19.如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作(为1~8的整数).函数()的图象为曲线.(1)若过点,则_________;(2)若过点,则它必定还过另一点,则_________;(3)若曲线使得这些点分布在它的两侧,每侧各4个点,则的整数值有_________个.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.已知两个有理数:-9和5. (1)计算:; (2)若再添一个负整数,且-9,5与这三个数的平均数仍小于,求的值.21.有一电脑程序:每按一次按键,屏幕的区就会自动加上,同时区就会自动减去,且均显示化简后的结果.已知,两区初始显示的分别是25和-16,如图.==ab =n n =m T m ky x=0x <L L 1T k =L 4T m T m =L 18~T T k (9)52-+m m m m A 2a B 3a A B如,第一次按键后,,两区分别显示:(1)从初始状态按2次后,分别求,两区显示的结果;(2)从初始状态按4次后,计算,两区代数式的和,请判断这个和能为负数吗?说明理由.22.如图,点为中点,分别延长到点,到点,使.以点为圆心,分别以,为半径在上方作两个半圆.点为小半圆上任一点(不与点,重合),连接并延长交大半圆于点,连接,.(1)①求证:;②写出∠1,∠2和三者间的数量关系,并说明理由.(2)若,当最大时,直接指出与小半圆的位置关系,并求此时(答案保留).23.用承重指数衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数与木板厚度(厘米)的平方成正比,当时,. (1)求与的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为(厘米),.①求与的函数关系式; ②为何值时,是的3倍?【注:(1)及(2)中的①不必写的取值范围】24.表格中的两组对应值满足一次函数,现画出了它的图象为直线,如图.而某同学为观察,A B A B A B O AB OA C OB D OC OD =O OA OC CD P A B OP E AE CP AOE POC ∆∆≌C ∠22OC OA ==C ∠CP EOD S 扇形πW W x 3x =3W =W x x Q W W =-厚薄Q x x Q W 薄x y kx b =+l k b对图象的影响,将上面函数中的与交换位置后得另一个一次函数,设其图象为直线.-1 0-21(1)求直线的解析式;(2)请在图上画出直线(不要求列表计算),并求直线被直线和轴所截线段的长;(3)设直线与直线,及轴有三个不同的交点,且其中两点关于第三点对称,直接写出的值. 25.如图,甲、乙两人(看成点)分别在数轴-3和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动. ①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位; ②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位; ③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率;(2)从图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对次,且他最终停留的位置对应的数为,试用含的代数式表示,并求该位置距离原点最近时的值; (3)从图的位置开始,若进行了次移动游戏后,甲与乙的位置相距2个单位,直接写出的值. 26.如图1和图2,在中,,,.点在边上,点,分别在,上,且.点从点出发沿折线匀速移动,到达点时停止;而点在边上随移动,且始终保持.k b l 'x y l l 'l 'l y y a =l l 'y a P n m n m O n k k ABC ∆AB AC =8BC =3tan 4C =K AC M N AB BC 2AM CN ==P M MB BN -N Q ACP APQ B ∠=∠(1)当点在上时,求点与点的最短距离;(2)若点在上,且将的面积分成上下4:5两部分时,求的长;(3)设点移动的路程为,当及时,分别求点到直线的距离(用含的式子表示);(4)在点处设计并安装一扫描器,按定角扫描区域(含边界),扫描器随点从到再到共用时36秒.若,请直接写出点被扫描到的总时长. 2020年河北省初中毕业生升学文化课考试数学答案卷Ⅰ(选择题,共42分)一、选择题(本大题有16个小题,共42分.1-10小题各3分,11~16小题各2分,每小题给出的四个选项中只有一个是符合题目要求的)题号 1 2 3 4 5 6 7 8 选项 D D C D B B D A 题号 9 10 11 12 13 14 15 16 选项 BBAACACB卷Ⅱ(非选择题,共78分)二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题各有3个空,每空2分)17.6 18.12 19.-16;5;7三、解答題(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.(1)-2 (2)21.(1);P BC P A P MB PQ ABC ∆MP P x 03x ≤≤39x ≤≤P AC x P APQ ∠APQ ∆P M B N 94AK =K 1m =-2252a +166a --(2),和不能为负数 22.(1)①证明略; ② (2)23.(1) (2)①②由题可知: 解得:;(舍) ∴当时,是的3倍. 24.(1):(2):(3)的值为或或7 25.(1) (2) 当时,解得 ∵为整数∴当时,距离原点最近 (3)或5 26.(1) (2)∴即 ∴, (3)当时, 22254(1612)(23)0a a a ++--=-≥21C ∠=∠+∠43π213W x =2211(6)33Q x x =--124x =-2112433x x -=⨯12x =26x =-2cm x =Q W 薄l 31y x =+l '3y x =+a 5217514P =256m n =-0m =256n =n 4n =3k =min 1tan 32d BC C =⋅=APQ ABC ∆∆∽2APQ ABC S AP AB S ∆∆⎛⎫= ⎪⎝⎭23AP AB =103AP =43MP =03x ≤≤24482525d x =+当时, (4)39x ≤≤33355d x =-+23t s =。
2020年河北省中考数学试卷及答案
2020 年河北省中考数学试卷一、选择题(本大题共16 小题,共42 分。
1 ~10 小题各 3 分,11 ~16 小题各 2 分,小题给出的四个选项中,只有一项是符合题目要求的)1 .( 3 分)下列运算结果为正数的是()A .(﹣ 3 ) 2B .﹣ 3 ÷ 2C .0 × (﹣2020 )D . 2 ﹣ 32 .(3 分)把0.0813 写成 a × 10 n ( 1 ≤ a <10 ,n 为整数)的形式,则 a 为()A . 1B .﹣ 2C .0.813D .8.133 .( 3 分)用量角器测得∠ MON 的度数,下列操作正确的是()A .B .C .D .4 .( 3 分)= ()A .B .C .D .5 .( 3 分)图 1 和图 2 中所有的小正方形都全等,将图 1 的正方形放在图 2 中①②③④ 的某一位置,使它与原来7 个小正方形组成的图形是中心对称图形,这个位置是()A .①B .②C .③D .④6 .( 3 分)如图为张小亮的答卷,他的得分应是()A .100 分B .80 分C .60 分D .40 分7 .( 3 分)若△ ABC 的每条边长增加各自的10% 得△ A′B′C′ ,则∠ B′ 的度数与其对应角∠ B 的度数相比()A .增加了10%B .减少了10%C .增加了( 1 + 10% )D .没有改变8 .( 3 分)如图是由相同的小正方体木块粘在一起的几何体,它的主视图是()A .B .C .D .9 .( 3 分)求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD 是菱形,对角线AC ,BD 交于点O .求证:AC ⊥ BD .以下是排乱的证明过程:① 又BO=DO ;②∴ AO ⊥ BD ,即AC ⊥ BD ;③∵四边形ABCD 是菱形;④∴ AB=AD .证明步骤正确的顺序是()A .③ → ② → ① → ④B .③ → ④ → ① → ②C .① → ② → ④ →③ D .① → ④ → ③ → ②10 .( 3 分)如图,码头 A 在码头 B 的正西方向,甲、乙两船分别从A ,B 同时出发,并以等速驶向某海域,甲的航向是北偏东35°,为避免行进中甲、乙相撞,则乙的航向不能是()A .北偏东55°B .北偏西55°C .北偏东35°D .北偏西35°11 .( 2 分)如图是边长为10cm 的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm )不正确的是()A .B .C .D .12 .( 2 分)如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是()A . 4 + 4 ﹣=6B . 4 + 4 0 + 4 0 =6C . 4 + =6D . 4 ﹣ 1 ÷ + 4=613 .( 2 分)若= + ,则中的数是()A .﹣ 1B .﹣ 2C .﹣ 3D .任意实数14 .( 2 分)甲、乙两组各有12 名学生,组长绘制了本组 5 月份家庭用水量的统计图表,如图,甲组12 户家庭用水量统计表4 5 6 9用水量(吨)户数 4 5 2 1比较 5 月份两组家庭用水量的中位数,下列说法正确的是()A .甲组比乙组大B .甲、乙两组相同C .乙组比甲组大D .无法判断15 .( 2 分)如图,若抛物线y= ﹣x 2 + 3 与x 轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k ,则反比例函数y= (x >0 )的图象是()A .B .C .D .16 .( 2 分)已知正方形MNOK 和正六边形ABCDEF 边长均为 1 ,把正方形放在正六边形中,使OK 边与AB 边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点 B 顺时针旋转,使KM 边与BC 边重合,完成第一次旋转;再绕点 C 顺时针旋转,使MN 边与CD 边重合,完成第二次旋转;… 在这样连续 6 次旋转的过程中,点 B ,M 间的距离可能是()A . 1.4B . 1.1C .0.8D .0.5二、填空题(本大题共 3 小题,共10 分。
2020年河北省中考数学试题(含答案)
2020年河北省中考数学试卷一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2020•河北)如图,在平面内作已知直线m的垂线,可作垂线的条数有()A.0条B.1条C.2条D.无数条2.(3分)(2020•河北)墨迹覆盖了等式“x3x=x2(x≠0)”中的运算符号,则覆盖的是()A.+B.﹣C.×D.÷3.(3分)(2020•河北)对于①x﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解4.(3分)(2020•河北)如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是()A.仅主视图不同B.仅俯视图不同C.仅左视图不同D.主视图、左视图和俯视图都相同5.(3分)(2020•河北)如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是a元/千克,发现这四个单价的中位数恰好也是众数,则a=()A .9B .8C .7D .66.(3分)(2020•河北)如图1,已知∠ABC ,用尺规作它的角平分线. 如图2,步骤如下,第一步:以B 为圆心,以a 为半径画弧,分别交射线BA ,BC 于点D ,E ; 第二步:分别以D ,E 为圆心,以b 为半径画弧,两弧在∠ABC 内部交于点P ; 第三步:画射线BP .射线BP 即为所求. 下列正确的是( )A .a ,b 均无限制B .a >0,b >12DE 的长 C .a 有最小限制,b 无限制D .a ≥0,b <12DE 的长7.(3分)(2020•河北)若a ≠b ,则下列分式化简正确的是( ) A .a+2b+2=abB .a−2b−2=abC .a 2b =abD .12a 12b =ab8.(3分)(2020•河北)在如图所示的网格中,以点O 为位似中心,四边形ABCD 的位似图形是( )A .四边形NPMQB .四边形NPMRC .四边形NHMQD .四边形NHMR9.(3分)(2020•河北)若(92−1)(112−1)k=8×10×12,则k =( )A .12B .10C .8D .610.(3分)(2020•河北)如图,将△ABC 绕边AC 的中点O 顺时针旋转180°.嘉淇发现,旋转后的△CDA 与△ABC 构成平行四边形,并推理如下:小明为保证嘉淇的推理更严谨,想在方框中“∵CB =AD ,”和“∴四边形…”之间作补充,下列正确的是 ( )A .嘉淇推理严谨,不必补充B .应补充:且AB =CDC .应补充:且AB ∥CD D .应补充:且OA =OC11.(2分)(2020•河北)若k 为正整数,则(k +k +⋯+k)k ︸k 个k=( )A .k 2kB .k 2k +1C .2k kD .k 2+k12.(2分)(2020•河北)如图,从笔直的公路l 旁一点P 出发,向西走6km 到达l ;从P 出发向北走6km 也到达l .下列说法错误的是( )A .从点P 向北偏西45°走3km 到达lB .公路l 的走向是南偏西45°C.公路l的走向是北偏东45°D.从点P向北走3km后,再向西走3km到达l13.(2分)(2020•河北)已知光速为300000千米/秒,光经过t秒(1≤t≤10)传播的距离用科学记数法表示为a×10n千米,则n可能为()A.5B.6C.5或6D.5或6或7 14.(2分)(2020•河北)有一题目:“已知:点O为△ABC的外心,∠BOC=130°,求∠A.”嘉嘉的解答为:画△ABC以及它的外接圆O,连接OB,OC.如图,由∠BOC=2∠A=130°,得∠A=65°.而淇淇说:“嘉嘉考虑的不周全,∠A还应有另一个不同的值.”下列判断正确的是()A.淇淇说的对,且∠A的另一个值是115°B.淇淇说的不对,∠A就得65°C.嘉嘉求的结果不对,∠A应得50°D.两人都不对,∠A应有3个不同值15.(2分)(2020•河北)如图,现要在抛物线y=x(4﹣x)上找点P(a,b),针对b的不同取值,所找点P的个数,三人的说法如下,甲:若b=5,则点P的个数为0;乙:若b=4,则点P的个数为1;丙:若b=3,则点P的个数为1.下列判断正确的是()A.乙错,丙对B.甲和乙都错C.乙对,丙错D.甲错,丙对16.(2分)(2020•河北)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A.1,4,5B.2,3,5C.3,4,5D.2,2,4二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有3个空,每空2分)17.(3分)(2020•河北)已知:√18−√2=a√2−√2=b√2,则ab=.18.(3分)(2020•河北)正六边形的一个内角是正n边形一个外角的4倍,则n=.19.(6分)(2020•河北)如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作T m(m为1~8的整数).函数y=kx(x<0)的图象为曲线L.(1)若L过点T1,则k=;(2)若L过点T4,则它必定还过另一点T m,则m=;(3)若曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,则k的整数值有个.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.(8分)(2020•河北)已知两个有理数:﹣9和5.(1)计算:(−9)+52;(2)若再添一个负整数m ,且﹣9,5与m 这三个数的平均数仍小于m ,求m 的值. 21.(8分)(2020•河北)有一电脑程序:每按一次按键,屏幕的A 区就会自动加上a 2,同时B 区就会自动减去3a ,且均显示化简后的结果.已知A ,B 两区初始显示的分别是25和﹣16,如图.如,第一次按键后,A ,B 两区分别显示:(1)从初始状态按2次后,分别求A ,B 两区显示的结果;(2)从初始状态按4次后,计算A ,B 两区代数式的和,请判断这个和能为负数吗?说明理由.22.(9分)(2020•河北)如图,点O 为AB 中点,分别延长OA 到点C ,OB 到点D ,使OC =OD .以点O 为圆心,分别以OA ,OC 为半径在CD 上方作两个半圆.点P 为小半圆上任一点(不与点A ,B 重合),连接OP 并延长交大半圆于点E ,连接AE ,CP . (1)①求证:△AOE ≌△POC ;②写出∠l ,∠2和∠C 三者间的数量关系,并说明理由.(2)若OC =2OA =2,当∠C 最大时,直接指出CP 与小半圆的位置关系,并求此时S扇形EOD(答案保留π).23.(9分)(2020•河北)用承重指数w 衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数W 与木板厚度x (厘米)的平方成正比,当x =3时,W =3.(1)求W与x的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为x(厘米),Q=W厚﹣W薄.①求Q与x的函数关系式;②x为何值时,Q是W薄的3倍?[注:(1)及(2)中的①不必写x的取值范围]24.(10分)(2020•河北)表格中的两组对应值满足一次函数y=kx+b,现画出了它的图象为直线l,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'.x﹣10y﹣21(1)求直线l的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l和y轴所截线段的长;(3)设直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.25.(10分)(2020•河北)如图,甲、乙两人(看成点)分别在数轴﹣3和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率P;(2)从如图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n次,且他最终停留的位置对应的数为m,试用含n的代数式表示m,并求该位置距离原点O最近时n的值;(3)从如图的位置开始,若进行了k次移动游戏后,甲与乙的位置相距2个单位,直接写出k的值.26.(12分)(2020•河北)如图1和图2,在△ABC中,AB=AC,BC=8,tan C=3 4.点K在AC边上,点M,N分别在AB,BC上,且AM=CN=2.点P从点M出发沿折线MB ﹣BN匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持∠APQ=∠B.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当0≤x≤3及3≤x≤9时,分别求点P到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角∠APQ扫描△APQ区域(含边界),扫描器随点P从M到B再到N共用时36秒.若AK=94,请直接写出点K被扫描到的总时长.2020年河北省中考数学试卷参考答案与试题解析一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2020•河北)如图,在平面内作已知直线m的垂线,可作垂线的条数有()A.0条B.1条C.2条D.无数条【解答】解:在平面内,与已知直线垂直的直线有无数条,所以作已知直线的垂线,可作无数条.故选:D.2.(3分)(2020•河北)墨迹覆盖了等式“x3x=x2(x≠0)”中的运算符号,则覆盖的是()A.+B.﹣C.×D.÷【解答】解:∵x3x=x2(x≠0),∴覆盖的是:÷.故选:D.3.(3分)(2020•河北)对于①x﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解【解答】解:①x﹣3xy=x(1﹣3y),从左到右的变形是因式分解;②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形是整式的乘法,不是因式分解;所以①是因式分解,②是乘法运算.故选:C.4.(3分)(2020•河北)如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是()A.仅主视图不同B.仅俯视图不同C.仅左视图不同D.主视图、左视图和俯视图都相同【解答】解:从正面看,两个几何体均为第一层和第二层都是两个小正方形,故主视图相同;从左面看,两个几何体均为第一层和第二层都是两个小正方形,故左视图相同;从上面看,两个几何体均为第一层和第二层都是两个小正方形,故俯视图相同.故选:D.5.(3分)(2020•河北)如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是a元/千克,发现这四个单价的中位数恰好也是众数,则a=()A.9B.8C.7D.6【解答】解:由统计图可知,前三次的中位数是8,∵第四次又买的苹果单价是a元/千克,这四个单价的中位数恰好也是众数,∴a=8,故选:B.6.(3分)(2020•河北)如图1,已知∠ABC,用尺规作它的角平分线.如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是()A .a ,b 均无限制B .a >0,b >12DE 的长 C .a 有最小限制,b 无限制D .a ≥0,b <12DE 的长【解答】解:以B 为圆心画弧时,半径a 必须大于0,分别以D ,E 为圆心,以b 为半径画弧时,b 必须大于12DE ,否则没有交点,故选:B .7.(3分)(2020•河北)若a ≠b ,则下列分式化简正确的是( ) A .a+2b+2=abB .a−2b−2=abC .a 2b =abD .12a 12b =ab【解答】解:∵a ≠b , ∴a+2b+2≠ab ,故选项A 错误;a−2b−2≠a b,故选项B 错误;a 2b 2≠a b,故选项C 错误; 12a 12b =ab ,故选项D 正确;故选:D .8.(3分)(2020•河北)在如图所示的网格中,以点O 为位似中心,四边形ABCD 的位似图形是( )A .四边形NPMQB .四边形NPMRC .四边形NHMQD .四边形NHMR【解答】解:∵以点O 为位似中心, ∴点C 对应点M ,设网格中每个小方格的边长为1,则OC =√22+12=√5,OM =√42+22=2√5,OD =√2,OB =√32+12=√10,OA =√32+22=√13,OR =√22+12=√5,OQ =2√2,OP =√62+22=2√10,OH =√62+32=3√5,ON =√62+42=2√13, ∵OM OC=√5√5=2, ∴点D 对应点Q ,点B 对应点P ,点A 对应点N ,∴以点O 为位似中心,四边形ABCD 的位似图形是四边形NPMQ , 故选:A .9.(3分)(2020•河北)若(92−1)(112−1)k=8×10×12,则k =( )A .12B .10C .8D .6【解答】解:方程两边都乘以k ,得 (92﹣1)(112﹣1)=8×10×12k ,∴(9+1)(9﹣1)(11+1)(11﹣1)=8×10×12k , ∴80×120=8×10×12k , ∴k =10.经检验k =10是原方程的解. 故选:B .10.(3分)(2020•河北)如图,将△ABC 绕边AC 的中点O 顺时针旋转180°.嘉淇发现,旋转后的△CDA 与△ABC 构成平行四边形,并推理如下:小明为保证嘉淇的推理更严谨,想在方框中“∵CB =AD ,”和“∴四边形…”之间作补充,下列正确的是 ( )A .嘉淇推理严谨,不必补充B .应补充:且AB =CDC .应补充:且AB ∥CD D .应补充:且OA =OC【解答】解:∵CB =AD ,AB =CD , ∴四边形ABCD 是平行四边形, 故选:B .11.(2分)(2020•河北)若k 为正整数,则(k +k +⋯+k)k ︸k 个k=( )A .k 2kB .k 2k +1C .2k kD .k 2+k【解答】解:(k +k +⋯+k)k ︸k 个k=((k •k )k =(k 2)k =k 2k ,故选:A .12.(2分)(2020•河北)如图,从笔直的公路l 旁一点P 出发,向西走6km 到达l ;从P 出发向北走6km 也到达l .下列说法错误的是( )A .从点P 向北偏西45°走3km 到达lB .公路l 的走向是南偏西45°C .公路l 的走向是北偏东45°D .从点P 向北走3km 后,再向西走3km 到达l 【解答】解:如图,由题意可得△P AB 是腰长6km 的等腰直角三角形, 则AB =6√2km ,则PC=3√2km,则从点P向北偏西45°走3√2km到达l,选项A错误;则公路l的走向是南偏西45°或北偏东45°,选项B,C正确;则从点P向北走3km后,再向西走3km到达l,选项D正确.故选:A.13.(2分)(2020•河北)已知光速为300000千米/秒,光经过t秒(1≤t≤10)传播的距离用科学记数法表示为a×10n千米,则n可能为()A.5B.6C.5或6D.5或6或7【解答】解:当t=1时,光传播的距离为1×300000=300000=3×105(千米),则n=5;当t=10时,光传播的距离为10×300000=3000000=3×106(千米),则n=6.因为1≤t≤10,所以n可能为5或6,故选:C.14.(2分)(2020•河北)有一题目:“已知:点O为△ABC的外心,∠BOC=130°,求∠A.”嘉嘉的解答为:画△ABC以及它的外接圆O,连接OB,OC.如图,由∠BOC=2∠A=130°,得∠A=65°.而淇淇说:“嘉嘉考虑的不周全,∠A还应有另一个不同的值.”下列判断正确的是()A.淇淇说的对,且∠A的另一个值是115°B.淇淇说的不对,∠A就得65°C.嘉嘉求的结果不对,∠A应得50°D.两人都不对,∠A应有3个不同值【解答】解:如图所示:∠A还应有另一个不同的值∠A′与∠A互补.故∠A′=180°﹣65°=115°.故选:A.15.(2分)(2020•河北)如图,现要在抛物线y=x(4﹣x)上找点P(a,b),针对b的不同取值,所找点P的个数,三人的说法如下,甲:若b=5,则点P的个数为0;乙:若b=4,则点P的个数为1;丙:若b=3,则点P的个数为1.下列判断正确的是()A.乙错,丙对B.甲和乙都错C.乙对,丙错D.甲错,丙对【解答】解:y=x(4﹣x)=﹣x2+4x=﹣(x﹣2)2+4,∴抛物线的顶点坐标为(2,4),∴在抛物线上的点P的纵坐标最大为4,∴甲、乙的说法正确;若b=3,则抛物线上纵坐标为3的点有2个,∴丙的说法不正确;故选:C.16.(2分)(2020•河北)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A .1,4,5B .2,3,5C .3,4,5D .2,2,4【解答】解:当选取的三块纸片的面积分别是1,4,5时,围成的直角三角形的面积是√1×√42=√42, 当选取的三块纸片的面积分别是2,3,5时,围成的直角三角形的面积是√2×√32=√62; 当选取的三块纸片的面积分别是3,4,5时,围成的三角形不是直角三角形; 当选取的三块纸片的面积分别是2,2,4时,围成的直角三角形的面积是√2×√22=√42, ∵√62>√42, ∴所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是2,3,5, 故选:B .二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有3个空,每空2分)17.(3分)(2020•河北)已知:√18−√2=a √2−√2=b √2,则ab = 6 . 【解答】解:原式=3√2−√2=a √2−√2=b √2, 故a =3,b =2, 则ab =6. 故答案为:6.18.(3分)(2020•河北)正六边形的一个内角是正n 边形一个外角的4倍,则n = 12 . 【解答】解:正六边形的一个内角为:(6−2)×180°6=120°,∵正六边形的一个内角是正n 边形一个外角的4倍, ∴正n 边形一个外角为:120°÷4=30°, ∴n =360°÷30°=12. 故答案为:12.19.(6分)(2020•河北)如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作T m(m为1~8的整数).函数y=kx(x<0)的图象为曲线L.(1)若L过点T1,则k=﹣16;(2)若L过点T4,则它必定还过另一点T m,则m=5;(3)若曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,则k的整数值有7个.【解答】解:(1)∵每个台阶的高和宽分别是1和2,∴T1(﹣16,1),T2(﹣14,2),T3(﹣12,3),T4(﹣10,4),T5(﹣8,5),T6(﹣6,6),T7(﹣4,7),T8(﹣2,8),∵L过点T1,∴k=﹣16×1=﹣16,故答案为:﹣16;(2)∵L过点T4,∴k=﹣10×4=﹣40,∴反比例函数解析式为:y=−40 x,当x=﹣8时,y=5,∴T5在反比例函数图象上,∴m=5,故答案为:5;(3)若曲线L过点T1(﹣16,1),T8(﹣2,8)时,k=﹣16,若曲线L过点T2(﹣14,2),T7(﹣4,7)时,k=﹣14×2=﹣28,若曲线L过点T3(﹣12,3),T5(﹣8,5)时,k=﹣12×3=﹣36,若曲线L 过点T 4(﹣10,4),T 5(﹣8,5)时,k =﹣40, ∵曲线L 使得T 1~T 8这些点分布在它的两侧,每侧各4个点, ∴﹣36<k <﹣28,∴整数k =﹣35,﹣34,﹣33,﹣32,﹣31,﹣30,﹣29共7个, ∴答案为:7.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(8分)(2020•河北)已知两个有理数:﹣9和5. (1)计算:(−9)+52;(2)若再添一个负整数m ,且﹣9,5与m 这三个数的平均数仍小于m ,求m 的值. 【解答】解:(1)(−9)+52=−42=−2;(2)根据题意得,−9+5+m3<m ,∴﹣4+m <3m , ∴m ﹣3m <4, ∴﹣2m <4, ∴m >﹣2, ∵m 是负整数, ∴m =﹣1.21.(8分)(2020•河北)有一电脑程序:每按一次按键,屏幕的A 区就会自动加上a 2,同时B 区就会自动减去3a ,且均显示化简后的结果.已知A ,B 两区初始显示的分别是25和﹣16,如图.如,第一次按键后,A ,B 两区分别显示:(1)从初始状态按2次后,分别求A ,B 两区显示的结果;(2)从初始状态按4次后,计算A ,B 两区代数式的和,请判断这个和能为负数吗?说明理由.【解答】解:(1)A 区显示的结果为:25+2a 2,B 区显示的结果为:﹣16﹣6a ; (2)这个和不能为负数,理由:根据题意得,25+4a 2+(﹣16﹣12a )=25+4a 2﹣16﹣12a =4a 2﹣12a +9; ∵(2a ﹣3)2≥0, ∴这个和不能为负数.22.(9分)(2020•河北)如图,点O 为AB 中点,分别延长OA 到点C ,OB 到点D ,使OC =OD .以点O 为圆心,分别以OA ,OC 为半径在CD 上方作两个半圆.点P 为小半圆上任一点(不与点A ,B 重合),连接OP 并延长交大半圆于点E ,连接AE ,CP . (1)①求证:△AOE ≌△POC ;②写出∠l ,∠2和∠C 三者间的数量关系,并说明理由.(2)若OC =2OA =2,当∠C 最大时,直接指出CP 与小半圆的位置关系,并求此时S扇形EOD(答案保留π).【解答】解:(1)①在△AOE 和△POC 中, {OA =OP∠AOE =∠POC OE =OC, ∴△AOE ≌△POC (SAS ); ②∵△AOE ≌△POC , ∴∠E =∠C , ∵∠1+∠E =∠2, ∴∠1+∠C =∠2;(2)当∠C 最大时,CP 与小半圆相切, 如图,∵OC=2OA=2,∴OC=2OP,∵CP与小半圆相切,∴∠OPC=90°,∴∠OCP=30°,∴∠DOE=∠OPC+∠OCP=120°,∴S扇形ODE =120π×22360=43π.23.(9分)(2020•河北)用承重指数w衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数W与木板厚度x(厘米)的平方成正比,当x=3时,W=3.(1)求W与x的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为x(厘米),Q=W厚﹣W薄.①求Q与x的函数关系式;②x为何值时,Q是W薄的3倍?[注:(1)及(2)中的①不必写x的取值范围]【解答】解:(1)设W=kx2(k≠0).∵当x=3时,W=3,∴3=9k,解得k=1 3,∴W与x的函数关系式为W=13x 2;(2)①设薄板的厚度为x厘米,则厚板的厚度为(6﹣x)厘米,∴Q=W厚﹣W薄=13(6﹣x)2−13x2=﹣4x+12,即Q与x的函数关系式为Q=﹣4x+12;②∵Q是W薄的3倍,∴﹣4x+12=3×13x 2,整理得,x2+4x﹣12=0,解得,x1=2,x2=﹣6(不合题意舍去),故x为2时,Q是W薄的3倍.24.(10分)(2020•河北)表格中的两组对应值满足一次函数y=kx+b,现画出了它的图象为直线l,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'.x﹣10y﹣21(1)求直线l的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l和y轴所截线段的长;(3)设直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.【解答】解:(1)∵直线l:y=kx+b中,当x=﹣1时,y=﹣2;当x=0时,y=1,∴{−k +b =−2b =1,解得{k =3b =1, ∴直线l 的解析式为y =3x +1;∴直线l ′的解析式为y =x +3;(2)如图,解{y =x +3y =3x +1得{x =1y =4, ∴两直线的交点为(1,4),∵直线l ′:y =x +3与y 轴的交点为(0,3),∴直线l '被直线l 和y 轴所截线段的长为:√12+(4−3)2=√2;(3)把y =a 代入y =3x +1得,a =3x +1,解得x =a−13;把y =a 代入y =x +3得,a =x +3,解得x =a ﹣3;当a ﹣3+a−13=0时,a =52,当12(a ﹣3+0)=a−13时,a =7, 当12(a−13+0)=a ﹣3时,a =175, ∴直线y =a 与直线l ,l ′及y 轴有三个不同的交点,且其中两点关于第三点对称,则a 的值为52或7或175.25.(10分)(2020•河北)如图,甲、乙两人(看成点)分别在数轴﹣3和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率P;(2)从如图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n次,且他最终停留的位置对应的数为m,试用含n的代数式表示m,并求该位置距离原点O最近时n的值;(3)从如图的位置开始,若进行了k次移动游戏后,甲与乙的位置相距2个单位,直接写出k的值.【解答】解:(1)∵经过第一次移动游戏,甲的位置停留在正半轴上,∴必须甲对乙错,因为一共有四种情形,都对或都错,甲对乙错,甲错乙对,∴P甲对乙错=1 4.(2)由题意m=5﹣4n+2(10﹣n)=25﹣6n.n=4时,离原点最近.(3)不妨设甲连续k次正确后两人相距2个单位,则有|8+2k﹣4k|=2,解得k=3或5.如果k次中,有1次两人都对都错,则有|6+2(k﹣1)﹣4(k﹣1)|=2,解得k=3或5,如果k次中,有2次两人都对都错,则有|4+2(k﹣2)﹣4(k﹣2)|=2,解得k=3或5,…,综上所述,满足条件的k的值为3或5.26.(12分)(2020•河北)如图1和图2,在△ABC中,AB=AC,BC=8,tan C=3 4.点K在AC边上,点M,N分别在AB,BC上,且AM=CN=2.点P从点M出发沿折线MB ﹣BN匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持∠APQ=∠B.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当0≤x≤3及3≤x≤9时,分别求点P到直线AC的距离(用含x的式子表示);(4)在点P 处设计并安装一扫描器,按定角∠APQ 扫描△APQ 区域(含边界),扫描器随点P 从M 到B 再到N 共用时36秒.若AK =94,请直接写出点K 被扫描到的总时长.【解答】解:(1)如图1中,过点A 作AH ⊥BC 于H .∵AB =AC ,AH ⊥BC ,∴BH =CH =4,∠B =∠C ,∴tan ∠B =tan ∠C =AH BH =34,∴AH =3,AB =AC =2+BH 2=√32+42=5.∴当点P 在BC 上时,点P 到A 的最短距离为3.(2)如图1中,∵∠APQ =∠B ,∴PQ ∥BC ,∴△APQ ∽△ABC ,∵PQ 将△ABC 的面积分成上下4:5,∴S △APQ S △ABC =(AP AB )2=49,∴AP AB =23,∴AP =103,∴PM =AP =AM =103−2=43.(3)当0≤x ≤3时,如图1﹣1中,过点P 作PJ ⊥CA 交CA 的延长线于J .∵PQ ∥BC ,∴AP AB =PQ BC ,∠AQP =∠C , ∴x+25=PQ 8, ∴PQ =85(x +2),∵sin ∠AQP =sin ∠C =35,∴PJ =PQ •sin ∠AQP =2425(x +2).当3≤x ≤9时,如图2中,过点P 作PJ ⊥AC 于J .同法可得PJ =PC •sin ∠C =35(11﹣x ).(4)由题意点P 的运动速度=936=14单位长度/秒.当3<x ≤9时,设CQ =y .∵∠APC =∠B +∠BAP =∠APQ +∠CPQ ,∠APQ =∠B ,∴∠BAP =∠CPQ ,∵∠B =∠C ,∴△ABP ∽△PCQ ,∴AB CP =BP CQ , ∴511−x =x−3y,∴y =−15(x ﹣7)2+165, ∵−15<0, ∴x =7时,y 有最大值,最大值=165,∵AK =94,∴CK =5−94=114<165当y =114时,114=−15(x ﹣7)2+165, 解得x =7±32,∴点K 被扫描到的总时长=(114+6﹣3)÷14=23秒. 方法二:①点P 在AB 上的时候,有11/4个单位长度都能扫描到点K ;②在BN 阶段,当x 在3~5.5(即7﹣1.5)的过程,是能扫到K 点的,在5.5~8.5(即7+1.5)的过程是扫不到点K 的,但在8.5~9(即点M 到N 全部的路程)能扫到点K .所以扫到的时间是[(9﹣8.5)+(5.5﹣3)+114]÷14=23(秒).。
河北省廊坊市2020年(春秋版)中考数学一模试卷(I)卷
河北省廊坊市2020年(春秋版)中考数学一模试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)如图所示,数轴上两点A,B分别表示实数a,b,则下列四个数中最大的一个数是()A . aB . bC .D .2. (2分) (2019六下·广饶期中) 下列算式中,结果等于a6的是()A . a2•a2•a2B . a4+a2C . a2+a2+a2D . a2•a33. (2分)(2019·花都模拟) 下列交通标志图案中,是中心对称图形的是()A .B .C .D .4. (2分)一个饭店所有员工的月收入情况如下:精力领班迎宾厨房厨师助理服务员洗碗工人数/人1222382月收入/元4700190015002200150014001200你认为用来描述该饭店员工的月收入水平不太恰当的是()A . 所有员工月收入的平均数B . 所有员工月收入的中位数C . 所有员工月收入的众数D . 所有员工月收入的中位数或众数5. (2分)如图,小明课间把老师的三角板的直角顶点放在黑板的两条平行线a、b上,已知∠1=55°,则∠2的度数为()A . 45°B . 35°C . 55°D . 125°6. (2分)如图,已知EF是⊙O的直径,把∠A为60°的直角三角板ABC的一条直角边BC放在直线EF上,斜边AB与⊙O交于点P,点B与点O重合,将三角板ABC沿OE方向平移,使得点B与点E重合为止.设∠POF=x,则x的取值范围是()A . 30°≤x≤60°B . 30°≤x≤90°C . 30°≤x≤120°D . 60°≤x≤120°7. (2分) (2019九上·长春月考) 如图是一个几何体的三视图,则这个几何体的形状是()A . 圆柱B . 圆锥C . 圆台D . 长方体8. (2分)货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地,已知甲、乙两地相距180千米,货车的速度为60千米/小时,小汽车的速度为90千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y(千米)与各自行驶时间t(小时)之间的函数图象是().A .B .C .D .二、填空题 (共7题;共7分)9. (1分) (2020九下·萧山月考) 因式分解:a-a3=________。
2020年河北中考数学试卷及答案(word中考格式版)
河北省初中毕业生升学文化课考试数 学 试 卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷总分120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)一、选择题(本大题共16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列图形为正多边形的是DC B A2.规定:(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作的个数为A .+3B .–3C .–13D .+133.如图1,从点C 观测点D 的仰角是A .∠DAB B .∠DCEC .∠DCAD .∠ADC4.语句“x 的18与x 的和不超过5”可以表示为A .x8+x ≤5B .x8+x ≥5C .8x +5≤5D .8x +x =55.如图2,菱形ABCD 中,∠D =150°,则∠1=A .30°B .25°C .20°D .15°图1水平地面EBACD 1DCBA6.小明总结了以下结论:①a (b +c )=ab +ac②a (b –c )=ab –ac③(b –c )÷a =b ÷a –c ÷a (a ≠0) ④a ÷(b +c )=a ÷b +a ÷c (a ≠0)其中一定成立的个数是 则正确的配对是 A .1 B .2 C .3D .47.下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是 A .◎代表∠FEC B .@代表同位角 C .▲代表∠EFCD .※代表AB8.一次抽奖活动特等奖的中奖率为15000,把15000用科学记数法表示为 A .5⨯10–4 B .5⨯10–5 C .2⨯10–4D .2⨯10–59.如图3,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n 个小正三 角形,使它们与原来涂黑的小正三角形组成的新图案 恰有三条对称轴,则n 的最小值为 A .10 B .6 C .3D .210.根据圆规作图的痕迹,可用直尺成功找到三角形外心的是FEDC BA已知:如图,∠BEC =∠B +∠C 求证:AB ∥CD .证明:延长BE 交 ※ 于点F ,则∠BEC = ◎ +∠C (三角形的外角等于与它不相邻两个内角之和). 又∠BEC =∠B +∠C ,得∠B = ▲ , 故AB ∥CD ( @ 相等,两直线平行).图3A B C D70°50°50°70°70°50°50°70°11.某同学要统计本校图书馆最受学生欢迎的图书种类.以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的各类; ②去图书馆收集学生借阅图书的记录; ③绘制扇形图来表示各个各类所占的百分比; ④整理借阅图书记录并绘制频数分布表. 正确统计步骤的顺序是 A .②→③→①→④ B .③→④→①→② C .①→②→④→③ D .②→④→③→①12.如图4,函数y =⎩⎪⎨⎪⎧1x (x >0)–1x (x >0)的图象所在坐标系的原点是A .点MB .点NC .点PD .点Q13.如图5,若x 为正整数...,则表示(x +2)2x 2+4x +4–1x +1的值的点落在 A .段① B .段② C .段③ D .段④图4NP QM 图52.21.610.4-0.2④③②①14.图6-2是图6-1中长方体的三视图,若用S 表示 面积,且S 主=x 2+2x ,S 左=x 2+x ,则S 俯=A .x 2+3x +2B .x 2+2C .x 2+2x +1D .2x 2+3x15.小刚在解关于x 的方程ax 2+bx +c =0(a ≠0)时,只抄对了a =1,b =4,解出其中 一个根是x =–1.他核对时发现所抄的c 比原方程的c 值小2.则原方程的根的情况是A .不存在实数根B .有两个不相等的实数根C .有一个根是x =–1D .有两个相等的实数根16.对于题目“如图7-1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界.....通过移转 (即平移或旋转)的方式,自由地从横放移转到竖放, 求正方形边长的最小整数n .”甲、乙、丙作了自认为 边长最小的正方形,先求出该边长x ,再取最小整数n . 甲:如图7-2,思路是当x 为矩形对角线长时就可以移转过去; 结果取n =13.乙:如图7-3,思路是当x 为矩形外接圆直径长时就可移转过去;结果取n =14.丙:如图7-4,思路是当x 为矩形的长与宽之和的22倍时就可移转过去;结果取n =13.下列正确的是A .甲的思路错,他的n 值对B .乙的思路和他的n 值都对C .甲和丙的n 值都对D .甲、乙的思路都错,而丙的思路对图6-2图6-1正面俯视图左视图主视图xx图7-2图7-1x 12661245°x 图7-4图7-3x2019年河北省初中毕业生升学文化课考试数 学 试 卷卷Ⅱ(非选择题,共78分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用黑色字迹的钢笔、签字笔或圆珠笔直接写在试卷上.题号 二 三20 21 22 23 24 25 26 得分二、填空题(本大题有3个小题,共11分.17小题3分,18~19小题各有2个空,每空2分.把答案写在题中横线上) 17.若7–2⨯7–1⨯70,则p 的值为________.18.如图8,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:734即4+3=7则(1)用含x 的式子表示m =_________; (2)当y =–2时,n 的值为_________.19.勘测队按实际需要构建了平面直角坐标系,并标示了A ,B ,C 三地的坐标,数据如图9(单位:km ).笔直铁路经过A ,B 两地. (1)A ,B 间的距离_________km ;(2)计划修一条从C 到铁路AB 的最短公路....l ,并 在l 上建一个维修站D ,使D 到A ,C 的距离 相等,则C ,D 间的距离为_________km .总 分 核分人得 分评卷人图8y n m32xx 图9(0,-17)(-8,1)(12,1)CB A三、解答题(本大题共7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)得分评卷人20.(本小题满分8分)有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,–,⨯,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2–6–9;(2)若1÷2⨯6□9=–6,请推算□的符号;(3)若“1□2□6–9”的□内填入符号后,使计算所得数最小,直接..写出这个最小数.21.(本小题满分9分)已知:整式A=(n2–1)2+(2n)2,整式B>0.尝试化简整式A发现A=B2.求整式B.联想由上可知,B2=(n2–1)2+(2n)2,当n>1时,n2–1,2n,B为直角三角形的三边长,如图10.填写下表中B的值:直角三角形三边n2–1 2n B勾股数组I 8勾股数组II 35图10Bn2–12n22.(本小题满分9分)某球室有三种品牌的4个乒乓球,价格是7,8,9(单位:元)三种,从中随机拿出一个球,已知P (一次拿到8元球)=12.(1)求这4个球价格的众数;(2)若甲组已拿走一个7元球训练,乙组准备从剩余3个球中随机拿一个训练. ①所剩的3个球价格的中位数与原来4个球价格的 中位数是否相同?并简要说明理由;②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法...(如图11)求乙组两次都拿到8元球的概率.又拿先拿图1123.(本小题满分9分)如图12,△ABC 和△ADE 中,AB =AD =6,BC =DE ,∠B =∠D =30°,边AD 与 边BC 交于点P (不与点B ,C 重合),点B ,E 在AD 异侧,I 为△APC 的内心. (1)求证:∠BAD =∠CAE ;(2)设AP =x ,请用含x 的式子表示PD ,并求PD 的最大值;(3)当AB ⊥AC 时,∠AIC 的取值范围为m °<∠AEC <n °,分别直接..写出m ,n 的值.图12PIEBCAD备用图CB A24.(本小题满分10分)长为300m 的春游队伍,以v (m/s )的速度向东行进.如图13-1和13-2,当队伍 排尾行进到位置O 时,在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为2v (m/s ),当甲返回排尾后,他及队伍均停止行进.设排尾从位置O 开始行进的时间为t (s ),排头..与O 的距离为S 头(m ). (1)当v =2时,解答:①求S 头与t 的函数关系式(不写t 的取值范围);②当甲赶到排头位置时,求S 头的值;在甲从排头返回到排尾过程中,设甲与位置O 的 距离为S 甲(m ),求S 甲与t 的函数关系式(不写t 的取值范围);(2)设甲这次往返队伍的总时间为T (s ),求T 与v 的函数关系式(不写v 的取值范围),并写出队伍在此过程中行进的路程.得 分 评卷人图13-2图13-1尾头东甲OO (尾)甲东25.(本小题满分10分)如图14-1和14-2,ABCD 中,AB =3,BC =15,tan ∠DAB =43.点P 为AB 延长线上一点.过点A 作⊙O 切CP 于点P .设BP =x . (1)如图14-1,x 为何值时,圆心O 落在AP 上?若此时⊙O 交AD 于点E ,直接..指出PE 与BC 的位置 关系;(2)当x =4时,如图14-2,⊙O 与AC 交于点Q ,求∠CAP的度数,并通过计算比较弦AP 与劣弧PQ ⌒长度的大小;(3)当⊙O 与线段..AD 只有一个公共点时,直接..写出x 的取值范围.图14-1EO DCPB A图14-2QO D CBAP 备用图DCBA26.(本小题满分12分)如图15,若b 是正数,直线l :y =b 与y 轴交于点A ;直线a :y =x –b 与y 轴交于点B ;抛物线L :y =–x 2+bx 的顶点为C ,且L 与x 轴右交点为D .(1)若AB =8,求b 的值,并求此时L 的对称轴与a 的交点坐标; (2)当点C 在l 下方时,求点C 与l 距离的最大值;(3)设x 0≠0,点(x 0,y 1),(x 0,y 2),(x 0,y 3)分别在l ,a 和L 上,且y 3是y 1,y 2的平均数,求点(x 0,0)与点D 间距离;(4)在L 和a 所围成的封闭图形的边界上...,把横、纵坐标都是整数的点称为“美点”, 分别直接..写出b =2019和2019.5时“美点”的个数. xy La l图151-1CD BOA。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河北省廊坊市2020版中考数学试卷(I)卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共10题;共20分)
1. (2分)在下列各数:﹣(﹣3),(﹣2)×(﹣),﹣|﹣3|,﹣|a|+1中,负数的个数为()
A . 1个
B . 2个
C . 3个
D . 4个
2. (2分)如图,直线a∥b,则|x﹣y|=()
A . 20
B . 80
C . 120
D . 180
3. (2分)(2012·成都) 成都地铁二号线工程即将竣工,通车后与地铁一号线呈“十”字交叉,城市交通通行和转换能力将成倍增长.该工程投资预算约为930 000万元,这一数据用科学记数法表示为()
A . 9.3×105万元
B . 9.3×106万元
C . 93×104万元
D . 0.93×106万元
4. (2分)下列说法不正确的是()
A . 球的截面一定是圆
B . 组成长方体的各个面中不可能有正方形
C . 从三个不同的方向看正方体,得到的都是正方形
D . 圆锥的截面可能是圆
5. (2分) (2015九上·重庆期末) 以下调查方式中,不合适的是()
A . 浙江卫视“奔跑吧兄弟”综艺节目的收视率,采用抽查的方式
B . 了解某渔场中青鱼的平均重量,采用抽查的方式
C . 了解iPhone6s手机的使用寿命,采用普查的方式
D . 了解一批汽车的刹车性能,采用普查的方式
6. (2分)若二次根式有意义,则x的取值范围是()
A . x>1
B . x<1
C . x≥1
D . x≤1
7. (2分)用代入法解方程组以下最简单的方法是()
A . 先将①变形为x= y,再代入②
B . 先将①变形为y= x,再代入②
C . 先将②变形为x= ,再代入①
D . 先将①变形为2x=5y,再代入②
8. (2分)如图.己知AB∥CD,∠1=70°,则∠2的度数是()
A . 60°
B . 70°
C . 80°
D . 110°
9. (2分)某林场原计划在一定期限内固沙造林240公顷,实际每天固沙造林的面积比原计划多4公顷,结果提前5天完成任务,设原计划每天固沙造林x公顷,根
据题意,下列方程正确的是()
A .
B . -5=
C .
D .
10. (2分) (2020九上·川汇期末) 直线y=kx+4与函数y=的图象有且只有一个公共点,则k的值为()
A . 2
B . ﹣2
C . ﹣1
D . ±2
二、填空题 (共5题;共5分)
11. (1分)计算:992+99的值是 ________.
12. (1分)若mx=4,my=3,则mx+y=________.
13. (1分)(2018·井研模拟) 小明和他的爸爸、妈妈共3人站成一排拍照,他的爸爸、妈妈相邻的概率是________
14. (1分)(2018·内江) 关于的一元二次方程有实数根,则的取值范围是________.
15. (1分) (2017八上·仲恺期中) 五边形的外角和等于________度.
三、解答题 (共8题;共81分)
16. (5分)(2019·嘉定模拟) 计算:2cos30°+tan45°-2sin30°-cot30°
17. (5分)不等式组,并把解集在数轴上表示出来.
18. (10分)已知△ABC是等腰直角三角形,∠BAC=90°,E为△ABC外一点,CE⊥FE,CE=FE,连接AE、BF,点M为AE中点,点N为BF中点.
(1)若BC=4 ,FC=2 ,∠ECA=30°,求S△ACE.
(2)求证:MN⊥AE.
19. (10分)(2018·青岛模拟) 某厂制作甲、乙两种环保包装盒,已知同样用6m材料制成甲盒的个数比制成乙盒的个数少2个,且制成一个甲盒比制成一个乙盒需要多用20%的材料.
(1)求制作每个甲盒、乙盒各用多少米材料?
(2)如果制作甲、乙两种包装盒共3000个,且甲盒的数量不少于乙盒数量的2倍,那么请写出所需要材料
的总长度l(m)与甲盒数量n(个)之间的函数关系式,并求出最少需要多少米材料?
20. (15分)(2016·黄石) 为了解某市初三学生的体育测试成绩和课外体育锻炼时间的情况,现从全市初三学生体育测试成绩中随机抽取200名学生的体育测试成绩作为样本.体育成绩分为四个等次:优秀、良好、及格、不及格.
体育锻炼时间人数
4≤x≤6
2≤x<443
0≤x<215
(1)
试求样本扇形图中体育成绩“良好”所对扇形圆心角的度数;
(2)
统计样本中体育成绩“优秀”和“良好”学生课外体育锻炼时间表(如图表所示),请将图表填写完整(记学生课外体育锻炼时间为x小时);
(3)
全市初三学生中有14400人的体育测试成绩为“优秀”和“良好”,请估计这些学生中课外体育锻炼时间不少于4小时的学生人数.
21. (11分)(2018·肇庆模拟) 如图,已知AB是⊙O的直径,C是⊙O上的一点,连结AC并延长至D,使CD=AC,连结BD,作CE⊥BD,垂足为E。
(1)线段AB与DB的大小关系为________,请证明你的结论;
(2)求证:CE 是⊙O的切线;
(3)当△CED与四边形ACEB的面积比是1:7时,试判断△ABD的形状,并证明。
22. (15分)(2018·武汉模拟) 如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙O于点D,交AC于点
E,连接AD,BD,CD.
(1)求证:E为AC中点;
(2)求证:AD=CD;
(3)若AB=10,cos∠ABC= ,求tan∠DBC的值.
23. (10分)如图,直线y=kx+b与双曲线(x﹤0)相交于A(-4,a)、B(-1,4)两点.
(1)求直线和双曲线的解析式;
(2)在y轴上存在一点P,使得PA+PB的值最小,求点P的坐标.
参考答案一、选择题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共5题;共5分)
11-1、
12-1、
13-1、
14-1、
15-1、
三、解答题 (共8题;共81分)
16-1、
17-1、18-1、
18-2、
19-1、
19-2、
20-1、
20-2、
20-3、
21、答案:略22-1、
22-2、
22-3、23-1、
23-2、。